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ABSTRACT

Purpose: Early detection of lung cancer is of importance since it can increase patients’ 
chances of survival. To detect nodules accurately during screening, radiologists would 
commonly take the axial, coronal and sagittal planes into account, rather than solely the 
axial plane in clinical evaluation. Inspired by clinical work, the paper aims to develop an 
accurate deep learning framework for nodule detection by a combination of multiple planes.

Methods: The nodule detection system is designed in two stages, multi-planar nodule 
candidate detection, multi-scale false positive reduction. At the first stage, a deeply-
supervised encoder-decoder network is trained by axial, coronal, and sagittal slices for the 
candidate detection task. All possible nodule candidates from the three different planes are 
merged. To further refine results, a 3-D multi-scale dense convolutional neural network that 
extracts multi-scale contextual information is applied to remove non-nodules. In the public 
LIDC-IDRI dataset, 888 CT scans with 1186 nodules accepted by at least three out of four 
radiologists are selected to train and evaluate our proposed system via a ten-fold cross-
validation scheme. The free-response receiver operating characteristic curve is used for 
performance assessment.

Results: The proposed system achieves a sensitivity of 94.2% with 1.0 false positive/scan 
and a sensitivity of 96.0% with 2.0 false positives/scan. Although it is difficult to detect 
small nodules (i.e. < 6 mm), our designed CAD system reaches a sensitivity of 93.4% 
(95.0%) of these small nodules at an overall false positive rate of 1.0 (2.0) false positives/
scan. At the nodule candidate detection stage, results show that the system with a multi-
planar method is capable to detect more nodules compared to using a single plane. 

Conclusion: Our approach achieves good performance not only for small nodules, but also 
for large lesions on this dataset. This demonstrates the effectiveness of our developed CAD 
system for lung nodule detection.
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INTRODUCTION

Lung cancer is one of the most malignant cancers, and is a leading cause of death among 
both men and women.[1-3] It has been predicted that around 25% of all cancer deaths in 
the U.S. in 2019 are due to lung cancer.[4] Early detection of lung cancer can give better 
treatment alternatives to patients and increase their survival chances.[5] To improve early 
diagnosis, lung cancer screening trials, such as the National Lung Screening Trial (NLST),[6] 
and the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON),[7] have been 
implemented. 

Although the implementation of lung cancer screening reduces the mortality rate of 
patients, it results in a heavy workload for radiologists. Computer-aided detection (CAD) 
systems could play an essential role in assisting radiologists to find nodules efficiently. A 
CAD system generally consists of two stages: Suspicious candidate detection and false 
positive reduction. The aim of any CAD system for lung nodule detection is to reach a high 
sensitivity with a low false positive (FP) rate. However, CAD systems still have not been 
widely used in clinical practice for various reasons, including lack of reimbursement and 
low sensitivity or high false positive rates of the available systems.[8, 9] The challenges 
of this task are mainly the large variety in nodule morphology and the detection of small 
nodules, which are easily missed.

With the development of artificial intelligence algorithms and the abundance of 
computational power, a large number of deep learning techniques have been successfully 
used in image processing fields. For example, Ronneberger et al. proposed the U-net 
algorithm for biomedical image segmentation,[10] which showed good performance in the 
IEEE International Symposium on Biomedical Imaging (ISBI) cell tracking challenge. The 
U-net algorithm is widely used for segmentation tasks throughout the literature ever since.
[11-14] Variations on this architecture were soon proposed, such as the improved model 
U-net++ from Zhou etal. [15] which modifies the skip connections between encoder and 
decoder pathways in the network. This should reduce the semantic gap between feature 
maps from the decoder and encoder paths, which makes training more efficient. Considering 
network architectures for image classification, Tan et al. demonstrated that by scaling depth, 
width, and resolution,[16] Efficient-Net becomes more accurate for object classification 
assessed on the CIFAR-10 dataset. Inspired by dense convolution networks,[17] Huang et 
al. developed a more effective architecture for image classification by adding multi-scale 
blocks.[18] 

