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Abstract: In the current study, we explore the sensitivity of the actuation dynamics of electrome-
chanical systems on novel materials, e.g., Bi2Se3, which is a well-known 3D Topological Insulator
(TI), and compare their response to metallic conductors, e.g., Au, that are currently used in devices.
Bifurcation and phase portraits analysis in conservative systems suggest that the strong difference
between the conduction states of Bi2Se3 and Au yields sufficiently weaker Casimir force to enhance
stable operation. Furthermore, for nonconservative driven systems, the Melnikov function and
Poincare portrait analysis probed the occurrence of chaotic behavior leading to increased risk for
stiction. It was found that the presence of the TI enhanced stable operation against chaotic behavior
over a significantly wider range of operation conditions in comparison to typical metallic conductors.
Therefore, the use of TIs can allow sufficient surface conductance to apply electrostatic compensation
of residual contact potentials and, at the same time, to yield sufficiently weak Casimir forces favoring
long-term stable actuation dynamics against chaotic behavior.

Keywords: Casimir force; topological insulator; optical properties; chaotic motion

1. Introduction

Nowadays, advancement in fabrication and, consequently, manufacturing techniques
of micro/nanoelectromechanical systems (MEMS/NEMS) attract strong attention from
the scientific and technology point of view in various sensor technologies, accelerometers,
microswitches, etc. [1–4]. On the other hand, the omnipresent Casimir forces appear to
become dominant by reduction of the scale of microdevices into the submicron range,
because MEMS/NEMS have surface areas large enough but gaps small enough for this
force to play a significant role. As the magnitude of the Casimir force increases, it can
lead to the permanent adhesion of moving elements with adjacent surfaces, known as
stiction, under certain conditions [4]. Strategies to reduce stiction have been studied in
terms of a suitable choice of materials and for the development of knowledge in predicting
stable device operation on a long-term basis for the general case of nonconservative driven
MEMS/NEMS [5–7].

In fact, the Casimir force was predicted in 1948 [8] for perfectly reflecting parallel plates
due to the perturbation of vacuum fluctuations of the electromagnetic (EM) field. Soon
after, Lifshitz and coworkers considered the general case of dielectric plates by exploiting
the fluctuation-dissipation theorem, which relates the dissipative properties of the plates
(optical absorption by many microscopic dipoles) and the resulting EM fluctuations. In
terms of the Lifshitz theory [9,10], the van der Waals and Casimir forces are the short- and
long-range asymptotic limits, respectively, of the same force [1–4,8–14]. Nevertheless, the
strong dependence of the Casimir force on the material optical properties can be utilized
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to tune the actuation of devices by proper choice of the interacting materials [5–7,15–19].
Several studies have shown that strong Casimir forces exist between components made of
metals due to their high absorption of conduction electrons in the infrared range, while the
less conductive materials can provide weaker Casimir forces and enhance the stability of
microdevices suitable for operation in harsh environments [5–7,15–19].

Furthermore, due to these unique properties of their surface states, topological in-
sulator (TI) materials can potentially open a new window of opportunity for MEMS
engineering [20–25]. Indeed, there has recently been strong interest from both the theoreti-
cal and experimental point of view on TI materials, which provide a new quantum state
of matter [20–25]. TIs show an insulating gap in the bulk but have gapless surface states
that are protected topologically. Several recent studies have shown that a repulsive Casmir
force can be achieved between two TI plates under certain conditions [23–25], which is
promising for MEMS design and manufacturing. In these devices, the Casimir force is
not only sufficiently strong to play an inevitable role, but the actuation dynamics can also
abruptly change toward stiction due to the attractive forces. Hence, any conditions for
the occurrence of a repulsive force are of paramount importance for stable motion. In
addition, the attractive Casimir forces from TIs can be sufficiently weak to allow the stable
operation of actuating devices with suitable compensation of contact potentials due to
their conductive surface states [26], while stable operation cannot be achieved using good
conductive materials, for example, Au, due to significantly stronger Casimir forces [6,7].

