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A B S T R A C T

Developments in sensor equipment and the Internet of Things increasingly allow production facilities to
be monitored and controlled remotely and in real-time. Organizations can exploit these opportunities to
reduce costs and improve reliability by employing condition-based maintenance (CBM) policies. Another
recently proposed option is to adopt condition-based production (CBP) policies that control the deterioration
of equipment by dynamically adapting the production rate. This study compares their performance and
introduces a fully dynamic condition-based maintenance and production (CBMP) policy that integrates both
policies. Numerical results show that their cost-effectiveness strongly depends on system characteristics such
as the planning time for maintenance, the cost of corrective maintenance, and the rate and volatility of the
deterioration process. Integrating condition-based production decisions into a condition-based maintenance
policy substantially reduces the failure risk, while fewer maintenance actions are performed. Interestingly,
in some situations, the combination of condition-dependent production and maintenance even yields higher
cost savings than the sum of their separate cost savings. Moreover, particularly condition-based production is
able to cope with incorrect specifications of the deterioration process. Overall, there is much to be gained by
making the production rate condition dependent, also, and sometimes even more so, if maintenance is already
condition-based.
1. Introduction

Maintenance activities are a major cost driver for modern produc-
tion facilities. For instance, manufacturing firms typically face mainte-
nance costs ranging between 15–40% of their total expenses [1], and
for power plants and offshore wind farms maintenance costs constitute
up to 30% of the total costs [2,3]. Consequently, efficient and effective
operations and maintenance strategies are of crucial importance for
the profitability and competitiveness of firms. Various developments
that provide opportunities to improve operational decision making are
decreasing prices of monitoring equipment, advances in the Internet
of Things (IoT), and improved machine learning techniques to process
large amounts of condition information. These developments enable
operators to monitor and control production facilities remotely and in
real-time.

In light of these developments, many studies aim to reduce mainte-
nance costs and improve equipment reliability by implementing flexible
maintenance policies that schedule maintenance based on condition
information. Such policies try to schedule maintenance just before
imminent failure, thereby avoiding wastage of remaining useful life
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of equipment and lowering the number of unexpected failures. The
effectiveness of such condition-based maintenance (CBM) policies,
however, heavily depends on the characteristics of the deterioration
process and on logistical planning times [4].

Another way in which the condition information can be used is by
implementing condition-based production (CBP) policies, i.e., control-
ling deterioration of equipment by dynamically adapting the produc-
tion rate based on condition information [5]. This approach exploits
the fact that machines typically deteriorate faster at higher production
rates.

The third option is the integration of both CBM and CBP into a fully
dynamic policy with condition-based maintenance and condition-based
production (CBMP). Surprisingly, despite the abundance of condition
monitoring in practice and the fact that both CBM and CBP are studied,
CBMP policies have not been considered in the literature to the best
of our knowledge. An example of a real-life system where CBMP is
expected to be valuable is an offshore wind farm. Turbine components
such as gearboxes and generators deteriorate over time and their
condition is closely monitored (e.g., by measuring noise, vibration, and
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temperature). As long as a turbine is in good condition, it can produce
at a high rate while the condition information is used to schedule
maintenance. However, initiating maintenance requires a considerable
planning time to arrange spare parts, skilled technicians, and spe-
cialized vessels. During this planning time, the condition information
cannot be used to improve maintenance decisions anymore, but it
can still be used in real time to dynamically adjust the production
rate of the turbine. Thus, once maintenance has been scheduled, the
production rate can be used as a tool to enhance equipment reliability.

A main goal of our study is to compare the performance of the
three policies (CBM, CBP, and CBMP), providing guidance on deter-
mining when the combination is particularly beneficial. Furthermore,
we analyze the structure of the optimal CBMP policy, leading to insights
on how maintenance and production flexibility can best be jointly
exploited. As our study is exploratory, we consider a single piece of
equipment with a single condition parameter. The deterioration rate
of the system depends on the adjustable production rate and thus the
deterioration process can be controlled by adapting the production
speed. We obtain numerical results by formulating Markov decision
processes.

Our study shows that the two dynamic decisions (partially) com-
plement each other for a wide range of systems. Condition-based main-
tenance aims to schedule maintenance just-in-time whereas condition-
based production extends the equipment lifetime and improves reliabil-
ity by reducing the short-term failure risk if needed. CBMP combines
both benefits by reducing the failure risk for high deterioration levels,
thereby creating the opportunity to apply a less conservative main-
tenance policy. All policies that use condition information result in
reduced failure risks, fewer maintenance interventions, and lower costs.
Moreover, integrating the two dynamic decisions improves the con-
cept of just-in-time maintenance, since CBMP performs maintenance
at higher deterioration levels than CBM while realizing fewer failures.
These results are practically relevant and of interest to reliability engi-
neers because the policies we describe are useful to prevent equipment
failures. More generally, we believe that it is important to study reli-
ability engineering problems in the broader context of the underlying
planning problems, and the logistical issues that potentially play a role.
Our study serves that purpose.

The remainder of this study is organized as follows. In Section 2,
we discuss the relevant literature on maintenance and production
decisions. In Section 3, we formally introduce the problem that we
consider. The Markov decision processes that we use to determine
optimal policies are described in Section 4. In Section 5, we discuss
the optimal policies and compare their effectiveness. We conclude and
provide future research suggestions in Section 6.

2. Literature review

Despite the growing interest in the interaction between mainte-
nance and production decisions, both fields are typically considered
in isolation. De Jonge and Scarf [6] and Ding and Kamaruddin [7]
provide general reviews on maintenance, whereas Alaswad and Xiang
[8] focus on condition-based maintenance. The literature on production
decisions under uncertainty, such as uncertain machine failures, is
reviewed by Mula et al. [9]. The most recent review that focuses
on the interaction between production and maintenance is conducted
by Sethi et al. [10]. Glock and Grosse [11] wrote a review on the effect
of controllable production rates in inventory systems. Interestingly,
the authors mention that the production rate may affect the machine
lifetime and the risk that a system goes out-of-control. However, the
option to use condition information for making production decisions is
not mentioned. In the remainder of this section, we first discuss studies
on maintenance and particularly address studies that compare the
performance of time-based maintenance with that of condition-based
2

maintenance. Thereafter we discuss studies on production decisions
that either affect the failure behavior of equipment or that include
condition monitoring.

An abundance of research in the area of maintenance optimization
exists. Within this field a distinction can be made between static time-
based maintenance policies, and dynamic condition-based maintenance
policies. Examples of recent studies that consider time-based mainte-
nance are Chaabane et al. [12] and Hashemi et al. [13], and examples
of recent studies on condition-based maintenance are Shahraki et al.
[14] and Wang et al. [15]. Studies that compare the two types of
maintenance policies are of interest when a decision between the two
needs to be made. Some existing comparative studies consider only a
single signal of potential failure [16], or a limited number of condition
states [17,18], whereas others consider deterioration on a continuous
scale. Pandey et al. [19] do so, but mainly consider the threshold for
scheduling condition-based maintenance as fixed. De Jonge et al. [4]
include the effect of various practical factors, whereas Xiang et al.
[20] include the effect of the environment. Zio and Compare [21]
and Crowder and Lawless [22] only consider a single example and do
not provide general insights. Finally, Huynh et al. [23] include random
shocks, and Bouvard et al. [24] consider multi-component systems.
Thus, many studies consider the benefit of using condition information
for maintenance decisions, but these do not use this information to
actively control the deterioration process.

The production literature shows a growing interest in the interaction
between production decisions and the failure behavior of the system.
We remark that there is also a vast amount of studies on the joint
optimization of production and maintenance decisions that assume
that the production decisions do not affect the failure behavior of the
system [e.g.,25,26] or that focus on scheduling a set of production tasks
[e.g.,27,28]. However, in the remainder of this section, we only address
studies on production planning decisions that directly affect the failure
behavior of the system, and thereby also its reliability.

Within this area, we can distinguish three main research streams.
The first and largest stream assumes that failure risks depend on
the current production rate and possibly on the age of the system.
This stream assumes that the production rate does not affect the
deterioration rate and that no condition information is available. For
instance, Martinelli [29,30,31] studies optimal production policies
for systems with production-dependent failures under multiple failure
modes. Tan [32] optimize the production rate such that inventory
holding costs are minimized in a setting with stochastic demand. Shen
et al. [33] study optimal switching policies for warm standby systems
in which idle units have a lower failure risk than the active ones, which
can be interpreted as switching between two production rates. The
studies in this stream assume that producing at higher rates increases
the current failure risk but does not result in permanent deterioration
of the system, as in our study.

