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Refining dichotomy convergence in vector-field guided
path-following control

Weijia Yao, Bohuan Lin, Brian D. O. Anderson, Ming Cao

Abstract— In the vector-field guided path-following problem,
the desired path is described by the zero-level set of a sufficiently
smooth real-valued function and to follow this path, a (guiding)
vector field is designed, which is not the gradient of any
potential function. The value of the aforementioned real-valued
function at any point in the ambient space is called the level
value at this point. Under some broad conditions, a dichotomy
convergence property has been proved in the literature: the
integral curves of the vector field converge either to the desired
path or the singular set, where the vector field attains a zero
vector. In this paper, the property is further developed in two
respects. We first show that the vanishing of the level value
does not necessarily imply the convergence of a trajectory to
the zero-level set, while additional conditions or assumptions
identified in the paper are needed to make this implication hold.
The second contribution is to show that under the condition of
real-analyticity of the function whose zero-level set defines the
desired path, the convergence to the singular set (assuming it
is compact) implies the convergence to a single point of the set,
dependent on the initial condition, i.e. limit cycles are precluded.
These results, although obtained in the context of the vector-
field guided path-following problem, are widely applicable in
many control problems, where the desired sets to converge
to (particularly, a singleton constituting a desired equilibrium
point) form a zero-level set of a Lyapunov(-like) function, and
the system is not necessarily a gradient system.

I. INTRODUCTION

Although equilibrium points of a dynamical system have
often been the subject of study in the control literature, it is
important to recognize that the convergence of trajectories of
a dynamical system to a closed invariant set is also of intense
research interest in many control problems, which include
the geometric path-following problem [1]–[3], the formation
maneuvering problem [4] and the synchronization problem
[5]. Note in particular that in the path-following problem,
the trajectories of a system are required to converge to and
traverse along a desired path, which is usually a geometric
object such as a closed curve rather than an equilibrium point
[6].

The closed invariant set can sometimes be described by
the zero-level set of a continuous real-valued non-negative
function, such as a Lyapunov(-like) function [7] or (the
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norm of) an error signal, while convergence of trajectories to
the set is usually characterized by the distance of points
on a trajectory to the set with respect to a metric (e.g.,
the Euclidean metric) [8]–[11]. For convenience, such a
continuous non-negative function is referred to as the level
function and its value at a point is called the point’s level
value. Therefore, one natural idea is to use the level value,
instead of the distance to the set, along a system trajectory to
characterize the convergence to the zero-level set. This idea
is utilized in vector-field guided path-following algorithms
[1], [3], [11]–[13], and in some applications of Barbalat’s
lemma (e.g., [8, Lemma 8.2, Theorem 8.4], [1, Theorem 1], [3,
Theorem 1]). Now a central set-theoretic issue is whether the
vanishing of the level value entails the convergence to the zero-
level set of the level function: as clarified with examples later,
a trajectory might diverge to infinity and the associated level
value could still converge to zero. An associated issue arises
from the fact that convergence with respect to a topology is
a stronger notion than that with respect to a metric, while the
former is relatively less studied in the control literature. This
stronger notion is especially needed when a system evolves
on some topological space rather than a Euclidean space,
or when there are different metrics in a metric space but a
metric-independent convergence result is required.

A quite separate issue arising with the dichotomy conver-
gence property associated with path-following algorithms is
that generally, convergence (e.g., with respect to a metric)
to a closed invariant set does not automatically imply the
convergence to a single point of the set, but it is known that
this implication is true under some conditions for gradient
flows [14], [15], while it is not yet completely clear for
non-gradient flows. In particular, the guiding vector fields
for path-following designed in [3], [11], [12], [16]–[19] are
not gradients of any potential functions, but as shown in
[11], [12], [16], under some conditions, the integral curves
of the vector fields (i.e., the trajectories of the autonomous
differential equation where the right-hand side is the vector
field) have the dichotomy convergence property: they either
converge to the desired path or the singular set, where the
vector field attains a zero vector. As the desired path is a
limit cycle (when the desired path is homeomorphic to the
unit circle), it is obvious that trajectories do not converge
to a single point in the desired path, but it is to this point
unresolved whether trajectories converging to the singular set
will converge to a single point in the singular set (where, in
general, the point depends on the initial condition).