So far, several investigations have been conducted to answer the question of how
the Casimir force changes with these novel materials under both trivial TI (with θ=0)
and nontrivial TI (θ 6= 0) conditions where θ defines the topological magnetoelectric
polarizability (TMEP) [23–25]. However, to date, how significant the influence of TIs on
stable device actuation and long-term performance remains unexplored, although it is
well known that the occurrence of chaotic behavior is unavoidable by shrinking the size
of devices.

2. Optical Properties of Materials and Device Actuation

Prior to modeling the microdevice and its actuation dynamics, it is necessary to com-
pute the Casimir force via Lifshitz theory (see Appendix A). For this purpose, the imaginary
part of the frequency-dependent dielectric function ε(ω) is an essential input. Therefore,
the optical properties of all samples, including Au, Bi2Se3, and Al2O3, were characterized
with ellipsometry using the VUV-VASE (0.5–9.34 eV) and IR-VASE (0.03–0.5 eV) ellipsome-
ters [17,26,27]. Bi2Se3 is a well-known 3D Topological insulator [26], and Au is used in
devices due to its high conductivity ( ωp

2/ ωτ
∣∣Au1600 eV) [17,27]. The imaginary part

ε”(ω) of frequency-dependent dielectric response function ε(ω) of Bi2Se3 and Al2O3 and
the corresponding functions at imaginary frequencies ε(iξ) are shown in Figure 1a,b. Since,
in practice, the experimental data for the imaginary part ε” (ω) of the dielectric function
ε(ω) cover only a limited frequency range, some extrapolations were made as shown in
Appendix B.

For our actuation analysis, we considered a typical microswitch as shown in Figure 1c.
The microswitch was constructed from 2 plates where the upper plate was suspended by
a mechanical spring governed by the Hooke’s law while the lower plate was fixed [28].
The elastic restoring force Fres = −K(d− z) of the spring with stiffness K counterbalanced
the attractive Casimir force. It was assumed that both plates were coated with an optically
bulk Au film (thickness: ~100 nm) or a 100 nm layer of Bi2Se3 deposited on a bulk sapphire
(Al2O3) as described by the authors of [26]. For our calculation, we considered initial sepa-
rations d between the actuating plates in the range 250 nm to 1 µm, and any thermal effects
were not taken into account (assuming, basically, a temperature of 0 K). By considering
all acting forces on the movable plate, the equation of motion for the microsystem can be
written as:

M
d2z
dt2 + ε

(
Mω0

Q

)
dz
dt

= −Fres + FCas + ε F0 cos(ωt) (1)
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where M is the mass of the moving plate and (Mω0/Q)(dz/dt) is the intrinsic energy
dissipation of the actuating system with Q as its quality factor [29–31]. The frequencyω
was assumed to have a value that is typical for many MEMS or atomic force microscope
(AFM) cantilevers (typically ω = 300 kHz) [29–31]. The parameter ε was introduced to
distinguish between the conservative frictionless autonomous operation of the actuating
system (ε = 0) and the nonconservative driven system by an external force (ε = 1)
in the presence of friction with a finite quality factor Q. Finally, we considered MEMS
components with flat surfaces, because any nanoscale roughness has a significant influence
at separations sufficiently below 100 nm [32]. In all cases, the lateral dimensions of the
plates were considered to be Lx = Ly = 10 µm.

Figure 1. (a) Dielectric functions at imaginary frequency for Au, Al2O3, and Bi2Se3. (b) Imaginary part
of the frequency-dependent dielectric functions for Au, Al2O3, and Bi2Se3 obtained by ellipsometry.
(c) Schematic of the MEMS made of Al2O3 covered with an Au or Bi2Se3 layer.

3. Results and Discussion

To proceed with the analysis of the actuation dynamics, we introduced the bifur-
cation parameter δCas = Fm

Cas/kd, which is the ratio of the minimum Casimir force
Fm

Cas = FCas(z = d) to the maximum restoring force Kd. A small change of δCas can lead
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to an abrupt change in the actuation of the system [15]. Substitution of δCas yields for the
equation of motion the more convenient form:

d2λ

dT2 + ε

(
1
Q

)
dλ
dT

= −(1− λ) + δCas
FCas

Fm
Cas

+ ε
F0

FMax
res

cos
(
ω

ω0
T
)

(2)

with λ = z/d and T = ω0t.