The second stream takes into account production-dependent dete-
rioration, which is particularly encountered for rotating and moving
equipment such as conveyor belts, cutting tools, and wind turbine
gearboxes [34,35]. Cheng et al. [36] jointly optimize the produc-
tion rate and the scheduling of preventive maintenance actions for
cutting machines. They take into account that higher cutting speeds
reduce both the reliability and the lifetime of the machine. How-
ever, no condition information is available and only a single fixed
production rate is selected. Zied et al. [37] consider inventory, back-
log, and maintenance costs, and dynamically optimize the production
rate to balance inventory holding costs with backlog costs. The re-
lation between production and deterioration is modeled by a virtual
age (also used by others, e.g., Ouaret et al. [38] and Polotski et al.
[39]), in which aging is proportional to the production rate. Rivera-
Gómez et al. [40] study a similar setting and incorporate the possibility
that defective products are produced. The above studies do consider
production-dependent deterioration, but use virtual age models rather

than monitoring actual deterioration levels. Uit het Broek et al. [5] do
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address the value of monitoring the deterioration process for a single-
unit system with production-dependent deterioration, but restrict their
attention to condition-based production decisions for a predetermined
block-based maintenance policy. Although the studies in this stream
consider production-dependent deterioration, they do not connect it to
both condition monitoring and optimizing maintenance decisions.

The third stream incorporates condition information into policies
that optimize both maintenance and production decisions. However,
in this stream the deterioration rate cannot be controlled by adjusting
the production rate. For instance, Boukas and Liu [41] and Iravani
and Duenyas [42] study a single-unit system with inventory, backlog,
and maintenance costs. Both optimize the production and maintenance
rate, but the production rate does not affect the deterioration rate.
Within this stream, there are also studies that optimize production lot-
sizes while the production rate is either fixed or does again not affect
the deterioration process. For instance, Jafari and Makis [43], Peng
and Van Houtum [44], Cheng et al. [45,46], and Liu and Zhao [47]
consider systems with a constant production rate and determine op-
timal production lot-sizes. Condition information is used to determine
whether maintenance is initiated or a new lot is produced. In a broader
sense, also the study of Sun et al. [48] belongs to this stream. They
use condition information to optimize the reallocation of units within
a series system where the position determines the load and thereby
the deterioration rate of the unit. Although the studies in this stream
optimize production and maintenance decisions under the presence of
condition information, they do not control the deterioration rate of the
system by dynamically adjusting the production rate.

Summarizing, although there is a growing interest in the interaction
between production and maintenance, production rate decisions based
on condition information are rarely considered. Existing studies have
mainly focused on the effect of production decisions on the failure rate,
and not on how they affect deterioration. The few studies that do take
the permanent effect of the production rate into account, generally
model this by an virtual age and do not consider monitoring of the
actual deterioration level. Studies that use condition information for
production decisions either ignore the relation between the production
rate and the deterioration rate or focus on optimizing the production
batch size. To the best of our knowledge, no existing study com-
pares condition-based maintenance to condition-based production for
systems with production-dependent deterioration. Furthermore, there
is no study that jointly optimizes condition-based maintenance and
condition-based production rate decisions for such systems.

3. Problem description

We study a single-unit system whose condition can be described by
a single deterioration parameter. The production rate of the system
is adjustable over time, and the deterioration rate (i.e., the average
amount of additional deterioration per time period) depends on the pro-
duction rate. The deterioration process is described by a nondecreasing
continuous-time continuous-state stochastic process 𝑋 = {𝑋(𝑡) ∣ 𝑡 ≥ 0}.

eterioration level 0 indicates that the unit is as-good-as-new, whereas
eterioration levels exceeding 𝐿 indicate that the unit has failed.

Maintenance interventions restore the system to the as-good-as-new
tate and require a fixed and given planning time 𝑠. If the system is still
unctioning at the end of this planning time, preventive maintenance
ill be performed at a cost 𝑐pm. If, on the other hand, the system has

ailed during the planning time, a more expensive corrective mainte-
ance action at a cost 𝑐cm will be performed after the planning time.
e assume that the time that is needed to carry out maintenance is

egligible.
We let 𝜃(𝑡, 𝑥) ∈ {0, 1} be the decision variable that denotes whether

aintenance is initiated at time 𝑡 (since the last system renewal) and
ondition 𝑥. The complete maintenance policy is denoted as 𝜽 =
3

f

{𝜃(𝑡, 𝑥) ∣ 𝑡 ≥ 0, 𝑥 ≥ 0}. We let 𝑐(𝑋(𝑡)) be the maintenance cost as a
unction of deterioration level 𝑋(𝑡), that is,

(𝑋(𝑡)) =

{

𝑐pm if 𝑋(𝑡) < 𝐿,
𝑐cm otherwise.

The system can produce at different production rates that range
rom 0 (idle) to 1 (maximum rate). We denote the set of possible
roduction rates as 𝑈 = [0, 1]. When the system has failed, it cannot
roduce and the production rate is fixed at 0. We let 𝒖 = {𝑢(𝑡, 𝑥) ∣ 𝑡 ≥
, 𝑥 ≥ 0} denote the production policy. Furthermore, at the maximum
roduction rate, the system produces a revenue of 𝜋 per period. When
he system does not produce at its maximum rate, there is a revenue
oss that is proportional to the production rate 𝑢 ∈ 𝑈 , which equals
1 − 𝑢)𝜋 per time period.

The deterioration rate depends on the production rate and is de-
oted by 𝑔(𝑢). We refer to this function as the production–deterioration
elation (pd-relation for short). The pd-relation 𝑔 is assumed to be
ncreasing because the system is assumed to deteriorate faster for
igher production rates. We let 𝜇min = 𝑔(0) and 𝜇max = 𝑔(1) denote
he minimum and maximum deterioration rate, respectively. Moreover,
or a given production rate 𝑢, we consider a stationary deterioration
rocess, i.e., the deterioration increments do not depend on the current
eterioration level.

Our aim is to minimize the long-run average cost. This is a suitable
ptimality criterion in settings where decisions need to be made very
requently and where the process repeats itself time and again [49],
hich is also the case for our problem. Discounting has a negligible
ffect in such settings. Examples of other recent studies in the area of
aintenance that also consider this criterion are Havinga and De Jonge

50] and Hu and Chen [51]. We continue to express the costs as
function of a given maintenance policy 𝜽 and a given production

olicy 𝒖. For a given maintenance policy 𝜽 and a given realization of the
deterioration process 𝑋, we can derive all moments 𝜏𝑖, 𝑖 ∈ N, at which

aintenance is performed. Recall that maintenance requires a fixed
lanning time 𝑠, and thus the first maintenance action is performed 𝑠
ime units after maintenance is initiated for the first time, that is,
0 = inf{𝑡 ≥ 0 ∣ 𝜃(𝑡, 𝑋(𝑡)) = 1} + 𝑠. We find the subsequent maintenance
oments by 𝜏𝑖 = inf{𝑡 > 𝜏𝑖−1 ∣ 𝜃(𝑡, 𝑋(𝑡)) = 1} + 𝑠, 𝑖 ∈ N∖{0}.

For a given 𝜽 and 𝒖, the total expected cost up to time 𝑡 equals

(𝜽, 𝒖, 𝑡) = 𝐸

[ ∞
∑

𝑖=0
𝐼{𝜏𝑖≤𝑡} ⋅ 𝑐(𝑋(𝜏𝑖))

]

+ 𝜋 ⋅ 𝐸

[

∫

𝑡

0

(

1 − 𝑢(𝑠,𝑋(𝑠))
)

d𝑠
]

,

here 𝐼{𝜏𝑖≤𝑡} is the indicator function that equals one if 𝜏𝑖 ≤ 𝑡 and zero
therwise. The first term represents the expected maintenance costs and
he second term the expected revenue losses. We define the long-run
verage cost as

(𝜽, 𝒖) = lim sup
𝑡→∞

𝐽 (𝜽, 𝒖, 𝑡)
𝑡

.

The minimal long-run average cost equals 𝐽 ∗ = inf𝜽,𝒖 𝐽 (𝜽, 𝒖). Our aim
is to determine a joint maintenance and production policy (𝜽∗, 𝒖∗) that

inimizes the long-run average costs, that is, to determine 𝜽∗ and 𝒖∗
uch that 𝐽 (𝜽∗, 𝒖∗) = 𝐽 ∗.

.1. Control strategies

We define a strategy as a combination of a production policy and
maintenance policy. The various strategies that we consider differ in

heir flexibility regarding the maintenance and production decisions.
e consider two maintenance policies (referred to as block-based and
ondition-based) and two production policies (referred to as max-rate
nd condition-based rate).