Contributions: In this paper, we discuss the two set-
theoretic issues mentioned above. The first is related to the



relationship between vanishing of the level value and the
convergence of trajectories to the zero-level set. This issue is
motivated by but independent of the vector-field guided path-
following scenario. We show that as the level value evaluated
at an infinite sequence of points (which is more general than a
continuous trajectory) converges to zero, this sequence might
not converge to the (possibly compact) zero-level set in the
Euclidean space. Specifically, we prove that the sequence
converges (with respect to a topology) to the union of the
zero-level set and infinity. This result is of interest in many
control problems where the desired set forms the zero-level
set of a Lyapunov(-like) function or (the norm of) an error
signal. Additional conditions or assumptions are suggested
such that the vanishing of the level value does imply the
convergence to the zero-level set, which is the intuitive idea
behind many of the results in the literature (e.g., [1], [3],
[11], [12]).

The second issue is pertinent to the relationship between
convergence of trajectories of a non-gradient system to a
set and convergence to a single point of the set. Under
the condition of real analyticity of the level functions, we
obtain a refined version of the dichotomy convergence: the
convergence to the singular set entails the convergence to
a single point of the set. This result not only is relevant to
the specialized path-following problem, but also extends the
results in [14], [15] (using proof techniques suggested by
those works and appealing to the Łojasiewicz inequality [20])
to some non-gradient flows.

The rest of the paper is organized as follows. Section II
introduces the vector-field guided path-following problem
and raises two set-theoretic questions. Then the main results
are presented in Section III, including different convergence
notions and answers to the two questions raised in Section
II. Finally, Section IV concludes the paper.

II. BACKGROUND AND PROBLEM FORMULATION

In the vector field guided path-following problem, the
desired path P is a set-theoretic object in Rn, and it is the
intersection of several hyper-surfaces described by the zero-
level sets of sufficiently smooth functions [3], [12], [17],
[21]–[24]:

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1}, (1)

where φi : Rn → R are twice continuously differentiable
functions. Some conditions will subsequently be adopted
to ensure that the φi functions define a genuine path (see
Remark 1). Let f = ‖(φ1, . . . , φn−1)‖, then P is the zero-
level set of f ; i.e., P = f−1(0). For convenience, we call
the non-negative real-valued function f the level function,
and for any point ξ ∈ Rn, the value f(ξ) is called the
level value of f at the point ξ. Since f(ξ) = 0 ⇐⇒(
φ1(ξ), . . . , φn−1(ξ)

)
= 0 ⇐⇒ ξ ∈ P for a point ξ ∈ Rn,

one may use f(ξ) = ‖(φ1(ξ), . . . , φn−1(ξ))‖ to roughly
represent the distance from a point ξ to the desired path
P . The following question arises naturally:

Q1. If f(ξ(t)) = ‖(φ1(ξ(t)), . . . , φn−1(ξ(t)))‖ → 0 as
t→∞ along a continuous trajectory ξ(t) defined on [0,∞),

which can be an arbitrary continuous function or a trajectory
of an autonomous system, is it true that the trajectory ξ(t) will
converge to the set P with respect to a metric or a topology
(called metrical convergence and topological convergence
respectively, and to be discussed later)?

Note that this question Q1 does not depend on the path-
following setting, but is relevant to any problem where a set
is described by the zero-level set of a level function, and the
convergence to the set is an indispensable requirement of
the problem. However, the second question Q2 that we will
formulate shortly is closely related to the vector field guided
path-following problem, as discussed below.

