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ABSTRACT ARTICLE HISTORY
Introduction: Therapeutic drug monitoring (TDM) has been recommended for treatment optimization Received 17 July 2020

in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden Accepted 5 October 2020
and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which con-
tributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in
TB, treatment strategies for these drugs, and TDM to support broader implementation. A -

2 R ” ) ! . monitoring; tuberculosis;
Areas covered: This review describes the different drug classes used for TB, multidrug-resistant TB mdr-TB; pharmacokinetics;
(MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strate- pharmacodynamics
gies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver
impairment, patients co-infected with HIV or hepatitis, and special patient populations — children and
pregnant women.
Expert opinion: TB treatment has a long history of using ‘one size fits all." This has contributed to
treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in
resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize
treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse
effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to
advance the use of TDM for patients with TB.

KEYWORDS
Therapeutic drug

1. Introduction are defined for each drug. Traditionally PK/PD targets were
based on animal models; however, this has moved on to using
hollow fiber infection models, mimicking human pharmacoki-
netics [11]. With the hollow fiber infection model, it is possible
to explore the impact of both PK and PD over a specified time
period.

For TDM in TB either specific concentrations C;, C, Cg
(concentration at 1 h, 2 h and 6 h after administration, respec-
tively), Cpin (trough concentration), C., (Mmaximum concen-
tration), or measures of drug exposure like AUC (area under
the concentration-time curve, drug exposure over time) and
fAUC (the area under the undbound drug concentration-time
curve) are used. Limited Sampling Strategies (LSS) have been
developed using population pharmacokinetic models, and
Monte Carlo simulations based on clinical data in order to
provide 2 or 3 time-points, which can be used for accurate
determination of the AUC [12,13]. For the estimation of
unbound drug (the amount of drug that reaches the tissues)
it is important to have information on drug-protein binding as
only the unbound drug reaches the target cite of infection
[14]. More advanced TDM includes drug susceptibility in addi-
tion to using solely drug concentrations. The main PK/PD
indexes used for optimization of TB therapy are AUC or (f)
AUC/MIC (minimal inhibitory concentration), (f)Cax/MIC and

The use of therapeutic drug monitoring (TDM) [1-5] has
become an accepted strategy to optimize the management
of tuberculosis (TB) and is recommended in the most recent
World health Organization (WHO) and The American Thoracic
Society, U.S. Centers for Disease Control and Prevention,
European Respiratory Society, Infectious Diseases Society of
America (ATS/CDC/ERS/IDSA) Drug-Resistant TB treatment
guidelines [6,7]. There are clear benefits to TDM in TB: avoid-
ing toxicity, guiding therapy in special patient populations,
assessing concordance to therapy, assessing potential drug
interactions, but also prevention of antimicrobial resistance
[2,8]. TDM is more used in certain countries, for example,
USA, Germany, the Netherlands and Sweden. A recent review
on mass spectrometry for TDM of anti-tuberculosis drugs
listed the number of published drug assays by country and
the most published assays were in India, USA and China [9].
Before starting TDM it is important to identify which drugs
are the best candidates for performing TDM. Criteria for TDM
include pharmacokinetic (PK) variability and stability, pharma-
codynamic (PD) relationships like concentration-related toxi-
city and a narrow therapeutic window [10]. Furthermore, it is
important to know whether and how specific PK/PD targets

CONTACT Charles A. Peloquin @ peloquin@cop.ufl.edu @ College of Pharmacy, University of Florida, Gainesville, FL, 32610-0486, USA
“authors contributed equally
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Article highlights

e TDM could have an important role in prevention of acquired drug
resistance associated with low exposure.

* Pharmacokinetic/pharmacodynamic considerations could help clini-
cians select the right dose for optimization of therapy.

* Implementing optimal sampling strategies strategies for TDM will be
a game changer in implementation of precision dosing.

e Special consideration needs to be given to vulnerable subpopula-
tions — e.g. children, HIV positive/diabetic patients and during renal
and hepatic impairment.

o TDM will only be beneficial if sufficient access and short turn around
time can be guaranteed at community, regional and central level.

This box summarizes key points contained in the article.

(T (time)/MIC. These are then derived from previously
described hollow fiber infection models, animal studies as
well as from clinical studies. It has been well presented in
a review by Dheda et al that low exposure to TB drugs, as
a result of low drug penetration and, pharmacokinetic varia-
bility is one of the main risk factors for development of drug
resistance, for example, for fluoroquinonlones [15,16]. The TB
treatment guidelines include suggestions whether to com-
mence TDM for specific drugs (e.g. fluoroquinolones, linezolid
and aminoglycosides and specific situations like HIV, diabetes,
toxicity, failure of sputum culture conversion in case of proven
drug susceptibility, and drug-drug interactions) [6,7,17].

TDM, however, is rarely performed in TB endemic settings
due to its perceived costs/technical constraints [18]. Recent
developments in the field of alternative and sampling strate-
gies is changing the landscape of traditional TDM [18,19].
Some methods may be more user friendly for low resource
settings, such as finger prick blood spots (dried blood spot
method) or saliva. These could be suitable alternative matrixes
to predict drug concentrations in serum/plasma [19-21].
Similarly, limited sampling strategies that utilizes two- to
three-sampling time points for estimation of pharmacokinetic
parameters, reduces sampling burden on both patients and
clinicians [13,22]. Using multiple linear regression equations,
concentrations measured at optimal sampling time points can
accurately estimate AUCy,4 with an acceptable bias and
imprecision of less than 15% (e.g. fluoroquinolones) [13,22].

The evidence linking low drug plasma concentrations and
worse treatment outcomes is scarce in TB [4,5,23]. A recent
systematic review and meta-analysis on first-line TB drugs
concluded that low pyrazinamide and rifampicin concentra-
tions might contribute to poor outcomes [5]. For ethambutol
and isoniazid, the authors suggested that the relationship with
poor treatment outcomes could not be defined, due to the
wide therapeutic ranges applied to the TDM of these drugs [5].
Furthermore, the studies looking into TDM in TB are hetero-
geneous, including different study designs, drugs and regi-
mens [4,5]. Still, there are clear benefits in utilizing an easy
tool like TDM in TB patients. Currently, there are new drugs
emerging, and PK studies in TB are continuing, which contri-
butes further evidence for TDM in TB.