In the remainder of this study, we let the fixed maintenance and
roduction (FMP) strategy refer to a block-based maintenance policy
ombined with the max-rate production policy. This strategy has no

lexibility and does not use condition information. The condition-based
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production (CBP) strategy employs a block-based maintenance policy
combined with an adjustable production rate. The condition-based main-
tenance (CBM) strategy refers to a condition-based maintenance policy
combined with the max-rate production policy. The condition-based
maintenance and production (CBMP) strategy combines condition-based
maintenance with condition-based production.

Maintenance policies
The block-based maintenance policy is a static maintenance policy

that fixes all maintenance actions in advance. Under this policy, the
decision maker selects a block length 𝑇 and maintenance is performed
every 𝑇 time units. We refer to such a time interval of 𝑇 time units
as a block. If the unit is functioning at the end of a block, preventive
maintenance is performed; otherwise more expensive corrective main-
tenance is required. Additional maintenance actions during a block are
not possible. Thus, a system failure results in production losses until
the end of the current block. This maintenance policy is not affected
by the planning time since it fixes all maintenance actions in advance.

We remark that, in theory, this policy can lead to very long down-
times in case of an early failure during a block. However, for the
optimal block-based maintenance policy, any failures typically occur
towards the end of the block (see also Section 5). In this case, generally
either (i) the required planning time does not allow for an additional
maintenance action before the scheduled maintenance action anymore,
or (ii) it is preferred to have a short amount of downtime instead of
additional maintenance just before the planned action. Furthermore,
adding the possibility to schedule additional maintenance upon failure
would complicate our block-based maintenance model, and thereby
distract from our main message.

The condition-based maintenance policy is flexible and allows the
decision maker to plan maintenance interventions based on the con-
dition information. Thus, given the current deterioration level 𝑥 it is
determined whether maintenance will be scheduled, independent of
the current time. Recall that there is a maintenance planning time 𝑠
between initiating and performing maintenance. The case 𝑠 = 0 implies
that maintenance can be carried out instantaneously. At the end of the
planning time, preventive maintenance is carried out if the system is
still functioning, whereas corrective maintenance is performed if the
system has failed. System failure before or during the planning time
results in production losses until the end of the planning time.

Production policies
The production policies define a set of admissible production rates,

denoted by (𝑥), as a function of the current deterioration level 𝑥 ∈ 𝑋.
Under the max-rate policy, the system produces at its maximum rate
as long as it is functioning. Thus the set of admissible production rates
equals

(𝑥) =

{

{1} if 𝑥 < 𝐿,
{0} if 𝑥 ≥ 𝐿.

The condition-based production policy is fully flexible and allows the
decision maker to control the production rate at any time, and so

(𝑥) =

{

𝑈 if 𝑥 < 𝐿,
{0} if 𝑥 ≥ 𝐿.

4. Markov decision process formulation

The solution procedure that we use to determine optimal policies is
the formulation and analysis of Markov decision processes (MDPs). This
framework is applicable to sequential decision making problems with
outcomes that are partially uncertain, which is also the case for our
problem. Markov decision processes are typically used in discrete-time
settings with a finite number of states [49]. Therefore, in Section 4.1,
we first discuss how we discretize the state space, the time horizon,
and the set of admissible production rates. The structure of the Markov
4

decision process depends on the maintenance policy that is used. In
Section 4.2, we formulate an MDP with a finite time horizon for
the block-based maintenance policy. Thereafter, in Section 4.3, we
formulate an MDP with an infinite time horizon for the condition-based
maintenance policy.

4.1. Discretization

We partition the continuous deterioration interval [0, 𝐿] into 𝑚
equally sized intervals of length 𝛥𝑋 = 𝐿∕𝑚, and then discretize this
to the ordered set of midpoints �̄� = {(𝑖 + 0.5)𝛥𝑋 ∣ 𝑖 = 0,… , 𝑚 − 1}.

ll deterioration levels above 𝐿 are merged into a single state with
ndex 𝑚 that indicates system failure. The time horizon is discretized
nto periods with length 𝛥𝑡, and there is a decision epoch at the start
f each period. The continuous set of production rates is discretized
nto 𝑛 + 1 production rates that are uniformly distributed between the
inimum and maximum production rate, that is, �̄� = {𝑖∕𝑛 ∣ 𝑖 =

0,… , 𝑛}. Note that we can approximate a continuous system arbitrarily
close by setting the step sizes sufficiently small, although smaller step
sizes also result in increased computation times.

We let 𝐹𝛥𝑡,𝑢 denote the distribution function of the additional
mount of deterioration during a time period 𝛥𝑡 when producing at

rate 𝑢. For ease of notation, we drop the subscript 𝛥𝑡 in the remainder
of this study. To obtain the transition probabilities in the discretized
process, we set the probability of staying in the same deterioration state
to 𝐹𝑢(0.5𝛥𝑋); the probability of moving from state 𝑘 to state 𝑘+𝑖, where
𝑖 ≥ 1 and 𝑘+𝑖 < 𝑚, to 𝐹𝑢((𝑖+0.5)𝛥𝑋)−𝐹𝑢((𝑖−0.5)𝛥𝑋); and the probability
of moving from state 𝑘 to the failed state 𝑚 to 1−𝐹𝑢((𝑖−0.5)𝛥𝑋) where
𝑖 = 𝑚 − 𝑘. Summarizing, the transition probabilities of the discrete
deterioration process are

𝑃𝑢(𝑘, 𝑘 + 𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑖 < 0,
𝐹𝑢(0.5𝛥𝑋) if 𝑖 = 0,
𝐹𝑢((𝑖 + 0.5)𝛥𝑋) − 𝐹𝑢((𝑖 − 0.5)𝛥𝑋) if 0 < 𝑖 < 𝑚 − 𝑘,
1 − 𝐹𝑢((𝑖 − 0.5)𝛥𝑋) if 𝑖 = 𝑚 − 𝑘.

4.2. MDP for block-based maintenance

The block-based maintenance policy results in a renewal process in
which the maintenance actions are the renewal points. Each block starts
at the as-good-as-new deterioration level, regardless of the actions and
deterioration realizations in previous blocks. As a result, for a given
block length 𝑇 , it is sufficient to minimize the total expected costs
during a single block. Thus, systems with a block-based maintenance
policy can be formulated as an MDP with a finite time horizon. Below
we formulate such an MDP, and in our numerical analysis we use the
backward induction algorithm [49, ch. 4.5] to determine corresponding
optimal policies.

We let 𝜏 ∈ {0, 𝛥𝑡, 2𝛥𝑡,… , 𝑇 } denote the remaining time until the end
of the current block, i.e., maintenance is performed when 𝜏 = 0. Let
𝑉 (𝑥, 𝜏) denote the total expected cost in the remainder of the current
block given that the current deterioration level of the system is 𝑥 ∈ �̄�.
At the end of the block, maintenance is performed and thus

𝑉 (𝑥, 0) =

{

𝑐pm if 𝑥 < 𝑚,
𝑐cm if 𝑥 = 𝑚.

In all other periods, a production rate 𝑢 can be selected. This affects
the production loss (1 − 𝑢)𝜋𝛥𝑡 and the expected future costs. Thus, for
𝜏 > 0 we get

𝑉 (𝑥, 𝜏) = min
𝑢∈�̄� (𝑥)

{

(1 − 𝑢)𝜋𝛥𝑡 +
𝑚−𝑥
∑

𝑖=0
𝑃𝑢(𝑥, 𝑥 + 𝑖)𝑉 (𝑥 + 𝑖, 𝜏 − 𝛥𝑡)

}

,

where �̄� (𝑥) is the discretized set of admissible production rates for a
given production policy, as described in Sections 3.1 and 4.1.

The expected total costs during a single block of length 𝑇 equals
𝑉 (0, 𝑇 ), and the long-run average cost per time unit equals 𝑉 (0, 𝑇 )∕𝑇 .
We find the optimal block length 𝑇 ∗ by solving the system up to a suffi-
ciently large value 𝜏 and selecting 𝑇 ∗ ∈ argmin {𝑉 (0, 𝑇 )∕𝑇 }.
max 0<𝑇≤𝜏max
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4.3. MDP for condition-based maintenance

We formulate systems with a condition-based maintenance policy as
an MDP with an infinite time horizon. In our numerical examples we
use the value iteration algorithm [49, ch. 8.5] to determine 𝜖-optimal
policies. We let 𝜏 ∈ 𝑆 ∶= {0, 𝛥𝑡, 2𝛥𝑡,… , 𝑠,ns} denote the remaining
lanning time until the next scheduled maintenance intervention, in
hich ‘ns’ indicates that maintenance is not scheduled yet. The state of

he system is described by the current deterioration level 𝑥 ∈ �̄� and the
remaining planning time 𝜏. Let 𝑉𝑛(𝑥, 𝜏) denote the value function after 𝑛
iterations of the value iteration algorithm. At the end of the planning
time (i.e., 𝜏 = 0), maintenance is performed and the deterioration level
immediately jumps to the as-good-as-new level. After maintenance is
performed, the production decision is the same as if we started the time
period at deterioration level 𝑥 = 0, and thus

𝑉𝑛(𝑥, 0) =

{

𝑐pm + 𝑉𝑛(0,ns) if 𝑥 < 𝑚,
𝑐cm + 𝑉𝑛(0,ns) if 𝑥 = 𝑚.