The guiding vector field χ : R2 → R2 for path following
in the 2D case R2 is [25]–[27]:

χ(ξ) = E∇φ(ξ)− kφ(ξ)∇φ(ξ), (2)

where ∇φ is the gradient vector of the function φ, E =[
0 −1
1 0

]
is a 90◦ rotation matrix, and k > 0 is a constant. In

higher dimensions, the vector field χ : Rn → Rn in Rn for
n ≥ 3 is studied in [12], [16], [17]. The level function can
be defined as f = φ2. Note that the vector field in (2) is
not the gradient of any potential function. It consists of two
terms: the second term is a weighted sum of the gradients
(pointing towards the desired path P) and the first term is
orthogonal to the second term (and pointing tangentially to
the desired path P). The integral curves of the vector field,
i.e., the trajectories of the autonomous system described by
the differential equation ξ̇(t) = χ(ξ(t)) for ξ ∈ Rn, converge
to the desired path under some conditions, and the desired
path P turns out to be a limit cycle of the aforementioned
autonomous system if the desired path is homeomorphic to
the unit circle. However, trajectories may also converge to
the singular set C defined as C = {ξ ∈ Rn : χ(ξ) = 0}, and
its elements are called singular points.

Remark 1. In the path-following problem setting, we assume
(reasonably) that there are no singular points on the desired
path P (see Assumption 2 later). Namely, the gradients
∇φi(ξ), i = 1, . . . , n − 1, are linear independent ∀ξ ∈ P .
Consequently, P is a regular submanifold in R2 [28, Corollary
5.14], [12], [13]. The desired path is also assumed to be one-
dimensional, and so is homeomorphic to R or S1. Note that
these assumptions are not required for Q1. /

The second question Q2 is:
Q2. It has been known in the literature [16], [17], [25]

that under some mild assumptions, the desired path is an
asymptotically stable limit cycle when it is homeomorphic
to the unit circle, and trajectories “spiral” and converge to
the desired path but do not converge to any single point on
the desired path. Nevertheless, the answer to the following
question is not yet clear: when the trajectories converge to the
singular set rather than the desired path, will they converge
to a singular point, or might they also “spiral” towards the
singular set and not converge to any single point of it?

For Q1, one might be inclined to give a positive answer
based on intuition, but as shown later, the answer is negative
even if the set P is compact. For Q2, we will prove that real



analyticity of the level function f is a sufficient condition for
trajectories converging to the singular set to actually converge
to a single point in this set.

III. MAIN RESULTS

A. Preliminaries

We first recall some basic concepts [28]–[30]. Suppose
(M, d) is a metric space with a metric d and A is a subset
in M. The distance between a point p ∈ M and the set
A is dist(p,A) := inf{d(p, q) : q ∈ A}, and if A = ∅,
then dist(p,A) = inf{∅} = +∞. The distance between
two subsets A,B ⊆ M is dist(A,B) = inf{d(a, b) : a ∈
A, b ∈ B}. If we consider the n-dimensional Euclidean space
M = Rn, then we use the Euclidean metric by default unless
otherwise mentioned1; i.e., dist(p,A) = inf{dl2(p, q) : q ∈
A}, where dl2(p, q) = ‖p− q‖ and ‖·‖ is the Euclidean
norm. An (open) neighborhood of A ⊆ M is an open set
U ⊆M such that A ⊆ U . An ε-neighborhood Uε of A ⊆M,
where ε > 0 is a constant, is an open neighborhood of A
defined by Uε := {p ∈ M : dist(p,A) < ε}. Note that an
ε-neighborhood is an open neighborhood, but the converse
is not necessarily true. In particular, there can exist an open
neighborhood U such that no ε-neighborhood Uε is a subset
of U . For example, let A be the x-axis in the plane; i.e., A =
{(x, 0) ∈ R2 : x ∈ R} and choose an open neighborhood of
A as U = {(x, y) ∈ R2 : x ∈ R, |y| < exp (−x)} (see Fig.
1). Intuitively, the neighborhood U is “shrinking” infinitely
close to the set A as x increases. Then there does not exist
an ε > 0 such that Uε ⊆ U . However, as will be shown in
Lemma 1, if A is compact, then (unsurprisingly perhaps) for
any open neighborhood of A, there always exists an epsilon
neighborhood Uε that is a subset of U . The spaceM is locally
compact at x ∈M if there is a compact subspace N ⊆M
that contains a neighborhood of x. IfM is locally compact at
every point, then M is said to be locally compact. Since the
one-point compactification [30, p. 185] of M is used in the
proofs of the subsequent results, we assume throughout the
paper that M is locally compact to ensure the existence of
the one-point compactification. This assumption is satisfied if
M is a smooth manifold or a Euclidean space Rn for some
n ∈ N. We use R≥0 to denote the non-negative reals, and
the notation “:=” means “defined to be”.