The aim of this review is to provide an update on newer
drugs, novel dosing strategies and treatment regimens for TB.
In addition, we provide an overview of TDM during concomi-
tant therapy for hepatitis, HIV and during liver and kidney
impairment. Finally, we present an overview of TDM in special
patient populations — children and pregnant women.

2. Specific drugs

The drugs listed in this review are presented based on the
WHO consolidated guidelines grouping of MDR-TB drugs and
drugs for drug-susceptible TB (Table 1) [7]. The specific phar-
macokinetic parameters and sampling strategies are pre-
sented in Table 2.

2.1. Drugs for drug-susceptible TB

2.1.1. Isoniazid

Isoniazid is a powerful first-line anti-TB drug with excellent
early bactericidal activity [26]. Following administration, iso-
niazid is readily absorbed from gastrointestinal tract and pene-
trates all body fluid cavities, where concentrations are similar
to serum. The C.x arrives approximately 0.75-2 h after
administration and is expected to be 3-6 mg/L, the protein
binding is described to be around 14% [2,27]. Based on hollow
fiber model of TB, isoniazid efficacy is predicted by attainment
of free AUCy.,4/MIC> 567 in the lung [28]. On the other hand,
clinical study derived target AUCy.,4 in blood is 52 mg*h/L
[28,29]. This target can be utilized for TDM. A new suscept-
ibility breakpoint for isoniazid was identified at MICs of 0.0312
and 0.0334 mg/L [15,28,30,31] (Table 2).

Pharmacokinetic studies also reveal that the currently used
dose of isoniazid is sub-optimal and needs to be increased. In
a shorter MDR-TB regimen, isoniazid dose of 900 mg/day is
used. This is because not all resistance-conferring mutations
lead to similar MIC increases. For instance, katG S315T confers
30-fold increase in MIC to isoniazid, in contrast, inhA c-15 t

Table 1. Drugs used in TB and MDR-TB.
Group

Medicine

Isoniazid

Rifampicin

Rifabutin*
Rifapentine*
Ethambutol
Pyrazinamide
Levolofloxacin
Moxifloxacin
Bedaquiline

Linezolid

Clofazimine
Cycloserine/Terizidone
Delamanid and Pretomanid*
Amikacin
Streptomycin
Ethionamide
Prothionamide
p-aminosalicylic acid
Imipenem-cilastatin
Meropenem

Drug-susceptible TB

Group A

Group B

Group C

*added to the review, however not in the WHO classification
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leads to only modest MIC increase at 0.2-1 mg/L [30]. For this
reason, treating patients with low-level resistance to isoniazid
with higher doses (15-20 mg/kg) have been associated with
favorable clinical outcomes [15,30]. Furthermore, isoniazid
metabolism occurs by acetylation. Based on acetylation status
patients can be categorized into two or three groups: fast
acetylators and slow acetylators, and when the data support
it, heterogeneous fast [15,29,30]. Fast acetylators are at a risk
of not attaining therapeutic concentrations of isoniazid due to
short half-life (~1.5 h), whereas, prolonged half-life in slow
acetylators (~4 h) may make them prone to drug-related
toxicities, most notably peripheral neuropathy [15]. On the
other hand, acetylation status is seldomly known. Based on
multiple drug concentrations it is possible to classify a patient,
who might be fast or slow acetylators. Most likely the acetyla-
tion status is unknown, thus multiple measurements after
administration to calculate clearance might be the appropriate
approach. Hepatotoxicity by far is the major side-effect of
isoniazid. The concentration-relatedness of hepatotoxicity,
however, is far from a settled matter. Pharmacogenomic-
based dose individualization in NAT 2 slow- and fast- acetyla-
tors could be a promising strategy, especially in order to avoid
under-dosing of fast-actylators [2,32]. Optimal sampling stra-
tegies of 2, 4, 8 h [33] and 1, 2.5, 6 h [34] have been proposed.

2.1.2. Rifampicin (rifampin)

Rifampicin is used in the treatment of drug-susceptible TB
[35]. Rifampicin Cax is reached in approximately 1-3 hours
and ty,, is estimated 3.5 hours with single doses, declining
to 1-2 hours at steady state [36]. For many years the Cyax
in the range 8-24 mg/L, was considered the PK parameter
to be used in TDM [36,37]. After reaching steady state in TB
patients, it is not uncommon to find C,.x values around
6 mg/L [37]. To achieve PK/PD targets, higher dosing should
be used, and a higher C.,,, range can be proposed. The
main PK/PD indexes used to guide therapy with rifampicin
are AUC/MIC = 271 and Cpa/MIC = 175 [23,37-39]. Routine
TDM of rifampicin is suggested as low 24-hour AUCs have
proven to estimate poor long-term outcomes and both low
AUC and C,ax can cause acquired drug resistance [23,40].
However, PK parameters of rifampicin has been shown to
have wide inter-and intra-patient variability and it has been
suggested that therapy with rifampicin should use higher
doses [37,40,41]. Moreover, rifampicin is known to iduce its
own metabolism (auto-induction) through increasing its
clearance; however, this has shown to be similar in doses
450 mg and 600 mg daily [42,43]. Recent studies have
shown that higher rifampicin doses lead to substantially
higher efficacy than the standard doses. A rifampicin dose-
ranging trial in DS-TB patients by Boeree and colleagues
reported that doses (up to 35 mg/kg) were safe, well toler-
ated and further improved the extended early bactericidal
activity in TB patients [41].

Commonly, sampling times for rifampicin are 2 and 6 hours
after dose, to capture the peak concentration and potential
delayed absorption [3,44]. An optimal sampling strategy of 1, 3
and 8 hours after dose has been suggested using

a pharmacokinetic model to estimate an accurate AUCg 4
[45]. This sampling strategy will provide more accurate results
as the T, can vary resulting in varied Cnay. In order to
capture rifampicin concentrations after auto-induction takes
place, TDM should take place at least 7 days into therapy
(Table 2).