During the planning time (i.e., 0 < 𝜏 ≤ 𝑠), the decision maker can
only decide on the production rate 𝑢. The remaining planning time is
reduced by 𝛥𝑡, regardless of the production decision. The value function
during the planning time equals

𝑉𝑛(𝑥, 𝜏) = min
𝑢∈�̄� (𝑥)

{

(1 − 𝑢)𝜋𝛥𝑡 +
𝑚−𝑥
∑

𝑖=0
𝑃𝑢(𝑥, 𝑥 + 𝑖)𝑉𝑛−1(𝑥 + 𝑖, 𝜏 − 𝛥𝑡)

}

.

Before maintenance is scheduled (i.e., 𝜏 = ns), the decision maker
can decide on the production rate and whether or not to schedule
maintenance. If maintenance is scheduled, the remaining planning time
is set to 𝜏 = 𝑠. Otherwise, the remaining planning time remains 𝜏 = ns.
The value function before maintenance is scheduled optimizes over
these two options by choosing 𝜏 ∈ {ns, 𝑠}, and equals

𝑉𝑛(𝑥,ns) = min
𝜏∈{ns,𝑠}, 𝑢∈�̄� (𝑥)

{

(1 − 𝑢)𝜋𝛥𝑡 +
𝑚−𝑥
∑

𝑖=0
𝑃𝑢(𝑥, 𝑥 + 𝑖)𝑉𝑛−1(𝑥 + 𝑖, 𝜏)

}

.

e initialize the value iteration algorithm by setting 𝑉0(𝑥, 𝜏) = 0 for all
∈ �̄� and 𝜏 ∈ 𝑆.

. Numerical analysis

We continue by analyzing the effectiveness of the various strategies.
ur approach is to first consider a base case and then present a

ensitivity analysis where we vary the different system parameters.
he base case is chosen somewhat arbitrarily, but in such a way
hat the effects are representative for a large set of instances that we
nitially considered. Furthermore, we believe that the chosen values
re practically realistic and in accordance with other studies. Using
he base case, we describe through what mechanisms CBP reduces
ost, how the performance of CBM compares to that of CBP, and how
he two interact with each other. A sensitivity analysis then continues
o explore when CBP and CBM are particularly effective in isolation
r in combination (i.e., CBMP). Before discussing the results, we first
ntroduce the deterioration process and the base case parameter values
hat we consider.

.1. Deterioration process

Various stochastic processes have been suggested in the literature
o model deterioration, including compound Poisson processes, Brow-
ian motions with drift, and gamma processes. In this study, we use
tationary gamma processes since these are the most appropriate to
odel monotonically increasing deterioration such as erosion, wear,

nd fatigue [8,52]. The stationary gamma process is a flexible process
or which the deterioration rate and volatility can be controlled by
wo parameters. This enables us to study a wide scope of systems
ith different deterioration characteristics. The gamma process is a
5

i

ontinuous-time continuous-state process, and we will discretize it as
escribed in Section 4.1.

The increments of a gamma process are independently gamma
istributed. Denoting the shape parameter by 𝛼 > 0 and the scale
arameter by 𝛽 > 0, the gamma density function for the increment per
ime unit is given by

𝛼𝛽 (𝑥) =
𝑥𝛼−1 exp(−𝑥∕𝛽)

𝛤 (𝛼) 𝛽𝛼
,

here 𝛤 (𝛼) = ∫ ∞
0 𝑧𝛼−1 exp(−𝑧) d𝑧 is the gamma function. The deteri-

ration increment 𝑌 per time unit has mean 𝐸[𝑌 ] = 𝛼𝛽 and variance
ar(𝑌 ) = 𝛼𝛽2. The density function corresponding to increments per
eriod with length 𝛥𝑡 is obtained by scaling the shape parameter to 𝛼𝛥𝑡.

We relate the shape and scale parameters to the pd-relation 𝑔 such
hat the deterioration increment per time unit has the following three
roperties. First, the deterioration increments have mean 𝐸[𝑌 ∣ 𝑢] =
(𝑢). Second, if the system produces at the maximum rate, the variance
f the deterioration increments equals Var(𝑌 ∣ 𝑢 = 1) = 𝜎2max. Third,
he coefficient of variation (i.e., the standard deviation divided by the
ean) of the deterioration increments is not affected by the production

ate. It can easily be verified that this is accomplished by setting the
hape parameter equal to 𝛼 = 𝜇2

max∕𝜎
2
max and the scale parameter, as a

unction of the production rate, equal to 𝛽(𝑢) = 𝑔(𝑢) ⋅ 𝜎2max∕𝜇
2
max (recall

hat 𝑔(1) = 𝜇max).

.2. Base case system

The base case parameter values are listed in Table 1. The preventive
aintenance cost is 𝑐pm = 20 and the corrective maintenance cost is

cm = 100. For real-life systems, for instance wind turbines, corrective
aintenance is often much more costly than preventive maintenance,

ecause of collateral damage and the lower salvage value of failed
omponents. The revenue when producing at the maximum rate is
ormalized to 𝜋 = 1 per time unit. The system fails at deterioration
evel 𝐿 = 100, and maintenance requires a planning time of 𝑠 = 5 time
nits.

For the pd-relation we consider the same parametric form as Uit
et Broek et al. [5], that is, 𝑔(𝑢) = 𝜇min + (𝜇max − 𝜇min)𝑢𝛾 . This
arametric form with three parameters is very flexible and can be used
o model a wide variety of relations between the production speed
nd the deterioration speed. When the approach is applied in practice,
ondition and production speed data can be used to estimate the values
f the parameters. The pd-relation is concave for 0 < 𝛾 < 1, linear
or 𝛾 = 1, and convex for 𝛾 > 1. The parameter 𝜇min = 0.1 describes
he deterioration rate when the system is idle, and 𝜇max = 1.5 is the
eterioration rate when the system produces at the maximum rate. For
he base case we set 𝛾 = 1.5, and also in the sensitivity study we mainly
ocus on convex pd-relations as those are conceivably most likely to
e encountered in real-life systems. For instance, blades of gas turbines
otate at varying speeds, and the resulting stress increases quadratically
n this speed [53]. Murthy and Jack [54] also elaborate on the relation
etween usage intensity and degradation.

The expected time until failure when producing at the maximum
ate equals approximately 𝐿∕𝜇max ≈ 67 time units. The system only has
o produce 𝑐pm∕𝜋 = 20 time units at the maximum rate to compensate
or the preventive maintenance cost and thus the system is expected
o be profitable. However, an expensive failure is expected to result
n a loss-making cycle because producing at the maximum rate for
cm∕𝜋 = 100 time units is required to compensate for this.

To closely approximate the continuous deterioration process, we
artition the time horizon and the deterioration levels into small in-
ervals with respective lengths 𝛥𝑡 = 1.0 and 𝛥𝑋 = 0.05. Note that 𝛥𝑋
hould be small compared to the expected deterioration increment per
ime period, that is, 𝛥𝑋 ≪ 𝛥𝑡 ⋅ 𝜇max. The continuous action space is
iscretized into 𝑛 = 50 non-idle production rates. We note in passing
hat we also considered other base cases. The results for the other base
ases were comparable to the current one and did not provide new

nsights, we therefore did not include those.
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Table 1
Base case system used in the numerical analysis.

Parameter Value Interpretation

𝑐pm 20.00 Preventive maintenance cost
𝑐cm 100.00 Corrective maintenance cost
𝜋 1.00 Production revenue at maximum rate
𝐿 100 Failure deterioration level
𝑠 5 Planning time for maintenance
𝛾 1.50 Shape of pd-relation
𝜇min 0.10 Mean of deterioration increments when idle
𝜇max 1.50 Mean of deterioration increments at maximum rate
𝜎max 3.00 Standard deviation of deterioration increments
𝑛 50 Number of non-idle production rates
𝛥𝑡 1.00 Length of time periods
𝛥𝑋 0.05 Discretization size deterioration

Table 2
Performance statistics for the four strategies when applied to the base case.