Meanwhile, various authors have reported automatic lung nodule detection algorithms 
using deep learning.[19] In the effort to minimize false negatives and false positives, Wang 
et al. proposed a nodule-size-adaptive model that can measure the nodule sizes, types and 
locations from 3-D images.[20] Moreover, Dou et al. used 3D convolutional neural networks 
to extract multi-level contextual information to reduce false positives,[21] while Xie et 
al. utilized 2D convolutional neural networks for false positive reduction.[22] Another 
approach by Setio et al. combined the predictions from seven independent nodule detection 
systems and five false positive reduction systems.[23] Some of the detection systems were 
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developed for specific types of nodules. In addition, Ozdemir et al.[24] and Gruetzemacher 
et al.[25] developed end-to-end systems for nodule detection by utilizing 3D convolutional 
neural networks based on V-net and U-net, respectively. Huang et al.[26] proposed 
amalgamated-convolutional neural networks with the input in three scales to detect nodules. 
Furthermore, Zhang et al. applied constrained multi-scale Laplacian of Gaussian filters to 
localize potential nodule candidates and a densely dilated 3D convolutional neural network 
to reduce false positives.[27] Besides, a vector quantization algorithm was used by Tan et 
al.[28] to detect potential nodules and knowledge of shape, texture was infused to the false 
positive reduction model. Additionally, to develop an efficient nodule detection system, 
a multi-center study with 39014 cases was conducted by Cui et al.[29] deep learning 
techniques. 

In our previous work, we followed one of the clinical procedures: Maximum intensity 
projection. With projected images as input, convolutional neural networks (CNNs) were 
employed to identify nodule candidates.[30] Nodule cubes with various sizes were extracted 
for reduction of false positives. The results showed that using maximum intensity projection 
can improve the performance of deep learning-based CAD for lung nodule detection. In this 
work, we again attempted to learn from the clinical procedures, and tried to identify those 
aspects that could be mimicked in algorithm design. In particular, for clinical evaluation 
of a scan, radiologists would commonly take the axial, coronal and sagittal planes into 
account, rather than solely the axial plane. However, previous work on nodule detection 
is mostly based on the axial plane alone.[20, 23, 27, 30] The performance and influence 
on both the axial, coronal and sagittal plane for nodule detection in a deep learning-based 
CAD system has not been explored. Additionally, radiologists’ sensitivity on small nodules 
is not high on CT scans in clinical practice.[31-33] The system aims to provide better small 
nodule detection by combining multiple planes.

The key contributions of this paper are as follows. (1) Considering the axial plane, 
the coronal plane and the sagittal plane, we developed an automatic nodule identification 
system based on multi-planar convolutional neural networks using transfer learning. (2) 
We also explored the performance and influence of each plane for nodule detection in 
a CAD system. Combined results from three planes on the detection performance were 
reported. To further boost the performance, results of the proposed system on ten mm axial 
maximum intensity projection-based slices were merged since the ten mm slices had the 
highest detection rate and a relatively low false positive rate found in the previous work.[34] 
(3) Based on convolutional neural networks, a multi-scale dense architecture was applied 
to exclude suspicious candidates. Features at low or high levels can be extracted and 
concatenated for prediction. (4) In the false positive reduction stage, we evaluated the effect 
of two factors: Segmentation of lung parenchyma and the region of interests of input data. 
(5) Although it is difficult to detect small nodules (i.e. nodules with a diameter < 6 mm), our 
designed CAD system achieved good performance on these small nodules.
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MATERIALS AND METHODS

The designed method contained two stages, namely, multi-planar nodule candidate detection 
and false positive reduction. We used a convolutional neural network model, U-net++, to 
detect potential nodule candidates on axial, coronal and sagittal planes. The backbone of the 
U-net++ was the Efficient-Net classification model, pre-trained on ImageNet, which extracts 
various basic features. The predictions from the three planes were merged to acquire a 
higher sensitivity. For false positive exclusion, we applied multi-scale dense convolutional 
neural networks to remove false positive candidates. The following sections provided more 
details of the dataset, architectures, training progress and evaluation methodology.

▶▶ Dataset

The public dataset named Lung Image Database Consortium and Image Database Resource 
Initiative (LIDC-IDRI) was established by seven academic centers and eight medical 
imaging companies.[35] The database had 1018 CT scans and the range of the slice 
thickness is from 0.6 mm to 5.0 mm. These scans were reviewed by four radiologists in two 
reading phases. In the first round, radiologists independently detected suspicious lesions 
and categorized them into three groups (nodules ≥3 mm, nodules <3 mm, and non-nodules). 
Then, findings of each scan from four radiologists were collected together and individual 
radiologist checked every annotation again in an unblinded way.

In clinical practice, scans with low slice thickness are recommended for pulmonary 
nodule detection.[36] Hence, we excluded scans with slice thickness above 2.5 mm. 
After discarding scans without consistent slice spacing, there were 888 scans included 
in our study. Nodules larger than 3 mm were considered as relevant lesions according to 
NLST screening protocols.[6] Since no consensus among four radiologists was provided, 
suspicious nodules detected by the minority of radiologists could be false positives. Thus, 
we selected 1186 nodules which were accepted by at least three radiologists as the reference 
standard. Nodules ≥ 3 mm identified by the minority of radiologists, nodules < 3 mm, and 
non-nodules were referred as unrelated findings. In the LIDC-IDRI database, radiologists 
gave 5 scores (1 = ground-glass, 2-4 = part-solid, 5 = solid) for nodule types. If the majority 
of votes is 1 and 5, the nodule type is ground-glass and solid, respectively. Otherwise, the 
nodule type is part-solid. Consequently, there were 64 ground-glass, 189 part-solid, 933 
solid nodules in the study. Nodule size also was provided in the database. When the nodules 
were stratified by size as suggested by the Lung CT screening reporting and the data 
system,[37] the study had 502 nodules (3-6 mm), 276 nodules (6-8 mm), 281 nodules (8-15 
mm), 127 nodules (≥15 mm).

