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 33 

Abstract: 34 

Infectious diseases are a leading cause of morbidity and mortality worldwide and human pathogens 35 

have long been recognized as one of the main sources of evolutionary pressure, resulting in a high 36 

variable genetic background in immune-related genes. The study of the genetic contribution to 37 

infectious diseases has undergone tremendous advances over the last decades. Here, focusing on 38 

genetic predisposition to fungal diseases, we provide an overview of the available approaches for 39 

studying human genetic susceptibility to infections, reviewing current methodological and practical 40 

limitations. We describe how the classical methods available, such as family-based studies and 41 

candidate-gene studies, have contributed to the discovery of crucial susceptibility factors for fungal 42 

infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting 43 

their success but also their limitations for the fungal immunology field. Finally, we show how a systems 44 

genomics approach can overcome those limitations and can lead to efficient prioritization and 45 

identification of genes and pathways with a critical role in susceptibility to fungal diseases. This 46 

knowledge will help stratify patients at risk groups and, subsequently, develop early appropriate 47 

prophylactic and treatment strategies.  48 

 49 

  50 
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3 

Human Genetic Susceptibility to Infectious Diseases 51 

Although there has been tremendous progress in medical research and healthcare, infectious diseases 52 

remain a leading cause of morbidity and mortality worldwide (1). Ever-increasing global connectivity 53 

together with human demographics and environmental changes have contributed to the emergence 54 

of new infectious diseases, such as the recent pandemic with the Severe Acute Respiratory Syndrome 55 

coronavirus 2 (SARS-CoV-2) (2), and the re-emergence of existing ones, such as Candida auris infection 56 

(3). Human infectious diseases are characterized by an extensive variation in clinical phenotypes 57 

among individuals infected by the same agent, indicating that genetics and non-genetics factors 58 

determine this variation. Many genetic epidemiological studies in the last half century, ranging from 59 

observational studies to more sophisticated twins or segregation studies, pointed out to the 60 

importance of host heritable factors in susceptibility to infectious diseases. One of the first discovered 61 

single-gene traits influencing susceptibility to infection was the sickle hemoglobin variant as a major 62 

resistance factor for malaria (4). Stronger evidence came from several early twin studies reporting 63 

higher concordance rates in monozygotic than in dizygotic twins for genetic susceptibility to various 64 

infectious diseases (5–9). Also, follow-up studies of adopted children in the late 1980s showed they 65 

had a markedly increased risk to death from an infectious disease if one of the biological parents had 66 

died prematurely from an infectious cause rather than other causes, such as cancer or cardiovascular 67 

diseases (10).  68 

Infectious pathogens, which elicit the host immune response, have long been recognized as the main 69 

source of evolutionary pressure (11, 12). Immune-related genes are the most abundant and diverse 70 

genes in the human genome (13), suggesting an evolutionary advantage of a varied immunological 71 

response to a wide range of infectious pathogens. The study of the genetic contribution to infectious 72 

diseases has undergone revolutionary advances over the last decades in line with the development of 73 

novel technologies in the field. Traditional linkage studies identified a few important candidate genes 74 

(14). With the advent of genomic era, genome-wide association studies (GWAS) have identified 75 

numerous genetic loci in autoimmune diseases (15), however,  but only with a limited success in the 76 

field of genetics of infectious disease (16). High-throughput technologies and the generation of multi-77 

omics datasets have enabled a powerful multi-level study of the genetics of complex diseases, 78 

including infectious disease, to offer a better understanding of the interplay between host, invading 79 

pathogen and environment.  80 

Here, we provide an overview of the available approaches for studying human genetic susceptibility in 81 

fungal infections, reviewing current methodological and practical limitations. We will also discuss the 82 
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4 

use of a systems genomics approach to understanding genetics and molecular pathways underlying 83 

the human host defense against fungal infections.  84 

 85 

The burden of fungal diseases on global health 86 

Human are constantly exposed to fungi: some are colonizing the human host – the so-called 87 

commensal fungi- and some are ubiquitous in the environment – the so-called environmental fungi. A 88 

fully functional host immune system has effective mechanisms for preventing severe fungal infections, 89 

but when the immune system fails, human pathogenic fungi can cause potentially “opportunistic”, life-90 

threatening diseases (17). The burden of fungal diseases on global health is expanding in parallel with 91 

an increase in individuals with acquired immune deficiencies or those receiving immune suppressive 92 

therapies or myeloablative treatments (18). Human fungal infections cause over 1.5 million death 93 

every year (19), and affect more than a billion individuals worldwide (20). The steady increase in 94 

incidence of nosocomial invasive fungal infections has significantly contributed to health-related costs 95 

(21). Despite the increasing numbers and the recent outbreak of the emerging C. auris infection (3), 96 

the impact of fungal diseases on human health still remains underestimated (22, 23). The majority of 97 

human fungal infections are caused by Candida, Aspergillus, and Cryptococcus spp., (19). These fungi 98 

are ubiquitous, but Cryptococcus and Aspergillus spp are also environmental (24), whereas Candida 99 

spp are commensal colonizers of mucocutaneous surfaces and gastrointestinal tract (25).  100 