3.1. Conservative Actuating System (ε = 0)

The conservative system is discussed first in order to study the equilibrium points
of the dynamical system. In fact, the locus of equilibrium points is obtained by the
condition Ftotal = Fres + FCas = 0, since the presence of periodic solution describes regions
with sufficient restoring force to prevent stiction of the plates. In this case, Equation (2)
yields the condition λ = 1− δCas(FCas(z)/Fm

Cas(d)) for λ. Figure 2 shows plots of δCas vs.
λ for different initial distances illustrating how different interaction materials generate
considerable change on the stability conditions of the system. Notably, there is a significant
difference between the bifurcation curves around the maximum where one approaches
critically unstable behavior. In Figure 2, the dashed lines show the stable area where the
restoring force Fres is strong enough to ensure stable periodic motion. The solid lines
indicate unstable regions where the moving plate undergoes instable motion leading to
permanent lockdown. When δCas < δMAX

Cas , two equilibrium points exist. The equilibrium
point closer to λ = 1 (dashed line) is a stable center point, and the one closer to λ = 0
(solid line) is the unstable saddle point. By increasing δCas or equivalently weakening the
restoring force (δCas ∼ 1/k), the distance between the equilibrium points decreases until
δCas reaches the maximum saddle point δMAX

Cas . Clearly, when δCas ~ δMAX
Cas for the Au-Au

system leads to loss of its stability, it is still δCas < δMAX
Cas for the TI-TI system, ensuring the

presence of two equilibrium points and enhancing the possibility for stable motion.
Besides the bifurcation diagrams in Figure 2, the Poincare portraits in Figure 3 directly

depict the strong sensitivity of actuation dynamics on its initial conditions and demonstrate
how the size of the stable area is strongly dependent on the optical properties. In Figure 3,
the enclosed area by the homoclinic orbit corresponds to periodic solutions and stable actu-
ation. Otherwise, stiction would occur within one period. The phase portraits in Figure 3
also demonstrate that a system with stronger Casimir attractive force has significantly less
phase space available for stable motion as is the case when comparing the distinct behavior
of the Au-Au and TI-TI systems.

Because the extrapolation of the dielectric function for Au in the low frequency range
was performed by the Drude model, Figure 4 shows the influence of extrapolation in the
low frequency range by considering the effect of both the Drude (D) and Plasma (P) models.
Due to the strong difference between the conduction states of Au and TI, the stable area for
actuation of both the Au-Au and Au-TI systems is smaller than the TI-TI system for both
extrapolation models. For the Au-Au system, the use of the Drude or Plasma models to
extrapolate at low frequencies induces significant changes in the phase space available for
stable actuation. However, for the Au-TI and the TI-TI systems, the extrapolation effect
by the D/P models is reduced, e.g., in Au-TI systems, or fully eliminated, e.g., in TI-TI
systems. For the latter, no extrapolation is performed for the optical data of the TI due to
the absence of any measurable absorption in the far-infrared range (probably due to the
insensitivity of the ellipsometry measurements to probe the conductive surface layer of
the TI). In this plot, we considered δCas = 0.027 for both the Au-Au and Au-TI systems.
According to the bifurcation diagram, by increasing the separation distance d for actuation
(where the spring is not stretched during fabrication of the device) and therefore decreasing
the value of Fm

Cas, the chosen value for δCas moves to the maximum of the bifurcation curve
(when d changes from 250 nm to 1000 nm) where the sensitivity on the optical properties
is most pronounced. As a result, the ratio of the phase space area for stable actuation in
Figure 4, SAA/STT and SAT/STT, decreases with increasing separation distance for both
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extrapolation models at low frequencies beyond the far-infrared range where optical data
are no longer available.

