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Abstract
Objectives The interpretability of convolutional neural networks (CNNs) for classifying subsolid nodules (SSNs) is insufficient
for clinicians. Our purpose was to develop CNN models to classify SSNs on CT images and to investigate image features
associated with the CNN classification.
Methods CT images containing SSNs with a diameter of ≤ 3 cm were retrospectively collected. We trained and validated CNNs
by a 5-fold cross-validation method for classifying SSNs into three categories (benign and preinvasive lesions [PL], minimally
invasive adenocarcinoma [MIA], and invasive adenocarcinoma [IA]) that were histologically confirmed or followed up for 6.4
years. The mechanism of CNNs on human-recognizable CT image features was investigated and visualized by gradient-weighted
class activation map (Grad-CAM), separated activation channels and areas, and DeepDream algorithm.
Results The accuracy was 93% for classifying 586 SSNs from 569 patients into three categories (346 benign and PL, 144MIA, and
96 IA in 5-fold cross-validation). The Grad-CAM successfully located the entire region of image features that determined the final
classification. Activated areas in the benign and PL group were primarily smooth margins (p < 0.001) and ground-glass components
(p = 0.033), whereas in the IA group, the activated areas were mainly part-solid (p < 0.001) and solid components (p < 0.001),
lobulated shapes (p < 0.001), and air bronchograms (p < 0.001). However, the activated areas for MIA were variable. The
DeepDream algorithm showed the image features in a human-recognizable pattern that the CNN learned from a training dataset.
Conclusion This study provides medical evidence to interpret the mechanism of CNNs that helps support the clinical application
of artificial intelligence.
Key Points
•CNN achieved high accuracy (93%) in classifying subsolid nodules on CT images into three categories: benign and preinvasive
lesions, MIA, and IA.

• The gradient-weighted class activation map (Grad-CAM) located the entire region of image features that determined the final
classification, and the visualization of the separated activated areas was consistent with radiologists’ expertise for diagnosing
subsolid nodules.

• DeepDream showed the image features that CNN learned from a training dataset in a human-recognizable pattern.
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Abbreviations
AAH Atypical adenomatous hyperplasia
AIS Adenocarcinoma in situ
AUC Area under the ROC curve
BMI Body mass index
CNN Convolutional neural network
CT Computed tomography
Grad-CAM Gradient-weighted class activation map
IA Invasive adenocarcinoma
MIA Minimally invasive adenocarcinoma
PL Preinvasive lesions
ROC Receiver operating characteristic curve
SSN Subsolid nodule

Introduction

Lung cancer is the leading cause of mortality among all ma-
lignancies. Recently, the 10-year follow-up result from the
Dutch-Belgian lung cancer screening trial (NELSON) showed
that CT screening reduced lung cancer-related mortality from
3.3 to 2.5 deaths per 1000 people per year [1]. Subsolid nod-
ules (SSNs) are common findings in CT examinations. The
prevalence of SSNs varies greatly among different countries/
ethnicities [2–5]. Differential diagnosis of SSNs is important
and challenging because early-stage lung adenocarcinoma of-
ten appears as an SSN. Malignant SSNs mainly include adeno-
carcinoma in situ (AIS), minimally invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IA) [6]. Treatment-
related decision-making depends on the presurgical evaluation
of lesion invasiveness. Surgical resection is strongly recom-
mended for invasive lesions (MIA and IA) [7].

Studies have shown that convolutional neural networks
(CNNs) can classify the histological types of lung adenocarci-
noma on CT images [8–10]. Zhao et al used a multi-task CNN
to classify lung nodules into preinvasive lesions (PL),MIA, and
IA with an accuracy of 63.3% [8]. Wang et al determined the
invasiveness of SSNs using a CNN and achieved an accuracy
of 89.2% [9]. Despite the good performance of CNNs, few
studies have explained the classification mechanism of CNNs
to clinicians. Current deep learning approaches are insufficient
to meet the clinical requirements of explainability and interpret-
ability if they only provide an inference result by expressing a
probability. The clinical treatment decision for a lung nodule
must come from evidence and confidence. First, a supervised
and transparent approach is necessary since artificial intelli-
gence (AI) can make mistakes. Second, a responsible doctor
has to explain the treatment decision to the patient with solid
evidence rather than only quoting a result from anAI algorithm.