▶▶ Data preparation

We applied the window setting of (-1000 HU, 400 HU) and converted DICOM to 
images in an 8-bit PNG format since it is convenient for our developers to make visual 
comparisons between inputs and outputs (preprocessed images, predictions) of our model 
during processing. Images were normalized to the range between 0 and 1 during the model 
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training. Scans in the LIDC-IDRI database have various spacing in different planes, which 
results in misshapen images for nodule detection. Original examples are shown in the first 
row of Fig. 1. To unify the data, we adopted 1 mm as the spacing value to resize the images 
by interpolation since thin-thickness slices improve diagnosis.[38] Moreover, segmentation 
of lung parenchyma can increase efficiency of training convolutional neural networks for 
lung nodule detection.[39] The average of pixel values in the whole slice was applied as a 
threshold to roughly separate lung parenchyma from the body. We removed the irrelevant 
information in the border and employed morphological closing to fill holes. To keep more 
boundary texture for detection of wall-attached nodule, morphological operation, dilation, 
was used. The segmentation procedure is described and illustrated in more detail in our 
previous work.[30] Segmented lung parenchyma in three planes are illustrated in the third 
row of Fig. 1.

FIG. 1. Examples of preprocessing for axial, coronal, and sagittal slices. The first column 
is original CT data and the second column represents slices after resizing by interpolation. 
In the last column, segmented lung parenchyma in various directions is applied as input for 
training convolutional neural networks later.

▶▶ Multi-planar detection via transfer learning

Nodule candidate detection is a fundamental step as it is highly related to the final 
sensitivity of the CAD system. To achieve as high sensitivity as possible, we applied not 
only axial slices, but also coronal and sagittal slices for nodule candidate localization. The 
reason of utilizing three planes is that one nodule might be not obviously showing in one 
plane. To further improve detection accuracy, we combined our previous work and used 10 
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mm axial maximum intensity projection (MIP) based slices generated for nodule detection. 
The output of the candidate detection stage is constructed by using a union join from the 
output of four CNNs streams. More specifically, detected candidates on coronal and sagittal 
plane were first transformed back to axial coordinates. Potential candidates are merged if 
the largest radius of the candidates is smaller than 0.88 times central distance between the 
two. A smaller ratio leads to much more false positives and the same number of detected 
nodules, whereas a larger ratio results in a lower sensitivity at this stage. The final detection 
performance in both situations will decrease. Hence, the optimal experimental ratio, 0.88, is 
applied in the study.

With its a series of dense skip pathways between decoder and encoder networks, 
U-net++ shows good performance in segmentation tasks [15]. Based on U-net++, we 
proposed our object detection model, as shown in Fig. 2. Input slices and ground truth 
images have a size of 512×512. The nodule in the ground truth image is labeled by a square 
bounding box, with a width set to the nodule diameter provided by the LIDC-IDRI dataset. 

FIG. 2. The overview of our proposed candidate detection method. The 1 mm slices on 
axial, coronal, sagittal plane, and 10 mm axial maximum intensity projection (MIP) slices are 
used as input. In the encoder part, the backbone of the detection model is based on efficient-
net pre-trained on ImageNet.In the decoder part,the node is represented by Xi，j where the 
integer i ( 0≤i≤4 ) denotes the transpose 2D-convolutional layer along the decoder and the 
integer j ( 1≤j≤5 ) denotes the convolution layer along the skip pathway. The proposed 
model extracts features not only in small receptive fields, but also large receptive fields. 
After prediction, suspicious findings on each plane are localized by bounding boxes.