The diagnosis of fungal infections can be problematic due to clinical challenges in fungal isolation and 101 

identification (26, 27). Therapeutic challenges are raised by the fact that no vaccines are yet available, 102 

current antifungal therapeutic options remain limited and, on top of that, multi-drug resistant fungal 103 

species are arising (28). As a result, mortality rate of patients with invasive fungal infection remains 104 

unacceptably high, reaching 40%-50% (29). Risk factors to develop fungal infections have been well 105 

described (30–33), and certain high-risk groups of patients can be further classified according to 106 

specific risk scores, which include a large panel of clinical and laboratory parameters linked to disease 107 

susceptibility or clinical phenotype evolution  (34–37). However, not all patients at risk develop fungal 108 

disease, and a large variability in clinical evolution has been reported among patients with the same 109 

predisposing factors. This observation suggests that human genetic variation plays a role for 110 

susceptibility to fungal infections and severity outcome. Indeed, several monogenetic disorders 111 

resulting in severe primary immunodeficiencies, as well as mutations and common polymorphisms in 112 

immune genes, have been associated with an increased susceptibility to mucosal and/or invasive 113 

fungal infections, that have been reviewed elsewhere (38) . Despite significant advances over the last 114 
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few years in identifying genetic variations leading to immune imbalances, which lead to increased 115 

susceptibility to fungal infections, there are still many challenges to fully understand the genetic 116 

architecture of fungal infections. To overcome these challenges, a systems genomics approach has 117 

been followed to identify risk loci and molecular pathways underlying host immune defense and 118 

disease pathogenesis. By integrating multiple molecular datasets that reveal inter-individual variability, 119 

it is possible to prioritize and identify genes and pathways with a critical role in susceptibility to fungal 120 

diseases. Ultimately, this knowledge will help stratify patients at risk groups and, subsequently, 121 

develop early appropriate prophylactic and treatment strategies against opportunistic fungal 122 

infections.  123 

 124 

Overview on host immune response to fungal pathogens 125 

Opportunistic fungal infections are characterized by interaction between the host, the invading 126 

fungus, and the environment, which is sustained by a complex and dynamic equilibrium of several 127 

inter-connected factors. The microbiological and environmental factors taking part in this delicate 128 

interaction - such as the role of commensal microbiome, the dynamic fungal morphological 129 

adaptations and genomic mutations - are well reviewed elsewhere (39). Despite the differences in 130 

pathogenesis of infection between environmental and commensal fungal species, there are several 131 

common host immune defense mechanisms. In order to infect the human host, the fungal pathogen 132 

must be able to overcome three levels of host defense; a first, physical barrier consists of the skin and 133 

mucosa. The second barrier, presented by the innate immune system, is largely dependent on the 134 

recognition of evolutionarily conserved fungal cell wall components (pathogen-associated molecular 135 

patterns, PAMPs). These PAMPs are recognized by various pattern recognition receptor (PRRs) 136 

circulating -such as Pentraxin-3 (PTX3) or Mannose Binding Lectin (MBL) – or present on the surface of 137 

innate immune cells, such as macrophages, monocytes, NK cells and neutrophils. In particular, the 138 

mannan cell wall component is mainly recognized by the macrophage mannose receptor (MMR), the 139 

C-type lectin-like receptor Dectin-2, and the Toll-like Receptor 4. TLR2 binds to the 140 

phospholipomannan and Dectin-1 receptor recognizes β-glucan. Coordinated engagement of PRRs and 141 

following intracellular signaling pathways mediated by several kinases and adaptor molecules, such as 142 

Spleen tyrosine kinase (Syk) and Caspase recruitment domain-containing protein 9 (CARD9), results in 143 

the activation of innate immune effector mechanisms. Those mechanisms include phagocytosis, 144 

generation of reactive oxygen species (ROS) by NADPH oxidase and reactive oxygen species (RNS) by 145 

myeloperoxidase (MPO) that promote the killing of the fungus and, finally, to production of pro- and 146 

anti-inflammatory cytokines. Pro-inflammatory cytokines, such as IL-1β and TNFα, have important 147 
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roles in the host defense against fungal infections. IL-1β is transcribed as an inactive form (pro- IL-1β) 148 

and further processed into its active mature form via the NLRP3 inflammasome, a multiprotein 149 

complex, which is also crucial for antifungal host defense (40). TNFα enhances antifungal activities by 150 

promoting phagocytosis and neutrophils recruitment (41, 42). In turn, the release of cytokines, 151 

combined with antigen-presentation activity of myeloid cells, is crucial for activation of the adaptive T-152 

cell immunity, in particular Th1 and Th17 subsets (43), representing a third, longer term barrier 153 

against fungal infection (44). IFNγ produced by Th1 lymphocytes have been shown to have a central 154 

role in the resistance against systemic fungal infections (43); Th17 responses have been proven to be 155 

crucial for human anti-Candida mucosal host defense and granulocyte recruitment, but it can 156 

contribute to detrimental immunopathology during fungal infections (45, 46). In an 157 

immunocompetent host, the majority of the invading microorganisms are detected and destroyed 158 

within minutes or hours by the innate immune defense mechanisms. An overview of host immune 159 

responses against fungal infection is presented in Figure 1.  Invasive fungal infections are mainly found 160 

in patients with a weakened immune system, either due to reduced cellular immune effector 161 

mechanisms or defects in epithelial barriers. 162 

Approaches to study genetics of fungal infections 163 

Although the abovementioned factors are important, they do not explain all infections and only a 164 

minority of patients at risk will actually develop disease, suggesting the critical role of genetics in 165 

determining disease susceptibility. Indeed, several approaches, from classical family-based and 166 

candidate-gene approaches, to novel ones, such as genome-wide association studies (GWAS) and 167 

integrative approaches, have attempted to decipher the genetic factors to mucosal and/or invasive 168 

fungal infections. An overview of these approaches is presented in Figure 2. 169 

The “classical” approaches 170 

Mendelian susceptibility to fungal infections: a family-based approach 171 

 Classical approaches, such as family-based approaches to study genetic factors have captured rare 172 

mutations that confer a mendelian (monogenic) form of predisposition to fungal infections. Much of 173 

our understanding about genetic susceptibility to specific fungal pathogens have been achieved 174 

through family-based studies on certain rare primary immunodeficiencies, presenting as clinical 175 

manifestation signs of a mucosal or invasive fungal infection (47, 48). A prototypical example is chronic 176 

granulomatous disease (CGD), a rare inherited disorder (frequency,~1/200,000) caused by mutations 177 

in genes encoding four out of five protein subunits of the phagocyte NADPH oxidase, namely the X-178 
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linked CYBB gene (gp91phox) and the autosomal recessive in CYBA(p22phox), NCF-1, (p47phox) NCF-179 