Computer scientists have developed visualization tech-
niques to interpret CNNs [11]. Zeiler et al visualized the feature
channels of each CNN layer using deconvolution [12], which
helps explain the transformation between input and continuous

layers. Alexander et al developed the DeepDream algorithm
[13], which maximizes the feature channel activation of
CNNs and illustrates the image features that CNNs learned
from the training dataset. Selvaraju et al generated class-
activated thermograms for inputs image using a gradient-
weighted class activation map (Grad-CAM) [14], which assists
in the visualization of the prominent part of an image leading to
the final classification. However, the Grad-CAMonly indicates
the overall region associated with the classification [15].
Detailed human-recognizable image features and explainable
evidence contributing to CNN classification in medical imag-
ing are still lacking.

Therefore, we used SSN classification as an example to
investigate the internal mechanism of CNNs for classifying
medical images. The preparation procedure involved collecting
data, training CNNmodels to classify SSNs on CT images into
three categories (benign and PL, MIA, and IA), and validating
their performance. Subsequently, we applied three visualization
methods to reveal the classification mechanism of CNNs. The
first method was using a Grad-CAM to generate an overall
feature map to observe whether the CNN identified the entire
nodule. The second method was to visualize the separated ac-
tivation channels and areas for locating the specific CT image
features of an SSN that were associated with the classification.
The last method involved using DeepDream to generate a high-
resolution feature map to illustrate the image features that CNN
had learned.

Methods

Study population

A retrospective search was conducted for patients entering the
electronic health record system at our institute from December
2011 to September 2020, and finally identified 569 patients. The
inclusion and exclusion flowchart is shown in Fig. 1. The inclu-
sion criteria were as follows: (1) SSNswith a diameter of ≤ 3 cm
in thin-section CT images, including pure ground-glass and part-
solid nodules; (2) histological results obtained with immunohis-
tochemical staining based on nodule resection within 1 month
after the CT examination; and (3) no radiotherapy or chemother-
apy performed before nodule resection. SSNs that were stable
for at least 5 years were also considered benign if they did not
grow or develop solid components because adenocarcinomas
developed solid components during follow-up; also, the volume
doubling time for SSNs that became adenocarcinomas ranged
from 300 to 900 days [16, 17]. A stable size was defined as a
volume alteration of ≤ 25% in follow-up scans, which is within
the range of systematic error in lung cancer screening studies
(the details of the evaluation of stable nodules are shown in the
Appendix) [18, 19]. The exclusion criteria were as follows: (1)
motion or respiratory artifacts leading to poor image quality; (2)
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CT slice thickness > 1 mm; and (3) with pulmonary diseases
affecting nodule observation. The local Institutional Review
Board approved this retrospective study (No. SGH-2018-56)
and waived the need for written informed consent.

Image pre-processing

The CT acquisition protocol is shown in the Appendix.
Square-patch images containing the entire nodule with mar-
ginal structures (such as peripheral vessels, pleura, and lung
tissues) were obtained. These patch images were configured to
the lung window setting, which is optimal for the evaluation
of SSNs [20]. Then, the patch images were interpolated to
299×299 pixels to meet the input layer requirement of
CNNs. If an SSN had a large number of images, we selected
up to 20 characteristic images. In this way, 4–20 patch images
were retained for each SSN.

Grouping outline

The dataset was divided into three categories: benign and PL
(including histologically benign, atypical adenomatous hyper-
plasia [AAH], AIS, and stable SSNs), MIA, and IA. A five-fold
cross-validation method was used to validate CNN

performance and generalizability [21]. In each of the five con-
secutive deep learning sessions (folds 1 to 5), we divided the
datasets into five non-overlapping splits, namely four (80%) as
the training dataset and one (20%) as the validation dataset. In
these 5 splits, the proportion of the three disease categories was
similar. The overall accuracy of the CNN was the mean accu-
racy of the five validation sessions. Moreover, we selected the
fold (training and validation dataset) with the highest accuracy
in the 5-fold cross-validation for further visualization analysis.

