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In brief

A longitudinal analysis of 338 individuals
across 4 years characterizes the temporal
stability and diversity of human gut
microbiome, linking the microbial profile
with individual-specific host phenotypes
and suggesting the role of plasma
metabolites in mediating the impact of
microbiome on host physiology.
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SUMMARY

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 in-
dividuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using
these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural
variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying meta-
genomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP
cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in
the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain
replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations
with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic
toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health

through its metabolites.

INTRODUCTION

The human gut harbors a diverse community of microbes that
exhibit large between-individual variations (Falony et al., 2016;
Lloyd-Price et al.,, 2017; Rothschild et al., 2018; Zhernakova
et al., 2016), and cross-sectional analyses have linked these
variations to human health and disease phenotypes (Chen
et al.,, 2020a; Falony et al., 2016; Rothschild et al., 2018;
Vieira-Silva et al., 2020; Zhernakova et al., 2016). The gut micro-
biota also undergoes compositional changes over the course of
an individual’s life, as either the cause or consequence of
changes in host health and disease status (Chen et al., 2018;
Vatanen et al., 2018; Zhou et al., 2019). Several studies have as-
sessed temporal changes in microbial taxonomical compaosition
(Faith et al., 2013; Mehta et al., 2018) and laid the foundation for
targeted mechanistic investigations of the consequences of
host-microbiome crosstalk for health and disease, including
studies in early childhood (Stewart et al., 2018), early-onset
type 1 and type 2 diabetes (Vatanen et al., 2018; Zhou
et al, 2019), and inflammatory bowel disease (Lloyd-Price
et al., 2019).

2302 Cell 184, 2302-2315, April 29, 2021 © 2021 Elsevier Inc.

Nevertheless, several important questions about the temporal
variability of the gut microbiome remain unexplored. First,
beyond gut microbial composition, the genetic makeup of micro-
bial genomes can also undergo dynamic changes over time. Mi-
crobial genomic changes due to evolution and strain replace-
ment, such as single-nucleotide mutations and gain or loss
of genomic regions (structural variation), are implicated in
the development of human disease (Greenblum et al., 2015;
Schloissnig et al., 2013; Zeevi et al., 2019). Yet investigations
of temporal changes in microbial genetic makeup are still
missing. Second, while cross-sectional association analyses
have reported numerous associations with host health and dis-
ease (Falony et al., 2016; Lloyd-Price et al., 2017; Rothschild
et al., 2018; Zhernakova et al., 2016), these associations lack
longitudinal confirmation that would allow us to assess whether
alterations of the gut microbiome are related to changes in host
health status. Third, other microbial components such as anti-
biotic resistance and virulence factors have become a major
concern given the wide-scale use of antibiotics in the last de-
cades. The risk of transfer of resistance and virulence genes be-
tween microorganisms has been extensively investigated due to
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Figure 1. Long-term variation of the gut microbiome composition
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(A) The comparison of the microbial alpha diversity at baseline (light blue) and follow-up (dark blue). The y axis refers to the Shannon index at the species level.
(B) The comparison of inter-individual Bray-Curtis distance of species composition at baseline (light blue) and follow-up (dark blue), as well as the Bray-Curtis

distance within the paired samples between two time points (orange).

(C) The comparison of the inter-individual Bray-Curtis distance of functional profile at baseline (light blue) and follow-up (dark blue), as well as the Bray-Curtis

distance within paired samples at two time points (orange).

(D) Temporal stability of microbial composition might be dependent on its baseline diversity. The x axis refers to baseline Shannon index and the y axis refers to
the Bray-Curtis distance within the paired samples between two time points. p values from rank-based Wilcoxon test and the Spearman correlation are shown

accordingly.
See also Figure S2.

its relevance to human health (Ochman et al., 2000). However, in-
formation on the spread of antibiotic resistance and virulence
genes among human gut-commensal microorganisms over
time has not been reported, which impedes the effective preven-
tion and treatment of bacterial infections.

In this study, we present a long-term follow-up analysis of the
gut microbiome in 338 participants of the population-based Life-
lines-DEEP cohort (Tigchelaar et al., 2015) in which we compare
samples taken 4 years apart. We characterized long-term tem-
poral stability in gut microbial composition and genetic makeup
and aimed to answer two types of questions: (1) which bacterial
features are both individual specific and temporally stable? Can
we use these features as a “fingerprint” to distinguish samples
from the same individual? and (2) which bacterial features
show large temporal variation? Can their temporal variation be
linked to changes in the host’s clinical phenotypes and lifestyle?
To gain further biological insights, we profiled plasma levels of
1,183 metabolites at both time points and used mediation anal-
ysis as an in silico method to infer whether metabolites mediate
the causal relationship behind the microbial impact on host
health. Finally, we assessed the changes in antibiotic resistance
and virulence factors in the human gut microbiome.

RESULTS

The Lifelines-DEEP follow-up cohort

To investigate the long-term variability of the human gut micro-
biome, we collected fecal samples from 338 individuals from
the prospective, population-based Lifelines-DEEP (LLD) cohort
taken 4 years apart (Tigchelaar et al., 2015) and processed these
samples using the same lab protocols and bioinformatic pipe-
lines. 51 phenotypic factors were assessed at both time points,
including anthropometric traits (e.g., age, sex, and body mass in-
dex [BMI]), blood cell counts, biochemical measurements (e.g.,
glucose, HbA1c, and blood lipid profile), diseases, and medica-

tion usage (Table S1). For 22 continuous traits, we observed sig-
nificant temporal changes in 19 phenotypic factors at a false dis-
covery rate (FDR)paired wilcoxon <0.05 (Table S1). For instance,
significant increases were observed for plasma levels of creati-
nine (Ppaired wilcoxon = 2.5 X 107°% and systolic and diastolic
blood pressures (Ppaired wicoxon = 3.6 X 1072% and 2.2 x 1079)
(Figure S1). We also observed changes in lifestyle, diseases,
and medication usage (Table S1). For example, 26 participants
developed irritable bowel syndrome (IBS), while 6 developed
depression (Table S1).

Temporal changes in gut microbial diversity and
composition
To characterize the stability of the gut microbiome over time, we
first investigated microbial composition and diversity. Compared
to baseline, we observed a significant increase in the alpha-di-
versity (species-level Shannon indeX, Ppaired wicoxon = 2.4 X
107, Figure 1A), as well as a moderate variation in microbial spe-
cies and pathway abundance (Ppcoi paired wilcoxon > 0.08 and
Peco2 Paired Wilcoxon < 1.6 X 107° for both species and pathway,
respectively, Figure S2). The differences in overall microbial spe-
cies and pathway composition were larger between individuals
than within individuals (Pwiicoxon < 1 X 104, Figures 1B and
1C), indicating that an individual’s gut microbial composition is
more similar to their own composition 4 years ago than to those
of other people. Interestingly, within-individual differences in gut
microbial species composition were smaller in participants with
a higher baseline alpha-diversity (f'spearman = —0.21, p = 1.5 X
1074, Figure 1D), supporting the hypothesis that diverse microbi-
al communities tend to be more stable (Coyte et al., 2015).
When comparing individual microbial species and pathways,
the relative abundance of 59.9% species (94 out of 157) and
44.3% pathways (152 out of 343) showed a significant difference
at FDR <0.05 (paired Wilcoxon test, Table S2). Species
belonging to the same genera often showed consistent changes
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in direction, e.g., the relative abundance of 7 Bifidobacterium
species all decreased significantly, while the abundances
of the majority of Alistipes species (7 out of 8) increased
(Table S2). These changes may partially be due to an age effect.
For instance, several Bifidobacterium species, including
B. adolescentis, B. bifidum, and B. longum, have been observed
to be negatively associated with age (Zhernakova et al., 2016).