2(p67phox) genes (49). Patients with CGD fail to produce ROS and suffer from recurrent life-180 

threatening bacterial and fungal infections, especially invasive aspergillosis (IA) (50), accounting for 181 

one third of all deaths in CGD patients (51). Notably, patients with mutations is NCF-4 (p40phox) gene 182 

do not develop IA, as they are still able to produce ROS (52).  183 

Another example is the myeloperoxidase (MPO) deficiency, which is the most common inherited 184 

phagocytic disorder (frequency, ~1/2000) (53). The vast majority of MPO deficient patients are 185 

asymptomatic, however, a complete enzymatic deficiency predisposes to invasive candidiasis (54). 186 

More recently, CARD9 deficiency has emerged as an important and fungal-specific susceptibility factor 187 

for both mucosal and invasive fungal infections (55), without predisposing to other infectious or non-188 

infectious sequelae. More than 15 missense and non-sense mutations in CARD9 gene (56) result in 189 

Th17 deficiency and altered Dectin-1 signaling, as well as a defective neutrophil recruitment to certain 190 

anatomical sites, including the central nervous system (CNS) (57). Few inborn monogenic disorders 191 

that predispose to invasive fungal infections (IFIs) (but not fungal specific) have been previously 192 

described: specific mutations in the transcription factor GATA2 cause the so-called “MonoMAC 193 

syndrome” characterized by monocytopenia, B-cell and natural killer (NK)-cell lymphopenias, 194 

myelodysplasia and increased susceptibility, not only to mycoses but also to papillomaviruses and 195 

nontuberculous mycobacteria (NTM) of low virulence potential (58). Genetic mutations in genes 196 

involved in the IL-12/IFN-γ signaling pathway - extensively reviewed in (29) - have been shown to 197 

predispose, not only to NTMs, but also to fungal infections by intracellular fungi (59). Such fungal 198 

infections include especially those whose eradication relies on an effective interaction between 199 

phagocytes and Th1 lymphocytes (e.g. H. capsulatum, P. brasiliensis and C. neoformans) (59, 60).  200 

An intact host mucocutaneous barrier depends on functional IL-17 signaling. Chronic mucocutaneous 201 

candidiasis (CMC) is another primary immunodeficiency characterized by recurrent or persistent skin, 202 

mucosal or nail infections by Candida spp., mainly C. albicans. CMC refers to a heterogeneous group of 203 

disorders, all caused by impaired Th17 responses and subsequent defective mucosal and skin 204 

antifungal host defense mechanisms. CMC can be caused by direct mutation in IL-17R signaling 205 

resulting in mucosal but not to systemic candidiasis, such as IL-17F and IL-17RC, that are specific for 206 

CMC, as well as IL-17RA and the adaptor ACT1 (TRAF3IP2) also predisposing to bacterial infections 207 

(61–64). Other genetic mutations in several genes variously involved in Th17 differentiation can be 208 

causal for CMC and are generally associated with other syndromic manifestations. Such examples 209 

include the loss of function STAT3 mutation which causes hyper-IgE syndrome (65), bi-allelic 210 

mutations of the Th17 differentiation master regulator RORC (66), autosomal dominant STAT1 211 
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mutations, which lead to defective Th17 responses by indirectly impairing STAT3 activity (67, 68), and 212 

CARD9 mutations (56). Other CMC-associated monogenic diseases include (but are not limited to) the 213 

autosomal recessive DOCK8 deficiency (69), the X-linked severe combined immunodeficiency disorder 214 

(SCID), the 22q11.2 deletion (athymic DiGeorge syndrome) and many other genes, nicely reviewed 215 

elsewhere (70). Interestingly, the APECED autoimmune polyendocrinopathy, candidiasis, ectodermal 216 

dystrophy (APECED) syndrome, caused by AIRE mutations and characterized by the presence of 217 

neutralizing autoantibodies against IL-17F and IL-22, presents CMC as the sole infectious consequence 218 

(71). To sum up, primary immunodeficiencies offer unique opportunities to a better understanding of 219 

the genetic and immunological component of fungal infections, which help develop novel immune-220 

based therapeutic approaches against these infections. 221 

Non-monogenic susceptibility to fungal infections: a candidate gene approach 222 

Another classical approach widely adopted in several genetic studies of complex diseases, including 223 

fungal diseases, is the candidate gene approach. The selection of the candidate genes usually relies on 224 

in vitro murine or patient’s experimental data by hypothesis-driven biological plausibility. The majority 225 

of candidate gene studies includes a case-control design. To avoid any form of confounding and 226 

population heterogeneity, case and controls need to be accurately matched, and the sample size 227 

should be adequate to ensure reproducibility and statistical power (72). The vast majority of candidate 228 

gene studies for susceptibility to fungal infections have focused on immune-related genes involved in 229 

innate recognition of microbes, acquired immunity, intracellular signaling pathways, or different 230 

cytokines. Immune related genes are a special case in the genome because, depending on the 231 

geographic region, the selective pressure on them has been different; that is the reason why most of 232 

those genes are highly polymorphic and, subsequently, highly prone to population stratification biases 233 