2.1.3. Rifabutin and rifapentine

Rifabutin and rifapentine are used for drug-susceptible TB as
alternative for rifampicin. Protein binding is described for
rifabutin approximately 71% and for rifapentine 98% [46,47].
The Cax for rifabutin is around 0.46 mg/L, the usual range is
considered to be 0.45-0.9 mg/L and the T, is expected at
3-4 h [2,48]. For rifapentine the C,,, range to target that has
been recommended is 8-30 mg/L and T, is expected at 5 h
[2]. The long half-life of 25-36 h (also reported to be 45 h) of
rifabutin and 14-15 h of rifapentine need to be considered
when performing TDM [2,47-49]. Rifabutin AUCy.,4, of
4.5 mg*h/L has been proposed in order to prevent (acquired)
resistance [50]. For 600 mg daily dosing rifapentine AUCq_ 541,
of 324 (SD 143) mg *h/L has been reported [51]. For TDM of
rifabutin it is suggested to use 3 h and 7 h and for rifapentine
6 h sampling [2].

As with rifampicin drug interactions by rifabutin are caused by
induction of the CYP3A4 enzyme, however has documented to be
of lower extent than rifampicin [48]. Furthermore, rifabutin expo-
sure can also be reduced by other drugs, most significantly by
antiretroviral efavirenz (reduction of 37% of AUC) and increased
doses have been used [52]. The opposite effect, induction, has
been described when co-administered with azoles and
clarithromycin.

2.1.4. Ethambutol

Ethambutol is considered as a companion drug, valued for its
protection against the development of resistance when combined
with other first-line agents (isoniazid, rifampicin and pyrazina-
mide). Currently, ethambutol is prescribed at 25 mg/kg once
daily dosing (max 1200 mg), although clinicians often prescribe
smaller doses, around 15 mg/kg to avoid toxicity [7]. The Ty, for
ethambutol is expected around 2-3 hours and the half-life is
biphasic first 2-4 h and then 12-14 h, C,,a is expected to be
2-6 mg/: and protein binding is 12% [27,53,54]. Ethambutol exhi-
bits dose-dependent efficacy which is predicted by both C,.,/MIC
and AUCy.,4/MIC. In the hollow fiber model of TB, Cy,/MIC of 0.51
and AUCg.,4/MIC of 119 is identified as a target ratio in the lung
whereas, in clinical studies C,,,/MIC ratio of 0.46 in blood was
associated with the likelihood of treatment success [29,55]. The
susceptibility breakpoint for ethambutol is 4 mg/L. Ethambutol
use can be associated with deteriorating visual acuity or red-green
color discrimination (two manifestations of ocular toxicity). This is
most likely to occur in patients with renal dysfunction, who are
unable to clear the drug efficiently. Patients should be closely
monitored for potential optic neuritis [26]. In particular, TDM
usually is performed in patients with compromised renal function
to prevent dose-dependent toxicity [26,56]. Pharmacokinetic para-
meters with optimal sampling strategies are presented in Table 2.



2.1.5. Pyrazinamide
Pyrazinamide is a key component of anti-TB regimens [26]. It is
a prodrug that undergoes in vivo conversion to pyrazinoic
acid. Resistance is associated with mutations in mycobacterial
pnc A gene that codes for the enzymes responsible for con-
version of pyrazinamide to pyrazinoic acid [57,58]. Currently,
pyrazinamide is prescribed at 25-35 mg/kg daily dose (max
1600 mg/day) [7]. The Cax of pyrazinamide is expected to be
20-60 mg/L, the T around 1-2 h, the T;, 9 h and the
AUCq.24n 363 mg*h/L [2,26,54]. Following oral administration,
pyrazinamide is rapidly and almost completely absorbed.
Intake with food reduces C.x by 17% and T,,ax by 80% [59].
In patients, this mg/kg dose has resulted in sub-therapeutic
concentrations associated with the risk of treatment failure
(Cimax below 35 mg/L) and delayed sputum culture conversion
(Cmax below 58 mg/L) [23, 24, 60]. Higher doses might con-
tribute to a more efficacious regimen for the treatment of
both DS-TB and MDR-TB [61,62]. However, caution should be
exercised, as higher doses might heighten the occurrence of
hepatotoxicity and uric acid-related adverse effects.
Pyrazinamide efficacy is predicted by a free target AUC;.,4
/MIC>209 in the lung (hollow fiber model of tuberculosis)
whereas, clinically derived target AUCq,4, > 363 mg*h/L and
AUC,4/MIC>11.3 was reported in the blood (Table 2) [29].
Moreover, two optimal sampling strategies with three time-
points are presented in Table 2. The clinical susceptibility break-
point of pyrazinamide is 50 mg/L, although this target comes
with a number of caveats due to the difficulty of performing
phenotypic susceptibility testing with pyrazinamide [63].

2.2. Drugs for MDR-TB and XDR-TB

2.2.1. Fluoroquinolones (Levofloxacin and Moxifloxacin)
Levofloxacin and moxifloxacin are recommended fluoroquino-
lones in the WHO list of second-line drugs for programmatic
management of drug-resistant tuberculosis, and are used
interchangeably [7]. Following oral administration, bioavail-
ability of levofloxacin and moxifloxacin is 99% and 90%,
respectively. Levofloxacin ingestion with food causes
a moderate delay in its time to achieve maximum serum
concentrations. Tpax increases by 1 h and C,,, reduces by
14 to 25% whereas, moxifloxacin absorption is not affected by
food intake.

Both drugs exhibit high inter-individual variability.
Moxifloxacin PK variability was found to be nine-fold in plasma
on 400 mg/day [64]. Similarly, a striking four-fold difference was
observed between the highest and lowest levofloxacin AUCq.,4
in Nepalese patients on 750-1000 mg/day [19,65]. These findings
corroborate results from other available studies [34,65-70].
Acquired fluoroquinolone resistance during standard treatment
has become a serious concern, and was associated with poor
outcomes in a prospective observational cohort study [71].

In the absence of data on TB bacteria, AUC; 54/MIC >100-125
was generalized for understanding dose-concentration-
response relationship in TB patients [66,71]. Recently, the hollow
fiber model on tuberculosis has established a levofloxacin total
drug AUC_,4/MIC target of 146 for maximum bacterial kill (ECg)
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and 360 for the prevention of acquired drug resistance [72].
Earlier, a study by Gumbo and colleagues identified moxifloxa-
cin fAUCy.,4/MIC > 53 associated with complete suppression of
drug resistance mutant sub-population (AUCq ,4/MIC>106,
30-50% protein bound) [73]. In another hollow fiber model
study, Heinrichs and colleagues reported higher fAUC/MIC>130
for moxifloxacin under conditions of acidic pH [74]. However,
target derived from both pre-clinical in vitro and in vivo models
have limitations. For instance, Cp.,/AUCq.54 achieved in animal
models can be different from those seen in humans due to
differences in metabolism and clearance, as a result, efficacy
might vary. On the other hand, hollow fiber model misses the
host-immune component and in humans it might be necessary
to have a different concentration to penetrate cavity wall.