Convolutional neural networks

The first CNN used in this study was GoogLeNet Inception
v3, a directed acyclic graph (DAG) CNN; it was used to an-
alyze CNN activation channels (Fig. 2a). We froze the first 18
layers and adjusted their parameters by backpropagation
through our training dataset. The image augmentation
methods were as follows: randomly flipping images along
the horizontal or vertical axis, panning images by −10 to 10
pixels along the horizontal or vertical axis, and image scaling
by 0.95 to 1.05. Training was performed for 5, 20, 50, 100,
and 200 epochs. The minibatch size was 64, the learning rate
was 0.0003, and the L2 regularization rate was 0.0001. The
optimization algorithm was adaptive moment estimation

Part icipants with SSNs followed up 
for at  least  5 years (n=181)

Excluded (n=21)
1) Without  hisological subtype (n=9)

2) Poor image quality (n=4 )
3) CT slice thickness>1mm (n=5) 

4 ) with pulmonary diseases 
af fect ing nodule observat ion (n=3)

Included part icipants with SSNs 
stable for at  least   5 years (n=160)

Included part icipants with SSNs 
with histological results (n=409)

Part icipants with SSNs 
with histological results (n=443)

Part icipants with SSNs 
without  histological results (n=2151)

Excluded (n=17)
1) SSNs changed during the 

5-year follow-up (n=12)
2) Poor image quality(n=2)

3) CT slice thickness>1mm (n=2) 
4 ) with pulmonary diseases 

af fect ing nodule observat ion (n=1) 

Screening part icipants with SSNs ret rospect ively 
examined f rom Dec. 2011 to Sep.2020 (n=2593)

Total included part icipants with SSNs  (n=569)

Fig. 1 Inclusion and exclusion flowchart. *Some patients have ≥ 2 nodules. SSNs, subsolid nodules
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(Adam). The second CNN was AlexNet, a serial CNN; it was
used to generate DeepDream images. We froze the first 4
layers when training for 50 epochs. The other parameters were
consistent with those of Inception v3. The inference method of
the CNN is shown in the Appendix. A summary of the visu-
alization techniques used in this study is shown in Table 1.

CNN activation

We studied the activation of this CNN by analyzing the
distribution of parameters in the last 2D multi-channel
layer (layer mixed 10) consisting of 2048 feature chan-
nels. This 2D layer transformed into a one-dimensional

Convolution
AvgPool
MaxPool
Concatenation
Dropout
Fully connected
Softmax

Input
image

Data flow

Frozen 
layers

We fine-tune 
those layers

We fine-tune our own 
fully-connected classifier

Benign and 
Pre-invasive

MIA

IA

Classification

Mixed 10

Input
(229×299 ×3）

Mixed10 Activation Channels
(8×8×2048）

Feature Vector
(2048）

Fully Connected Layer
(3）

Probability
(1）

Activated Areas

8 2048

2048 Weights 2048
IA = 0.9997

8

5.8
2.1

0.6
0.1

2.7
0.4

Weighted

Grad-CAM

a

b

Fig. 2 a The Inception v3 convolutional neural network (CNN) and the
visualized layer. b Visualized activation areas in layer mixed10 of
Inception v3. By visualizing the activation of these 2D channels in layer

mixed10 (the last feature layer) and superimposing the activated areas on
the original images, the image features in the original image that were
closely associated with the final classification result can be marked
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layer by a pooling algorithm and finally determined the
classification layer through the fully connected layer and
softmax layer [22]. The channels in the 2D layer with
higher activation values directly affected the classification
results.

Therefore, we illustrated the whole region associated with
the final classification by a Grad-CAM, which synthetically
generated an activation map based on the gradient of the clas-
sification score (i.e., weights of the fully connected layer) and
the corresponding features of the layer mixed 10 [14].
Furthermore, we visualized separated activation channels
and superimposed the activated areas into the original images;
this was done to mark the image features in the original image
that were closely associated with the final classification results
of the CNN (Fig. 2b). Therefore, these separated activated
channels allowed visualization of the specific image features
that determined the classification results of the CNN. The
details are shown in the Appendix.