(73). Several single nucleotide polymorphisms (SNPs) in immune-related genes have been described 234 

that increase or decrease the risk to fungal diseases in patients with an acquired 235 

immunocompromised status (74–76). Two of the most studied pathological conditions characterized 236 

by an immunocompromised status is systemic candidiasis in intensive care unit (ICU) and invasive 237 

aspergillosis (IA) in allogenic hematopoietic stem cell transplant (HSCT) recipients, and most studies 238 

that identifies SNPs associated to fungal infections have been done to this kind of patients.  239 

Since other excellent recent reviews already described in more detail SNPs influencing susceptibility to 240 

fungal infections (74–76), here and in Table 1 we will report only some representative associations 241 

which have been described in the last 14 years supported by strong functional evidences. One of the 242 

most studied immune genes that encode receptors on innate immune cells that recognize fungal 243 

antigens are the Toll-like receptors (TLRs). Three SNPs in TLR1 genes were significantly associated with 244 
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candidemia susceptibility (77), while SNPs in TLR4 genes were associated to both IA (78, 79)and 245 

systemic candidiasis (80). A stop codon in DECTIN1 (Tyr238X) have been associated to increased risk 246 

for IA after HSCT (81), but not for  invasive candidiasis after HSCT (82). The same stop-codon 247 

polymorphism was further associated to CMC (83), oral and gastrointestinal colonization by Candida 248 

species in HSCT patients (82). Two frequent polymorphisms (281A/G and 734A/C) in PTX3 gene have 249 

been associated to increased risk of developing IA both in HSCT donor (84) and solid organ transplant 250 

recipients (85). These SNPs have been also functionally validated using in vitro studies with patient’s 251 

primary neutrophils, showing impaired Aspergillus phagocytosis and killing (84). SNPs in NOD2 gene 252 

regulate susceptibility to IA after HSCT and NOD2 deficiency affords resistance to IA (86). In addition, 253 

genetic variation in the monocyte/macrophage-targeted chemokine receptor CX3CR1 and the 254 

neutrophil-targeted chemokine receptor CXCR1 have been shown to be crucial for fungal infections, 255 

particularly those caused by Candida spp: carrying the allele M280 in CX3CR1 gene in homozygosity 256 

was associated with an increased risk for disseminated candidiasis, but not mucosal or RVVC (87), in 257 

two different patient cohorts (88), and leads to an impaired human monocyte trafficking and survival 258 

(89). The mutant CXCR1-T276 allele was associated with increased susceptibility to disseminated 259 

candidiasis and impaired neutrophil degranulation and fungal killing capacity (90). Last, but not least, 260 

genetic variation in pro- and anti-inflammatory cytokines has also been shown to be associated with 261 

susceptibility to fungal diseases. An important example is represented by IL-1 family genes: 262 

polymorphisms or certain haplotypes in IL-1β, IL-1α and IL-1Ra were associated with an increased risk 263 

of developing IA in solid organ recipients (91) and in leukemic patients (92), as well as decreased A. 264 

fumigatus induced cytokine production (91). Candidate gene studies have historically paved the way 265 

for personalized medicine and prophylactic antifungal treatment in high-risk patients. However, these 266 

studies present limitations, to name a few, population stratification issues, lack of replication among 267 

different studies and across populations, poor functional evidence, non-correction for multiple testing 268 

as well as small sample size, which results in  limited statistical power (73, 75).  269 

The “novel” approaches 270 

For decades, the study of genetic susceptibility to infectious diseases have been looking at inherited 271 

monogenic defect causing spontaneous infections and have been screening for single polymorphisms 272 

in candidate genes. However, such studies were performed in relatively small patient cohorts and 273 

were usually based on hypothesis-driven in vitro or previous knowledge in the field.   274 

Moving to unbiased, genome-wide approaches to study genetics of fungal infections  275 

The advent of the genomic era with advances, such as the mapping of human genetic variation 276 
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compiled by the international HapMap project (93) and the 1000 Genomes project (94), together with 277 

the development of several high-throughput sequencing (HTS) platforms for (deep)-sequencing, and 278 

of imputation tools have all contributed to a better understanding of genetics in various human 279 

complex diseases in diverse populations. Such advances have been also applied to fungal infections. 280 

For example, next generation sequencing (NGS) and whole-exome sequencing (WES), which 281 

sequences all of the protein-coding regions of genes in a genome, have become one of the most 282 

widely used, unbiased, “hypothesis-generating”, novel method for studying the rare monogenic 283 

defects underlying susceptibility to fungal infections. For example, van der Veerdonk et al identified 284 

STAT1 gene as a cause of chronic muco-cutaneous candidiasis using an NSG approach (68), and this 285 

was validated by Liu et al. who identified heterozygous germline mutations in STAT1 gene in 47 286 

patients with autosomal-dominant chronic mucocutaneous candidiasis using WES (95). WES in a case 287 

of a leukemic patient presenting an unusual invasive mucormycosis has revealed several putative 288 

polymorphisms in immune related genes (e.g.PTX3, TLR6, NOD2, RIG-I, CCR5)  potentially influencing 289 

mucormycosis infection (96). Moreover, exome sequencing has been implemented as a discovery tool 290 

for genetic diagnosis of primary immunodeficiencies (PIDs) manifested as fungal infections has been 291 

described in a Dutch hospital (97) . Collectively, these studies show that WES is a promising and 292 

affordable approach for discovering novel disease-causing genes and allelic polymorphisms influencing 293 

disease susceptibility targeting a small number of individuals, or even single patients. In addition, 294 

sequencing of just the exome of patients would allow identification of rare variants. Early studies using 295 

exon sequencing to identify rare variants in other infectious diseases, which were focused on TLR4 296 

gene in meningococcal disease and on five TLR genes on tuberculosis, showed an excess of rare (and 297 

some more frequent) coding changes in patients compared to controls (98, 99). Therefore, WES can 298 

potentially open up new avenues to discovering rare variants that predispose to fungal infections. 299 