An ongoing randomized, blinded, phase Il dose-finding trial
(OptiQ trial, NCT 01918397) is evaluating AUCg ,4/MIC that
provides shortest time to sputum culture conversion in TB
patients [75,76]. This will be a first clinically validated levoflox-
acin target in TB patients. Nonetheless, it is important to note
that debates regarding the precise PK/PD target does not
imply a lack of confidence in TDM. Available data from clinical
studies show that at least 25% of the patients on standard
daily doses do not achieve the desired AUCg4, Crax and
AUC,.,4/MIC for both levofloxacin and moxifloxacin [34,65-
69]. Therefore, TDM has a crucial role in addressing the effect
of inter-individual pharmacokinetic variabilities in patients by
ensuring adequate drug exposure. In clinics, in the absense of
actual MICs, one could aim to attain Cn., and/or AUCq 4
targets mentioned in Table 2. However, practically, TDM with-
out utilizing the actual MICs could be problematic because
depending on the actual MICs (0.25, 0.5 or 1 mg/L for levo-
floxacin); desired AUC or C..x could to be twice as high
especially for patients infected with strains exhibiting higher
MICs in order to attain the same AUC/MIC target. This could,
however, be addressed by utilizing susceptibility breakpoint
MICs for both levofloxacin and moxifloxacin (assuming worst-
case scenario); but the risk of higher dosing cannot be
ignored. For this, molecular tests with second-line drugs
must be performed to provide information on susceptibility.
Based on the distribution of MICs for particular mutations,
specific dose could be selected. Caution should be applied,
as the use of FQs have been associated with side-effects
involving muscles, joints, tendons, nerves and the central
nervous system. Moxifloxacin is known to prolong the QTc
interval, but a direct link to moxifloxacin-induced fatal dys-
rhythmias is lacking [77]. Furthermore, it is imperative to
identify patients on levofloxacin with diminished renal func-
tion, who may accumulate the drug, and to identify the con-
comitant use of corticosteroids, which may predispose to
tendon rupture. Using optimal sampling strategies in order
to estimate AUCy o4, might be appropriate (Table 2) [13,22].

2.2.2. Bedagquiline
Bedaquiline (BDQ) was FDA approved for MDR-TB in 2012. In

2019, BDQ gained FDA approval as part of BPaL regimen for
treatment of highly drug-resistant TB.
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The typical trough and peak serum or plasma concentration
of BDQ is approximately 0.9 (SD 0.5) mg/L, 2.4 (SD 0.8) mg/L at
week 2 (loading phase), 0.6 (SD 0.3) mg/L, 1.5 (SD 0.6) mg/L at
week 24 (maintenance phase) respectively, [78]. Bedaquiline has
an exceptionally long half-life (5-6 months) and thus dosage
adjustments should be made carefully. The exposure-response
relationship in bedaquiline has been described with PK/PD mod-
eling, where it was shown that half maximal effective concentra-
tion of bedaquiline is 1.42 mg/L and it was shown that besides
dynamic exposure metrics, PK parameters like Cpy,i, and AUCq 241,
had significant effect on the response [79]. Variability about
these typical values should be expected. Peak concentrations
occur approximately 4 to 6 hours after an oral dose.
Administering BDQ with food is recommended and increases
the drug bioavailability, in healthy volunteers 2-2.4 fold increase
of the AUC has been reported when administered with food
[80,811.

The typical bedaquiline trough concentration is 0.73 to
096 mg/L at week 2 (24-hour sample), approximately
0.62 mg/L at week 8 (48-hour sample), and approximately
0.36 mg/L at week 24 (48-hour sample) [80,81] (Table 2).
Bedaquiline penetration in cerebrospinal fluid was undetecta-
bly low [82]. Based on the average plasma concentration of
0.60 mg/L in humans and MIC distribution a clinical break-
point of 0.25 mg/L was selected [83]. Although TDM has not
been evaluated for bedaquiline, several situations where TDM
could be of help were suggested, as acquired resistance has
already been documented [83,84]. Moreover, optimal sam-
pling strategies for BDQ have not been identified.

BDQ is metabolized by CYP3A4 to its less active M2 meta-
bolite [81]. The most serious BDQ toxicities including pro-
longed QT inverval and elevated liver enzymes are thought
to be related to accumulation of M2. Due to potent CYP
induction by rifamycins, co-administration of these drugs is
not currently recommended [85,86]. In contrast, clofazimine
does not appear to have significant effect on BDQ expo-
sure [87].

2.2.3. Linezolid

Linezolid, an oxazolidinone antimicrobial, is an important can-
didate for TDM due to its narrow therapeutic window and
toxicity that poses an issue, especially during TB therapy
[88-91]. Linezolid has oral bioavailability of 100%, and it is
metabolized through oxidation into inactive derivatives [92].
The expected Cinax is 12-26 mg/L and T,ax 1-2 hours, protein
binding has described to be 31% [92,93]. Drug interactions
with linezolid can be due to its effects as a nonselective
monoamine oxidase inhibitor. Linezolid also interacts with
rifampicin and clarithromycin, the former decreases linezolid
concentrations, and the latter increases linezolid concentra-
tions [94-96]. A study of MDR-TB patients showed that co-
administration of linezolid and clarithromycin results in an
44% increase of linezolid AUC._12p [95].

Most frequently, linezolid is given once daily for mycobacter-
ial infections to avoid toxicity during the prolonged treatment
which exceed the licensed use of 28 days. Mitochondrial toxicity
appears to be correlated with the trough concentration [97]. AUC

emerges as a significant predictor of efficacy when linezolid is
combined with other drugs [98]. In a hollow fiber model AUCq 541,
of 600 mg dose has shown to be around 100 (107.5 + 30.16) mg *
h/L using a Monte Carlo simulation [98]. The optimal time of
sampling to calculate AUC has been suggested to be Ciougn
(before administration) and 2 hours after administration (Cpeak
is estimated to be at 1-2 hours) [93,99] (Table 2). The reported
Cpeak and Cirough and ranges for 600 mg orally twice daily are 21.2
(SD 5.78) mg/L and 6.15 (SD 2.94) mg/L, respectively, [93].

