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Abstract—Artificial neural networks are experiencing today
an unprecedented interest thanks to two main changes: the
explosion of open data that is necessary for their training, and
the increasing computing power of today’s computers that makes
the training part possible in a reasonable time. The recent results
of deep neural networks on image classification has given neural
networks the leading role in machine learning algorithms and
artificial intelligence research. However, most applications such
as smart devices or autonomous vehicles require an embedded
implementation of neural networks. Their implementation in
CPU/GPU remains too expensive, mostly in energy consumption,
due to the non-adaptation of the hardware to the computation
model, which becomes a limit to their use. It is therefore
necessary to design neuromorphic architectures, i.e. hardware
accelerators that fit to the parallel and distributed computation
paradigm of neural networks for reducing their hardware cost
implementation. We mainly focus on the optimization of energy
consumption to enable integration in embedded systems. For
this purpose, we implement two models of artificial neural
networks coming from two different scientific domains: the multi-
layer perceptron derived from machine learning and the spiking
neural network inspired from neuroscience. We compare the
performances of both approaches in terms of accuracy and
hardware cost to find out the most attractive architecture for
the design of embedded artificial intelligence.

Index Terms—artificial neural networks, neuromorphic archi-
tectures, hardware accelerator, power consumption

I. INTRODUCTION

A large number of embedded applications take advantage
of the performance of Artificial Neural Networks (ANNs):
smart cameras, mobile robotics, real-time autonomous driving,
etc. However, the software implementation of neural networks
on classical Von-Neuman architectures (CPU/GPU) involves
high power consumption. It is therefore necessary to develop
dedicated hardware accelerators to significantly change the
computation paradigm and thus optimize the hardware imple-
mentation cost [1]. Neuromorphic accelerators are most often
based on non-Von Neumann architectures, where memory
and computation are parallelized and distributed like neurons,
which allows the neuromorphic architectures to be much more
efficient. The aim of this paper is to study and compare the
performances of models of ANNs following two different ap-
proaches: formal models represented by the Multi-Layer Per-
ceptron (MLP) derived from machine learning research, and
impulsion-based models represented by the Spiking Neural
Network (SNN) inspired from neuroscience, and that is closer
to the behavior of biological neurons in the brain. Indeed, the

biological brain is able to perform high performance cognitive
tasks with a much higher efficiency than the most powerful
computers with very low energy consumption. The two studied
models rely on different computation and information coding
principles, and there is no evidence in the literature to say
which approach is more efficient in terms of accuracy, area,
power, speed and other requirements of embedded systems,
especially that very few studies have compared them.

This work is divided into three parts. First, we study the
different implementations of ANNs in the state of the art and
describe the characteristics of these two models. Then, we
build and train both models using a neural network simula-
tor supporting both approaches. Finally, we implement both
MLP and SNN in VHDL for FPGA (Altera Cyclone V) and
ASIC (CMOS 65 nm) synthesis, and we finally compare and
discuss their performances in terms of accuracy and hardware
implementation cost.

II. ARTIFICIAL NEURAL NETWORKS IMPLEMENTATION

A. Neural Networks models

With the development of artificial intelligence and brain-
inspired computing, ANNs algorithms come today from two
largely separate domains: machine-learning and neuroscience.
In this section, we describe both neural models and highlight
the learning algorithms that are mostly used with each-one.

Fig. 1. Perceptron neuron Fig. 2. IF neuron

1) Machine-Learning: The best-known ANN model for
machine learning is the MLP, which consists of an input layer
(generally, the input layer only consists of buffers with no
function, i.e. the input neurons only transmit the information
to the first hidden layer), one or more hidden layers (called
Deep Neural Network, or DNN, for a large number of hidden
layers), and an output layer [2]. Each layer has a number of
neurons called perceptrons shown in Fig. 1 and the neurons
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between the layers are totally connected to each other. The
neuron j in layer l performs the computation shown in Eq. 1.

ylj(t) = f(slj(t)), slj(t) =

Nl−1∑
i=0

wl
ij(t) × yl−1

i (t) (1)

Where ylj is the output of the neuron j in the layer l, Nl is the
number of neurons in the layer l, wl

ji is the synaptic weight
between neuron i in layer l − 1 and neuron j in layer l, and
f is the non-linear activation function, e.g.: f(x) = tanh(x)
[3].