CT features

We adopted the CT feature terms proposed by an evaluation
panel consisting of 107 radiologists from 25 countries [23].
The features included shapes (oval, irregular, and lobulated),
margins (smooth and spiculated), composition (ground-glass,
part-solid, and solid), morphological features (vessel touching
or passing through, air bronchograms and pleural tags), and
non-nodule features (peripheral vessel, chest wall, or other
features uncorrelated to a nodule). Based on this terminolog-
ical system, two radiologists carefully reviewed the original
CT images overlapping with activated areas and subsequently
determined the CT features in the activated areas; differences
were resolved by consensus.

DeepDream

DeepDream amplifies and displays the features learned in a
channel or layer in a CNN [13]. DeepDream starts with a

random noise image and then gradually adjusts this image so
that the activation value of the channel or layer, which allows
visualization of the image features learned by the CNN, grad-
ually increases until it generates detailed image features on
this image. We used DeepDream to visualize the fully con-
nected layer of Inception v3 and AlexNet because this layer
directly translates into the three-category output layer. The
details are shown in the Appendix.

Statistics

The association between the actual label and the classification
determined by the CNN was assessed by a confusion matrix.
Diagnostic accuracy, sensitivity (recall), specificity, F1 score,
and area under the receiver operating characteristic curve
(AUC) were evaluated to determine the three-way classifica-
tion performance of CNNs for pulmonary nodules. The F1
score was the weighted harmonic average of recall and preci-
sion [24]. An independent-samples t test was used to compare
age, and a chi-square test was used to compare sex. The acti-
vated areas of pulmonary nodules were compared among the
three categories using the Kruskal-Wallis one-way ANOVA.
A statistical package (SPSS Statistics 24, IBM) was used to
analyze the data.

Results

Population

The study workflow is shown in Fig. 3. This study included
586 SSNs from 569 patients (mean age 59.6 ± 11.1 years)
(Table 2). Of these nodules, 422 (72.0%) were surgically
resected and immunohistochemically stained, whereas 164
(28.0%) were stable nodules (mean follow-up time 6.41 ±
1.48 years). There were 346 (59.0%) benign and PL nodules,
i.e., 164 nodules that were stable for 6.4 years, 19 that were
histologically benign, 60 that were AAH, and 103 that were

Table 1 Summary of the visualization techniques applied in this study

Method Scope Purpose Input and procedure Output

Grad-CAM Validation
dataset

Demonstrating the region
of image features for
determining the final
classification

Inputting a nodule image, showing an overall
feature map generated by all feature
channels in a layer with weights of its
classification

One feature map for the whole activation,
showing as one low-resolution thermo-
graph per inputting image in this study

Channel
activation

Training and
validation
dataset

Showing the influence from
different channels on the
final classification

Inputting a nodule image, showing the
activated areas of all feature channels in a
layer

Multiple thermographs for detailed activated
areas, showing as 2,048 low-resolution
thermographs per inputting image in this
study

DeepDream Training
dataset

Illustrating the detailed
image features that CNN
learned

Starting from a blank image to maximize its
activation value of a specified category by
gradient descent

One high-resolution feature image per
category, showing 3 images correspond-
ing to 3 categories in this study

Eur Radiol



AIS. There were 144 (24.6%) MIA and 96 (16.4%) IA cases,
respectively. The long diameter of SSNs was 9.1 ± 5.1 mm;
more specifically, the long diameter was 6.7 ± 2.8 mm, 9.2 ±
3.6 mm, and 16.6 ± 6.0 mm for benign and PL, MIA, and IA,
respectively (detailed sizes per SNN subtype are shown in
Supplementary Table S1).

Training and cross-validation

After 5, 20, 50, 100, and 200 training epochs of the Inception
v3 CNN, the overall accuracy in the 5-fold cross-validation in
each epoch was 0.925 ± 0.022, 0.933 ± 0.029, 0.921 ± 0.019,
0.927 ± 0.007, and 0.922 ± 0.017, respect ively

Training data

Validation data

Benign and PL

n=346

IA

n=96

MIA

n=144

Fold1

Fold1

Fold1

Fold1

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Model1

Validation = (Fold1 + Fold2 + Fold3 + Fold4 + Fold5) / 5

Fold2 Fold3 Fold4 Fold5

Fold1

Validation

Validation

Validation

Validation

Training

Training

Training

Training

Fold1

Validation

5-fold dataset

Images resizing and preprocessing

Extracting lung nodules images from PACS (n=586)