The architecture has two parts, namely encoder and decoder. For the encoder part, 
we adopt Efficient-Net [16] as backbone because it is more efficient on simple feature 
extraction and had the promising results on the CIFAR-100 image classification task. 
The model Efficient-NetB4 was pre-trained on the ImageNet dataset, and its pre-trained 
weights were downloaded from the python package website (https://pypi.org/project/keras-
efficientnets/). Using a pre-trained model based on a large dataset such as ImageNet, and 
then re-training (also called fine-tuning) that model on a different dataset for a different 
task is known as transfer learning. Transfer learning has shown good results on different 
tasks in the past,[40-42] and the main benefits of it include that the model will already 
have rich feature maps prior to fine-tuning which can speed up the training and give better 
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performance on other datasets. Efficient-Net has a compound scaling method, which results 
in 8 versions of the Efficient-Net. The method applies a compound coefficient μ to constrain 
width ( w ), depth ( d ), and resolution ( r ) in networks: 

d = αμ

w = βμ

r = γμ

Where α , β , and γ are constants and greater than or equal to 1. To avoid amount of 
computation more than 2μ, the product of α·β2·γ2 is close to two. The width, depth, 
resolution, and the dropout rate of EfficientNet-B4 that we use are 1.4, 1.8, 380 and 0.4 
respectively, established by a grid search experiment.[16] The output of the backbone is 
connected to Leaky Rectified linear units (LeakyReLU) with a negative slope coefficient 
of 0.1.[43] Since the learning rate ( 10-3 ) at this stage is relatively large, this may cause the 
dying ReLU problem. Thus, LeakyReLU is used to extend the range of ReLU and prevent 
vanishing gradients in parts of the network. Then, it is followed by a max-pooling layer and 
a dropout layer. The dropout rate in this architecture is 0.1.In the decoder part, the node is 
represented by Xi，j where the integer i (0≤i≤4 ) denotes the transpose 2D-convolutional 
layer along the decoder and the integer j ( 1≤j≤5 ) denotes the convolution layer along 
the skip pathway. In the middle of the U-Net++, the first convolutional layer consists of 
256 kernels of size 3×3 between X4,0 and X4,1.In order to increase the depth of the model, 
we apply two residual blocks which have 256 channels with LeakyReLU as the activation 
function. The decoding pathway consists of five similar modules. The first module 
(X4,1→X3,1→X2.1→X1,1→X0,1) is made of four transposed 2D-convolutional layers, one 
concatenation layer, one dropout layer, one convolutional layer and one residual block 
with LeakyReLU as the activation function. More specifically, in order to revert the spatial 
compression, we employ four transpose 2D-convolutional layers with 128 kernels of size 
3×3 for up-sampling [44] Then, the concatenation layer combines related feature maps from 
transposed convolutional layers at previous one level and the corresponding layer in the 
encoding pathway (backbone: Efficient-NetB4). At each horizontal level, all concatenated 
feature maps are merged on the ultimate node on that level (nodes X3,2, X2,3, X1,4,X0,5 ). 
After the concatenation layer followed by one drop-out layer (drop rate: 0.1) and one 
convolutional layer with 128 kernels, there is a 128-channel residual block activated by 
LeakyReLU. For the following four modules, the number of transposed convolutional layers 
is reduced by one and the number of channels/kernels is halved for each subsequent module. 
For example, the second module is comprised by the pathway X3,2→X2,2→X2.1→X1,2→X0,2. 
The last module is almost the same as the fourth module. However, it does not have the 
concatenation layer and has one more dropout layer with the rate 0.05. The last layer is 
a convolutional layer with a kernel size of 1×1 and a sigmoid activation function. After 
prediction, suspicious findings on each plane are localized by bounding boxes. 

In the training stage, each input image has at least one nodule. During the training, 
image augmentation, such as 0°,90°,180° and 270° rotations, horizontal-vertical flipping, 
and horizontal-vertical shift, is randomly performed on the fly. Images are not rotated by 
arbitrary degrees since arbitrary rotations might change nodule image characteristics due 
to interpolation and in turn reduce the detection performance. The data was separated 
by the LUNA16 challenge into ten sets.[23] We use ten-fold cross-validation for model 

(1)
(2)
(3)
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development, as shown in Fig. 3(a). Specifically, every fold of the cross-validation consists 
of training, validation and testing data. In each fold, we leave one set of data for testing. 
The remaining data is split into a training set (70%) and a validation set (30%). The 
validation set here is used for model evaluation for each of the hyper-parameter sets during 
the training. The test repeats ten times until every set is used as the independent testing set 
once and the detected nodules on each set are then aggregated. We use a batch size of 8 and 
the Adam optimizer.[45] To calculate the overlap between ground truth and prediction, we 
apply dice as the loss function.[46] The initial learning rate is 10-3 and the minimum value 
is 10-4 . The decreasing factor of the learning rate scheduler is set to 10-1. If the minimum 
validation loss does not change for 5 epochs, the learning rate decreases. The training ends 
when the model minimum loss on the validation set does not change for 10 epochs.

FIG. 3. Illustrations of the training scheme. (a) presents the principle of the ten-fold cross-
validation for both nodule candidate detection and false positive reduction. (b) shows how 
the ten sets at the false positive reduction stage are generated.