However, the majority of low frequency and/or rare variants that have been associated with infectious 300 

diseases, including systemic Candida infections, are non-coding variants (intronic or intergenic) (100, 301 

101). To explore the role of common non-coding variants, follow-up studies on the genetics of fungal 302 

diseases made use of genomic tools, such as genotype imputation, custom genotyping arrays, and 303 

whole-genome sequencing to reveal novel associations between phenotypes and variants. For 304 

example, a pilot association study performed a screen of ~ 120,000 SNPs across 186 genetic loci 305 

related to immune function among hospitalized patients with candidemia compared to healthy and 306 

patient-matched controls revealed significant associations between novel SNPs in the CD58, TAGAP 307 

and LCE4A-C1orf68 genes and candidemia susceptibility (101). Of note, the presence of two or more 308 

high-risk SNPs within these loci had a ~ 20-fold increased risk of developing candidemia, indicating a 309 

possible synergistic effect on increasing the infection risk (101). A large GWAS of volunteers 310 
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contributing DNA from the 23andMe database identified three significant associations between yeast 311 

infection and variants downstream of PRKCH gene, within DSG1, and C14orf177 genes (102). Another 312 

pilot GWAS study, which was performed in children with dermatophytosis caused by the fungal 313 

species Trichophyton tonsurans, identified SNPs in eight genes involved in leucocyte activation, 314 

melanocyte function and extracellular matrix remodeling that have been significantly associated with 315 

increased infection rate (103). All these studies indicated the role of common variants in contributing 316 

to variability in susceptibility to fungal diseases. Despite significant progress over the last few years in 317 

identifying susceptibility genes for fungal infections, there is still much genetic information 318 

unexplored, and the molecular mechanisms underlying susceptibility are not fully understood due to 319 

challenges that are being discussed below.  320 

Limitations of studying the genetics of fungal diseases 321 

GWAS studies to identifying genetic risk factors in fungal infections have not been as successful as in 322 

other complex diseases, such as autoimmune diseases (104), because of several limitations. One of 323 

the major limitations in studying the genetics of fungal infections is the lack of power due to relatively 324 

small patient cohorts. Large sample sizes are required in order to obtain sufficient statistical power to 325 

detect true disease associations (105). The collection of a patient cohort is also complicated by the 326 

possible presence of asymptomatic infections, or of different ethnicities. Patient cohorts must be 327 

ethnically homogeneous and well-phenotyped in order to identify phenotype- and population-specific 328 

associations. Taking into account the genetic substructure of human populations, it is crucial to 329 

consider that the allele frequency differs substantially among ethnic groups and, in certain cases, for 330 

example in the African ancestry, it is possible to find a larger variation and a lower linkage 331 

disequilibrium (106). The admixture of ethnic groups (107), as well as subtle differences in the ethnic 332 

composition of cases and controls (108) can lead to false positive results. While a careful matching for 333 

demographic factors can reduce the number of false positive results, statistical methods (nicely 334 

reviewed in ref. 107) can now be applied to address this issue and mitigate these caveats. 335 

 Another limitation is that most GWAS have been focused on identifying only common variants whose 336 

minor allele frequency (MAF) is >5% (105, 109, 110), missing low frequency or rare variants. To 337 

identify rare variants, next generation sequencing (NGS) studies at relatively small cohorts followed by 338 

testing of associated variants in  larger cohorts might be a promising complementary strategy (110). 339 

After validating the SNP in a validation cohort, a “wet-lab” functional validation of the disease-causing 340 

effect of this genetic variant is critical and required to confirm the causal relationship between 341 

genetics and phenotype. 342 
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Another limitation is that GWAS alone, while it provides significant associations between a genetic 343 

variant and a disease, it cannot explain the biological consequence or pinpoint the causal gene, 344 

especially when non-coding genetic variants are discovered (111). A possible approach for exploring 345 

the link between a GWAS genetic variant and its effect is to statistically correlate variants with 346 

measured biological quantitative data by performing quantitative trait loci (QTL) analysis. For example, 347 

a statistical correlation between a genetic variant to gene expression is called expression-QTL (eQTL) 348 

analysis (112), to cytokine production is cytokine-QTL (cQTL) analysis (113), to DNA methylation is 349 

methylation-QTL (meQTL) analysis (114), among others (115). Of note, eQTL and cQTL analyses have 350 

been already implemented for studying inter-individual variability in cytokine production in response 351 

to fungal pathogens (113, 116). In particular, GOLM1 gene was associated with C. albicans-induced IL-352 

6 production and a genetic variant within this locus was also associated with increased susceptibility to 353 

candidemia (113).  354 

In addition, it is becoming increasingly clear that the outcome of an infectious disease reflects the 355 

dynamic interaction between human, pathogen genotypes and the environment (117). The host–356 

fungal interaction exhibits features of a dynamic system that may exert genetical effects known as 357 

genotype-by-genotype interactions (GxG) (16). Those GxG interaction had led to a slow host-pathogen 358 

co-evolution (especially in cases of a commensal fungi like C. albicans); this phenomenon might justify 359 

the host heterogeneity in the frequency of polymorphisms and haplotypes among populations (118). 360 

At the same time, the fungal pathogen can rapidly acquire mutations to adapt to host polymorphisms 361 

in a specific population, resulting in considerable genomic variation across fungi from different 362 

geographic regions (119–121). In turn, rapid pathogen evolution or host-pathogen co-evolution might 363 

have caused a fluctuation over time of the disease susceptibility genes across populations, as 364 

mathematically modelled by Lambrechts et al. (122) and may directly have played a role on the limited 365 

success on GWAS on fungal (or in general infectious) disease susceptibility. Last but not least, classical 366 