Images labeling and dividing to three categories

Visualizing and analysis of the best performed fold dataset 

Analysis CNN activation channels

Visualizing CNN activations with CT signs

Visualizing CNN by using Deep dreaming

Training

Training

Training

Training

Fold1

Validation

Split1

Split2

Split3

Split4
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Fig. 3 The study workflow. PL,
preinvasive lesions; MIA,
minimally invasive
adenocarcinoma; IA, invasive
adenocarcinoma; CNN,
convolutional neural network
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(Supplementary Figure S1). Among these five training
epochs, the highest accuracy was 0.933 ± 0.029 at 20 epochs.
The corresponding confusion matrix and performance metrics
are shown in Supplementary Tables S2 and S3A, respectively.
The sensitivity for benign and PL, MIA, and IA was 0.965,
0.875, and 0.905, respectively. The specificity for benign and
PL, MIA, and IA was 0.937, 0.975, and 0.973, respectively.
The F1 values for determining the three categories of SSNs
were 0.961, 0.897, and 0.886. The AUCs were 0.979 (95%
CI: 0.975–0.983), 0.955 (0.949–0.960), and 0.971 (0.967–

0.976) for benign and PL, MIA, and IA, respectively (Fig.
4). In the 5-fold cross-validation at 20 epochs, fold 1 showed
the highest accuracy of 0.958. Thus, we visualized the CNN
model established by using the fold 1 dataset. The details of
the fold 1 dataset are shown in Table 2. AlexNet was also
trained with the fold 1 dataset, and the classification accuracy
was 0.874. The AUCs were 0.955 (95% CI: 0.942–0.967),
0.847 (0.824–0.867), and 0.928 (0.911–0.942) for the three
categories, respectively. The performance metrics are shown
in Supplementary Table S3B.
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Fig. 4 The area under the receiver operating characteristic curve (AUC) of the 5-fold cross-validation based on the Inception v3 convolutional neural
network. PL, preinvasive lesions; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma

Table 2 Patient characteristics in
the training and validation
datasets for visualization analysis

Variables All Training
dataset

Validation
dataset

p value

Patients, n 569 463 116

Gender 0.453

Female, n (%) 395 (69.6%) 324 (70.0%) 77 (66.4%)

Male, n (%) 174 (30.4%) 139 (30.0%) 39 (33.6%)

Age (years), mean ± SD 59.6 ± 11.1 59.4 ± 11.1 60.0 ± 11.1 0.609

Age (years)

< 60, n (%) 276 (48.5%) 219 (47.3%) 60 (51.7%)

≥ 60, n (%) 293 (54.5%) 244 (52.7%) 56 (48.3%)

Nodules, n 586 467 119

Long diameter (mm), mean ± SD 9.1 ± 5.1 9.0 ± 5.0 9.5 ± 5.3 0.362

Histological type 0.999

Benign

Histologically benign, n (%) 19 (3.2%) 15 (3.2%) 4 (3.4%)

Stable for 6.4 years, n (%) 164 (28.0%) 131 (28.1%) 33 (27.7%)

Preinvasive lesions

Atypical adenomatous hyperplasia, n (%) 60 (10.2%) 48 (10.3%) 12 (10.1%)

Adenocarcinoma in situ, n (%) 103 (17.6%) 82 (17.6%) 21 (17.6%)

Minimally invasive adenocarcinoma, n (%) 144 (24.6%) 115 (24.6%) 29 (24.4%)

Invasive adenocarcinoma, n (%) 96 (16.4%) 76 (16.3%) 20 (16.8%)

*The training and validation datasets are from fold 1 in the 5-fold cross-validation procedure. Some patients have
≥ 2 nodules. The multiple nodules in one patient may be at a different histological condition
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The training dataset of fold 1 comprised 467 pulmonary
nodules. As the training epochs increased, validation accuracy
decreased (Supplementary Figure S1). Also, the activated
channels became increasingly sparse as training epochs in-
creased (Supplementary Figure S2).