▶▶ Multi-scale dense training for false positive reduction

Reduction of false positives is also essential for radiologists in clinical practice. The aim 
of this stage is to lower the number of nodule candidates so that fewer nodule candidates 
have to be manually inspected, ultimately reducing the workload of radiologists. The model 
that we propose here is based on 3D multi-scale dense convolutional neural networks,[18] 
as shown in Fig. 4. Overall, the model has feature maps at three different scales and a 
maximum depth of 32 in the vertical and the horizontal direction, respectively. The node 
is represented by Si，j where the integer i (1≤i≤3) denotes the scale level and the integer 
j (1≤j≤32) denotes the depth. Green arrows indicate regular convolution operations in 
the horizontal path, while orange arrows represent strided convolution operations in the 
vertical path. Feature maps are extracted and concatenated from the results of regular 
convolutions on the same scale and the result of strided convolutions on the previous scale. 
Connection between different scales and horizontal layers are not drawn explicitly. But 
an example on scale of 3 at a depth of 4 with green and orange arrows is shown in Fig. 
4. The network consists of thirty-two basic blocks, five transition blocks and a classifier 
block. The architecture starts with three convolution blocks to extract initial feature maps 
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in three scales. Each convolution block contains a convolutional layer with a kernel size of  
3×3×3 followed by batch normalization with the activation function ReLU.[47] Because 
a small learning rate is applied to train the model and the chance of having dead neurons 
is low, ReLU, therefore, can be used for this task. On three scales, their numbers of filters 
are 32, 64, 128, and growth rates are 8, 16, 32, separately. A basic block includes three 
concatenation layers and five bottleneck operations that are used to reduce the number of 
features and improve calculation efficiency. Every bottleneck operation consists of two 
convolution blocks. After the bottleneck block, the number of filters is reduced by 75%. On 
scales 2 and 3, coarse and fine features are aggregated by concatenation from the previous 
and current scales. When extracting features by the strided convolution from the previous 
scale, the stride depth is two rather than one for a larger receptive filed. To further improve 
model compactness, transition blocks are designed to reduce the number of feature-maps. 
A transition block has a convolution block with a stride of one and a kernel size of 1×1×1. 
The transition blocks are connected to the basic block and located at a depth of 16 and 24 
in three scales. The final block is a classifier block which gives, for each input cube, the 
probability of containing a nodule. It has two convolutional blocks, an average pooling 
layer with stride of two, a flatten layer, two dense layers (128, 32 filters) and two dropout 
layers with the rates of 0.5 and 0.2 separately. The initializer in the convolutional layer is 
the he_normal.[48] 

FIG. 4. The scheme for false positive reduction based on 3D multi-scale dense convolutional 
neural networks. The cubes are extracted from 3D volume as input. Feature maps are in 
three scales and the scale 1, 2, 3 has a depth of 16, 24, and 32, respectively. An example of 
concatenated feature maps from different levels though regular and strided convolutions 
is shown in scale 3 at layer 4. The classifier is in the end of scale 3, giving a probability of 
being a nodule for each cube. The node is represented by S^(i,j) where the integer i (1≤i≤3) 
denotes the scale level in the vertical direction and the integer j (1≤j≤32) denotes the depth 
in the horizontal direction. The P_nodule and P_(non-nodule) represent the probability of 
being a nodule and a non-nodule, respectively. Connection between different scales and 
horizontal layers are not drawn explicitly. 

Before the training session, each candidate needs to be rescaled to 32×32×32. The 
rough size of every candidate is first estimated in the candidate detection stage, which gives 
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a bounding box for candidates according to their diameters. However, the surrounding 
textural information also influences the differentiation between nodules and non-nodules for 
convolutional neural networks. Therefore, we experiment with two parameters that govern 
the availability of textural context to the false positive reduction model: 1) Whether or not 
the lung parenchyma is segmented and 2) size of the region of interests of the input data. 

Fig. 3(b) describes how the ten sets for false positive reduction are generated. At the 
nodule candidate detection stage, in every fold, nodule candidates, including false positives 
and true positives, are generated by a nodule detection model. As a consequence, ten sets 
are created at the nodule candidate detection stage. These ten sets are used directly as the 
ten sets for false positive reduction. The ten-fold cross-validation scheme is then applied 
to train, validate and test the false positive reduction models, as shown in Fig. 3(a). After 
Ten-fold cross-validation, the performance on the full set is calculated. The loss function is 
binary cross-entropy and the optimizer is Adam. The learning rate is 10-4. If the validation 
loss does not change for 6 epochs, the training stops. 