Fixed CBP CBM CBMP

PM threshold 𝑇 or 𝑀 𝑇 = 42 𝑇 = 60 𝑀 = 70.20 𝑀 = 78.80
Mean cost per time unit 0.562 0.424 0.409 0.379
St.dev. cost per time unit 4.343 2.834 3.353 2.957
Mean production per time unit 0.995 0.922 0.999 0.977
Mean time to maintenance 42.00 60.00 53.31 59.19
Mean time between failures 995.12 6365.37 2456.39 4525.96
Mean deterioration at maintenance 62.46 81.43 79.75 86.11

5.3. Cost savings for the base case system

We examine the effectiveness of flexible production and flexible
maintenance decisions by comparing the four control strategies intro-
duced in Section 3.1. Table 2 compares the performance of the four
considered strategies when applied to the base case. For block-based
maintenance with production at the maximum rate, the optimal block
length is 42 periods and the mean time between failures (MTBF) is
995 periods, implying that failure occurs only during 4% of the blocks.
Noting that the expected deterioration level at the end of the block is 63
and the failure deterioration level is 100, these failures typically occur
towards the end of the block. This means that periods of downtime
are short and generally overlap with the planning time. Other purely
time-based maintenance policies would therefore result in preventive
maintenance that is carried out at a similar frequency. For block-
based maintenance with condition-based production (CBP) the chance
of failure during a block is further reduced to less than 1%.

Overall observations are that the fixed strategy is by far the worst,
that CBM is slightly more effective than CBP considering expected costs,
and that introducing a flexible production policy has the positive side-
effect of lowering the cost variance. We also see that having both
a flexible maintenance and a flexible production policy reduces the
expected cost even further. Next, we will explain these results by
studying the optimal policies more closely.

Condition-based production
Because CBM has been studied much more extensively than CBP,

we start by discussing the optimal structure of the CBP strategy. With
an adjustable production rate, the optimal block length turns out to be
𝑇 = 60. The results for this policy are largely in line with the findings
of Uit het Broek et al. [5], although they predetermined rather than
optimized the block length, and we refer to their study for a detailed
discussion of the CBP policy structure in this case. Fig. 1 shows the
production rate in gray scale, ranging from black (no production) to
white (maximum rate). The solid line indicates the expected deteriora-
tion trajectory, whereas the dashed lines indicate a region that contains
the deterioration level with 95% certainty for a given point in time.

Three areas can be distinguished in Fig. 1. Firstly, for low deterio-
ration levels compared to the remaining time until maintenance (white
lower triangular area), a failure is unlikely and the system produces
6

Fig. 1. The optimal production rate for the CBP strategy in gray scale, ranging from
black (no production) to white (maximum rate). The solid line indicates the expected
deterioration trajectory, and the dashed lines indicate a region that contains the
deterioration level with 95% certainty at a given point in time.

at the maximum rate. Secondly, for intermediate to high deterioration
levels (gray area), the production rate is gradually reduced in order to
reduce the deterioration rate, resulting in a lower risk of failure and
improved reliability. Thirdly, for extremely high deterioration levels
compared to the remaining time to maintenance (small white upper
triangular area), failure is almost certain, and production is maximized
by producing at the maximum rate. It has to be noted, however, that
the effect of this third area on the long-run average cost is negligible
as its states are almost never reached.

We also note from the upper dashed line in Fig. 1 that CBP does not
immediately slow down production when the system deteriorates faster
than expected. As long as there is sufficient time to prevent failure
at a later stage, it is better to continue producing at the maximum
rate, since it is possible that deterioration in the remainder of the
block is lower than expected. If this does not happen, then production
can still be slowed down, whereas lost production cannot be made up
for. Another observation from Fig. 1 is that, even under the expected
deterioration path (solid line), production is slowed down towards the
end of the block. This reduces the volatility of the deterioration process,
and thereby reducing the risk of failure due to a large deterioration
increment.

Fig. 2 shows the effect of the block length on the average cost per
time period, the probability that the system fails during a block, and the
mean production per period for both the fixed strategy (dashed) and the
CBP strategy (solid). For block lengths exceeding 40, the failure risk
under the fixed strategy rapidly increases and therefore this strategy
cannot permit to schedule longer blocks. The CBP strategy reduces the
failure risk by reducing the production rate when needed. This allows
CBP to be less conservative and schedule considerably longer blocks
(𝑇 ∗ = 60 instead of 𝑇 ∗ = 42), while simultaneously increasing the
MTBF from 995 to 6365 periods, and reducing the average cost per
time period by 25% compared to the fixed strategy.

Besides the cost reduction, CBP also achieves a significantly lower
cost standard deviation (2.83 instead of 4.34) by reducing the number
of expensive failures. Note that in terms of cost, the CBP strategy is
also less sensitive to small changes in the block length, which offers
a practical advantage as in real-life systems the exact maintenance
moment may be uncertain.

Condition-based maintenance and production
We continue with the two strategies with condition-based main-

tenance (i.e., CBM and CBMP) and compare their performance to
the strategies with a static maintenance policy (i.e., FMP and CBP).
Introducing only a flexible maintenance policy (CBM) reduces the cost
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Fig. 2. Effect of block length 𝑇 on the costs per period, the failure risk per block, and the mean production per period for the fixed strategy (dashed blue) and the CBP strategy
(solid red). The dots indicate the optimal block length for both strategies.
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by 27% compared to the fixed strategy, and is thus slightly more cost
effective than CBP for the base case. The main advantage of CBM over
CBP is its higher production output, as it does not slow down produc-
tion to control deterioration. On the other hand, CBM performs more
maintenance actions than CBP (mean time to maintenance of 53 instead
of 60), and still fails around 2.6 times as often. This is partially caused
by the inability of CBM to respond to large deterioration increments
during the planning time, whereas CBP can lower the production speed
at any time. Failures imply high maintenance cost and thus the higher
number of failures also explains the higher standard deviation of the
cost for CBM compared to CBP.

The cost reduction by introducing both an adjustable production
rate and a flexible maintenance policy (i.e., CBMP) is 33%, imply-
ing that condition-based production and condition-based maintenance
partially complement each other. The adjustable production rate im-
proves the condition-based maintenance policy in three ways. First,
the failure risk during the planning time is lower because the opera-
tor can respond to the actual deterioration. This clearly reduces the
expected maintenance cost per cycle. Second, exploiting this benefit,
a less conservative preventive maintenance threshold is used, resulting
in fewer maintenance actions. Third, if during the planning time the
system deteriorates so fast that a failure becomes (almost) unavoidable,
then the expected production losses are minimized by producing at a
more efficient rate until failure occurs. The phenomenon that failures
are sometimes unavoidable is an immediate consequence of the fact
that deterioration is stochastic and that even idle systems may slowly
deteriorate. However, although such states do exist, it is unlikely to
reach these states under the optimal policy and the additional cost
savings of optimizing the production rate for such states is only small.
Furthermore, in practice, systems will generally be turned off in such
states for safety reasons. Recall that CBP lowers the production rate
towards the end of a block in order to reduce the risk of a failure
even if deterioration is as expected. A similar observation applies to the
CBMP strategy, but now production is slowed down towards the end of
the planning period, unless deterioration is much lower than expected.
Moreover, for various systems, production is even already slowed down
before maintenance is scheduled. We conclude that the ability to vary
the production rate is exploited in a wide range of scenarios.

5.4. Parameter sensitivity

In the previous section, we have seen that both CBM and CBP
realize considerable cost savings in the base case, and applying them
together is even more effective. However, the joint cost savings are
less than the sum of the separate savings, showing that CBM and
CBP only partly complement each other for the base case. In this
section, we perform a sensitivity study to obtain further insights into
the comparative performance of CBM and CBP and into whether the
two can enhance each other’s performance. Besides cost savings, we
also consider other performance measures such as expected production,
7

mean time between maintenance, and probability of a failure. The
results are obtained by studying the base case system while deviating
various parameters one by one.

Planning time
We first consider the planning time 𝑠 required to carry out mainte-

nance, see Fig. 3. The fixed strategy and the CBP strategy use block-
based maintenance policies that are not affected by the planning time,
and we indeed see that the costs for these strategies are independent
of 𝑠. CBP realizes a cost saving of 25% compared to the fixed strategy,
regardless of the planning time. CBM realizes a cost saving of 34% when
there is no planning time, and its effectiveness obviously decreases
in the length of the planning time. If the planning time equals the
optimal block length under the fixed strategy (i.e., 𝑇 = 42), then CBM
mmediately schedules maintenance upon each maintenance action and
s not able to realize a cost saving compared to the fixed strategy.

CBMP utilizes the condition information to both schedule mainte-
ance and adapt the production rate. However, similar to the CBM
olicy, the value of condition information for the maintenance planning
ecreases if the planning time increases. As a result, CBMP converges
o CBP as 𝑠 increases. For short planning times, the major part of the
ost saving is due to the condition-based maintenance decisions and we
ndeed see that CBM and CBMP result in almost the same cost if there is
o planning time. A marginal cost difference exists because CBMP can
se a slightly higher maintenance threshold by reducing the production
ate already before maintenance is scheduled, thereby reducing the
olatility of the deterioration increments and thus reducing the risk of
n instant failure.