For TB, doses as high as 1200 mg once daily have been
studied, and these produced considerable toxicity [100].
A dose of 600 to 900 mg once daily probably is equally
efficacious but with lower toxicity [101]. Even lower dosing
of 300 mg twice daily has been suggested to be able to be
efficacious [102]. Twenty-four-hour trough values less than
2 mg/L appear to minimize toxicity. The benefits of lower
dosage regimens still need to be confirmed in larger trials
[103,104]. In the absence of well-designed studies daily dose
of 600 mg seems appropriate to balance between efficacy and
toxicity [105]. TDM for linezolid is however mainly for toxicity
as mentioned in order to reduce the dose, which becomes
especially important in the long therapy duration for TB.

2.2.4. Clofazimine

Clofazimine is being used more frequently for highly resistant
TB, and it has been used as part of shorter treatment regimens
(less than 1 year) [7,106]. The normal range for clofazimine
serum or plasma concentrations is 0.5 to 2.0 mg/L approxi-
mately 2-3 hours after an oral dose, although the T, can
vary widely [2,107,108] (Table 2). Clofazimine PK have been
also described using simulations from a population model
[109]. It was described that the AUCy_54, maximum and aver-
age concentrations of clofazimine were higher after 2 months
of therapy compared to 2 weeks of therapy, which suggests
accumulation. Moreover, the time to steady state was
described to be higher in men than women - 105 days for
men and 230 days for women [109]. Although there is not
sufficient data on clofazimine TDM, for practical reasons, 2 h
and 6 h post dose samples are used to distinguish between
malabsorption and delayed absorption.

Clofazimine concentrates in tissues such as the skin and
displays complex pharmacokinetics and a prolonged terminal
elimination half-life (weeks long) [108]. A precise relationship
between clofazimine concentrations and effect has not been
established. However, one study observed delayed concentra-
tion-dependent antimicrobial activity in vitro [106].
Cardiotoxicity has been described as a rare side-effect during
clofazimine therapy; however, it should be monitored
[110,111]. Until more studies are completed, clofazimine
plasma or serum concentrations primarily are useful for con-
firming that absorption is taking place. No optimal strategies
for guiding therapy have been reported.

2.2.5. Cycloserine and terizidone

Cycloserine and terizidione (contains two cycloserine mole-
cules) therapy has been complicated by frequent adverse
effects on the central nervous system, ranging from mild



confusion or lethargy, all the way up to seizures [6]. The half-
lives of cycloserine are both around 20-30 h and for cycloser-
ine a Trhax Of 2 h and C,,ax of 20-35 mg/L has been described
[112,113]. Due to its relatively long half-life, it has been sug-
gested to wait 3-4 days for natural accumulation to occur.
Peak concentrations of cycloserine are expected to be within
20-35 mg/L and the sample should be drawn at 2 and 6 hours,
as delayed absorption can occur [3,114,115]. For terizidone,
specific targets have not been set; however, C,., concentra-
tions have been reported in multiple studies (Table 2).
T> MIC = 30% has been used as a PK/PD index for cycloserine,
which has been used in population pharmacokinetic modeling
and confirmed in a hollow fiber model [116-118]. In order to
achieve this target twice daily dosing is necessary especially at
the beginning of therapy [116].

Adverse events are especially seen with elevated serum
concentrations (over 35 mcg/ml); however, toxicity has also
been described with lower concentrations [3,6,119]. Moreover,
it has been proposed in a hollow fiber infection model that
current dosing regimens might not be effective for MDR-TB
and dosages should be increased to 500 mg twice daily.
Higher doses also may be a good option for tuberculous
meningitis, as cycloserine penetrates the CSF [116]. However,
cycloserine also may complicate the assessment of mental
status in a patient with meningitis.

Although the use of TDM for cycloserine predates that for
most TB drugs, the origins of the range are not well documented.
Very few clinical trial data are available for cycloserine from the
time of its development. A typical range of 20-35 mg/L has been
used with reasonable safety for decades, but its ability to predict
either efficacy or safety is hard to prove (Table 2). Rather, it has
a strong element of tradition. A study conducted in Northern
Taiwan showed that 22% patients had delayed absorption, and
a majority of them had lower than expected cycloserine concen-
trations, suggesting the need for TDM [114].

2.2.6. Delamanid

Delamanid is a nitroimidazole approved by the European
Medicines Authority (EMA) for the treatment of MDR TB. The
drug may enhance culture conversion in this population, espe-
cially with >6 months or more of therapy. However, this
benefit has not been observed in XDR TB patients [120]. It
may be useful as salvage therapy in combination with BDQ,
but this combination poses a risk for QT prolongation since
both drugs have been associated with this adverse effect
[121,122]. Delamanid mean C,.x 100 mg twice daily dosing
is around 0.4 mg/L and C;, around 0.3 mg/L [123] (Table 2).
Specific PK/PD index for delamanid is lacking as well as clinical
PK data, further studies are needed before TDM before can be
decided or if TDM is indicated.

2.2.7. Pretomanid

Pretomanid (PMD) gained FDA approval in late 2019 in com-
bination with BDQ and linezolid (BPaL) for the treatment of
highly resistant tuberculosis [100,124]. The typical peak serum
or plasma concentration of pretomanid is around 2.0 mg/L,
occurring about 5 hours after a 200 mg dose. Peak after
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a single dose ranges from 1.4-2.6 mg/L, and at steady state,
about 2.3-43 mg/L. Trough concentrations are about
1.0-2.4 mg/L (Table 2). Administering pretomanid with food
is recommended and increases the drug bioavailability, both
Cinax @and AUC have shown to be close to doubled during fed
conditions in healthy adults [125]. In a Phase I clinical study it
has been described that efavirenz reduces the AUC of preto-
manid by 35% and rifampin reduces the AUC by 66% and
lopinavir/ritonavir by 17% [126]. Another study assessing pre-
tomanid effect on midazolam concluded that pretamonid
does not induce or inhibit CYP3A4 in order to have
a clinically meaningful effect [127]. TDM during concomitant
administration with these drugs may be beneficial. As there is
limited data available on this new drug, TDM could also be
useful during malabsorption.

The most common adverse events observed during preto-
manid therapy included peripheral neuropathy, anemia, Gl
upset, and elevated liver enzymes. Hepatic adverse effects
were more common in HIV-positive patients compared to HIV-
negative patients. Peripheral neuropathy and anemia are com-
monly associated in combination with linezolid therapy.
Additional clinical trials are in progress [124].