Microbial genetic stability differs substantially across
species

Microbial genetic makeup may also change over time, e.g., due
to mutagenesis and strain replacement. Characterization of the
stable and changeable genetic components of the gut micro-
biome over a long time course is important for further under-
standing the importance of microbial strain alterations with
respect to host phenotypic changes. Here, we characterized
within-individual temporal microbial genetic differences by
comparing both single-nucleotide polymorphism (SNP) haplo-
types (Truong et al.,, 2017) and genomic structural variants
(SVs) (Zeevi et al., 2019). SNP haplotype differences were char-
acterized for 37 species that were present in at least 5 paired
samples from both time points (Figure 2A; Table S2). We also
identified 6,130 SVs, including 4,333 deletion SVs (dSVs,
absence of genomic regions) and 1,797 variable SVs (vSVs,
genomic regions with variable coverage) from 41 microbial
species present in at least 5 paired samples (Figure 2B;
Table S2).

We observed that within-individual genetic differences in SNP
haplotypes and SVs were significantly smaller than the differ-
ences between different individuals (Figures 2A and 2B; Table
S2). The species that showed large temporal changes in their
SNP haplotypes included Ruminococcus torques, Strepto-
coccus parasanguinis, and Faecalibacterium prausnitzii, while
Bifidobacterium angulatum, Methanobrevibacter smithii, and
Alistipes putredinis showed relatively low genetic variability
(Pwilcoxon < 0.05, Figure 2A). A consistent trend in the genetic sta-
bility of SNP profiles was also observed in 43 healthy participants
with fecal microbiome data available 1 year apart from the Hu-
man Microbiome Project (HMP) (Figure 2C) (Schloissnig et al.,
2013). Compared to the HMP cohort, the genetic differences in
unstable species were larger in the LLD cohort, potentially due
to a longer duration of follow-up (Figures 2D-2F). This observa-
tion further supports the genetic instability of these species
over time.

For 23 species, both strain SNP haplotype and SV information
were available (Figures 2A and 2B). Temporal variability in SNP
haplotypes and SVs showed substantial consistency (Figures
S3A and S3B), illustrating that the microbial genetic stability of
some species can be seen at different levels of genetic variation.
For example, several species with highly time-dependent vari-
ability in SNP haplotypes, such as R. torques and F. prausnitzii,
also showed a high degree of changes in their SVs, whereas
other species, such as M. smithii, showed high stability of both
SNP haplotypes and within-individual SV variability (Figures 2A
and 2B).

Interestingly, these genetically unstable species have often
been reported to be related to human health and disease. For
instance, previous studies have found a higher abundance of
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R. torques in patients with Crohn disease (Joossens et al,
2011), a higher level of S. parasanguinis in patients with intestinal
infection (Vacca, 2017) and a lower level of F. prausnitzii in pa-
tients with inflammatory bowel disease (Munukka et al., 2017;
Vich Vila et al., 2018). Notably, within-individual differences
in microbial genetic makeup did not correlate with changes in
abundance (Figure S3C), suggesting that microbial genetic vari-
ability provides an extra layer of information that is independent
of microbial abundance. Furthermore, we hypothesized that
the temporal changes in genetic makeup can be also driven
by replacement of the dominant strain. Using SNP profiles,
we observed distinct strains for five species, R. torques,
F. prausnitzii, S. parasanguinis, Ruminococcus obeum, and
Eubacterium rectale, that showed >70% genetic dissimilarity
(Figure S4).

Taken together, these results illustrate that within-individual
differences in both microbial composition and genomes can
be detected 4 years apart, but within-individual similarity of mi-
crobiome compositional and genetic profiles is greater than be-
tween-individual similarity. The stable and variable microbial
compositional and genetic components we observe can have
different implications: individually stable microbial components
might be used to identify their host, whereas variable microbial
components might be related to phenotypic changes of
the host.

Microbial genetic makeup shows individuality that can
serve as a host fingerprint
We observed that some species, such as M. smithii, showed
large between-individual variability but small within-individual
differences in their genetic makeup (Figure 2A). Per 100 base
pairs (bp) of the species-specific regions, M. smithii had an
average 0.11 bp difference between two samples from the
same individual but an average 2.77 bp difference between
different individuals (Pwiicoxon test = 3.6 X 1078, Figure 2A; Ta-
ble S2). This inspired us to evaluate the possibility of using mi-
crobial genetic and compositional profiles to distinguish sam-
ples from the same individuals. We generated the SNP
haplotype profiles of M. smithii for 100 paired samples. Based
on the distance of the M. smithii SNP profiles, we could
correctly link 94 paired samples, resulting in an accuracy of
94% (proportion of correctly distinguished sample pairs) (Fig-
ure S5). We systematically assessed the fingerprinting potential
of the 71 microbial profiles that were present in >10% of paired
samples (Table S3), including the composition of microbial spe-
cies and metabolic pathways, SNP profiles in 18 species, vSV
profiles in 25 species, and dSV profiles in 26 species. In total,
17 of these profiles had at least 50% accuracy in classifying
samples. After M. smithii, the second-best classifier was the
SNP profile of Phascolarctobacterium succinatutens, which
classified 41 paired samples with 88% accuracy (Figure S5; Ta-
ble S3). However, sample classification based on microbial
species and pathway composition resulted in only 12% and
5% accuracy, respectively (Table S3). Our data imply that mi-
crobial genetic profiles dominate over microbial abundance in
fingerprinting the human host.

SNP haplotype profiles like M. smithii could only be generated
for 100 of the 338 paired samples, potentially due to microbial
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Figure 2. Long-term stability of microbial species SNP haplotypes and structural variants

(A) Within paired samples (orange) and between-individual (green) differences in the single-nucleotide polymorphism (SNP) haplotypes of dominant strains of
microbial species. Numbers following species names indicate the number of paired samples for which SNP haplotype profiles are available.

(B) Within paired samples (orange) and between-individual (green) difference in the deletion (dSV) and variable structural variants (vSVs) of microbial strains.
Numbers following species names indicate the number of paired samples for which SVs profiles are available.

(C) Comparison of within-individual microbial species SNP haplotype differences between the LLD (4 years apart) and the HMP (1 year apart) (fpearson = 0.82,
p = 0.001). Each dot represents one species. Dark dots represent species whose degree of temporal changes is significantly different between LLD and HMP at
FDR <0.05 (Wilcoxon test). Light-gray dots represent the species that showed a similar degree of temporal changes in both cohorts.

(D-F) Comparison of temporal stability of SNP haplotypes of Ruminococcus torques (D), Faecalibacterium prausnitzii (E), and Eubacterium rectale (F) between
LLD (in blue) and HMP (in red). The p values from the Wilcoxon tests are shown, respectively.

See also Figure S3 and Table S2.

tion abilities in the remaining 40% of individuals. The resampling
and feature selection were repeated 10 times (Figures S6A and
S6B). The combination of all 71 profiles (Table S3) resulted in
up to 85% classification accuracy (Figure 3A), with an optimal
model combining the top 30 profiles yielding 82% classification
accuracy (Figure 3B). This optimal model includes SNP profiles
of 13 species, dSV profiles of 11 species, vSV profiles of

absence in the gut, which prohibits the use of the genetic profile
of a single microbial profile as a host fingerprint. This limitation
further inspired us to combine multiple microbial genetics and
composition (both species and pathway abundances) for a
broader application. We applied stepwise forward selection to
optimize the combination of different profiles in a randomly
selected 60% of individuals and validated the individual recogni-
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Figure 3. Performance of the gut microbiome in fingerprinting its human host

(A) The combination of all microbial genetic and compositional profiles resulted in up to 85% accuracy in classifying longitudinal samples of 338 individuals in the
LLD cohort. The optimal fingerprinting model with 30 microbial features resulted in an accuracy of 82% in the LLD. The x axis refers to the number of features that
were included in the stepwise feature selection. The y axis refers to the classification accuracy. Gray dots refer to the accuracy of the stepwise models. The blue

line refers to the fitted line of accuracy across all models.