Figure 2. Bifurcation diagrams δCas vs. λ (=z/d) for different interacting materials. The initial
distance d between the plates is (a) 250 nm, (b) 500 nm, and (c) 1000 nm. The dashed and solid lines
represent the unstable and stable equilibrium points, respectively.
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Figure 3. Contour plots of the transient times to stiction in the phase plane dλ/dt vs. λ for systems made of several pairs of
interacting materials. The initial distance between the plates is indicated in the plots. Here, we considered δCas = 0.065 for
d = 250 nm and δCas = 0.031 for d = 1000 nm. For the calculations, we used 150 × 150 initial conditions (λ, dλ/dt). The
red (elliptical in shape central area) region surrounded by the homoclinic orbit contains the initial conditions that lead to
stable oscillations.
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Figure 4. Ratio of the stable area of actuation between different systems (Au-Au and Au-TI) and the
TI-TI system vs. initial separation distance for the extrapolations at low frequencies for Au via the
Drude (D) and Plasma (P) models. For the calculations, we considered δCas = 0.027.

3.2. Nonconservative Driven System (ε = 1)

For the more realistic case of externally actuated devices, we performed investigations
of the existence of chaotic behavior in dissipative MEMS driven by an external periodic
force Fo cos(ω t) [33]. Chaotic behavior could occur if the separatrix (homoclinic orbit) of
the conservative system splits, and this behavior can be studied by the so-called Melnikov
function and Poincare portrait analysis [33,34]. If we define the homoclinic solution of
the conservative system as ϕC

hom(T), then the Melnikov function for the oscillating system
(ε = 1) is given by [28,29]:

M(T0) =
1
Q

+∞∫
−∞

(
dϕC

hom(T)
dT

)2

dT +
τ0

τMAX
res

+∞∫
−∞

dϕC
hom(T)
dT

cos
[
ω

ω0
(T + T0)

]
dT (3)

The separatrix splits if the Melnikov function has simple zeros such that M(T0) = 0
and M′(T0) 6= 0. If M(T0) have no zeros. Thus, the device motion will not be chaotic. The
conditions of no simple zeros where M(T0) = 0 and M′(T0) = 0 provide the threshold
condition for possible chaotic motion [33,34]. If we define:

µc
hom =

∫ +∞

−∞

(
dϕC

hom(T)
dT

)2

dT and β(ω) =

∣∣∣∣∣H
[

Re

(
F

{
dϕC

hom(T)
dT

})]∣∣∣∣∣, (4)

then the threshold condition for chaotic motionα = β(ω)/µc
hom withα = (1/Q)

(
F0 /FMAX

res

)−1

obtains the form:

α =
γω0d

F0
=

∣∣∣∣∣H
[

Re

(
F

{
dϕC

hom(T)
dT

})]∣∣∣∣∣/
+∞∫
−∞

(
dϕC

hom(T)
dT

)2

dT (5)

with γ = Mωo/Q, and H[. . .] denoting the Hilbert transform [33,34].
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Figure 5 shows the threshold Melnikov curves α = γω0 d/F0 vs. the driving fre-
quency ratio ω/ωo. For relatively large values of α (above the curve), the dissipation
dominates the driving force (α ∼ γ/F0), leading to regular motion, which asymptotically
approaches the stable periodic orbit of the conservative system. However, for parameter
values below the curve, the splitting of the separatrix could lead to chaotic motion. Clearly,
for the Au-Au system with the highest conductivity of interacting materials, which lead
also to stronger Casimir forces, chaotic motion is more likely to occur as it is manifested
by the larger area below the threshold curves. However, for the TI-TI system, this area is
decreased significantly, indicating higher possibilities for stable driven actuation. Hence,
Figure 5 clearly demonstrates the strong dependence of the region below the threshold
curve on the optical properties of the interacting materials for all values of initial distance
d prior to initiation of its actuation.

Figure 5. Threshold curve α (= γω0 d/F0) vs. driving frequency ω/ωo (with ωo the natural
frequency of the system). The area below the curve defines the condition that can possibly lead to
chaotic motion. The values of δCas and the initial distances d considered here were (a) δCas = 0.065
and d = 250 nm and (b) δCas = 0.031 and d = 1 µm.