CNN activation and CT features

To visualize the image features that determine the classification
results of the CNN, we analyzed 119 nodules in the validation
dataset; of these 119 nodules, 114 (95.8%) were correctly clas-
sified, including 69 benign and PL nodules (92 slices, 1840

separated activated areas), 25 MIA nodules (50, 1000), and
20 IA nodules (53, 1060). For these 114 correctly classified
nodules, 95.6% (109/114) of the Grad-CAM covered the entire
nodule, and 4.3% (5/114) of the activation maps only involved
the margin or part of the nodule. The separated activated areas
of the top 20 most activated channels were associated with the
CT features defined by radiologists’ expertise (Fig. 5 and
Supplementary Table S4). Several correctly classified nodules
are shown in Fig. 6A.

For benign and PL nodules with 1840 separated activated
areas, 10 image features were observed in the activated areas.
Smooth margins were a significant feature (1044/1840

Benign and PL MIA

IA

Fig. 5 The proportion of CT image features on the activated areas of the
convolutional neural network. The percentage refers to the number of CT
features focusing on the activated areas (numerator) divided by the total
number (denominator) in each category. The denominators are 1840,
1000, and 1060 for benign and PL, MIA, and IA, respectively. Some of

the activated areas focused on multiple kinds of CT features, so the sum
was greater than 100%. The CT features are arranged clockwise by pro-
portion. PL, preinvasive lesions; MIA, minimally invasive adenocarcino-
ma; IA, invasive adenocarcinoma
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[56.7%]) compared with those in the other two categories
(p < 0.001), followed by ground-glass components (395/
1840 [21.5%], p = 0.033). Oval-shaped (154/1840 [8.4%],
p = 0.785) and irregular-shaped (86/1840 [4.7%], p = 0.074)
features were observed in this category, but they were not
significant (p > 0.05).

For MIA cases with 1000 separated activated areas, 11 fea-
tures were observed. Smooth margins were significant (463/
1000 [46.3%], p < 0.001), followed by ground-glass compo-
nents (160/1000 [16.0%], p = 0.033) and oval shapes (138/
1000 [13.8%], p = 0.785), as well as part-solid components
(114/1000 [11.4%], p < 0.001), irregular shapes (84/1000
[8.4%], p = 0.074), and spiculated margins (79/1000 [7.9%],
p = 0.003). Other image features in the activated areas were
unrelated to the nodules, such as chest wall (66/1000 [6.6%],
p = 0.087).

For IA cases with 1060 separated activated areas, 13 features
were observed. Part-solid components (779/1060 [73.5%])
were the most significant feature (p < 0.001), as well as lobu-
lated shapes (197/1060 [18.6%], p < 0.001) and irregular
shapes (188/1060 [17.7%], p = 0.074). Some CT features were
also characterized, including oval shapes (116/1060 [10.9%],
p = 0.785), ground-glass components (102/1060 [9.6%],
p < 0.001), and solid components (81/1060 [7.6%],
p < 0.001). Furthermore, some specific features were observed,
such as air bronchograms (161/1060 [15.2%], p < 0.001) and
pleural tags (42/1060 [4.0%], p < 0.063).

In addition, five nodules were misclassified (Fig. 6B), in-
cluding one benign and PL nodule and four MIA nodules.
Among them, the benign and PL nodule was misclassified
as MIA, whereas two of the four MIA nodules were
misclassified as benign and PL, and the other two were
misclassified as IA. The Grad-CAM of 4 nodules was on the
margin of or just part of the nodule. Only one Grad-CAM
located the whole nodule.

DeepDream

The activation values of the three disease categories of AlexNet
were 204.6, 535.0, and 1060.6 after 300 iterations. The
DeepDream image of the benign and PL category (Fig. 7a)
produced multiple oval nodule-like shapes with smooth mar-
gins, halo signs, and homogeneous composition. For MIA
cases (Fig. 7b), there were multiple round and irregular
nodule-like shapes with sharply smooth margins, uniform com-
position, and some nodule-like shapes with a linear shadow in
the center. The images of IA nodules (Fig. 7c) showed similar
oval nodule-like shapes with different size sand non-uniform
composition, and there were blurred shadows around the mar-
gin. Most of them contained low-density shadows, similar to
air bronchograms. There were high-density spots and scattered
stripes, similar to blood vessel signs.

The DeepDream image of Inception v3 was full of noise
because of low activation. The activation values of the three
categories were 0.88, 0.35, and 3.26 for benign and PL, MIA,
and IA, respectively, after 1000 iterations.