B. Metrical convergence and topological convergence

We can regardM as a topological space with the topology
induced by its metric d. Suppose a set A ⊆ M, called the
desired set, is a level set of a function g : M → Rn; that
is, A = g−1(c) for some constant c ∈ Rn. We can define
a (non-negative) level function e(·) = ‖g(·) − c‖, where
‖ · ‖ =

√
d(·, ·), such that A = e−1(0). Namely, A is the

zero-level set of the level function e. Therefore, every point
in the desired set A renders the level value e = 0. When
we consider convergence to a set, it is important to clarify
if this convergence is with respect to a metric or a topology,

1Other metrics in Rn include but not limit to the taxi-cab metric and the
sup norm metric [31, Examples 1.1.7, 1.1.9].
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Fig. 1. The non-compact desired set A ⊆ R2 is the x-axis, U = {(x, y) ∈
R2 : |y| < exp (−x)} is an open neighborhood of A and Uε is an ε-
neighborhood of A for ε = 0.3. It is obvious that there does not exist
an ε > 0 such that Uε ⊆ U . Also note that the continuous trajectory
ξ(t) = (t, exp(−0.8t)) converges metrically but not topologically to the
desired set A, since dist(ξ(t),A) → 0 as t → ∞ but ξ(t) 6∈ U for
sufficiently large t > 0.

which correspond to the notions metrical convergence and
topological convergence respectively defined below.

Definition 1 (Metrical and topological convergence). Con-
sider a metric space (M, d) and the topology induced by
the metric d. Suppose A ⊆ M is a closed and non-empty
set, and let (ξi)

∞
i=0 ∈ M be an infinite sequence of points.

The sequence converges to A metrically if for any ε > 0,
there exists I > 0 such that ξi(i ≥ I) ⊆ Uε (or equivalently,
dist(ξi,A) ≤ ε for i ≥ I), where ξi(i ≥ I) := {ξi ∈ M :
i ≥ I}. The sequence (ξi)

∞
i=0 converges to A topologically

if for any open neighborhood U of A, there exists I ′ > 0
such that ξi(i ≥ I ′) ⊆ U .

In the sequel, we will clarify the relationship between level
value convergence (to a constant), metrical convergence (to a
set) and topological convergence (to a set). If we consider
a Euclidean space, then metrical convergence suffices for
many purposes. Indeed, this notion has been used in many,
if not most, of the control-related textbooks (e.g., [8]–[10],
[32]). However, the notion of topological convergence is
more general and is necessary when a topological space is
considered, or when there are different metrics to choose but
one wants the convergence results to be independent of which
metric to use. From the definition, if a trajectory converges
topologically to the desired set A, then it also converges to
A metrically, but the converse is not true in general (see
Fig. 1). Nevertheless, if the set A is compact, then metrical
convergence also implies topological convergence. To prove
this, we first present the following lemma, which is a standard
result in topology (see [30, p.177, Exercise 2(d)].

Lemma 1. Let A be non-empty and compact in the metric
space (M, d). For any open neighborhood U of A, there
exists an ε-neighborhood Uε of A, such that Uε ⊆ U .

We can now prove the following proposition.

Proposition 1. Suppose the desired set A is non-empty



and compact. Then an infinite sequence of points converges
metrically to the desired set A if and only if it converges
topologically to A.