▶▶ Performance evaluation

At the nodule candidate detection stage, sizes and types of detected nodules from our 
proposed CAD system are analyzed. In our case, the number of true positives is much 
smaller than the number of false positive findings. Using the area under the ROC curve 
as an evaluation metric therefore does not reflect the performance of the CAD system 
objectively.[49] Thus, we used the Competition Performance Metric (CPM),[50] which 
calculates the average sensitivity at seven false positive rates (1/8, 1/4, 1/2, 1, 2, 4, and 
8 FPs/scan) in the free-response receiver operating characteristic (FROC) curve for 
assessment.[49] After ten-fold cross-validation, the predictions for all ten test sets were 
combined to compute the performance and 95% confidence intervals on the full dataset, 
using bootstrapping with 1,000 bootstraps.[51] 

The proposed scheme is implemented by applying deep learning library of Keras 
based on a graphics processing unit(GPU), NVIDIA V100.[52]

RESULTS

▶▶ Nodule candidate localization

The performance of the system at nodule candidate detection stage on each plane, as well 
as the fused results are presented in Table I. The sensitivity acquired by 1 mm axial slices, 
1 mm coronal slices and 1 mm sagittal slices is 91.1%, 82.5%, 81.8%, respectively. Details 
of the contributions of each stream and nodules only identified by the coronal or sagittal 
stream are in the supplementary material. When the results of 1 mm axial and coronal slices 
are combined, the sensitivity improves from 91.1% to 94.9% as same as the sensitivity 
after fusing the results of 1 mm axial and sagittal slices. When we merge the results from 
1 mm axial, coronal and sagittal slices, the system achieves a sensitivity of 96.1%. Upon 
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combining the results from the 10 mm axial MIP images, the CAD system detects 98.1% of 
lung nodules. This proves that every stream provides complementary information for nodule 
candidate localization, especially the axial plane. Normally, a high sensitivity implies many 
false positives (FPs) from the CAD system. With 1 mm axial slices, 1 mm coronal slices, 1 
mm sagittal slices and 10 mm axial MIP images, our proposed method has 38, 33, 40 and 22 
FPs/scan, respectively. The false positive rate is 98 FPs/scan after fusing results from three 
1 mm planes, whereas the number of false positives/scan is 108 by fusion of candidates 
from four streams. 

TABLE I. Performance of the CAD program using 1 mm slices in three directions and 10 
mm axial maximum intensity projection (MIP) images as input, as well as fused results at 
the nodule candidate detection. Total number of nodules is 1186 within 888 scans.

Input data Number of detected nodules Sensitivity (%) False positives per scan

1 mm axial slices 1081 91.1% 38

1 mm coronal slices  979 82.5% 33

1 mm sagittal slices  970 81.8% 40

10 mm MIP images 1105 93.2% 22

Fusion 1 mm slices 1140 96.1% 98

Fusion all 1163 98.1% 108

The summary of detected lung nodules in size and density type according to the Lung 
CT screening reporting and the data system at the nodule cadidate detection stage is shown 
in Table II. The main missed nodules are in the small-size group (3-6 mm), there are 3 
ground-glass nodules and 12 solid nodules undetected. However, the detection rate of small 
nodules is still 97.0%. Regarding nodules larger than 6 mm, only 8 nodules are missed and 
the detection rate is 98.8%. For ground-glass, part-solid and solid nodules, the detection rate 
is 90.6%, 100%, 98.2%, respectively. 

TABLE II. Performance when combining results of multiple planes at the nodule candidate 
detection stage. 

Nodule diameter Nodule type Total

Ground-glass Part-solid Solid

3-6 mm 25 (89%) 75 (100%)  387 (97%) 487 (97%)

6-8 mm 13 (93%) 41 (100%)   220 (100%) 274 (99%)

8-15 mm 18 (95%) 48 (100%)  211 (99%) 277 (99%)

15 mm   2 (67%) 25 (100%)   98 (99%) 125 (98%)

Total 58 (91%) 189 (100%)  916 (98%) 1163 (98%)



MULTIPLANAR PULMONARY NODULE DETECTION《《《

  80 

5

▶▶ False positive candidate exclusion

Our developed system in these configurations is assessed by free-response receiver 
operating characteristic (FROC) curves, as shown in Fig. 5. The system has a sensitivity 
of 94.2% with 1.0 FP/scan and 96.0% with 2.0 FPs/scan regardless of nodule size. For 
detection of nodules smaller than 6 mm, the designed CAD system detects 93.4% (95.0%) 
of these small nodules at an overall false positive rate of 1.0 (2.0) FP/scan. The CPM score 
of the CAD scheme with varied configurations at the false positive reduction stage is shown 
in Table III. Applying 1 mm unsegmented axial slices in the size with four extra pixels has 
the best CPM score (0.9403) that is slightly higher than the score when the patch size with 
eight extra pixels is used. Compared to that, using 1mm segmented axial slices acquires 
a lower CPM score (0.9326). Hence, we adopt the 1 mm unsegmented region of interest 
with four extra pixels on the axial plane as input data for false positive exclusion. The 
experimental results show that the remaining lung boundaries can slightly improve the final 
performance of nodule identification. Examples of true positive nodules, false negatives and 
false positives after false positive reduction are shown in Fig. 6. 