(B) Comparison of the fingerprinting accuracy of the optimal model in the LLD (in blue) and in the HMP (in red) cohorts.
(C) The ROC analysis to show the performance of the fingerprint model in the LLD (in blue) and the HMP (in red) cohorts, respectively. The area under the curve and

95% confidence intervals of both cohorts are shown.

(D) The distribution of within- and between-individual distances of the optimal model. In the LLD cohort, the optimal classification performance in terms of both
specificity (0.99) and sensitivity (0.88) was reached at a distance cutoff of 0.46. In the HMP cohort, the specificity and sensitivity were 1 and 0.95, respectively, at

the same cutoff.
See also Figures S5 and S6 and Table S3.

5 species, and the Bray-Curtis dissimilarity of species abun-
dance (Figure S6C). We conducted specificity and sensitivity an-
alyses for the sample classification. The total area under the
curve (AUC) was 95% (Figure 3C), and we reached the optimal
99% specificity and 88% sensitivity at a distance cutoff of 0.46
(Figure 3D). At this cutoff, we could classify 298 paired samples
with 93% accuracy.

We then tested our microbial fingerprinting method in the
longitudinal sample collection of 43 individuals in the HMP
cohort, our model resulted in 100% accuracy for 41 out of the
43 paired samples at a distance cutoff 0.46 (Figure 3B) and
95% accuracy in the total set of 43 pairs. This accuracy is higher
than the previously reported 30% accuracy based on microbial
species abundance and the 80% accuracy based on the
microbial gene abundance (Franzosa et al., 2015). The HMP
result confirms the robustness of our microbial fingerprinting
method.

Microbial abundance and genomic changes associated
with host phenotypes

To examine the role of the gut microbiota in host health, we
explored the associations between microbial compositional
and genomic changes and host phenotypic changes. We per-
formed two-step analyses to reveal microbial associations to
host phenotypes using longitudinal data. First, we performed
joint association analyses between microbial features and 51
host phenotypic factors that were highly prevalent between the
two time points (Table S1) using mixed models and including
age, sex, and sampling time as covariates. Next, for associations
identified at FDR <0.05, we conducted regression analysis on
temporal differences, i.e., associations between microbial
changes and host phenotypic changes over time (delta associa-
tion). This identified 190 associations involving 169 microbial fea-
tures and 34 phenotypes that were significant at FDR <0.05 in
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the joint association analysis and also significant at p < 0.05
for the delta association analysis with a consistent direction of ef-
fect. These included 84 associations with species and pathway
abundances and 106 associations with microbial SVs (Table
S4). BMI, blood pressure, HbA1C, and depression were the
phenotypic factors with the most associations (Figure 4A). For
instance, we observed a positive association between systolic
blood pressure and the abundance of Lachnospiraceae bacte-
rium (betagena = 0.24, Pgota = 1.1 X 1075, Figure 4B) and a nega-
tive association between glycated hemoglobin (HbA1c) and the
flavin biosynthesis pathway (PWY-6168, betagew, = —0.22,
Pyeita = 4.9 x 107°, Figure 4C). In addition, temporal changes
in microbial SVs were associated with host immune phenotypes.
For instance, a vSV (3,019-3,020 kb) in Blautia obeum that con-
tains virulence protein E and chloramphenicol resistance genes
was negatively associated with a change in blood lymphocyte
cell counts (betagena = —0.29, Pyera = 6.5 X 10 %, Figure 4D).
For disease onset, we detected 22 associations, namely, 15 as-
sociations for depression, 3 associations for IBS, and 3 for
asthma. The top association for depression onset was found
fora dSV region (from 1,164 to 1,165 kb) in Collinsella sp. that en-
codes the histidine kinase A (Prisher exact test = 3.0 X 1073,
Figure 4E).

Microbial abundance and genomic changes are
associated with plasma metabolites

To further understand the potential mechanisms by which the
gut microbiota could drive host pathophysiology, we hypothe-
sized that metabolites are an important class of molecules that
are involved in the host-microbe interaction. By profiling plasma
levels of 1,183 metabolites at both time points using untargeted
LC-MS, we observed that 27% of metabolites showed signifi-
cant differences between the two time points at FDR <0.05
(paired Wilcoxon, Table S2).
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Figure 4. Delta association between phenotype and the gut microbiome

(A) Summary of microbial associations to phenotypes. Each bar represent a phenotype and bars are sorted by the number of associations. The associated
microbial factors are colored differently: red for pathway abundance, blue for species abundance, orange for dSVs, and green for vSVs.

(B) Positive delta association between systolic blood pressure and Lachnospiraceae bacterium.

(C) Negative delta association between plasma HbA1c and flavin biosynthesis pathway.

(D) Increased Blautia obeum vSV (3,019-3,020 kb) associated with the decreased delta value of blood lymphocyte counts. The region of the vSV and the cor-
responding genes are shown. The delta values refer to the differences of microbial factors and phenotypes between two time points. Beta values refer to the
standardized effect size estimated by the linear regression, and the corresponding p values are shown, respectively.

(E) Deletion of Collinsella sp. 4_8_47FAA dSV (1,164-1,165 kb) associated with onset of depression. The region of the dSV and the corresponding genes are
shown. The association is shown by a2 x 2 table. The rows refer to disease status, with 0-0 indicating individuals without depression at both time points and 0-1
indicating disease onset. The columns refer to the presence/absence of dSVs of Collinsella sp., with 0-0 indicating individuals with no dSVs at both time points
and 0-1 indicating individuals in whom no deletion was detected at baseline but a deletion was detected in the follow-up. The number in each cell indicates the

number of individuals per group. The p value from the Fisher’s exact test is shown. See also Figure S1 and Tables S1 and S4.

We then locked for metabolic changes specifically in relation
to strain replacement and alterations in microbial abundances
and SVs. We first checked whether plasma metabolites showed
differences in participants with distinct microbial strains (Fig-
ure S5) and, if so, whether strain replacement of these species
was related to changes in plasma metabolites. In total, we
observed 64 significant associations between 63 metabolites
and strain clusters of 5 species (Table S4). For example, in 292
paired samples, we identified 2 distinct strain clusters of
F. prausnitzii (Figure 5A) that associated with 15 metabolites (Ta-
ble S4). The top associations were observed for licorisoflavan A,
pyrrole, and p-cresol sulfate, and the levels of these metabolites
were significantly lower in individuals with F. prausnitzii strain 2
(FDR < 0.05). We also consistently observed that the abundance
of these metabolites decreased in the 24 individuals where
F. prausnitzii shifted from strain 1 to 2, whereas the metabolite
levels increased in the 13 individuals where F. prausnitzii shifted
from strain 2 to 1 (Figures 5B-5E). These results suggest that
different microbial strains may have different functions that
potentially influence host metabolism.

We also detected 455 significant associations between 122
microbial features (species and pathway abundances, dSVs
and vSVs) and 81 metabolites (FDRjgint < 0.05 and Pgeita <
0.05, Figure 6A, Table S4), including 273 associations with mi-
crobial abundance and 182 associations with microbial SVs.
Interestingly, various metabolites that associated with the micro-
biome are already known to be related to the gut microbiome.
For instance, we detected 38 microbial associations to plasma
levels of thiamine, a vitamin (B1) produced by gut microbes.
Thiamine deficiency can affect the cardiovascular system and
induce a fast heart rate (DiNicolantonio et al., 2013). The top mi-
crobial associations to thiamine included the species Alistipes
senegalensis (betayeps = 0.20, Pyera = 4.1 X 1072, Figure 6B)
and Bacteroidales bacterium (betagera = 0.23, Pgeta = 5.2 X
107%) and the TCA cycle pathway (betagera = 0.23, Pyena =
7.2 x 10 °)(Table S4). Notably, the genome of Alistipes senegal-
ensis contains genes responsible for thiamine biosynthesis (Mis-
hra et al., 2012).