Proof. Due to the page limit, the proof is omitted.

In much of the literature, an isolated equilibrium point of
a system is studied, often taken as the origin for convenience,
and thus in these cases, the desired set A = {0} is a singleton,
which is obviously compact in the Euclidean space Rn.
Therefore, metrical convergence automatically implies the
stronger notion of topological convergence, and the existing
results about convergence can directly be applied to general
topological spaces. However, in the study of, e.g., path-
following control, the desired set is usually not a singleton.
If the desired set is non-compact, then it is necessary to
clarify which convergence notions are used2. For simplicity,
we mostly consider Euclidean space in the sequel (but the
notion of topological convergence will still be used wherever
this stronger notion is applicable).

Perhaps surprisingly, the convergence of the level value to
zero for an infinite sequence of points in M does not imply
that the sequence converges (metrically or topologically) to
the desired set A. As shown later, the sequence may even
converge to infinity, even if the desired set A is compact in
M.

Theorem 1. Define the (closed) set A := {ξ ∈ M :
‖φ(ξ)‖ = 0}, where φ :M→ Rm is a continuous function
and m ∈ N. If (ξi)

∞
i=0 ∈ M is an infinite sequence of

points such that ‖φ(ξi)‖ → 0 as i→∞, then the sequence
converges topologically to the set B := A∪ {∞} as i→∞.

Proof. Due to the page limit, the proof is omitted.

Note that the sequence converging topologically to the set
B := A ∪ {∞} implies four mutually exclusive possibilities:
1) The sequence converges to A; 2) The sequence converges
to∞; 3) The sequence converges to both A and∞ (in which
case the set A is unbounded); 4) The sequence converges
neither to A nor ∞. The fourth case happens if the sequence
has a subsequence converging to A and another subsequence
converging to ∞, but the whole sequence is not convergent.
However, if the set A is compact and a continuous trajectory
is considered, then only the first two cases are possible, as
shown in the following theorem.

Theorem 2. Define the (closed) set A := {ξ ∈ M :
‖φ(ξ)‖ = 0}, where φ :M→ Rm is continuous and m ∈ N.
If A is compact, and ξ : R≥0 → M is continuous and
‖φ(ξ(t))‖ → 0 as t→∞, then ξ(t) converges topologically
to the set A or to ∞ exclusively as t→∞.

Proof. Due to the page limit, the proof is omitted.

Note that Theorem 1 is independent of whether the desired
set A is compact or not, and it does not depend on the
path-following setting either, but for convenience, we use

2One can similarly define stability with respect to a metric or a topology,
but the development of these notions is omitted here.

path-following examples to illustrate the result of convergence
to ∞ permitted in Theorem 1. One example is presented in
[12, Section IV.B] where the desired set A (i.e., the desired
path P) is non-compact and a trajectory converges to infinity
even when the level value converges to 0. A perhaps more
surprising example is when the desired set A is a compact
set as in the following example.

Example 1. Suppose the desired set A (i.e., the desired path
P) is a unit circle, which is obviously compact. The φ function
to describe the desired set A = P is chosen as φ(x, y) =
(x2+y2−1)exp (−x) in (1), and the vector field is constructed
as in (2). As illustrated in Fig. 2, even though the level value
e = φ converges to 0, a trajectory may not converge to the
circle but rather escape to infinity. This undesirable behavior
does not appear if exp(−x) is removed from φ. See Remarks
3 and 4 for a “good” choice of φ. /
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Fig. 2. The desired set A is a unit circle illustrated by a red curve in
(a), and in this subfigure, the arrows represent the normalized vector field
computed by (2). Although the level value e = φ = (x2+y2−1)exp (−x)
converges to 0 in (b), the trajectory given by the magenta curve in (a) escapes
to infinity.