GWAS studies can detect only the genetic component of the three-way interplay between the host 367 

immune system, different pathogen morphotypes and the environment. In particular, host and 368 

pathogen genetic variability interaction with environmental influences are even more challenging to 369 

model and they can be collectively defined as Gene–Environment (GxE) interactions (123). For 370 

example, environmental factors such as pH and/or an imbalanced microbiome influence the 371 

susceptibility to develop recurrent vulvovaginal candidiasis (RVVC) (124). Specific interactions between 372 

commensal bacteria and fungi could play an important role in the development of invasive candidiasis 373 

(125). Therefore, a more integrative and multi-level analysis of host, pathogen and environmental 374 

variation is required to keep all these interactions into account while studying the pathogenesis of a 375 

fungal disease.  376 
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 377 

Overcoming limitations: the introduction of functional genomics approaches 378 

Given the complexity of host-pathogen interactions, conventional experimental approaches that study 379 

only individual molecular components (either of the host or pathogen) cannot provide a 380 

comprehensive picture of these interactions. The development of high-throughput data acquisition 381 

technologies and the possibility to integrate multi-omics datasets have laid the foundations for a new 382 

discipline: systems biology (126, 127). The increasing use of systems biology is tightly intertwined with 383 

that of functional genomics, which represents a novel, more powerful multilevel manner for studying 384 

the genetics of complex diseases (128, 129) (Figure 2). Thus, the integration of high-throughput multi-385 

omics data (transcriptomics, proteomics, metabolomics, lipidomics, etc.) with genetics can be used to 386 

prioritize genes for follow-up functional experiments to better understand their role in host immune 387 

defense and identify molecular pathways that underlie disease pathogenesis (Table 2). Several studies 388 

have applied a functional genomics approach to understand host genetic susceptibility to fungal 389 

infections, where genome-wide data (also called “static biomarkers” (129)) were integrated, validated 390 

or complemented with other multi-omics datasets in the context of the disease, where host-pathogen 391 

interactions are dynamically changing. Table 3 shows the studies in the last 5 years that identified 392 

genetic variant associated with fungal infections using a systems genomics approach. 393 

A specific role of type I interferon pathway in anti-Candida host defense was supported by integrating 394 

transcriptional analysis and functional genomics (130) using Candida-stimulated human immune cells. 395 

Of note, the importance of this pathway was validated through immunological and genetic studies in 396 

both healthy volunteers and in patients with systemic candidiasis or suffering from CMC. Moreover, 397 

polymorphisms in type I interferon genes modulated Candida-induced cytokine production, and they 398 

were correlated with susceptibility to systemic candidiasis (130). The first transcriptome-wide 399 

association study (TWAS) (131) of the fungal immunology field identified molecular pathways 400 

underlying candidemia susceptibility using unbiased transcriptomics data, which were then validated 401 

in a patient’s cohort. Significant associations between CCL8, STAT1, PSMB8 and SP110 polymorphisms 402 

and susceptibility to candidemia were identified by integrating transcriptomics data, candidemia 403 

GWAS followed up by  functional in vitro validation in the context of Candida infection (130). Another 404 

study suggested that RIG-I-like receptor (RLR) MDA5 has a critical role in anti-Candida host immune 405 

defense by integrating genetic, transcriptomic and immunological data generated from mouse and 406 

human studies (132). The additive value of integrating multiple molecular datasets became even more 407 

apparent by two follow up studies where genes and pathways underlying candidemia susceptibility 408 

were prioritized. In the first study, suggestive genetic associations together with transcriptomic data 409 
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could prioritize novel pathways implicated in candidemia susceptibility, including the complement and 410 

hemostasis pathways (100). In the second study, integration of GWAS data with variants that affect 411 

cytokine levels (cytokine-QTLs) from different Candida-stimulated cell types prioritized lipid and 412 

arachidonic acid metabolism as potential mechanisms that affect monocyte-derived cytokines to 413 

influence susceptibility to candidemia (133).  414 

Although African populations suffer the most from infectious diseases, they are still underrepresented 415 

in studies of disease susceptibility (117). The first genome-wide association study of susceptibility to 416 

cryptococcosis in HIV patients have been carried out with genotype data from 524 patients of African 417 

descent. This study identified six loci upstream CSF1 gene (encoding for M-CSF) that were significantly 418 

associated with the disease susceptibility and validated in a separate cohort. Functional data from 419 

RNAseq of human PBMCs stimulated with C. neoformans and in vitro experiments with HIV patient’s 420 

PBMCs confirmed the crucial role of M-CSF for anti-Cryptococcus host defence mechanisms (134). 421 

 422 

Given that genetic variants significantly associated with a disease are often regulated in a context and 423 

cell-specific way (135), with the development of single-cell RNAseq, it has become possible to 424 

prioritize genes in a cell-type specific fashion. For example, by combining bulk and single-cell 425 

transcriptome data in response to Candida stimulation with GWAS data on candidemia susceptibility, 426 

LY86 antigen has been prioritized and further validated to exert a protective role against candidemia 427 

risk (136). Furthermore, genes and cellular processes that contribute to the pathogenesis of RVVC, 428 

including cellular morphogenesis and metabolism, and cellular adhesion were identified through 429 

integration of genomic approaches and immunological studies in two independent cohorts of patients 430 

with RVVC and healthy individuals (137). In particular, the role of SIGLEC15 in Candida recognition and 431 