Another interesting category of metabolites are protein-bound
uremic toxins, which are related to microbial metabolism of amino
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Figure 5. Faecalibacterium prausnitzii strain replacement associated with plasma metabolite changes

(A) Two distinct F. prausnitzii strain clusters based on its SNP haplotype profile, which are colored in red for strain 1 and blue for strain 2.

(B) Strain replacement of F. prausnitzii. Individuals who remained strain 1 and those who remained strain 2 are colored red and blue, respectively. Individuals who
switched from strain 1 to 2 are colored green. Individuals who switched from strain 2 to 1 are colored orange. The number of individuals is shown in the plot

accordingly.

(C-E) Association of strain replacement with delta value of plasma levels of (C) licorisoflavan A, (D) 1,2,5-Trimethyl-1H-pyrrole, and (E) p-cresol sulfate. The left
panel shows the joint associations of plasma abundance of metabolites and difference strains. The right panel shows the association of delta value of metabolites
with strain replacements. The p value from Wilcoxon test are shown accordingly.

See also Figure S4 and Table $4.

acids and have been associated with various chronic diseases
(Wang and Zhao, 2018). We characterized plasma levels of 58 ure-
mic toxins from metabolite categories of indoxyl sulfate, p-cresol
sulfate, phenyl sulfate, phenylacetic acid, and hippuric acid (Wang
and Zhao, 2018) and observed a significant enrichment for
microbial associations: 97 associations for 16 uremic toxins
(Prisher's exact test = 1.7 % 1072") (Figure 6A; Table S4). The most-
associated uremic toxins included p-cresol (24 associations),
p-cresol sulfate (20 associations), and hippuric acid (16 associa-
tions) (Table S4). P-cresol sulfate is a microbiota-derived metab-
olite that contributes to many biological and biochemical effects,
such as albuminuria in diabetic kidney disease (Kikuchi et al.,
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2019). The top association to p-cresol sulfate was with Bacteroi-
dales bacterium ph8 (betageia = 0.21, Pgeta = 1.9 X 10’4, Fig-
ure 6C), a gut microbial species about which little is currently
known. Notably, 22.6% (103 out of 455) of the microbial associa-
tions with metabolites were related to vSVs of Blautia wexlerae
(Figure 6A). Among these, 27 associations were related to different
uremic toxins, particularly to hippuric acid (Figure 6D), an acyl
glycine formed from the conjugation of benzoic acid with glycine
and associated with phenylketonuria, propionic acidemia, and ty-
rosinemia (Duranton et al., 2012). Intriguingly, these vSV regions
encode various membranes transporters, amino acid kinases,
urease accessory protein, and protein-binding genes (Table S4).
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Figure 6. Delta association of plasma metabolite changes with the gut microbiome

(A) Overview of 455 significant microbial associations with plasma metabolites. The associated microbial factors are colored gray, and the associated metabolites
are colored blue for thiamine, red for uremic toxins, and green for other metabolites, including lipids, amino acids, nucleotides, and sugars. Each line indicates a
significant association between a microbial factor and a metabolite with line color corresponding to the associated metabolite.

(B) A positive delta association between thiamine and Alistipes senegalensis. The x axis refers to the delta value of species abundance, i.e., the abundance
difference between two time points. The y axis refers to the delta value of thiamine in the plasma. The fitted linear regression line is shown, with standardized beta

and p value.

(C) The positive association between microbial-derived uremic toxin p-cresol sulfate and Bacteroidales bacterium abundance changes. The x axis refers to the
delta value of species abundance, i.e., the abundance difference between two time points. The y axis refers to the delta value of p-Cresol sulfate in the plasma.
The fitted linear regression line is shown, with standardized beta and p value.
(D) Heatmap of multiple associations between vSVs of Blautia wexlerae and microbial-derived uremic toxins. The cells in red indicate significant associations. The
color gradient indicates the standardized beta value from the linear regression, as shown in the color key.

See also Table 54.

The microbiome contributes to host phenotypic

changes through metabolites

Of the 169 microbial features associated with clinical pheno-
types and the 122 associated with metabolites, 29 microbial
features are associated with both (Figure 7A). To evaluate
whether metabolites can mediate the microbial impact on host
phenotypes, we applied bi-directional mediation analysis, which
revealed 21 mediation linkages (FDRyegiation < 0.05 and
Pinverse mediation > 0.05, Figure 7B; Table S4). Most of these link-
ages were related to microbial impact on blood pressure via thia-
mine (9 linkages) and acetyl-N-formyl-5-methoxykynurenamine
(AFMK, 9 linkages). The impact of thiamine on cardiometabolic
health has been well documented and was confirmed in a ran-

domized controlled trial that showed that thiamine can reduce
diastolic blood pressure (Alaei-Shahmiri et al., 2015). AFMK is
a degradation metabolite of melatonin that contributes to blood
pressure reduction by inhibiting the synthesis of prostaglandin
(Mayo et al., 2005; Rezzani et al., 2010). Our mediation analysis
suggested that various bacterial pathways may contribute to
these effects. For instance, the microbial sulfate reduction
pathway may contribute to a decrease in diastolic blood pres-
sure by increasing plasma thiamine levels (21%, Pmediation =
6.0 x 10 3, Figure 7C), and bacterial lipopolysaccharide biosyn-
thesis may contribute to a decrease in systolic blood pressure by
affecting plasma levels of AFMK (16%, Py egiation = 6.0 X 1072,
Figure 7D). Metabolic products of the bacterial sulfate reduction
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Figure 7. Mediation linkages among the gut microbiome, metabolites, and phenotypes

(A) Venn plot of the number of microbial features that were associated with human phenotypes and plasma metabolites, respectively.

(B) Parallel coordinates chart showing the 21 significant mediation effects of plasma metabolites. The left panel shows the microbial factors, the middle panel
shows the plasma metabolites, and the right panel shows the phenotypes. The curved lines across panels indicate the mediation effects, while the colors

correspond to different phenotypes.

(C) The microbial sulfate reduction pathway causally contributed to diastolic blood pressure through thiamine (Pmediation = 0.006, 21%).
(D) Microbial lipopolysaccharides pathway causally contributed to systolic blood pressure through AFMK (Pediation = 0.006, 16%).

(E) A Ruminococcus sp. vSV (300-305 kb) causally contributed to plasma LDL through tyrosol 4-sulfate (Pegiation = 0-017, 17%). Inverse mediation was
performed to check whether human phenotypes can influence the microbiome through metabolites. The gray lines indicate the delta associations, with cor-
responding normalized beta values and p values. The red arrowed lines indicate the microbial effects on phenotypes mediated by metabolites, with the cor-
responding mediation p values. The blue arrowed lines indicate reverse mediation effects, i.e., the microbial effects on metabolites mediated by phenotypes, with

the corresponding inverse mediation p values.
See also Table S4.

pathway, such as cysteine, are essential for bacterial thiamine
(vitamin B1) biosynthesis (Begley, 1996), and lipopolysaccha-
rides can activate melatonin oxidation to produce AFMK (Silva
et al., 2004).

We also identified several metabolite mediation effects in the
microbial impact on plasma lipids and glucose levels (Figure 7B).
An interesting example here is tyrosol 4-sulfate, a uremic toxin
that mediates the effect of a vSV in Ruminococcus sp. (300—
305 kb) on plasma levels of LDL (17%, Pmediation = 0.017, Fig-
ure 7E). This vSV contains an ATPase that is responsible
for transmembrane transport of metabolites (Aguilar-Barajas
et al., 2011).