2.2.8. Aminoglycosides (amikacin and streptomycin)
Amikacin has been in use for more than 40 years; still there
are limited data available on its pharmacokinetics in relation
to TB disease [128]. Besides, right dose and dosing strate-
gies (daily 15 mg/kg vs intermittent 25 mg/kg three times
weekly) are often debated [128]. Blood samples collected
at 1 h and 4 h post dose reliably predicted AUCy,, (Table
2) [129].

Notorious for its serious adverse reactions that include
ototoxicity (hearing loss), vestibular toxicity and nephrotoxi-
city, this drug is a good candidate for TDM. When nephro-
toxicity occurs amikacin can accumulate causing higher
concentrations, which can lead to even further kidney
damage, thus TDM during fluctuating kidney function and
during kidney failure is especially warranted [130,131].
However, in younger patients who are diagnosed early kid-
ney function can be easily monitored and does not pose as
high risk as hearing loss [132]. In older patients with preex-
isting kidney failure therapy with aminoglycosides poses
a higher risk for toxicity. The Cp,a.,/MIC ratio of 10.1 (at the
site of infection) seems to be the primary efficacy parameter
closely followed by AUCg.,4/MIC ratio [128,133,134]. Due to
its poor penetration in lung tissue, a target Cp,.,/MIC ratio of
75 and AUCy.,4/MIC>103 is desired in serum [128]. Van
Altena et al. utilized a low C,a/MIC target of 20 and con-
cluded that hearing loss was associated with a -
cumulative mg/kg doses of amikacin [132]. In this study,
amikacin was used at lower mg/kg dose. Clearly, toxicity
does not seem to be linked with the size and frequency of
dosages but rather to increased age, cumulative days of
therapy, and cumulative AUC [135,136]. Therefore, TDM
should be performed to control toxicity resulting from long-
term amikacin treatment, while at the same time optimizing
therapy [128].
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Streptomycin is used as a substitute for amikacin only
when amikacin is not available or there is confirmed resistance
to it. Recommended dose of streptomycin is 12-18 mg/kg [7].
The recommendations also cap the dosing at 1000 mg, which
may lead to the under-dosing of large patients, particularly if
they are not overweight. Pharmacokinetic parameters along
with sampling time-points are shown in Table 2. Kanamycin
and capreomycin are no longer recommended for use by the
WHO based on observational data [137].

2.2.9. Ethionamide and prothionamide

Ethionamide and prothionamide, isonicotinic acid derivatives,
frequently cause gastrointestinal toxicity (nausea, sometimes
vomiting). They are reserved for MDR-TB when limited options
exist, due to and their limited efficacy and poor patient toler-
ance. Further, more effective newer drugs are currently avail-
able [6,110,138].

Ethionamide and prothionamide have very similar pharma-
cokinetics, and the C,,,x occurs around 2 hours for ethiona-
mide and 3-4 hours for prothionamide [139,140]. Delayed and
variable absorption can occur with ethionamide, especially if it
is administered with food or other medications. Dosing with
food may improve tolerability [3,140,141]. For ethionamide,
the PK parameters may be more variable in TB patients com-
pared to healthy volunteers; these are presented in Table 2
[141]. The usual concentration range for ethionamide and
prothionamide Cn.y is 1-5 mg/L [3,141,142]. In order to
observe delayed absorption, and to assess elimination, sam-
pling at 2 and 6 hours post dose is suggested [3,141]. A fAUC/
MIC target of 10 has been proposed for 1.0-log kill, which has
shown to be attained with daily dose of 750 mg and higher
[65,143]. TDM of ethionamide could be useful in order to strive
toward PK/PD targets, although patient tolerability often limits
doses [143].

2.3. 2.2.10 p-Aminosalicylic acid

As with ethionamide and prothionamide, p-Aminosalicylic acid
(PAS) is considered as a reserve agent, due to its limited
potency and its side effects [6,144]. Cax Of PAS is expected
at 1-2 hours for immediate release dosage forms, and up to
6 hours post dose for different extended release dosage forms
[145]. For doses up to 5,000 mg the C., can range up to
50-100 mg/L, especially with immediate release tablets.
However, for 4,000 mg (administerd 2-3 times daily) extended
release granules, a Cmax of 20-60 mg/L occurs about 6 hours
post dose (Table 2) [4,84,86,87]. PAS TDM allows for an assess-
ment of absorption; some patients require single doses of
6,000 mg [146].

Gastrointestinal side effects are common with the older
formulations of PAS; however, the granules have shown to
cause less gastrointestinal toxicity [147,148]. Other side effects
include hypothyroidism, hepatoxicity and hypersensitivity
reactions [110]. It has been shown that PAS clearance is
more than 50% higher in patients with HIV infection treated
with efavirenz [149]. Furthermore, the probability of target
attainment from this study showed that 4000 mg twice daily

dosing for PAS is sufficient for exceeding the MIC for the
dosing interval [149].

2.3.1. Beta-lactam antibiotics/beta-lactamase inhibitors
Ceftazidime/avibactam has been utilized in the treatment of
rapid growing mycobacterial infections (RGM) such as
M. abscessus, rather than slow-growing mycobacteria (e.g.
MAC) [150]. However, given the increase in MDR/XDR TB
cases, poor clinical outcomes, and the slow development of
novel agents, more attention has been given to potentially
repurposing beta-lactams, for example amoxicillin/clavuanate,
for highly resistant TB [151]. Most beta-lactams have Cpay
values of about 70-80 mg/L per gram of dose, and short
elimination half-lives of about 1 hour. The PK/PD target used
for beta-lactam antibiotics is T > MIC, thus in a hospital setting
prolonged infusions are recommended [152]. Drugs in this
class are often unstable in human plasma, therefore accurately
measuring drug concentrations can present logistical chal-
lenges. Most rely on renal elimination, and should be used
with caution in patients with decreased renal function. Major
limitations of many beta-lactams is that they must be given
intravenously, and in combinations with a beta-lactamase
inhibitor as M. tuberculosis has a highly active beta-lactamase
[153]. As clavulanic acid is not available as a product it must
be given as a combination of amoxicillin-clavulanic acid, even
though the latter contributes little to the regimen but does
cause gastrointestinal adverse effects [154].