Discussion

In this study, CNNs reached a high accuracy of 93% in clas-
sifying SSNs into three categories. CNN classification was
associated with morphological features, such as composition
and margins, characterized by Grad-CAM and the separated
activated areas. The DeepDream algorithm illustrated the
human-readable image features that the CNN learned from
the training dataset. The activated areas in the benign and
PL group were primarily smooth margins and ground-glass
components, whereas, in the IA group, the activated areas
focused on the part-solid and solid components of the nodules,
lobulated shapes, and air bronchograms. However, the acti-
vated areas for MIA cases were variable.

Several studies have investigated the two-way histolog-
ical classification of lung adenocarcinoma, resulting in ac-
curacy of up to 89% [8–10, 25]. The accuracy of three-way
classification was 63% for nodules ≤ 1 cm in size [8, 26].
Our accuracy was 93% for nodules ≤ 3 cm. The reason for
this difference in accuracy could be attributed to the larger
nodules evaluated in our study, which provided more de-
tails and improved the learning effect of the CNN.
Moreover, many researchers have trained CNNs based on
malignant lesions that were unhelpful for the diagnosis of
benign lesions. As the majority of SSNs found by CT
screening or incidentally are benign, our model was devel-
oped with many benign nodules, which is clinically
practical.

The activation area of Grad-CAM involved the whole re-
gion for the final classification. In classifying SSNs, Grad-
CAM only located the whole nodule. However, it is important
to indicate specific features. Therefore, we investigated and
visualized separated activation channels and activated areas.
We found that CNN classification was associated with the
morphological image features of SSNs. The activated areas
of the benign and PL were significantly associated with
smooth margins and ground-glass components. Radiologists
also diagnosed benign and PL mainly according to these
signs, which are commonly considered non-malignant signs
on CT images [27]. The image features of IA were associated
with part-solid and solid components, lobulated shape, and air
bronchograms. These are also important features for radiolo-
gists to evaluate when diagnosing malignant nodules [6].
However, the activated areas for MIA cases were variable
and included smooth and spiculated margins and ground-
glass and part-solid components. Because MIA characteristics
are histologically between PL and IA features, they may share

Eur Radiol



(a) Benign  and PL

(b) MIA

(c) IA

Input image Activation1 Activation2 Activation3 Activation4Grad-CAM
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(b) MIA
Wrong to IA

(c) MIA
Wrong to IA

Input image Activation1 Activation2 Activation3 Activation4Grad-CAM

A

B

Fig. 6 A. Correctly classified representative cases with the Grad-CAM
map and the top 4 activated areas of the Inception v3 convolutional neural
network. a A 66-year-old female had a benign pure ground-glass nodule
with a long diameter of 7mm (categorized as benign and PL). The Grad-
CAM involved the entire nodule and focused more on its margin. The
activated areas included a pure ground-glass component, a smooth margin,
vessel touching or passing through, and the whole nodule with a smooth
margin. b A 62-year-old female had a mixed ground-glass nodule with a
long diameter of 7mm, proven asMIA. The Grad-CAM involved the entire
nodule with a margin. The activated areas mainly included the part-solid
component and an irregular shape, a mild spiculated margin, vessel touch-
ing or passing through, and the whole nodule with vessels. cA 44-year-old
female has a mixed ground-glass nodule with a long diameter of 25mm,
proven as IA. The Grad-CAM also involved the entire nodule. The activat-
ed areas mainly include the part-solid component and a lobulated shape, a
spiculated margin, the solid component, and peripheral vessels. Grad-
CAM, gradient-weighted class activation map; PL, preinvasive lesions;
MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma.