Significant increase of microbial antibiotic resistance

The increase of antibiotic resistance can pose a great burden in
fighting infectious diseases, while virulence factors are essential
for the commensal microbiota to maintain their colonization
niche and evade the host’s immune response. We further sys-
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tematically characterized and compared the abundances of 29
antibiotic resistance genes and 59 virulence genes over time.
We observed a significant increase in the total antibiotic resis-
tance gene load (p = 1.1 x 10~%) and a decrease in the total num-
ber of virulence genes (p = 5.1 x 10 *) (Figures S7A and S7B). At
the individual-gene level, 55.2% (16 out of 29) of antibiotic resis-
tance genes and 18.6% (11 out of 59) of virulence genes showed
a significant difference (FDR <0.05) between time points (Table
S2). Specifically, 15 out of 16 antibiotic resistance genes showed
an increase in their abundance, with the highest change
observed for tetracycline resistance genes (Table S2) such as
tetracycline resistance protein Q (TetQ), which is widely distrib-
uted in Bacteroides species (Veloo et al., 2019). In line with
this, the increase of tetracycline resistance gene abundance
was associated with the increased abundance of multiple Bac-
teroides species (e.g., B. vulgatus, B. uniformis, and B. ovatus,
Figure S7C; Table S4) whose abundance also increased in the
follow-up (Table S2).
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Although antibiotic prescription in the Netherlands remains the
lowest in the Europe, tetracycline, aminoglycoside, and lincosa-
mide are among the top broad-spectrum veterinary antibiotics
(Havelaar et al., 2017) and may contribute to increased microbial
antibiotic resistance in humans (Aslam et al., 2018). We therefore
examined the correlation of baseline meat intake with the
changes in the abundance of microbial antibiotic resistance
genes and found positive associations with aminoglycoside
resistance (fspearman = 0.18, p = 9.2 X 1074 and lincosamide
resistance (rspearman = 0.15, p = 5.5 x 10%) (Figures S7D and
S7E; Table S4). These observations raise concerns about anti-
biotic usage in farming, which may be contributing to the spread
of microbial antibiotic resistance in the human gut ecosystem.

DISCUSSION

Over the past years, numerous associations between a disrup-
ted microbiota and diseases, for example, gastrointestinal and
cardiometabolic diseases, have been observed in large cross-
sectional studies (Chen et al., 2020a, 2020b; Falony et al.,
2016; Rothschild et al., 2018; Vieira-Silva et al., 2020; Zherna-
kova et al., 2016). However, the key to understanding the role
of a disrupted microbiota in human diseases is to answer how
stable the microbiota is and whether within-individual microbial
differences can be linked to changes in host health status. We
therefore systematically characterized the microbial changes
at both compositional and genomic level at two time points 4
years apart in 338 individuals from the Lifelines-DEEP cohort.
We observed that the gut microbiome showed a degree of
long-term within-individual stability in both microbial abundance
and microbial genome. In particular, we found that the genetic
makeup of microbes shows individuality that can be used as a
fingerprint to distinguish metagenomic samples belonging to
the same individual. In addition, the longitudinal association
analysis between changes in gut microbiome and host pheno-
types and plasma metabolites revealed in silico causal relation-
ships and putative mechanistic insights into the importance of
the gut microbiome in human health and disease onset (depres-
sion, IBS, and asthma). Finally, we observed a significant in-
crease in antibiotic resistance in the gut microbiome between
the two time points that cannot be explained by self-reported
antibiotic intake. Our study provides evidence that antibiotic
exposure via meat consumption may result in an increase in
the antibiotic resistance genes in the human gut microbiome.

Previous investigations on the short-term (within 1 year) tem-
poral stability of microbial composition and genetic makeup in
adults revealed that metagenomic samples obtained from the
same individual are more similar to one another than to those
from different individuals (Garud et al., 2019; Mehta et al,
2018). Our large-scale characterization of the longer-term
(4-year) stability of the gut microbiome extends this observation.
In addition, we found that within-individual differences in gut mi-
crobial composition were smaller in participants who had a
higher alpha-diversity at baseline, supporting the hypothesis
that microbial communities with higher diversity tend to be
more stable over time (Coyle et al., 2015).

We also observed that the genetic stability of gut microbes
varies substantially across different species, and a set of species
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from (but not limited to) the genera Bacteroides, Bifidobacterium,
Methanobrevibacter, and Phascolarctobacterium showed rela-
tively high within-individual stability over a long period of time.
Notably, previous studies showed that some of these species,
e.g., Bacteroides and Bifidobacterium, are colonized in early
life (Yassour et al., 2018) and show high genetic stability in child-
hood (Vatanen et al., 2019). These data suggest that each person
is likely to have individual-specific microbial genetic compo-
nents that are distinct from those of others and may persist
from childhood to adulthood. The gut microbial genetic profile
can therefore serve as a host fingerprint to uniquely distinguish
stool samples belonging to the same host. In this study, we con-
structed a microbial fingerprinting model that combines 30 mi-
crobial features, including microbial composition, SNP profiles
of 13 species, and SVs of 16 species. This model showed 82%
accuracy when identifying Lifelines-DEEP samples taken 4 years
apart and 95% accuracy when identifying HMP samples taken 1
year apart. These results demonstrate a potential application of
our method in distinguishing sample mix-ups but also raise po-
tential privacy concerns for subjects enrolled in human micro-
biome research projects.

Characterization of the long-term changes in the gut micro-
biome is crucial for understanding the role of the gut microbiome
in chronic diseases, which have long duration and generally slow
progression. Differential microbial abundances have been char-
acterized for around half of microbial species and pathways, and
within-individual differences in microbial genetic makeup have
also been observed. Interestingly, the bacterial SNP haplotype
and SV changes in our study did not associate with abundance
changes, which reveals an extra layer of information about the
microbiome’s contribution to host health that is independent of
abundance alterations. In contrast to previous studies that only
focused on associations of microbial abundances to host pheno-
types (Lloyd-Price et al., 2019; Vatanen et al., 2018; Zhou et al.,
2019), microbial genetic associations that connect genomic var-
iations with genetically encoded functions to phenotypic
changes can provide putative mechanistic information. We
noted that increased or decreased abundances of the species
that we observed to be genetically unstable (R. torques,
S. parasanguinis, and F. prausnitzii) have also been associated
with various human diseases (Joossens et al., 2011; Ray et al.,
2014; Vacca, 2017; Zhernakova et al., 2016). F. prausnitzii has
been shown to support mucosal immune homeostasis (Hornef
and Pabst, 2016), mostly linked to its capacity for butyrate pro-
duction (Miquel et al., 2013). However, our data show that a
greater increase in a vSV of F. prausnitzii (1,962-1,966 kb, Table
S4) was associated with a lower increase in the number of leuco-
cyte cells, and this SV region encodes multiple riboflavin biosyn-
thesis genes. Interestingly, we also observed F. prausnitzii strain
replacement in 37 individuals and established many associa-
tions with plasma metabolites that affect host immunity,
including with licorisoflavan A and p-cresol sulfate from the class
of isoflavonoids and uremic toxins. Taken together, our data
suggest mechanisms underlie the role of F. prausnitzii in host
immunity.

Notably, metabolite associations to the gut microbiome
were significantly enriched for uremic toxins and thiamine. Gut
microbiota derive uremic toxins from dietary protein, and the
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accumulation of uremic toxins can induce chronic sterile inflam-
mation, which in turn increases the risks of kidney and cardiome-
tabolic diseases (Solomon et al., 2010). We characterized 58
protein-binding uremic toxins and detected 97 microbial associ-
ations for 16 uremic toxins. One of the most-associated uremic
toxins is hippuric acid, a cardiometabolic risk-related metabolite
that can significantly contribute to the prediction of weight gain
(Yuetal., 2018; Zhao et al., 2016). We observed several microbi-
al associations with hippuric acid, such as associations between
B. wexlerae SVs and hippuric acid. These B. wexlerae SVs were
also associated with BMI, suggesting that B. wexlerae may
contribute to metabolic disorder, potentially through hippuric
acid metabolism.