Remark 2. Besides the theoretical interest in its own right,
the importance of Theorem 1 is also due to its close relevance
to many control problems where an error signal e : Rn →
Rm is defined and the system’s desired states correspond to
‖e‖ = 0; namely, if f(x) = ‖e(x)‖, then the system’s desired
states form the zero-level set f−1(0). Often, a Lyapunov or
Lyapunov-like function V which takes the error signal as
the argument is involved, and a typical case is the quadratic



form V (e) = e>Pe, where P ∈ Rm×m is a positive definite
matrix. Therefore, the desired states (e.g., an equilibrium
of the system) form the zero-level set V −1(0) of V . In
general, as shown by Theorem 1, the Lyapunov function
value V → 0 =⇒ ‖e‖ → 0 along the system trajectory
does not necessarily mean that the trajectory will converge
to the desired states V −1(0) = e−1(0), since the trajectory
might also diverge to infinity. Nevertheless, as shown in many
control textbooks (e.g., [8], [32]), the desired state is often
an equilibrium point (i.e., V −1(0) = e−1(0) = {0}), and
extra detailed analysis (e.g., [8, Theorem 4.1]) guarantees
that once a trajectory starts close enough to the equilibrium
point, the trajectory will stay in a compact set containing
the equilibrium point, and thus the possibility of divergence
to infinity is excluded. However, if the desired states form
a non-compact set, then it is more involved to exclude this
divergence possibility, or extra assumptions are necessary.

Theorem 1 is also relevant when the desired set convergence
is proved by using Barbalat’s lemma (e.g., [8, Lemma 8.2],
[33, Lemma 4.2]); Take Theorem 8.4 in [8] as an example,
which is an invariance-like theorem for non-autonomous
systems. This theorem states that under some conditions, we
have W (x(t))→ 0 and hence x(t)→ W−1(0), where x(t)
is a trajectory of a non-autonomous system ẋ(t) = f(t, x)
and W (·) is a continuous positive semidefinite function. This
does not contradict Theorem 1 as the assumptions in Theorem
8.4 in [8] guarantee that the trajectory x(t) is bounded. /

Remark 3. Theorem 1 gives a negative answer to Q1. If
the desired set A is compact, to exclude the possibility of
trajectories escaping to infinity such that ‖φ(ξi)‖ → 0 implies
topological convergence to A, one may retreat to one of the
following two ways:

1) Prove that trajectories are bounded. For example, one
can find a Lyapunov-like function V and a compact set
Ωα := {x : V (x) ≤ α}, and prove that V̇ ≤ 0 in this
compact set Ωα. One might also retreat to the LaSalle’s
invariance principle [8, Theorem 4.4].

2) Modify φ(·), if feasible, such that ‖φ(x)‖ tends to a
non-zero constant (possibly infinity) as ‖x‖ tends to infinity.
In other words, φ(·) is modified to be radially non-vanishing.

Furthermore, regardless of whether the desired set A is
compact or not, one could impose the verifiable assumption
introduced in Lemma 2 below. /

C. Convergence characterized by different level functions

The following result is a generalization of [17, Lemma 5].

Lemma 2. Suppose there are two non-negative continuous
functions Mi :M→ R≥0, i = 1, 2. If for any given constant
κ > 0, it holds that

inf{M1(p) : p ∈M,M2(p) ≥ κ} > 0, (3)

then there holds

lim
k→∞

M1(pk) = 0 =⇒ lim
k→∞

M2(pk) = 0,

where (pk)∞k=1 is an infinite sequence of points in M.

Proof. Due to the page limit, the proof is omitted.

Based on Lemma 2 and Proposition 1, we have the
following result as a specialization of Theorem 1.

Corollary 1. Suppose A := {ξ ∈ M : ‖φ(ξ)‖ = 0}, where
φ :M→ Rm is a continuous function. Let M1(·) = ‖φ(·)‖
and M2 = dist(·,A) in Lemma 2, and suppose the condition
(3) holds. If (ξi)

∞
i=0 is a sequence of points ξi ∈ M such

that ‖φ(ξi)‖ → 0 as i → ∞, then the sequence converges
metrically to A (i.e., dist(ξi,A) → 0). Moreover, if A is
compact, then the convergence is also topological.