B. Incorrectly classified representative cases with the Grad-CAM and the
top 4 activated areas of the Inception v3 convolutional neural network. aA
93-year-old male had a pure ground-glass nodule with a long diameter of
10mm (categorized as benign and PL), which was misclassified as MIA.
The Grad-CAM only involved the margin of the nodule. The activations
focused on a smooth margin, a peripheral vessel, the ground-glass compo-
nent, and a smooth margin. b A 66-year-old female had a mixed ground-
glass nodule with a long diameter of 13mm, proven as MIA but incorrectly
classified as IA. The Grad-CAM only involved some part-solid component
and an air bronchogram of the nodule. The activated areas included the part-
solid component and an irregular shape, peripheral vessels, the air
bronchogram, and smooth margins. c A 62-year-old female had a mixed
ground-glass nodulewith a long diameter of 15mm, proven asMIA but was
incorrectly classified as IA. TheGrad-CAM involved the entire nodule. The
activated areas included the part-solid component and a lobulated shape, the
air bronchogram, and the whole nodule. Grad-CAM, gradient-weighted
class activation map; PL, preinvasive lesions; MIA, minimally invasive
adenocarcinoma; IA, invasive adenocarcinoma
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the features of the two categories. Importantly, some activated
areas of MIA fell outside the nodule, such as the features on
the chest wall. Because CNNs sometimes use unreliable con-
texts for classification, which would cause mistakes to be
made [28], unreliable contexts should be supervised in the
diagnosis procedure.

Activation maximization techniques, such as DeepDream
and Lucid [29], enlarge feature activation by gradient descent
until the features are visible. In particular, we illustrated the
high-level distinguishing features that the CNN learned.
DeepDream generated nodule-like shapes from the benign
and PL category, which showed uniform composition and
smooth margins but no other sophisticated features. These
findings are consistent with a human-readable diagnostic im-
pression [27]. DeepDream generated nodule-like shapes with
spiculated margins and uneven inner composition for IA.
These features are also consistent with some malignant signs
of IA on CT [6]. Regarding the use of the DeepDream algo-
rithm, the developer addressed that this algorithm is suitable
for shallow networks, such as AlexNet (25 layers) and
VGG16 (41 layers), whose visualization performance was bet-
ter than that of deep networks, such as Inception v3 (315
layers) [30–32]. Besides, Zeiler et al usedAlexNet to represent

CNN visualization [12]. This evidence strengthened our meth-
odology that using AlexNet to illustrate the image features of
subsolid nodules that CNN learned. Therefore, we used the
shallow network AlexNet, whose activation values were
204.6, 535.0, and 1060.6 in this study, much higher than those
of Inception v3 (0.88, 0.35, and 3.26 after 1000 iterations).

Previous studies have shown that thermography, such as
Grad-CAM, can provide an intuitive understanding of CNN
classification [33, 34]. The Grad-CAM superposes all the fea-
ture channels in a layer to generate an overall heatmap, which
often contains the whole lesion. Therefore, we can determine
whether the CNN accurately identifies the nodule and
makes a diagnosis based on the entire nodule, rather than
only identifying part of the nodule or interfering with the
background. However, a Grad-CAM does not provide sep-
arated and detailed image features, so we further analyzed
multiple independent channels and activated areas. This
approach can help clinicians better understand the diagnos-
tic criteria of CNNs and provide a medical imaging expla-
nation for how CNNs classify SSNs.

There were several limitations in this study. First, this was a
single-center study. Diagnostic accuracy may be variable for
datasets in different institutes, but the internal mechanism of

a  Benign and preinvasive lesions b   Minimally invasive adenocarcinoma

c   Invasive adenocarcinoma

Fig. 7 DeepDream illustrations
of the learned image features of
the AlexNet convolutional neural
network. The DeepDream image
is on the left. Five representative
subsolid nodules in the
corresponding category are on the
right
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the CNN is consistent. Next, the sample size was not very
large. Although using a larger dataset is commonly considered
helpful to improve CNN performance, a recent study from
OpenAI showed that accuracy would not continuously im-
prove with increased sample size and more complex networks
[35]. Nevertheless, the accuracy of 93% obtained in this study
is sufficient to represent the CNN performance.

In summary, the CNN achieved high accuracy in classify-
ing subsolid nodules on CT images into three histological
categories. CNN classification was associated with CT
features consistent with radiologist expertise for image
features. The DeepDream algorithm illustrated the human-
recognizable image features the CNN learned from the
training dataset. Thus, this study provides medical imaging
evidence to interpret the CNN classification for subsolid
nodules, which helps to strengthen the application of deep
learning in the diagnosis of subsolid nodules and can be seen
as an example of CNN interpretability research for other
imaging applications.
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