RVVC susceptibility, a lectin expressed by various immune cells that binds sialic acid, has been also 432 

validated in the same study with both in vitro and in vivo functional assays (137). Wang et al. in the Hi-433 

HOST Phenome Project (H2P2) identified two SNPs significantly associated with FGF2 production in 434 

response to M. circinelloides and C. albicans, posing those allelic variant as potential candidate for 435 

antifungal host immune response (138). However, they did not validate whether and how the 436 

presence of these SNPs is associated with an increased risk of fungal infections. 437 

 438 

Overall, such an integrative, functional approach is valuable in the context not only of fungal 439 

infections, but also to other infectious diseases, for which the limited size of patient cohorts limits the 440 

power of the GWAS  . The reasons of using such an approach are threefold: first of all, this approach 441 

makes use of large population-based cohort studies in the context of the disease that can be excellent 442 

models in order to get a powerful analysis to understand disease pathophysiology. Second, it is very 443 

versatile and provides independent layers of evidence intersecting with each other: from the multi-444 
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omics untargeted molecular candidate to the experimental or clinical evidence (top down) and vice 445 

versa (bottom up) in a multidisciplinary and collaborative way. Last but not least, the ultimate aim of 446 

functional genomic studies is to provide “actionable data” with a translational potential. Since this can 447 

be a pathway-based targeted approach, it is possible to validate and clinically translate those findings 448 

to patients. Knowing the underlying pathways of human host defence allows, for example, to identify 449 

ways to prevent the disease, develop novel diagnostic tools to be used in patient risk stratification, 450 

and identify new potential therapeutics. For a robust implementation of such a host-oriented therapy, 451 

it is particularly crucial to make sure that the results are validated in physiologically relevant model, 452 

preferably relevant primary models of disease or appropriate patient samples or clinical strains. It has 453 

been shown that not always what have been validated in human cell lines (142), in mice (143), or a 454 

laboratory pathogen strain (144, 145) hold true in patient’s cells of fungal clinical isolates. 455 

 456 

 457 

 458 

Future perspectives 459 

 460 
Over the last decades, the study of the genetics of infectious disease susceptibility has been 461 

revolutionized, and it has been developed more rapidly thanks to new technologies. This progress was 462 

important at multiple levels: firstly, it has made the research process more effective, comprehensive 463 

and productive, providing valuable new findings on host-pathogen interactions. Such an evolution of 464 

the field combined with an interdisciplinary approach can be a useful tool to identify new potential 465 

novel therapeutic drug targets. In this respect, a recent study has shown that the proportion of drug 466 

mechanisms with a direct genetic support increases significantly across the drug development phases, 467 

indicating that prioritizing genetically supported drug target could double the success rate in drug 468 

discovery (146). A stratification of patients based on genetic profiling would pinpoint the patients with 469 

high risk of disease, and who will benefit most from the drug. Unless additional clinical trials provide 470 

evidence of a treatment effect based on genetic profiling, we should be aware and cautious of the 471 

benefits and harms of new drug targets. In addition, a host- directed therapeutical target may also 472 

result in a weaker selection pressure on pathogens, potentially making it more difficult for a pathogen 473 

to evolve beyond the control of the host immune response. 474 

Integrating such a plethora of omics data would catalyze the identification of diagnostic markers that 475 

might be useful for severity stratification or eligibility for specific treatments. Considering the host 476 

variability in immune-related genes, personalized therapies based on an individual genetic profile, 477 

such as immunotherapy-based interventions or targeted anti-fungal prophylaxis in genetically 478 
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susceptible individuals are leading to an increasingly more powerful precision medicine. Nonetheless, 479 

risk stratification approaches guiding clinical decision-making process based on a patient’s individual 480 

susceptibility profile are expected to be promising. From a more basic science and biotechnological 481 

aspect, new technologies are gaining ground in the study of the genetics of infectious diseases, such 482 

as single-cell sequencing at transcriptome level, and whole genome sequencing for the primary 483 

immunodeficiencies, at the genomic level.  484 

 485 

It is expected that in the coming years novel technologies that will help dissecting the interaction of 486 

host genetics and metagenomic (microbiome and also mycobiome) make-up of an individual will be 487 

further integrated, as an increasing number of studies will investigate these complementary genomes 488 

of an individual. Some of the available technologies that can be potentially implemented and 489 

integrated with the genetic level are the organ-on-chips approach, that would allow to better dissect 490 

the human-fungus-environment interaction in a more dynamic manner, which is more comparable to 491 

human physiology.  492 

These novel tools in a system genomic approach framework will be used also to decipher the 493 

pathophysiology of emerging fungal infections (e.g. Candida auris). In addition to this, such approach 494 

needs to be employed more extensively in populations of non-European ancestry. 495 

 496 

 497 
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Table 1. Selected allelic polymorphisms influencing susceptibility to fungal infections discovered in the 

last 14 years using a classical approach and supported by functional validations 

Gene(s) Polymorphism(s) Chromosome 

location 

Reported  

associations 

Functional evidence Ref. 

TLR1 rs4833095,  

rs5743618, 

rs5743611 

4p14  increased 

candidemia 

susceptibility  

impaired cytokine 

release by primary 

monocytes  

(77) 

TLR4 rs4986790, 

rs4986791  

9q33.1 Increased 

susceptibility to IA 

 

 

 

 

 

Increased 

candidemia 

susceptibility 

Delayed immune cell 

reconstitution after 

HSCT (78) 

 

Validation study in a 

separate cohort 

 

Increased C. albicans 

induced IL-10 in 

PBMCs 

(78) 

 

 

 

(79) 

 

 

 

(80) 

CLEC7A 

(Dectin-1) 

rs16910526 12p13.2 Increased 

susceptibility to IA 

 

 

 

Higher oral and 

gastrointestinal 

Candida colonization, 

no increased risk of 

candidemia 

 

Mucocutaneous 

fungal infections 

Diminished A. 

fumigatus-induced 

IFNγ and IL-10 in 

PBMCs 

 

Diminished C. 

albicans induced IL-1 

β in PBMCs and 

reduced amplification 

of TLR2 signaling. 