We notice that the sum goes from 0 to Nl−1, which means
a total of Nl−1 + 1 neurons. The last neuron is the bias
neuron that is connected to the next layer with its synaptic
weight, and an output that is always equal to 1. The bias
neuron is often helpful, as the bias value allows us to shift the
activation function to the left or right, which may be critical
for successful learning in some cases. When the neurons of
the different layers are connected from inputs to outputs, the
network is said to run in feed-forward [4].

Fig. 3. Gradient back-propagation learning algorithm

The MLP learning algorithm is the gradient back-
propagation (BP), a supervised off-line learning algorithm [2].
As shown in Fig. 3, the principle is to calculate the gradient
of the error between the desired output and actual output and
to back-propagate it to the neurons of the previous layers in
order to adjust their synaptic weights. The process is repeated
through all the learning data-base until either the number
of learning iterations or the validation rate is reached. The
synaptic weights are updated as shown in Eq. 2.

wl
ji(t+ 1) = wl

ji(t) + η × δlj(t) × yl−1
i (t) (2)

Where t is the learning iteration, η is the learning rate and δlj
is the error gradient of the neuron j in the layer l, such that:

• At the output layer, δlj(t) = f
′
(slj(t)) × elj(t) where elj

is the error, i.e.: the difference between the correct and
the actual network output of the neuron j in the layer l.

• At the hidden layer, δlj(t) = f
′
(slj(t))×

∑Nl+1

k=0 δl+1
k (t)×

wkj(t) where f
′

is the derivative of f .

2) Neuroscience: Spiking Neural Networks (SNNs) are
the brain-inspired family of ANNs, mostly used for large-
scale simulations in neuroscience. There exist many models
amongst SNNs [5], that can be separated in two sections: bio-
mimetic models (Hodgkin-Huxley, Izhikevich, etc.) and bio-
inspired models (Leaky Integrate-and-Fire (LIF), Integrate-
and-Fire (IF)). We used the bio-inspired IF model, as it is the
simplest and most used model for implementing learning in
spiking neurons. The SNN has two main differences compared
to the MLP. First, neuron inputs and outputs are not directly
encoding an activity in a digital value, but in spikes, or pulses,
that use only 1 bit in digital representation. Several types
of spike coding can be implemented [6]: rate coding, time
coding, rank coding, population coding, etc. In rate coding,

Fig. 4. Spike-based rate coding example

the frequency of spikes over the spike train is proportional
to the brightness of the input pixel as shown in Fig. 4. We
used the IF neuron shown in Fig. 2 with rate coding in
order to easily transpose machine learning datasets in SNNs
simulators [7]. Many topologies may be used in the SNN, but
we chose the same feed-forward topology than the MLP, since
we wanted to conduct a comparative study about the impact
of information coding on hardware implementation cost, and
using two different topologies could bias and unfairly influence
the comparison. Second, the IF neuron computation is simpler
than the perceptron’s, as the neuron j in layer l performs the
computation shown in Eq. 3. We may either generate a train
of spikes proportional to the synaptic weight whenever there
is an input spike in that synapse, or simply sum the synaptic
weight whenever there is an input spike in that synapse. We
used the second method.

γlj(t) =

{
0 if slj(t) ≤ θ

1 otherwise
, plj(t) =

{
slj(t) if slj(t) ≤ θ

0 otherwise
(3)

Where slj(t) = plj(t − 1) +
∑Nl−1−1

i=0 wl
ij × γl−1

i (t), Nl−1 is
the number of neurons in the layer l − 1, wij is the synaptic
weight between the neuron i the in layer l− 1 and the neuron
j in the layer l, plj is the potential of the neuron j in the layer
l, θ is the threshold and γl−1

i is the spike state (0 or 1) of the
neuron i in the layer l − 1.