Vitamin B1 production is dependent on the gut microbiome,
and B1 deficiency can impact the cardiovascular system (DiNi-
colantonio et al., 2013). Among the microbial associations to
vitamin B1, our top association was related to the abundance
of Akkermansia muciniphila, a well-known beneficial microbe
that controls gut barrier function and homeostatic functions
(Everard et al., 2013). Our mediation analysis identified 21 rela-
tionships, suggesting that metabolites can mediate the microbial
impact on host phenotype, particularly for cardiometabolic traits.
With this analysis, we further revealed that A. muciniphila may in-
fluence blood pressure through vitamin B1 production, providing
arationale for the development of treatment that uses this human
mucus colonizer for the prevention of hypertension. Altogether,
our longitudinal microbial associations and mediation analyses
on host phenotypes and plasma metabolites reveal functional in-
sights and putative causality for the role of the gut microbiome in
human health and disease onset.

Limitations of study

We acknowledge several limitations in our study. The study
sampled fecal samples 4 years apart in 338 individuals, making
it the longest duration metagenomic sequencing-based longitu-
dinal microbiome study with the largest sample size to date. We
systematically investigated the compositional and genetic varia-
tion over time and linked microbial changes to phenotypic
changes. We observed that a gut microbial composition with
higher baseline diversity is more stable over time. The same
finding was observed in a recent longitudinal study that followed
the gut microbiome in 1,282 individuals for 5 years using 16 s
rBNA sequencing (Frost et al., 2020). Replication in independent
cohorts with longer duration and larger sample size may further
strength this observation and underline biological significance.
The Lifelines-DEEP cohort comprises Dutch participants of
Caucasian ethnicity from the northern region of the Netherlands.
It is thus possible that Lifelines-DEEP results are biased toward a
region-specific microbial background constrained by host ge-
netics and local environmental exposures. We further validated
the performance of our microbial fingerprinting model in the
HMP cohort that was dominated by Caucasians living in the
US. It would be interesting to see whether the model performs
equally well for cohorts with more diverse or other specific ethnic
backgrounds. Furthermore, longitudinal associations are not
proof of causation, although we did carry out causal mediation
analysis to infer in silico causality. We primarily focused on bio-
logically plausible mechanisms by integrating the longitudinal
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metabolism dataset in order to provide mechanistic hypotheses
that pinpoint specific microbial genetics and function but also
demonstrate which metabolites are likely to mediate the impact
of the gut microbiome on the host phenotype. Experimental vali-
dation is thus needed.
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KEY RESOURCES TABLE

Cell

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Fecal samples This study https://www.Lifelines.nl
Blood samples This study https://www.Lifelines.nl
Critical commercial assays

AllPrep DNA/RNA Mini Kit QIAGEN 80204

Quant-iT PicoGreen dsDNA Assay Life Technologies P7589

Blood Assays

Lifelines Biobank

https://www.Lifelines.nl

Software and algorithms

R (version 3.6.0)

Python (version 2.7.11)
KneadData (version 0.4.6.1)
Bowtie2 (version 2.1.0)
MetaPhlan2 (version 2.7.2)
HUMARNN2 (version 0.10.0)
ShortBRED (version 0.9.5)
StrainPhlAn (version 1.2.0)
ICRA

SGVFinder

R Foundation

Python

The Huttenhower Lab
(Langmead et al., 2019)
(Truong et al., 2015)
(Franzosa et al., 2018)
(Kaminski et al., 2015)
(Truong et al., 2017)
(Zeevi et al., 2019)
(Zeevi et al., 2019)

http://www.r-project.org/
https://www.python.org
https://huttenhower.sph.harvard.edu/kneaddata
http://bowtie-bio.sourceforge.net/bowtie2
https://huttenhower.sph.harvard.edu/metaphlan
https://huttenhower.sph.harvard.edu/humann
https://huttenhower.sph.harvard.edu/shortbred
http://segatalab.cibio.unitn.it/tools/strainphlan
https://github.com/segalab/SGVFinder
https://github.com/segalab/SGVFinder

Deposited data

LLD baseline metagenomics
LLD follow-up metagenomics
HMP raw metagenomics

LLD metabolomics

LLD metadata

EGA
EGA
HMP
EGA

Lifelines

EGADO00001001991
EGADO00001006959
https://www.hmpdacc.org
EGADO00001006953

https://www.Lifelines.nl

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the Lead Contact, Jingyuan Fu (j.fu@umcg.nl).

Materials availability
Both fecal and plasma samples of Lifelines participants can be requested via Lifelines biobank (https://www. lifelines.nl/researcher).

Data and code availability
All relevant data supporting the key findings of this study are available within the article and its supplementary information files. The
raw metagenomic sequencing data and basic phenotypes (i.e., age and gender) of the Lifelines-DEEP participants at both time points
are available from the European Genome-Phenome Archive (EGA, https://ega-archive.org) via accession numbers
EGAD00001001991 and EGAD00001006959, respectively. The metabolomics data at both time points is available from the EGA
via accession number EGAD00001006953. The raw metagenomic sequencing data of the Human Microbiome Project is available
via https://www.hmpdacc.org. Due to informed consent regulations, phenotypic data of the Lifelines-DEEP cohort are available
upon request to the Lifelines (https://www.lifelines.nl/researcher). This includes the submission of a letter of intention to the corre-
sponding data access committee (the Lifelines Data Access Committee for the Lifelines-DEEP data (Jackie Dekens, e-mail: j.a.m.
dekens@umecg.nl)). Datasets can be made available under a data transfer agreement and the data usage access is subject to local
rules and regulations.

Analysis code is available via: https://github.com/GRONINGEN-MICROBIOME-CENTRE/Groningen-Microbiome/tree/master/
Projects/LLDeep_microbiome_5year_follow-up.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

The Lifelines-DEEP cohort is a sub-cohort of the Lifelines biobank (167,729 participants) (Scholtens et al., 2015) that involved 1,539
participants and is being used to assess the biomedical, socio-demographic, behavioral, physical and psychological factors that
contribute to health and disease from the north of the Netherlands (Tigchelaar et al., 2015; Wijmenga and Zhernakova, 2018). The
study has been approved by the institutional ethics review board of the University Medical Center Groningen (ref. M12.113965).
This cohort has now been followed-up, with detailed phenotypic data collected at two time points around four years apart. Of the
1,135 individuals for whom we generated metagenomics sequencing data in 2013 (Zhernakova et al., 2016), follow-up stool samples
were collected for 338 individuals (55.6% female and 44.4% male) at the second time point. The duration between the two time points
ranged from 3.33 to 3.92 years (mean = 3.53, sd = 0.12). At baseline, the mean age of participants was 48.2 years (18-80, sd = 11.7)
and their mean BMI was 25.4 (17.6—43.3, sd = 4.08). At follow-up, the mean age was 51.7 years (22—-84, sd = 11.7) and the mean BMI
was 25.6 (16.1-37.6, sd = 4.0). Phenotypic data assessed in the present study included anthropometric traits (e.g., age, gender, BMI,
height), 9 blood cell counts, 7 plasma metabolites (e.g., glucose, cholesterol, triglycerides), 12 diseases (IBS, depression, arthrosis)
and 14 medications (e.g., proton pump inhibitors, oral contraceptives, beta blockers, statins).