We observe that for planning times of at least 37 periods, the cost
aving of CBMP is larger than the sum of cost savings of CBM and
BP. Thus, the two dynamic decisions can enhance each other’s per-

ormance.
We conclude that the planning time strongly affects the effectiveness

f the various policies. For short planning times, CBM outperforms CBP,
hereas for longer planning times CBP is preferred. Although CBM is
referred when the planning time is short, CBP realizes a considerable
ost saving as well and can thus be a viable alternative for CBM based
n factors not considered in this study. On the other hand, for long
lanning times, CBM does not reduce costs and is thus not a viable
lternative for CBP in that case. Moreover, CBMP is by far the most
eneficial for intermediate planning times.

aintenance cost and revenue
Fig. 4 shows how the cost savings of the condition-based strategies

re affected by the other system parameters. We first assess the effect of
he corrective maintenance cost. If 𝑐cm equals 𝑐pm, CBP only marginally

reduces cost compared to the fixed strategy by 1% while CBM realizes
a considerable cost saving of 18%. The small cost saving realized by
CBP is because the total production can be increased in the rare case a

failure is virtually inevitable. Thus, if failures do not induce additional
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Fig. 3. Effect of planning time 𝑠 on the total average cost and on the relative cost saving compared to the fixed strategy. The results are given for the fixed strategy (dotted blue),
CBM (dot dashed orange), CBP (dashed red), and CBMP (solid black).
Fig. 4. Effect of various parameters on the relative cost savings of CBP (dashed red), CBM (dot dashed orange), and CBMP (solid black) compared to the fixed strategy.
osts on top of the preventive maintenance cost, then CBM is clearly
ore effective than CBP. This is intuitive as it is not beneficial to avoid
failure by slowing down production, which is the main benefit of an

djustable production rate.
For increasing corrective maintenance costs, avoiding failures be-

omes more important. CBM can only achieve this by being conser-
ative and initiating maintenance at a lower deterioration threshold,
.e., the maintenance policy has to be robust for above average deterio-
ation. CBP, on the other hand, can use a more optimistic maintenance
olicy and predominantly uses the adjustable production rate to avoid
ailure which only causes additional costs when above average dete-
ioration is observed. For instance, if 𝑐cm increases from 25 to 250,

CBM decreases the maintenance threshold from 86.2 to 63.9 while CBP
only reduces the block length from 62 to 60. Moreover, for extremely
high corrective maintenance costs (say 𝑐cm ≥ 400), CBP becomes
nsensitive to changes in the corrective maintenance costs as the failure
isk becomes negligible while costs under CBM continue to increase.
inally, as long as corrective maintenance is more expensive than
reventive maintenance, the adjustable production rate complements
he condition-based maintenance policy by reducing the failure risk
uring the planning time.

Considering the effect of the production revenue 𝜋, we observe that
8

BM becomes slightly more cost-effective when the production revenue
increases, while CBP becomes significantly less effective. CBP reduces
the maintenance cost by decelerating the production rate, which is
more expensive for high values of 𝜋. For extremely high production
revenues, it is optimal to only focus on maximizing production and
avoid failures by scheduling very short blocks, thus CBP converges to
the fixed strategy.

Volatility deterioration increments
The third graph shows the effect of the volatility of the deterioration

increments. For standard deviations close to zero, the deterioration
process is stable, implying that condition information has limited value.
When the volatility starts to increase, all condition-based strategies
effectively use the condition information and considerably outperform
the fixed strategy. CBP reduces the failure risk during a block and
improves the reliability by decreasing the production rate when the de-
terioration level is high relative to the remaining time to maintenance.
Doing so allows this strategy to be less conservative and schedule longer
blocks than the fixed strategy (e.g., 𝑇 = 62 versus 𝑇 = 47 for 𝜎max = 2).
However, the flexible production rate comes with revenue losses, while
the flexibility of CBM does not induce additional costs. As a result, CBP
is slightly less effective than CBM for small volatilities.
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For intermediate volatilities, the uncertainty during the planning
time becomes considerable, and CBM has to significantly lower the
threshold at which maintenance is initiated to cope with this uncer-
tainty. However, the volatility is still low enough to be handled by
adjusting the production rate. As a result, combining both dynamic
decisions is most advantageous for an intermediate volatility.

For high volatilities, the system does not gradually deteriorate
but failures are likely to be caused by a single extreme deterioration
increment. Such shocks arrive suddenly and condition monitoring does
not provide any information on the arrival of these shocks. CBP reduces
their magnitude by producing at a lower rate, such that the system
is not expected to fail from a single shock, and immediately switches
to the idle mode after a shock occurred. For extremely high volatil-
ities, reducing the size of the shocks does not outweigh the induced
production losses and we indeed observe that the cost savings of CBP
diminish if the volatility continues to increase. CBM and CBMP, on the
other hand, produce at the maximum rate until the system fails and
then schedule maintenance, thereby even reducing costs for extremely
volatile processes.

Parameters pd-relation
We continue with the effect of the pd-relation parameters 𝛾, 𝜇min,

and 𝜇max, see the bottom three graphs of Fig. 4. Recall that 𝛾 describes
whether the pd-relation is concave (0 < 𝛾 < 1) or convex (𝛾 > 1). The
minimum deterioration rate ranges from no deterioration when idle
(𝜇min = 0) to maximum deterioration when idle (𝜇min = 𝜇max = 1.5),
in which case the production rate does not affect the deterioration
rate. The major insights are that (1) all strategies realize a significant
cost saving for all values of 𝛾, (2) for concave pd-relations CBM is
preferred while CBP is better for ‘more convex’ pd-relations, (3) CBM
and CBP complement each other for all values for 𝛾, and (4) condition-
based production decisions improve the CBM policy even if 𝜇min is high
compared to 𝜇max. Finally, the cost savings of CBM decrease as 𝜇max
increases, whereas the cost savings of CBP actually increase. Higher
values for 𝜇max imply that the system deteriorates faster and, as a result,
both the fixed strategy and CBM have to schedule more maintenance
interventions, thereby considerably increasing costs. CBP overcomes
this by slightly reducing the production rate. For very high values of
𝜇max, CBP already reduces the production rate for low deterioration
levels in order to produce at a more efficient rate. Note that, similar
to the planning time parameter 𝑠, CBM converges to the fixed strategy
if 𝜇max continues to increase.

5.5. Parameter estimation errors

So far we have assumed that all system parameters are known with
certainty, whereas in practice various parameters must be estimated.
In this section, we compare the robustness of the considered strategies
with respect to incorrect estimations of the parameters of the deterio-
ration process. Although all system parameters are uncertain to some
extent, we focus on the mean and the standard deviation of the dete-
rioration increments per time unit as they are crucial for maintenance
and production decisions. We vary the estimated mean �̂�max from 0.2
(almost no deterioration) to 3.0 (twice as fast as the base system), while
the coefficient of variation is kept constant. The estimated standard
deviation �̂�max ranges from 0.2 (very stable deterioration) to 6.0 (twice
as volatile as the base system).

Fig. 5 shows the average costs of all four strategies when they are
optimized based on the estimated values �̂�max (top) and �̂�max (bottom)
but are applied to our base system with 𝜇max = 1.5 and 𝜎max = 3.0.
For the base system (left panels), the three main observations are
that the fixed strategy is significantly more sensitive to estimation
errors in the mean than the condition-based strategies, that the three
condition-based strategies are similarly affected by estimation errors for
both the mean and the standard deviation, and that underestimating
9

parameters is often worse than overestimating them. Note that for
large underestimations of the deterioration rate, the cost of the fixed
strategy actually decreases if the estimation error increases further. This
is because for large underestimations, the fixed strategy schedules too
long blocks and the system is likely to fail every block, resulting in
very high maintenance costs. The production revenues do not outweigh
the corrective maintenance costs and it is better to schedule even
fewer maintenance interventions, which happens if the estimated value
decreases further.

The agility of CBP compared to that of CBM explains its more robust
performance with regard to estimations errors. CBP can quickly react
to the actual deterioration level if this differs from what was expected.
This particularly allows, in case of underestimation of the deterioration
rate, to better prevent expensive corrective maintenance actions by
continuously adjusting the production rate based on the actual de-
terioration level. Furthermore, overestimating the mean deterioration
rate leads to unnecessarily early maintenance interventions under CBM,
which are relatively costly compared to the slightly reduced production
rates under CBP.