Furthermore, the Poincare portraits in Figures 6 and 7 illustrate the sensitive depen-
dence of the chaotic motion on the optical properties for the Au and TI systems for both
different initial distances d and threshold values of the parameter α. When the occurrence
of chaotic motion is possible with the decreasing value of α, there is a region of initial
conditions where the distinction between qualitatively different solutions is unclear. If we
compare Figure 5 with Figure 3 where chaotic motion does not occur, it is revealed that,
for chaotic motion, there is no simple smooth boundary between the stable (red regions)
and unstable solutions (blue regions). With decreasing the value of the parameter α, the
possibility of occurrence of chaotic motion is enhanced as it is manifested by the dramatic
shrinkage of the stable solutions (elliptic-like red area) in Figure 7 for the Au-Au system.
This is also in strong contrast with the TI-TI system where stable operation is much more
efficiently ensured even for very low values of the parameter αwithin the area favoring
unstable motion.
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Figure 6. Contour plot of the transient times to stiction in the phase plane dλ/dt vs. λ for Scheme
250. nm, α = 0.12, ω/ωo = 0.5, and δCas = 0.065. For the calculations, we used 150 × 150 initial
conditions (λ, dλ/dt). The stable actuation (red) region increased significantly from Au-Au to
TI-TI systems.
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Figure 7. Contour plot of the transient times to stiction in the phase plane dλ/dt vs. λ for systems made of different pairs of
materials. The initial distance be 1000 nm,ω/ωo= 0.5, and δCas = 0.031. The parameter α is indicated in the plots for both
columns. For the calculations, we used 150 × 150 initial conditions (λ, dλ/dt).

From Figures 6 and 7, it is evident how the chaotic motion of Casimir oscillators
can impose a considerable risk of stiction after several periods of oscillation, limiting the
long-term prediction of the device operation. This undesirable malfunction occurs more
prominently for the more conductive systems since the Casimir force is stronger. On the
other hand, for the actuating system where TIs are involved, the measurement of the
residual contact potentials Vo, as performed by the authors of [26] for the Au-Bi2Se3 system
leading to potential values Vo ≈ 200 mV for TI thicknesses in the range 10–100 nm, allows
subsequent voltage compensation (for TI thickness above 30 nm [26]). At the same time,
the TI (e.g., Bi2Se3) yields weaker Casimir forces that allow stable operation over a wider
area of initial conditions in phase space. Indeed, according to the authors of [6,7], the
stable area for operation of actuating devices undergoes further shrinkage with additional
electrostatic forces. This effect is very crucial for operation under condition with Melnikov
parameter α < 1 (corresponding to strong driving force Fo and weak dissipation γ) where,
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for the Au-Au system, any phase space for stable operation in Figure 7 is absent. Moreover,
for the TI-TI system, it has still significant size.

4. Conclusions

In conclusion, we investigated the sensitivity of actuation dynamics of electromechani-
cal systems on novel materials, for example, Bi2Se3, a well-known 3D Topological Insulator
(TI), and compared their response to good conductors, e.g., Au. Analysis in conservative
systems using bifurcation and phase portraits suggests that the strong difference between
the conduction states of Bi2Se3 and Au yield sufficiently weaker Casimir force to enhance
stable operation. Furthermore, for nonconservative driven systems, the Melnikov func-
tion and Poincare portraits analysis probed the occurrence of chaotic behavior leading
to increased risk for stiction. It was found that the presence of the TI enhances stable
operation against chaotic behavior over a significantly wider range of operation conditions
in comparison to typical metallic conductors. Therefore, the use of TIs can allow sufficient
surface conductance to apply electrostatic compensation of any contact potentials [23]
and, at the same, to yield sufficient weak Casimir forces to allow long-term prediction of
actuation dynamics against chaotic behavior. This effect will be very crucial for operation
under Melnikov parameters α < 1 (relatively strong driving force and weak dissipation)
where, for good conductors, any phase space for stable operation is absent. For the systems
where TIs are involved, operation could have still a significant available range of initial
conditions to perform stable actuation on longer-term basis.
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Appendix A. Lifshitz Theory for Stratified Media

The Casimir force FCas(d) between two plates which are covered with a thin layer of
Bi2Se3 on a bulk of Al2O3 (Figure 1) in Equation (2) is given by [8–10]:

FCas(d) = −
tsh
2π2

∞∫
0

dξ ∑
ν=TE,TM

∫ ∞

0
dk k k0

[
exp(2k0d)

R(+)
ν R(−)

ν

− 1

]−1

. (A1)

ξ are the imaginary frequencies. The reflection coefficients between the plates are
given by [4,9,10]:

R
(+− )
TM (iξ, k⊥ ) =

r
(0, +

−B)
TM + r

(+−A, +−B)
TM exp

(
−2

(
k +
−B

)
a
)

1 + r
(0, +

−B)
TM + r

(+−A, +−B)
TM exp

(
−2

(
k +
−B

)
a
) (A2)
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R
(+− )
TE (iξ, k⊥ ) =

r
(0, +

−B)
TE + r

(+−A, +−B)
TE exp

(
−2

(
k +
−B

)
a
)

1 + r
(0, +

−B)
TE + r

(+−A, +−B)
TE exp

(
−2

(
k +
−B

)
a
) , (A3)

where ‘a’ is thickness of Bi2Se3, and the index of +B (-B) and +A (-A) define regions
that correspond to Bi2Se3 and Al2O3 for a plate at the right (left) side, respectively.
The vacuum between the plates is referred by the index 0. The reflection coefficients
on the various boundaries are given by r(n, m)

TE = (kn − km)/(kn + km) and r(n, m)
TM =

(εm kn − εn km)/(εm kn + εn km) for the transverse electric (TE) and magnetic (TM) field

polarizations, respectively. ki =
√
εi (iξ) ξ2/c2 + k2 (i = 0, 1, 2) represents the out-off

plane wave vector in the gap between the interacting plates (k0) and in each of the interact-
ing plates (ki=(1,2)). k is the in-plane wave vector.

Furthermore, ε(iξ) is the dielectric function evaluated at imaginary frequencies, which
is considered as a vital input to calculate the Casimir force between real materials using the
Lifshitz theory. Applying the Kramers–Kronig relation, ε(iξ) is given by [9,10]:

ε(iξ) = 1 +
2
π

∞∫
0

ωε′′ (ω)

ω2 + ξ2 dω. (A4)

Appendix B. Dielectric Function of Materials with Extrapolations

For the calculation of the integral in Equation (A4), the measured data for the imag-
inary part of the frequency dependent dielectric function ε′′ (ω) are required. In this
study, for the Au sample, the experimental data of the imaginary part of the dielectric
function cover only a limited range of frequenciesω1 (= 0.03 ev) < ω < ω2 (= 8.9 ev).
Therefore, for the low optical frequencies (ω < ω1), we extrapolated using the Drude
model [9,10,17,35]:

ε′′ L(ω) =
ω2

p ωτ

ω (ω2 + ω2
τ)

(A5)

whereωp is the plasma frequency andωτ is the relaxation frequency. For the high optical
frequencies (ω > ω2), we extrapolated using the expression [9,10,17,35]:

ε′′H(ω) =
A
ω3 (A6)

Using Equations (A4)–(A6), the function ε(iξ) in terms of the Drude model is given
by [17,35]:

ε(iξ)D = 1 +
2
π
+

ω2∫
ω1

ωε′′ exp(ω)

ω2 + ξ2 dω+ ∆Lε(iξ) + ∆Hε(iξ) (A7)

with

∆Lε(iξ) =
2
π

ω1∫
0

ωε′′ L(ω)

ω2 + ξ2 dω =
2ω2

p ωτ

π
(
ξ2 −ω2

τ

)
arctan

(
ω1
ωτ

)
ωτ

−
arctan

(
ω1
ξ

)
ξ

 (A8)

and

∆Hε(iξ) =
2
π

∞∫
ω2

ωε′′H(ω)

ω2 + ξ2 dω =
2ω3

2ε
′′ (ω2)

πξ2

 1
ω2
−
π
2 − arctan

(
ω2
ξ

)
ξ

 (A9)
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Finally, for the plasma model, one must replace the term ∆Lε(iξ) in Equation (A8)
withω2

p/ξ2. Therefore, for the plasma model, ε(iξ) is given by the simpler expression:

ε(iξ)P = 1 +
2
π

∫ ω2

ω1

ωε
′′
exp(ω)

ω2 + ξ2 dω+
ω2

p

ξ2 + ∆Hε(iξ). (A10)

For the case of Bi2Se3 and Al2O3, there is no any extrapolation because they do not have
any measurable Drude tail indicating absorption for the imaginary part at low frequencies.
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