FIG. 5. Free-response receiver operating characteristic (FROC) curves of our proposed 
system in different configurations. The performance was computed based on 95% 
confidence interval using bootstrapping with 1,000 bootstraps.

TABLE III. Performance of the CAD scheme with varied configurations at the false 
positive reduction stage.

Segmentation Region of interest CPM

Segmented Original 0.9326

Unsegmented Original 0.9371

Unsegmented Four pixels larger 0.9403

Unsegmented Eight pixels larger 0.9401
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FIG. 6. Examples of true positive nodules, false negative ones and false positives.

▶▶ Comparison with published nodule detection systems

To benchmark the performance of our complete CAD program, we list the results from 
other published papers which were obtained on the same dataset. Sensitivities at different 
false positive rates in other methods are shown in Table IV. 

TABLE IV. Performance of other computer-aided detection systems evaluated on the 
LUNA16 database.

CAD system Year
False positives/scan

CPM
0.125 0.25 0.5 1 2 4 8

Our current work 2020 0.893 0.917 0.930 0.942 0.960 0.966 0.973 0.940

Setio et al. [23] 2017 0.859 0.937 0.958 0.969 0.976 0.982 0.982 0.952 

Zhang et al. [27] 2018 0.890 0.931 0.944 0.949 0.965 0.972 0.976 0.947 

Zheng et al. [30] 2019 0.876 0.899 0.912 0.927 0.942 0.948 0.953 0.922

Ozdemir et al. [24] 2019 0.832 0.879 0.920 0.942 0.951 0.959 0.964 0.921

Wang et al. [20] 2019 0.788 0.847 0.895 0.934 0.952 0.959 0.963 0.905 

Huang et al. [26] 2019 0.817 0.851 0.869 0.883 0.891 0.907 0.914 0.876

Dou et al. [21] 2017 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.826 

Xie et al. [22] 2019 0.734 0.744 0.763 0.796 0.824 0.832 0.834 0.790

The highest score of each column is shown in bold.

DISCUSSION

We proposed a novel lung nodule detection system based on multiple planes using 
convolutional neural networks. The aim of this study was to improve the performance of the 
deep learning-based CAD system for automatic pulmonary nodule detection. Our method 
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achieved comparable performance among the CAD systems evaluated on the LIDC-IDRI 
database. The combined results from three planes showed better performance than the result 
from any individual single plane, indicating different planes can provide complementary 
information for lung nodule detection. 

Nodule detection performance was evaluated on the axial, sagittal and coronal planes 
separately. The axial plane outperforms the rest of two planes in 1 mm slice thickness, 
achieving a detection sensitivity of 91.1%. A possible reason is the difference in image 
quality. Since nearly 90% of scans have a slice thickness larger than one millimeter, the 
image resolution in coronal and sagittal planes is low. After interpolation and scaling, 
image noise might increase and the morphological information of nodules in coronal and 
sagittal planes might be lost, especially for small nodules. In contrast, the resolution (pixel 
spacing small than one) in axial slices is higher. This keeps more nodule information 
for convolutional neural networks to better differentiate nodules from other anatomical 
structures. In a study regarding human reader performance, it was found that radiologists 
also have a higher sensitivity, but more false positives for nodule detection on the axial 
plane compared to the coronal one.[53] In clinical practice, the sagittal plane might be 
the last option for radiologists to find nodules since vessels tend to be presented as cross 
sections in this direction. The section of vessels can result in more suspicious findings 
during reviewing. Through experiments, our study found most of the false positive 
candidates on the sagittal plane. When we fused the results from three 1 mm planes and 
10 mm axial MIP images, the sensitivity increased from the lowest sensitivity of 81.8% to 
98.1%, although the number of false positives increased. This suggests that incorporating 
multiple planes can be an effective approach for 2-D nodule detection. At the false 
positive reduction stage, we also found that leaving the lung parenchyma unsegmented 
and using a larger region of interest of extra four pixels in radius boosts the performance 
of classification. This implies that CNNs can be more accurate to differentiate nodules and 
false positive findings with more surrounding information. 