Summarizing, the fixed strategy is very sensitive to estimation
errors, as it plans maintenance without condition information and is
not able to adapt. CBM does adapt by planning maintenance based
on the observed level of deterioration, but can no longer react after
maintenance has been planned. As a result, CBM is more robust than
the fixed strategy but still quite sensitive to estimation errors if the
planning time is long and/or corrective maintenance is expensive.
Under such conditions, CBP and CBMP achieve a much lower cost when
the deterioration process is mis-estimated, by adjusting the production
rate according the actual deterioration level.

6. Conclusion

Ongoing developments in the fields of online condition monitoring
and real-time decision making create opportunities to operate industrial
systems more efficiently and reliably by implementing condition-based
maintenance (CBM) or condition-based production (CBP). Although
these policies have both been studied in isolation, we are the first to
compare them and to consider their combination into a fully flexible
condition-based maintenance and production (CBMP) policy. Our anal-
ysis and results have practical value for equipment for which conditions
can be monitored, and for which a relation exists between production
speed and degradation speed. This relation is particularly encountered
for rotating and moving equipment such as conveyor belts, cutting
tools, and wind turbine gearboxes [34,35].

Our study focuses on a single piece of equipment that gradually de-
teriorates and that is continuously monitored. An extensive numerical
analysis based on Markov decision process formulations has revealed
a number of valuable insights. First, for almost all considered settings,
all three dynamic strategies clearly outperform the simple strategy with
static maintenance and a fixed production rate. Second, the cost reduc-
tion mechanisms of CBM and CBP are quite different. CBP typically
reduces the failure risk significantly at the expense of lower expected
production, whereas CBM policies are characterized by higher expected
production but substantially more failures too. Thus, CBM is mainly
recommended in cases with high production revenues, whereas CBP is
more effective when failures are more severe. The comparative perfor-
mance of CBM and CBP depends on what effect dominates. Moreover,
CBMP improves the trade-off between production and maintenance
costs further, resulting in more production than CBP and fewer failures
and improved reliability compared to CBM. In practical settings where
both production and maintenance decisions can be made dynamically,
it is therefore often best to use condition information for both of them.
In fact, sometimes the savings of the combined strategy are more than
the sum of the savings of CBM and CBP.

We also examined how the various policies perform under wrongly
estimated parameter values for the deterioration process, as these are
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ften uncertain for real-life systems. This showed once more that condi-
ion information should be taken into account when available, since all
ynamic strategies were considerably more robust to estimation errors
f the deterioration rate than the fixed strategy. We also found that
BM is much less robust for large estimation errors than CBP if the
lanning time is long or corrective maintenance is expensive, as the
atter can dynamically correct for wrong decisions. It follows that it is
lso beneficial to adopt the dynamic strategies if there is uncertainty of
he deterioration parameters.

There are numerous research opportunities within this direction.
ne direction is to include unreliable condition information or uncer-

ain parameter values for the deterioration process directly into the
ptimization. It is expected that condition-based production decisions
an better cope with such uncertainties compared to condition-based
aintenance as the effect of a wrong production decision is less severe

han a wrong maintenance decision. After a production rate is set, this
an be revised when more condition information becomes available
hereas an expensive maintenance action cannot be made undone.

Moreover, incorporating condition-based production rates into
ulti-unit systems seems a promising direction. Production facilities

ften face contracts with considerable penalties if a minimum total
roduction target is not met. For systems with many units (e.g., offshore
ind farms), some units may be idle, but if too many fail simultane-
usly then penalties are incurred. For such systems, condition-based
roduction decisions can be used to desynchronize the deterioration
evels of various units in order to minimize the risk that multiple
nits fail shortly after each other. Similarly, adjustable production
ates can also be applied to do the opposite, namely synchronizing the
eterioration level of (a subset of) the units such that their maintenance
an be clustered, thereby reducing setup costs. Clearly, the optimal
olicy is situation dependent and deserves attention.

Another direction is to study multi-unit systems with limited main-
enance capacity, for instance, due to the need for specialized equip-
ent or the limited availability of skilled technicians. When multiple
nits require maintenance around the same time this can result in long
owntimes (and thus revenue losses) due to the limited maintenance
apacity. With a dynamic production planning, units can produce at
10
ifferent rates such that their preferred maintenance moments can
e spread, thereby reducing peak demand for scarce maintenance
quipment.

RediT authorship contribution statement

Michiel A.J. uit het Broek: Conceptualization, Methodology, Writ-
ng - original draft, Writing - review & editing, Software, Valida-
ion, Investigation, Visualization. Ruud H. Teunter: Conceptualization,
ethodology, Writing - original draft, Writing - review & editing.
ram de Jonge: Conceptualization, Methodology, Writing - original
raft, Writing - review & editing. Jasper Veldman: Conceptualization,
ethodology, Writing - original draft, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

This work is financially supported by the Netherlands Organisation
or Scientific Research (NWO) through grant 438-13-216.

eferences

[1] Wireman T. Benchmarking Best practices for maintenance, reliability and asset
management. 3rd ed. South Norwalk, CT: Industrial Press Inc; 2014.

[2] Blanco MI. The economics of wind energy. Renew Sustain Energy Rev
2009;13(6–7):1372–82.

[3] Gräber U. Advanced maintenance strategies for power plant operators—
introducing inter-plant life cycle management. Int J Press Vessels Pip
2004;81(10–11):861–5.

[4] De Jonge B, Teunter RH, Tinga T. The influence of practical factors on the
benefits of condition-based maintenance over time-based maintenance. Reliab
Eng Syst Saf 2017;158:21–30.

[5] Uit het Broek MAJ, Teunter RH, De Jonge B, Veldman J, Van Foreest ND.
Condition-based production planning: Adjusting production rates to balance
output and failure risk. Manuf Serv Oper Manag 2020;22(4):792–811.

http://refhub.elsevier.com/S0951-8320(21)00274-X/sb1
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb1
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb1
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb2
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb2
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb2
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb3
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb3
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb3
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb3
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb3
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb4
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb4
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb4
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb4
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb4
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb5
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb5
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb5
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb5
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb5


Reliability Engineering and System Safety 214 (2021) 107743M.A.J. uit het Broek et al.
[6] De Jonge B, Scarf PA. A review on maintenance optimization. European J Oper
Res 2020;285(3):805–24.

[7] Ding S-H, Kamaruddin S. Maintenance policy optimization—literature review and
directions. Int J Adv Manuf Technol 2015;76(5):1263–83.

[8] Alaswad S, Xiang Y. A review on condition-based maintenance optimiza-
tion models for stochastically deteriorating system. Reliab Eng Syst Saf
2017;157:54–63.

[9] Mula J, Poler R, Garcia-Sabater JP, Lario FC. Models for production planning
under uncertainty: A review. Int J Prod Econ 2006;103(1):271–85.

[10] Sethi SP, Yan H, Zhang H, Zhang Q. Optimal and hierarchical controls in
dynamic stochastic manufacturing systems: A survey. Manuf Serv Oper Manag
2002;4(2):133–70.

[11] Glock CH, Grosse EH. The impact of controllable production rates on the per-
formance of inventory systems: A systematic review of the literature. European
J Oper Res 2020.

[12] Chaabane K, Khatab A, Diallo C, Aghezzaf E-H, Venkatadri U. Integrated imper-
fect multimission selective maintenance and repairpersons assignment problem.
Reliab Eng Syst Saf 2020;199:106895.

[13] Hashemi M, Asadi M, Zarezadeh S. Optimal maintenance policies for coherent
systems with multi-type components. Reliab Eng Syst Saf 2020;195:106674.

[14] Shahraki AF, Yadav OP, Vogiatzis C. Selective maintenance optimization
for multi-state systems considering stochastically dependent components and
stochastic imperfect maintenance actions. Reliab Eng Syst Saf 2020;196:106738.

[15] Wang L, Lu Z, Ren Y. Joint production control and maintenance policy for a
serial system with quality deterioration and stochastic demand. Reliab Eng Syst
Saf 2020;199:106918.

[16] McKone K, Weiss E. Guidelines for implementing predictive maintenance. Prod
Oper Manage 2002;11(2):109–24.

[17] Zhang X, Kang J, Jin T. Degradation modeling and maintenance decisions based
on Bayesian belief networks. IEEE Trans Reliab 2014;63(2):620–33.

[18] Paté-Cornell M, Lee H, Tagaras G. Warnings of malfunction: the decision to
inspect and maintain production processes on schedule or on demand. Manage
Sci 1987;33(10):1277–90.

[19] Pandey MD, Yuan X-X, Van Noortwijk JM. The influence of temporal uncertainty
of deterioration on life-cycle management of structures. Struct Infrastruct Eng
2009;5(2):145–56.

[20] Xiang Y, Cassady CR, Pohl EA. Optimal maintenance policies for systems subject
to a Markovian operating environment. Comput Ind Eng 2012;62(1):190–7.