Avibactam is a potent beta-lactamase inhibitor and was
recently approved in combination with ceftazidime (CAV) for
the treatment of gram-negative infections. Due to its good
lung penetration [155], CAV was investigated for activity
against M. tuberculosis in a hollow fiber model [156]. Neither
ceftazidime nor avibactam alone effectively killed
M. tuberculosis, however the combination demonstrated
a sterilizing effect [156]. Up to 12 g daily in adults and
100 mg/kg three times daily in children was proposed as
optimal regimens. The CAV exposure that achieved the same
kill rates as those of the most active of the first-line drugs was
a %Tc of 247%. The calculated the CAV exposure associated
with maximal kill, which was a %Tyc of =63%. Therefore, CAV
has to be dosed at exposures exceeding a %Tyc of 63% (that
is, 63 to 100%) for optimal efficacy [156].

Clinical studies examining ertapenem for the treatment of
MDR and XDR TB are limited, but a small (18 pts) retrospective
study in the Netherlands examined the safety and pharmaco-
kinetics of ertapenem [157]. Subsequently, a hollow fiber
infection study was performed showing that 2000 mg as
a once daily dose could be considered a more suitable dose
for further clinical testing [158]. A prospective PK study eval-
uating a single 2000 mg ertapenem dose given as a 30 minute
infusion showed that the PK/PD target of %Tyc > 40% was
achieved in most patients [159].

Additional carbapenems have been investigated as poten-
tial components of drug regimens for MDR and XDR TB, but
clinical studies remain limited [160,161]. Imipenem and mer-
openem have been included in the guidelines based on his-
torical data and use. A comparison study found that



meropenem/clavulanate resulted in a shorter time to culture
conversion and higher treatment success relative to imipe-
nem/clavulanate [162].

3. TB in special patient populations
3.1. TDM in patients with hepatitis

Patients co-infected with hepatitis B or C and tuberculosis are
more likely to experience drug-induced hepatotoxicity and
hepatic dysfunction relative to patients without viral hepatitis
[163]. A recent study suggests that prophylactically treating
hepatitis B infection may reduce the incidence of liver failure
in patients co-infected with TB [164].

Fortunately, several direct-acting antivirals (e.g. ledipasvir/
sofosbuvir) that are superior to the conventional ribavirin and
pegylated interferon regimens have been developed for the
treatment of hepatitis C in the past decade. However due to
the potential for drug interactions between these novel thera-
pies and rifamycin-based anti-tuberculosis regimens, simulta-
neous treatment of these infections has largely been
contraindicated. Few studies have directly examined simulta-
neous treatment of TB and hepatitis C [165,166]. While TDM is
not routine performed for hepatitis drugs, it could be
a valuable tool in order to navigate drug-drug interactions
for coinfected and co treated patients in the future [166].

3.2. TDM in patients with hepatic dysfunction

Managing anti-tuberculosis therapy in patients with liver dis-
ease presents several challenges. Multiple first-line medica-
tions can cause liver injury and occurs more frequently in
patients with underlying liver disease [167]. Although the
measurement of liver enzymes in serum can indicate that
damage has been done to the liver, it cannot measure residual
hepatic clearance potential for drugs.

Unfortunately, there is little information on serum concen-
trations of anti-tuberculosis drugs and hepatotoxicity.
Furthermore, a small study found an association between
elevated rifampin exposure and drug-induced hepatotoxicity
[168]. Because of conflicting results, it is difficult to determine
the utility of TDM to monitor for hepatotoxicity but can be
considered in the management of therapy for patients with
liver disease. In patients with hepatic dysfunction, it is prudent
to measure serum concentrations of the TB drugs to make
sure that adequate, but not excessive, drug concentrations are
being obtained.

3.3. TDM in HIV-infected TB patients

TDM plays an important role in HIV-infected TB patients. There
are multiple reasons for introducing TDM in this patient
cohort. Firstly, in addition to TB drugs, these patients are
receiving multiple antiretroviral drugs. Therefore, the potential
for drug-drug interactions is high. The most recent MDR-TB
guidelines include recommendations for the use bedaquiline
and/or delamanid. Interactions between these drugs and the
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HIV medications should always be considered [6,84].
Bedaquiline drug exposure has shown to be altered by strong
CYP3A4 inducers [169,170].

Secondly, patients who are co-infected with HIV have been
shown to have lower exposures of the first-line TB drugs.
Reasons for this include underlying disease, diarrhea, and
drug interactions [6,60,171,172]. Rifampicin, a potent CYP
450 enzyme inducer, causes drug interactions with many anti-
retroviral drugs, including atazanavir/ritonavir, emtricitabine/
tenofovir/alafenamide, darunavir/cobicistat [173]. Hepatically
cleared HIV drugs likely will be affected by co-administration
with rifamycins. An overview of overlapping toxicities between
non-rifamycin based regimens and antiretroviral drugs have
been well described in a recent clinical guideline focusing on
MDR-TB [6].

It often is recommended to avoid co-administration of
selected antiretrovirals with rifamycin-based TB drug regi-
mens, however, that is not always possible. Rifabutin can be
used instead of rifampicin in some situations, thus reducing
but not eliminating the effects of hepatic enzyme induction.
Also, there is a risk for overlapping toxicities between TB and
HIV drugs. When multiple classes of drugs are started within
a short period of time, often it is hard to tell which drug is
causing the adverse effect (nausea, vomiting, rash, peripheral
neuropathy, etc) [6]. Further, the immune reconstitution
inflammatory syndrome (IRIS) can be problematic in this cir-
cumstance. When the clinical situation allows for it, starting TB
therapy, and then introducing the HIV therapy 2-8 weeks
later, can mitigate these problems. However, in patients with
very low CD4 counts, delays in starting HIV therapy may not
be possible.

Drug interaction and pharmacokinetic/pharmacodynamic
studies are still ongoing, especially with newer TB drugs and
antiretrovirals. Since limited data are available, TDM can be
used to monitor drug exposure in individual patients.
A systematic review describing the interaction between HIV
infection and first-line TB drugs suggested that HIV is one of
factor leading to low drug exposures [174]. In addition, HIV
patients can have delayed absorption, and this can be identi-
fied using TDM.