 

Lower β-glucan-

induced IL-6 in 

(81) 

 

 

 

 

(82) 

 

 

 

 

 

(83) 
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 monocytes and lower 

Candida binding 

PTX3 rs2305619, 

rs3816527 

3q25.32 Increased 

susceptibility to IA 

after HSCT 

 

Lower Phagocytosis 

efficiency and A. 

fumigatus killing in 

neutrophils 

(84) 

NOD2 rs2066842 16q12.1 Reduced 

susceptibility to IA 

after HSCT 

Lower A. fumigatus-

induced cytokine 

production in PBMCs 

(86) 

CX3CR1 rs3732378 3p22.2 Increased 

candidemia 

susceptibility 

C. albicans-induced 

renal failure in 

Cx3cr1–/– mice 

 

Impaired AKT and ERK 

signaling and 

decreased blood 

monocyte counts. 

(88) 

 

 

 

(89) 

CXCR1 rs2234671 2q35 Increased 

candidemia 

susceptibility 

Impaired C. albicans 

killing and neutrophil 

degranulation 

(90) 

CLEC1A 

(MelLec) 

rs2306894 12p13.2 Increased 

susceptibility to IA 

after HSCT 

 

Lower A. fumigatus-

induced IL-1 β and IL-

8 production in 

macrophages 

(147) 

IL-1B rs16944 2q14.1 Increased Invasive 

Mold Infection (IMI) 

Reduced Aspergillus-

induced IL-1β, TNF α 

and IL-22 production 

in PBMCs 

(91) 

IL1RN  

 

rs419598 2q14.1 Increased Invasive 

Mold Infection (IMI) 

Reduced Aspergillus-

induced IL-1β and 

TNF α production in 

PBMCs 

(91) 

IFNG rs2069705  Decreased 

susceptibility to IA 

after HSCT 

 

Improved Aspergillus 

killing and higher IFN 

PHA-induced IFN-γ 

production in PBMCs 

(148) 
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 1148 

 1149 

 1150 

 1151 

 1152 

 1153 

 1154 

  1155 

Table 2. Selected high-throughput methods for studying host-pathogen interactions 

Method  Purpose  Ref. 

RNAseq  Transcript analysis (149) 

 

dual RNAseq Transcript analysis of both the host and the pathogen (150) 

(151) 

scRNAseq Transcript analysis (136) 

GRO-Seq Transcription (152) 

PRO-seq  Genome-wide map of transcriptionally engaged Pol II  (153) 

Nascent-Seq  Transcription (154) 

ChIA-PET  Chromatin conformation (155) 

Hi-C Chromatin conformation (156) 

(157) 

5-C-Seq  Chromatin conformation (158) 

DNAse-Seq  Open chromatin (159) 

ATAC-Seq  Open chromatin (160) 

Chip-seq  Mapping DNA regulatory elements  (161) 

BS-Seq  Genome methylation (162) 

RRBS-Seq  Genome methylation (163) 

ITS1-Seq  Fungi detection (164) 

Nano LC-MS/MS Host and fungal quantitative proteome analysis without isolation (165) 
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Table 3. Genetic variants associated with fungal infections found in the last 5 years using a systems 

genomics approach. 

Gene(s) Polymorphism(s) Chromosome 

location 

Reported associations Functional 

validation/evidence 

Ref. 

GOLM1 rs11141235 9q21  

 

Increased candidemia 

susceptibility 

cQTL locus: lower C. 

albicans-induced IL-6 

production 

(113) 

IFIH1 rs1990760, 

rs3747517  

2q24.2 Increased candidemia 

susceptibility 

Reduced C. albicans-induced 

IL-10 in PMCs 

(132) 

MAP3K8 rs1360119 10p11.23 Increased candidemia 

susceptibility 

Reduced IL-6, IL-8 and IFNɣ 

in serum of candidemia 

patients  

(100) 

SPTBN5 

(eQTL of 

PLA2G4B) 

rs8028958 15q15.1 Increased candidemia 

susceptibility 

Lower C. albicans- induced 

IL-6 and ROS in PBMCs  

(133) 

LY86 rs9405943 6p25.1 Increased candidemia 

susceptibility 

Lower migration towards 

MCP-1 of monocytes 

knockdown for LY86  

(136) 

SIGLEC15 rs2919643 18q21.1 Increased RVVC 

susceptibility 

Increased C. albicans-

induced IL-17A, IL-22 and 

IFN-γ 

(137) 

MFHAS1 

 

rs139408032 

 

 8p23.1 

 

NA cQTL locus: higher M. 

circinelloides-induced FGF-2 

production 

(138) 

FRMD4A 

 

rs61836093 

 

 10p13 

 

NA cQTL locus: higher C. 

albicans-induced FGF-2 

production 

(138) 

CSF1 rs1999713  1p13 Decreased 

cryprococcosis 

susceptibility in HIV 

patients 

Upregulation of CSF1 upon 

C. neoformans stimulation 

of human PBMCs; higher 

phagocytosis and killing of C. 

neoformans in PBMCs from 

HIV patients pre-treated 

with M-CSF. 

(134) 
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Figure 1 – Overview of mechanism of immune response toward a fungal infection 1158 

 1159 

Figure 2 - Classical and novel research approaches to study the genetics of fungal infections 1160 
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