METHOD DETAILS

Metagenomic data generation and preprocessing

Stool sample collection and processing followed the same protocol at both time points. All participants were asked to collect fecal
samples at home and place them in their home freezer (—20°C) within 15 minutes after production. Subsequently, a nurse visited the
participant to pick up the fecal samples on dry ice and transfer them to the laboratory. Aliquots were then made and stored at —80°C
until further processing. The same protocol for fecal DNA isolation and metagenomics sequencing was used at both time points.
Fecal DNA isolation was performed using the AllPrep DNA/RNA Mini Kit (QIAGEN; cat. 80204). After DNA extraction, fecal DNA
was sent to the Broad Institute of Harvard and MIT in Cambridge, Massachusetts, USA, where library preparation and whole genome
shotgun sequencing were performed on the lllumina HiSeq platform. From the raw metagenomics sequencing data, low-quality
reads were discarded by the sequencing facility and reads belonging to the human genome were removed by mapping the data
to the human reference genome (version NCBI37) with KneadData (version 0.4.6.1) Bowtie2 (version 2.1.0) (Langmead et al.,
2019). After filtering, the average read depth was 12.3 million for both baseline samples and follow-up samples. The read depths
of all samples at both time points were identical (paired Wilcoxon test p = 0.89).

Taxonomic profiles

Microbial taxonomic profiles were generated using MetaPhlAn2 (version 2.7.2) (Truong et al., 2015). MetaPhlAn2 relies on nearly 1
million unigue clade-specific marker genes identified from around 17,000 reference genomes (13,500 bacterial and archaeal,
3,500 viral and 110 eukaryotic), allowing unambiguous taxonomic assignments, accurate estimation of organismal relative abun-
dance and species-level resolution for bacteria, archaea, eukaryotes and viruses. Microbial species present in more than 10% of
the samples were included for further analyses. This yielded a list of 157 species that account for 97.81% of the taxonomic
composition.

Functional profiles

Microbial functional profiles were determined using HUMANNZ (version 0.10.0) (Franzosa et al., 2018), which maps DNA/RNA reads
to a customized database of functionally annotated pan-genomes. HUMANNZ2 reported the abundances of gene families from the
UniProt Reference Clusters (Bateman et al., 2015) (UniRef90), which were further mapped to microbial pathways from the MetaCyc
metabolic pathway database (Caspi et al., 2016; Caspi et al., 2018). Based on MetaPhlAn2, HUMANN2 can further characterize com-
munity functional profiles stratified by known (species-level) and unclassified organisms. In total, 343 microbial pathways present in
more than 10% of the samples were kept for subsequent analysis, accounting for 99.98% of microbial functional composition.

Antibiotic resistance genes

Quantification of antibiotic resistance genes in metagenomics was performed using shortBRED (version 0.9.5) (Kaminski et al., 2015)
with markers generated from the ResFinder database, which reports more than 1,800 different antimicrobial resistance genes
(November 2018 version) (Zankari et al., 2012). In brief, ShortBRED is a pipeline to take a set of protein sequences from a target data-
base (i.e., ResFinder), cluster them into families, build consensus sequences to represent the families, and then reduce these
consensus sequences to a set of unique identifying strings (markers). The pipeline then searches for these markers in metagenomic
data and determines the presence and abundance of the protein families of interest. We classified the abundance of 29 antibiotic
resistance genes that were present in at least 10% of the samples.
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Virulence genes

We also searched the metagenomic data for bacterial virulence genes using shortBRED (version 0.9.5) (Kaminski et al., 2015) and
markers generated from virulence factors of pathogenic bacteria database (VFDB, core dataset of DNA sequences, version:
November, 2018) (Liu et al., 2019). Here, we classified the abundance of 59 virulence genes that are present in at least 10% of
the samples.

Strain level SNP haplotypes

Strain SNP haplotypes were generated using StrainPhlAn1 (version 1.2.0) (Truong et al., 2017). This method is based on reconstruct-
ing consensus sequence variants within species-specific marker genes and using them to estimate strain-level phylogenies. Recon-
structed markers with a percentage of ambiguous bases > 20% are discarded. Consensus seguences are then trimmed by removing
the first and last 50 bases because the terminal positions have lower coverage due to the limitations in mapping reads against trun-
cated sequences (Truong et al., 2017). Next, clades with a percentage of markers < 50% are removed, and if the percentage of sam-
ples in which a marker is present is < 50%, that marker is also removed. Samples with full sequences concatenated from all markers
and a percentage of gaps > 50% are removed from the alignment. Finally, we used the multiple sequence alignment file to generate a
phylogenetic distance matrix that contains the pairwise nucleotide substitution rate between strains by applying the Kimura 2-param-
eter method from the EMBOSS package (Rice et al., 2000). Using this method, we classified the within-individual SNP haplotype dif-
ference of the dominant strain in 37 species that present in at least 5 sample pairs, and 18 of these were obtained in at least 10% of
sample pairs. To identify distinct strain clusters within species, the SNP haplotype distance matrix was normalized by dividing
maximal distance and hierarchical clustering was based on the complete method from R basic function hcluster(). Strain clusters
were defined at a tree height of 0.7 (70% dissimilarity).

Structural variants in microbial genome

We applied the SGV-Finder pipeline (Zeevi et al., 2019) to classify SVs that are either completely absent in the microbial genome of
some samples (deletion SVs, dSVs) or those whose coverage is highly variable across samples (variable SVs, vSVs). Prior to SV clas-
sification, an ‘iterative coverage-based read assignment’ algorithm was applied that resolves ambiguous read assignments to re-
gions that are similar between different bacteria, using information on bacterial relative abundances in the microbiome, their genomic
sequencing coverage and sequencing and alignment qualities (Zeevi et al., 2019). In total, we classified 6,130 SVs, including 4,333
dSVs and 1,797 vSVs from 41 microbial species that are present in at least 5 sample pairs. The SVs of 26 species could be obtained in
at least 10% of sample pairs. We further calculated Canberra distance between individuals based on the dSVs and vSVs of each
microbial species, respectively.

Plasma untargeted metabolomics

Plasma samples were collected and frozen at —80°C with EDTA. During extraction, plasma samples were thawed on ice, vortexed
and spun down. 20puL of plasma was combined with 180uL of 80% methanol and vortexed for 15 s. Samples were incubated at 4°C
for one hour to precipitate proteins and then spun for 30 minutes at 3,200 RCF. 100uL of supernatant was removed and used for Flow-
Injection Time-of-Flight Mass Spectrometry (FIA-TOF) analysis at General Metabolics, Inc., Boston, USA, using protocols described
previously (Fuhrer et al., 2011). In total, 1,183 metabolites with annotations were involved in the analysis. The annotated metabolites
cover 18 chemical categories based on the Human Metabolome Database (Table S2) (Wishart et al., 2018). The characterization of
plasma protein—bound uremic toxins, including indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, phenylacetic acid and hippuric acid
was based on (Wang and Zhao, 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Principal coordinates analysis (PCoA)

The relative abundances of all microbial species and pathways were included in PCoA. We applied the vegdist() function from
the vegan (version 2.5.5) R package to calculate the Bray-Curtis dissimilarity matrix based on the composition at the species level.
Subsequently, classical metric multidimensional scaling was carried out based on the Bray-Curtis distance matrix to obtain different
principal coordinates.

Comparison of microbial composition dissimilarity

To compare the differences in overall microbial species and pathway compositions between- and within-individuals, we applied a
Wilcoxon test on Bray-Curtis dissimilarity. Since the number of dissimilarities between- and within-individuals was unbalanced,
we calculated an empiric P value by permuting samples of microbial species and pathway relative abundance tables for 10,000 times.