3.4. TDM in patients with renal impairment

Essential drug therapy cannot be avoided in patients with
renal impairment. When dosage reductions are necessary,
TDM is a great tool to ensure effectiveness while avoiding
overdosing patients [175]. During TB therapy, special consid-
eration should be given to the aminoglycosides, ethambutol,
cycloserine, and levofloxacin, as these drugs can be accumu-
lated with poor renal function [6,176,177]. It should be noted
that serum creatinine is lagging indicator for kidney function,
reflecting what already has transpired [178]. Applying TDM for
patients on dialysis is useful, as dialysis is known to play a role
in elimination of drugs [179]. It should be noted that most
data are for hemodialysis, and patients undergoing peritoneal
dialysis can respond differently. For patients receiving dialysis,
a sample drawn before and after dialysis (allowing some time



32 (& A-G. MARTSON ET AL.

for rebound) can be used to estimate how much was drug
eliminated during dialysis. Ethambutol has been shown to be
removed by hemodialysis, but may not be removed by peri-
toneal dialysis. Given the risk for ocular toxicity, consideration
may be given to substituting moxifloxacin for ethambutol in
patients with renal dysfunction. TDM has been suggested for
guiding therapy in patients receiving dialysis [180,181].

3.5. TDM in children

Children are known to be under-represented in studies, and
for TB this is not different. Pediatric dosing guidelines often
are derived from adult guidelines. Depending on the age of
the child, the absorption, distribution, metabolism and elim-
ination vary and must always be taken into account [182]. For
neonates, there are significant early changes in kidney func-
tion, drug protein binding and drug metabolism [182].

In order to decrease the blood volume used for TDM with
children, dried blood spots (DBS) might be a good alternative
where available [183]. It has been suggested that children
tolerate TB therapy better than adults, but it can be difficult
to monitor for adverse events [6]. However, a prospective
study was conducted to assess drug-induced liver injury in
children with TB and liver function tests were performed every
2 weeks, which could be feasible in routine clinical care [184].
The authors concluded that children with hypoalbuminemia
and hepatotoxic comedications can be at higher risk in devel-
oping liver toxicity [184]. Thus here, TDM can be a good tool
to assess drug exposure both for efficacy and for potential
toxicities. Another reason to perform TDM in children is the
wide pharmacokinetic variability that has been observed in
children with TB [185].

3.6. TDM in pregnancy

Optimal tuberculosis treatment regimens during pregnancy
still need to be established. A multitude of physiologic
changes occur during pregnancy that can affect the pharma-
cokinetics of the treatment regimen and thus make optimal
dosing challenging. These changes include increased cardiac
output, increased clearance (hepatic and renal), and increased
gastrointestinal transit time. This can further be complicated if
the patient is also living with HIV and on an antiviral regimen
with the potential for drug interactions. TDM is a vital tool to
effectively monitor anti-tuberculosis therapy in these
patients [186].

Two different studies examined the population pharmaco-
kinetics of the first-line TB medications and did not find clini-
cally relevant changes in exposure [187,188]. Authors found
that rifampin clearance was moderately (14%) decreased dur-
ing pregnancy in the third trimester, but dose adjustment was
not required [188].

Data on second-line medications are sparse. Moxifloxacin
and linezolid exposure has been reported to decrease during
pregnancy compared to postpartum serum concentrations
[189]. More studies examining the pharmacokinetics of anti-
tuberculosis drugs are needed. An international expert panel

proposed that studies of MDR-TB, LTBI regimens in women
with HIV and pharmacokinetics by stage of pregnancy to be of
high priority. They also encouraged earlier inclusion of preg-
nant women in phase 3 trials where phase 2 safety and
pharmacokinetic data from non-pregnant women is available
[190]. The known FDA pregnancy categories are presented in
Table 2 alongside other PK parameters.

4. Expert opinion

TB treatment has a long history of using ‘one size fits all.’
Although convenient, this has contributed to treatment fail-
ures, treatment relapses, and the selection of drug-resistant
isolates.

An abundance of data has been published since the pub-
lication Alsultan and Peloquin in 2014 [2], which was
a comprehensive review on TDM in TB. The current review
focuses on covering also special populations children and
pregnant women, but also provides an update for the pre-
vious publications. During the past decade many dosing regi-
mens and strategies have changed and new research has
provided further insight into which PK/PD indexes to be
used in order to guide therapy.

While challenging in resource-limited circumstances, TDM
offers the clinician the opportunity to individualize and opti-
mize drug exposure early in treatment. It is true that not every
location will have an LC MS-MS [9]. But excellent work can be
done with relatively inexpensive HPLC UV systems that are not
as demanding on the purity of reagents and the training of
the chemists [191]. Ideally cheap and fast point-of-care test
should be available to truly implement TDM in every setting to
benefit all patients. Semi-quantitative test could be a solution
to preselect patients that actually would require TDM [192].
There is a good example based on DBS how to introduce TDM
into practice. Ghimire et al. have proposed a strategy how to
implement TDM in the form of DBS into the three tiers of
World Health Organization (WHO) tuberculosis diagnostics.
The sampling could be done on a peripheral and intermediate
level, when the measuring can be done at the central level
laboratories [18]. It is more probable than on a central level
the results would be more credible as high volume of samples
require robust and reproducible methodology. Moreover, this
leads to the approach suggested by Alffenaar et al that spe-
cific key drugs (rifampicin, pyrazinamide, isoniazid, levofloxa-
cin, moxifloxacin and linezolid) should be screened on
community level (peripheral) and phenotypic drug suscept-
ibility and drug exposure should be determined on a regional
level [29]. The need for guidance on implementing TDM for TB
is definitely warranted, especially guidance is needed from
WHO [193].

PK/PD provides the necessary insight into drug action in
order to extract the full benefit of the drugs. Current short
course regimens are 6 or more months long. The longer treat-
ment continues, the greater the opportunity to acquire drug
resistance. Individualization of treatment takes into account the
TB isolate (degree of drug susceptibility), the extent of disease
(including cavities, abscesses, penetration into bone or the



central nervous system), liver and kidney function. Rather than
‘one size fits all,’ the regimen is tailored to the patient so that it
fits the patient. Once the initial regimen is started, its suitability
is confirmed using TDM, as well as the more typical clinical and
microbiological assessments. This approach provides the patient
with the best chance to avoid negative treatment outcomes.
Clearly, the evaluation of such approach in a randomized trial
would advance the implementation of TDM. Currently, the big-
gest hurdles for the implementation of TDM for TB are funding
and training of local staff.
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