In a recent study it was shown that detection of small nodules (i.e. nodules with a 
diameter < 6 mm) is the main challege for which the sensitivity of CAD systems is diffcult 
to improve.[20, 23, 27] We analyzed detected nodules at the candidate localization stage. 
Our method had a sensitivity of 97% on detection of these small nodules in various types. 
There are only 15 out of 502 lung nodules still missed by our method. The detection rate of 
these small nodules is high since with the help of skip connections, U-net++ can efficiently 
extract features not only in small receptive fields, but also large receptive fields. Intestingly, 
there is no missed part-solid nodule. The reason might be that unlike solid nodules, having 
non-solid components helps part-solid ones to be easier differentiated from section of 
vessels. Moreover, their morphology is more distinguishable compared to ground-glass 
nodules for convolutional neural networks. Note that the proposed method found 99% of 
nodules (>6mm) in large morphological variations. However, there are still some missed 
nodules. These nodules may appear in unusual locations or close to tissues, which makes 
detection more difficult for the system.

Recent published approaches on the LUNA16 challenge were summarized in Table 
IV. To compare the results using the same criteria, we only listed the methods which used 
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the competition performance metric (CPM) with sensitivities at 7 false positive rates. Our 
designed method was ranked third and had the highest sensitivity when the number of 
false positives allowed is equal to 0.125 FP/scan. The top one is from the work of Setio et 
al. [23]. With gaining benefits from different CAD systems, they have a better sensitivity 
when more false positives are allowed. The CPM score from Zhang et al. [27] is also 
higher and detecting all possible nodule candidates gives them a good upper-bound quality 
for the false positive exclusion stage. The work by Ozdemir et al.,[24] Wang et al.,[20] 
and our previous study demonstrates that a high sensitivity can be achieved,[30] but the 
large number of false positives per scan that are generated incurs extra reading time for 
radiologists. The CAD system we propose here shows good performance in detecting these 
small nodules even after the false positive reduction stage, representing a higher sensitivity 
than radiologists’.[31-33] We also improve our performance in detection of nodules smaller 
than 6 mm, compared to our previous work (sensitivity: 93.4% vs. 90.4%, at 1.0 FP/
scan; sensitivity: 95.0% vs. 91.6%, at 2.0 FPs/scan).[30] Another study from Ozdemir et 
al.[24] showed a sensitivity of around 90% with 1FP/scan for nodules smaller than 5 mm, 
whereas our method achieved a sensitivity of 93.0% with 1FP/scan to detect nodules with 
the same size. Methods of Dou et al.,[21] Xie et al.,[22] and Huang et al.[26] might need to 
further improve the discrimination between nodules and wrong findings. Some systems did 
not report sensitivities at various false positive rates. For instance, Cui et al. developed a 
nodule detection system using 39014 scans from multiple centers.[29] Although the system 
reached a sensitivity of 93.4% with 0.8 FP/scan, a number of true nodules were still missed 
by the system when the false positive rate was smaller than 0.5. Nevertheless, the external 
validation results showed the potential use of the deep learning-based system in clinical 
practice. Additionally, Gruetzemacher et al.[25] utilized a 3D U-net with more spatial 
information for detection, which results in a high sensitivity of 92.7% but 4 FPs/scan. The 
system also might have an issue of extra screening time for radiologists due to a large false 
positive rate. Besides, with the help of shape-based features and texture-based knowledge, 
Tan et al.[28] achieved good results on nodule detection using part of the dataset. However, 
the performance on the whole dataset was unknown.

The study has several limitations. Firstly, the reference standard is not derived by the 
consensus of radiologists but consists of nodules accepted by at least three radiologists. 
The system might find some true nodules only identified by one or two readers and the 
performance of the system can be underestimated. Secondly, the dataset has imbalanced 
numbers of nodules in size and density for system development. For example, the number 
of solid nodules is 14 times the number of ground-glass ones. Thus, the system tends to 
detect suspicious solid nodules and might miss ground-glass nodules. This may affect the 
performance of the system when it is tested on other datasets. Last but least, the system 
is developed and evaluated based on the scans that might from the same vendors or 
protocols via a cross-validation scheme, which might lead to a positive bias. There are 
some suggestions for the future work. Although this developed CAD system had good 
performance on this large public dataset, evaluations on lung cancer screening programs 
need to be carried out. Another interesting topic is that with larger memory in GPUs, 
convolutional neural networks are capable to be trained by the whole 3-D lung volume 
for nodule detection. The system might achieve better performance since vessels and 
pulmonary nodules can be easily differentiated in 3-D space. 
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CONCLUSIONS

We have developed a multi-planar nodule detection system using convolutional neural 
networks. The promising performance has shown the effectiveness of combining results 
from three planes for the candidate detection task. Sharing multi-scale features helped dense 
convolutional neural networks to become more effective for removal of false positives. 
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