[21] Zio E, Compare M. Evaluating maintenance policies by quantitative modeling
and analysis. Reliab Eng Syst Saf 2013;109:53–65.

[22] Crowder M, Lawless J. On a scheme for predictive maintenance. European J
Oper Res 2007;176(3):1713–22.

[23] Huynh K, Barros A, Berenguer C, Castro I. A periodic inspection and replacement
policy for systems subject to competing failure modes due to degradation and
traumatic events. Reliab Eng Syst Saf 2011;96(4):497–508.

[24] Bouvard K, Artus S, Bérenguer C, Cocquempot V. Condition-based dynamic
maintenance operations planning & grouping. application to commercial heavy
vehicles. Reliab Eng Syst Saf 2011;96(6):601–10.

[25] Dizbin NM, Tan B. Optimal control of production/inventory systems with
correlated demand inter-arrival and processing times. Int J Prod Econ
2020;107692.

[26] Gao K, Peng R, Qu L, Wu S. Jointly optimizing lot sizing and maintenance
policy for a production system with two failure modes. Reliab Eng Syst Saf
2020;106996.

[27] Wang L, Lu Z, Han X. Joint optimal production planning and proactive
maintenance policy for a system subject to degradation. J Qual Maint Eng 2019.

[28] Xiao L, Zhang X, Tang J, Zhou Y. Joint optimization of opportunistic maintenance
and production scheduling considering batch production mode and varying
operational conditions. Reliab Eng Syst Saf 2020;107047.

[29] Martinelli F. Control of manufacturing systems with a two-value, production-
dependent failure rate. Automatica 2005;41(11):1943–8.

[30] Martinelli F. Optimality of a two-threshold feedback control for a manufacturing
system with a production dependent failure rate. IEEE Trans Automat Control
2007;52(10):1937–42.
11
[31] Martinelli F. Manufacturing systems with a production dependent failure rate:
structure of optimality. IEEE Trans Automat Control 2010;55(10):2401–6.

[32] Tan B. Production control with price, cost, and demand uncertainty. OR Spectrum
2019;41(4):1057–85.

[33] Shen J, Hu J, Ye Z-S. Optimal switching policy for warm standby systems
subjected to standby failure mode. IISE Trans 2020;1–13.

[34] Feng Y, Qiu Y, Crabtree CJ, Long H, Tavner PJ. Monitoring wind turbine
gearboxes. Wind Energy 2013;16(5):728–40.

[35] Zhang T, Dwight R, El-Akruti K. Condition based maintenance and operation of
wind turbines. In: Tse PW, Mathew J, Wong K, Lam R, Ko C, editors. Engineering
Asset Management - Systems, Professional Practices and Certification: Proceed-
ings of the 8th World Congress on Engineering Asset Management (WCEAM
2013) & the 3rd International Conference on Utility Management & Safety. Cham:
Springer International Publishing; 2015, p. 1013–25.

[36] Cheng GQ, Zhou BH, Li L. Joint optimisation of production rate and preventive
maintenance in machining systems. Int J Prod Res 2016;54(21):6378–94.

[37] Zied H, Sofiene D, Nidhal R. Optimal integrated maintenance/production pol-
icy for randomly failing systems with variable failure rate. Int J Prod Res
2011;49(19):5695–712.

[38] Ouaret S, Kenné J-P, Gharbi A, Polotski V. Age-dependent production and
replacement strategies in failure-prone manufacturing systems. Proc Inst Mech
Eng B 2017;231(3):540–54.

[39] Polotski V, Kenne J-P, Gharbi A. Joint production and maintenance optimization
in flexible hybrid manufacturing–remanufacturing systems under age-dependent
deterioration. Int J Prod Econ 2019;216:239–54.

[40] Rivera-Gómez H, Montaño-Arango O, Corona-Armenta JR, Garnica-González J,
Hernández-Gress ES, Barragán-Vite I. Production and maintenance planning
for a deteriorating system with operation-dependent defectives. Appl Sci
2018;8(2):165.

[41] Boukas EK, Liu ZK. Production and maintenance control for manufacturing
systems. IEEE Trans Automat Control 2001;46(9):1455–60.

[42] Iravani SMR, Duenyas I. Integrated maintenance and production control of a
deteriorating production system. IIE Trans 2002;34(5):423–35.

[43] Jafari L, Makis V. Joint optimal lot sizing and preventive maintenance policy
for a production facility subject to condition monitoring. Int J Prod Econ
2015;169:156–68.

[44] Peng H, Van Houtum GJ. Joint optimization of condition-based maintenance and
production lot-sizing. European J Oper Res 2016;253(1):94–107.

[45] Cheng GQ, Zhou BH, Li L. Joint optimization of lot sizing and condition-
based maintenance for multi-component production systems. Comput Ind Eng
2017;110:538–49.

[46] Cheng GQ, Zhou BH, Li L. Integrated production, quality control and condition-
based maintenance for imperfect production systems. Reliab Eng Syst Saf
2018;175:251–64.

[47] Liu X, Zhao F. Using a random coefficient regression model to jointly determine
the optimal critical level and lot sizing. IEEE Access 2020;8:66003–12.

[48] Sun Q, Ye Z-S, Zhu X. Managing component degradation in series systems
for balancing degradation through reallocation and maintenance. IISE Trans
2020;52(7):797–810.

[49] Puterman M. Markov decision processes: Discrete stochastic dynamic program-
ming. New York: John Wiley & Sons; 1994.

[50] Havinga MJA, De Jonge B. Condition-based maintenance in the cyclic patrolling
repairman problem. Int J Prod Econ 2020;222.

[51] Hu J, Chen P. Predictive maintenance of systems subject to hard failure based
on proportional hazards model. Reliab Eng Syst Saf 2020;196:106707.

[52] Van Noortwijk JM. A survey of the application of gamma processes in
maintenance. Reliab Eng Syst Saf 2009;94(1):2–21.

[53] Tinga T. Application of physical failure models to enable usage and load based
mainteance. Reliab Eng Syst Saf 2010;95(10):1061–75.

[54] Murthy DP, Jack N. Extended warranties, maintenance service and lease con-
tracts: modeling and analysis for decision-making. Springer Science & Business;
2014.

http://refhub.elsevier.com/S0951-8320(21)00274-X/sb6
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb6
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb6
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb7
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb7
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb7
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb8
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb8
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb8
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb8
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb8
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb9
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb9
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb9
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb10
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb10
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb10
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb10
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb10
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb11
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb11
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb11
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb11
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb11
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb12
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb12
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb12
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb12
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb12
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb13
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb13
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb13
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb14
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb14
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb14
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb14
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb14
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb15
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb15
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb15
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb15
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb15
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb16
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb16
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb16
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb17
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb17
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb17
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb18
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb18
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb18
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb18
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb18
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb19
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb19
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb19
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb19
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb19
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb20
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb20
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb20
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb21
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb21
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb21
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb22
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb22
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb22
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb23
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb23
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb23
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb23
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb23
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb24
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb24
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb24
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb24
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb24
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb25
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb25
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb25
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb25
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb25
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb26
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb26
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb26
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb26
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb26
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb27
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb27
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb27
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb28
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb28
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb28
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb28
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb28
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb29
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb29
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb29
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb30
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb30
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb30
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb30
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb30
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb31
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb31
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb31
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb32
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb32
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb32
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb33
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb33
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb33
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb34
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb34
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb34
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb35
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb36
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb36
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb36
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb37
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb37
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb37
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb37
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb37
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb38
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb38
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb38
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb38
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb38
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb39
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb39
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb39
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb39
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb39
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb40
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb41
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb41
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb41
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb42
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb42
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb42
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb43
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb43
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb43
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb43
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb43
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb44
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb44
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb44
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb45
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb45
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb45
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb45
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb45
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb46
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb46
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb46
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb46
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb46
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb47
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb47
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb47
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb48
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb48
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb48
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb48
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb48
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb49
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb49
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb49
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb50
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb50
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb50
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb51
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb51
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb51
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb52
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb52
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb52
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb53
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb53
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb53
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb54
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb54
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb54
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb54
http://refhub.elsevier.com/S0951-8320(21)00274-X/sb54

	Joint condition-based maintenance and condition-based production optimization
	Introduction
	Literature review
	Problem description
	Control strategies
	Maintenance policies
	Production policies


	Markov decision process formulation
	Discretization
	MDP for block-based maintenance
	MDP for condition-based maintenance

	Numerical analysis
	Deterioration process
	Base case system
	Cost savings for the base case system
	Condition-based production
	Condition-based maintenance and production

	Parameter sensitivity
	Planning time
	Maintenance cost and revenue
	Volatility deterioration increments
	Parameters pd-relation

	Parameter estimation errors

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