Differential microbiome feature abundance

We applied different transformation/normalization methods for the different microbial abundance datasets, depending on the type of
dataset. Centered log-ratio transformation was applied to compositional data, such as the relative abundances (sum up to 1) of mi-
crobial species and functional pathways (Aitchison, 1982), and log transformation (with a pseudo count of 1 for zero values) was
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applied to read count data, such as the read counts of microbial antibiotic resistance genes and virulence gene (reads per kilobase of
transcript per million reads mapped, RPKMs). Within-individual differences in microbial abundance were then assessed by using
paired Wilcoxon tests. The FDR was calculated with 1,000 times permutation.

Distance matrix—based individual classification

We evaluated if microbial abundance and genome information can be used for individual classification (i.e., to identify if two samples
belong to the same individual). To do so, we generated Bray-Curtis distances based on microbial species and pathway relative abun-
dance, Kimura distance based on SNP haplotype profile and Canberra distance based on SV profiles. The samples were clustered
using single-linkage clustering, also known as nearest neighbor clustering. If two samples, and only those two samples, from the
same individual were clustered together as the closest neighbor, we considered that they were classified correctly. We then defined
the accuracy by calculating the proportion of the total number of correctly classified pairs. Finally, by establishing a specific cutoff, we
could determine whether a pair of samples came from the same individual by their dissimilarity, and the cutoff affects the perfor-
mance of classifier. A receiver operating characteristic curve (ROC) was drawn based on dissimilarity to reflect the specificity and
sensitivity of classification using roc() function from pROC (version 1.16.1) (Robin et al., 2011).

Stepwise distance matrices combination

A total of 71 distance matrices were present in more than 10% of sample pairs, including 69 genetic distance matrices (SNP haplo-
type distance matrices for 18 species, dSV and vSV distance matrices for 26 species) and 2 compositional distance matrices gener-
ated by microbial species and pathways abundance. We aimed to see whether we can utilize these genetic and microbial distance
matrices to classify different samples from the same individuals. Each of these distance matrices was considered as one classifier.
We carried out a stepwise forward selection approach to combine multiple microbial genetic and compositional distance matrices.
The cohort was randomly divided into a discovery set made up of 60% of sample pairs and a validation set with the remaining 40% of
pairs. In order to combine multiple distance matrices, we first standardized and scaled all distance matrices between 0 and 1 by
dividing each matrix by its largest value. In the discovery set, we assessed the accuracy of each distance matrix in classifying sam-
ples, as described above. We started with the distance matrix that had the highest accuracy, i.e., the 1% classifier. We then moved on
to the model with two distance matrices by adding another distance matrix and taking the mean value of two matrices. We tested all
possible combinations and chose the combination with the highest accuracy. The classifier included at the second step was consid-
ered as the 2" classifier. This step was then repeated to include the 3™ classifier and continued until all the distance matrices were
included. In this way, we generated a series of models that included different numbers of distance matrices and tested their perfor-
mance in the validation set. The whole procedure of dataset splitting and feature combination was repeated 10 times, and we deter-
mined the optimal feature number N at which the performance no longer improved as more matrices were added. The distance-
based features were prioritized by their median ranks across 10-times feature selections, then top-N distance matrices were selected
as the optimal combination for the final classifier.

Microbial associations to host phenotypes and metabolites

We first established microbial associations to host phenotypes and metabolites (Table S1) using linear and logistic mixed-effects
model (joint associations): dependent variable ~(intercept) + independent variable + age + sex + (1| time point) + (1| subject), for
continuous and binary microbial traits, respectively. We further validated these joint associations by linking microbial changes to
host phenotypic and metabolic changes with a regression model (delta associations): dependent variable changes ~(intercept) + in-
dependent variable changes + age + sex, for continuous and binary microbial traits (dSVs), respectively. For the delta association of
disease and medication phenotypes, we focused on disease onsets and new drug users and selected the healthy individuals and
non-drug users at both times as controls. The Benjamini-Hochberg procedure was applied to control FDR (Benjamini et al., 2001).

Mediation linkage inference

For phenotypic and metabolic associations to the same microbial feature, we first checked whether the human phenotype was asso-
ciated with the metabolite using both joint and delta association models, as described above. Next, bi-directional mediation analysis
was carried out using the mediate function from the R package mediation (version 4.5.0) to infer the causal role of the microbiome in
contributing to the human phenotype through metabolites. The Benjamini-Hochberg procedure was applied to control FDR.
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Figure S1. The distribution of phenotypes, related to Figure 4

Here we show the distributions of plasma creatinine level, systolic blood pressure and basophil granulocytes at baseline and follow-up (left panels) and the
distribution of their changes (right panels). The baseline distribution is in light blue and the follow-up distribution is in dark blue. The phenotypic changes are
computed as the difference between baseline and follow-up (follow-up value minus baseline value). The distribution of phenotypic changes is shown in orange,
with a dashed line indicating the mean value of delta. The P value refers to the statistical significance assessed by paired Wilcoxon-test.
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Figure S2. Comparison of microbial species and pathway compositions, related to Figure 1
Principal coordinates analysis of microbial species (A) and pathway (B) abundance (Bray-Curtis dissimilarity). The light blue dots indicate baseline samples. The
dark blue dots indicate follow-up samples. Each gray line connects two samples from the same individual taken four years apart.
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Figure S3. Comparison of microbial changes in different layers, related to Figure 2
A-B. Comparison of within-individual microbial differences in species SNPs and SVs in samples taken four years apart. Each orange dot represents one species.
Cross bars represent standard deviations of within-individual SNP haplotype and SV differences. Spearman correlation was applied to assess the correlation
between SNP haplotype and SV differences across species. C. Associations between the value of microbial species abundance changes and the temporal
differences in SNP haplotype. Each dot represents one species. Cross bars represent the standard deviations of abundance changes (delta abundance) and SNP
differences, respectively. Spearman correlation was applied to assess the correlation between the delta abundance and SNP difference for each species. Out of
37 species, only 4 species showed significant correlation at p < 0.05. These are highlighted as red dots and labeled with the species names.
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Figure S5. Performance of microbial profiles in distinguishing samples from the same individual, related to Figure 3

Blue indicates the number of samples in which the species can be detected and the individual correctly classified at both time points. Red indicates number of
samples in which the species can be detected at both time points but the individual was not correctly classified. Grey represents the number of samples in which
the species can only be detected at one of the two time points. White represents the number of samples in which the species cannot be detected at either

time point.
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Figure S6. Performance of microbial information in classifying individuals, related to Figure 3

A. Classification accuracy in a training set made up of 60% of the metagenomic samples randomly sampled 10 times. B. Classification accuracy in the testing set
containing the remaining 40% of the metagenomic samples, also randomly sampled. C. The prioritized order (selected step) of bacterial genetic and compo-
sitional profiles used in combination for microbiome fingerprinting. Dots represent the prioritized order of microbial profiles from 10-times resampling. Stars
represents the median value of dots.
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Figure S7. Long-term changes in antibiotic resistance genes and virulence factors, related to Table S2
A. Comparison of the total load of microbial antibiotic resistance genes at baseline (light blue) and follow up (dark blue). B. Comparison of the number of microbial
virulence genes at baseline (light blue) and follow up (dark blue). P values from the pairwise Wilcoxon test are shown in (A) and B. C. Positive delta associations
between the abundance of microbial species and the abundance of antibiotic resistance genes. Red dots indicate the corresponding antibiotics of antibiotic
resistance genes. Gray dots indicate microbial species. Each line represent a significant association. D. Association of the microbial Aminoglycoside resistance
gene with meat consumption. x axis shows the frequency of meat consumption. y axis shows the delta value of aminoglycoside resistance gene between two
time points. The corresponding correlation coefficient and P value from the Spearman correlation are shown. E. Association of microbial Lincosamide resistance
gene with meat consumption. x axis indicates meat intake. y axis indicates the delta value of the Lincosamide resistance gene between two time points. The
corresponding correlation coefficient and P value from the Spearman correlation are shown.
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