Remark 4. One can verify that the φ function in Example 1
does not satisfy the condition in (3) with M1 and M2 defined
as in Corollary 1, but the condition is met if the φ function is
changed to φ(x, y) = x2 +y2−1, and thus Corollary 1 holds.
This modification also renders φ radially non-vanishing. /

D. Refined dichotomy convergence

The result in this subsection is related to the vector field
defined in (2). According to the discussions above, we first
present the following assumption.

Assumption 1. For any constant κ > 0, there holds
inf{|e(ξ)| : ξ ∈ Rn,dist(ξ,P) ≥ κ} > 0, where e(·) = φ(·)
in (2).

Another natural assumption is that there are no singular
points on the desired path.

Assumption 2. There holds dist(P, C) > 0.

In this subsection, we show that if a trajectory of ξ̇(t) =
χ(ξ(t)) converges to the singular set C, then under some
conditions, it converges to a point in C. This result depends
on a property of real analytic functions stated below.

Lemma 3 (Łojasiewicz gradient inequality [20]). Let V :
Rn → R be a real analytic function on a neighborhood of
ξ∗ ∈ Rn. Then there are constants c > 0 and µ ∈ [0, 1) such
that ‖∇V (ξ)‖ ≥ c|V (ξ)−V (ξ∗)|µ in some neighborhood U
of ξ∗.

Inspired by [14], [15], we have the following result.

Theorem 3 (Refined Dichotomy Convergence). Let χ : R2 →
R2 be the vector field defined in (2). Then the trajectory of
ξ̇(t) = χ(ξ(t)) converges metrically either to the desired path
P or the set C if the initial path-following error |e(t0)| is
sufficiently small. Moreover, suppose φ in (1) is real analytic
and the set C is bounded (hence compact). If a trajectory
ξ(t) converges metrically to the set C, then the trajectory
converges to a point in C.

Proof. Due to the page limit, the proof is omitted.

The same conclusion applies for the n-dimensional vector
field in [12], [16], [17], and the proof will be presented in
an extended version not subject to the page limit.
Remark 5. It is shown in [14], [15] that single limit-point
convergence of a bounded solution of a gradient flow cannot
be proved in general for smooth but non-analytic cost



functions, whereas the real analyticity of the cost function
can guarantee the single limit-point convergence. Note that
these results cannot be directly applied here since the vector
field in (2) contains an orthogonal term, and thus it is not
the gradient of any cost functions. Nevertheless, we reach
the same conclusion under the condition regarding the real-
analyticity of φ. Therefore, Theorem 3 can be regarded as
an extension of the results in [14], [15]. /

IV. CONCLUSIONS AND FUTURE WORK

This paper is motivated by the recent interest in the
vector-field guided path-following control problem, where one
important issue is the convergence with respect to a metric
or a topology to a compact or non-compact desired set. The
desired set is a zero-level set of a non-negative continuous
level function. We first show that the convergence of the level
value to zero does not necessarily imply the convergence of
an infinite sequence of points (which is more general than a
continuous trajectory) to the compact or non-compact desired
set. This result is closely related to many control problems,
where the desired set is the zero-level set of a Lyapunov(-like)
function. We then turn to the more specific path-following
problem, and give a refined dichotomy convergence result. In
particular, we show that real analyticity of the level function
leads to the refined conclusion that converging of a trajectory
to a singular set implies converging to a point in this set.
This is in contrast with the convergence to the desired path,
where a trajectory spirals towards the set without converging
to any single point of the set. Although the guiding vector
field is not the gradient of any potential function, this result
is consistent with [14], [15] where only gradient flows are
considered.

For future work, we are interested in finding out whether
Theorem 3 can be applied to guiding vector fields defined
on a smooth manifold [13]. We are also interested to find an
example where the level function is not real-analytic and a
trajectory converging to the desired set does not converge to
a point in the desired set to further support Theorem 3.
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