The bio-inspired learning algorithm adapted to SNNs is
the Spike Time Dependent Plasticity (STDP), an on-line
unsupervised learning algorithm, hence not requiring labeled
datasets. STDP is a brain-inspired learning algorithm, where
the idea is to detect the causality between the neurons for
each input: if a neuron spikes soon (before the expiry of a
time ∆t) after receiving a spike from a given synapse, it
suggests that synapse played an important role in the spike
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of the neuron, and therefore it reinforces that synapse by
increasing its corresponding weight: it is called Long-Term
Potentiation (LTP). In the other case, if a neuron spikes just
before or a long time after receiving a spike from a given
synapse, it suggests that synapse has no impact in the spike
of the neuron, and therefore it decreases its corresponding
weight: it is called Long-Time Depression (LTD) [8]. Here,
the computation paradigm is no longer the same compared to
BP, as we completely decentralize learning that becomes truly
parallel and distributed among neurons, so that each neuron
becomes responsible for its own learning [8].

B. Digital implementations

Neuromorphic architectures based on digital circuits ben-
efit from the maturity of the associated manufacturing tech-
nologies and their reprogramming / reconfiguration facilities.
Moreover, it is shown in [9] that below 22nm, digital imple-
mentation becomes more attractive than analog implementa-
tion in terms of area and scalability for SNNs (LIF / IF model).
Therefore, this study focuses on ANNs digital implemen-
tations. As described before, under embedded systems con-
straints, general programmable solutions on CPU/GPU are no
longer suitable. However, some neuromorphic architectures are
developed for large-scale neural networks simulations, mainly
for neuroscience purposes. The most successful CPU-based
neuromorphic architecture is the SpiNNaker chip designed for
large-scale simulations of heterogeneous models of SNNs in
biological real-time computing [10].

In another hand, digital solutions on Field Programmable
Gate Array (FPGA) and Application Specific Integrated Cir-
cuit (ASIC) have been studied for several decades and offer
a good compromise on all the criteria of low-power con-
sumption, programmability / reconfigurability, performance,
scalability, manufacturing maturity and biomimicry [1]. The
new challenges for such digital circuits do no longer depend
on the technology itself, but on the hardware architecture of the
neural network [1], [11]. One example of digital architectures
that gave a new breath to embedded machine-learning is the
IBM TrueNorth chip [12]. Compared with an optimized neural
network simulator running the same neural network on a
general-purpose microprocessor, TrueNorth consumes 176,000
times less energy / synaptic event. Compared to SpiNNaker,
TrueNorth consumes 769 times less energy / event. The results
on TrueNorth clearly show that the digital implementation of
SNNs is highly efficient in terms of hardware cost.

C. Neuromorphic architectures: MLP+BP vs. SNN+STDP

A comparative study between neuroscience and machine-
learning approaches for neuromorphic accelerators was con-
ducted in [13] where the objective was similar to ours, as
they compared the MLP+BP and the SNN+STDP, with two
main differences for the SNN: the topology is not a classical
feed-forward but a map or one-layer topology and the neurons
are not only connected through excitatory connections to the
input neurons, but are also connected through lateral inhibitory

connections to produce the so-called winner-takes-all (WTA)
dynamics and create a form of recurrent network.

TABLE I
MLP+BP VS. SNN+STDP: ACCURACY COMPARISON

Neural network MLP+BP SNN+BP SNN+STDP
Accuracy (%) 97.65 95.40 91.82

1) Accuracy comparison in [13]: Both MLP and SNN
were trained on the MNIST database of handwritten digits
(see section III-B). As shown in Table I, MLP+BP achieves
a better recognition rate of 97.65%, compared with only
91.82% for the SNN+STDP (+5.83%). In order to reduce
this loss, the authors implemented a hybrid version SNN+BP.
The idea was to keep the SNN topology and information
coding but to change the learning algorithm, going from
STDP to BP. They found that the recognition rate of the
SNN+BP reaches 95.40%, bridging the gap and reducing the
difference of accuracy with MLP+BP to only 02.25%. The
MLP+BP has therefore a better accuracy than SNN+STDP,
but the difference between the two models comes mainly
from the learning algorithm STDP, which gives less accuracy
but allows on-line unsupervised learning.

2) Hardware cost comparison: We find in the literature two
types of hardware digital implementation for ANNs [14] [1]:

• Spatially expanded: a completely parallel implementation
where each neuron is physically represented, i.e. the
design is similar to the conceptual representation of the
neural network.

• Spatially folded: a time-multiplexed architecture where
there is only ni physical neurons, each physical neuron
representing N/ni logical neurons, where N is the total
number of logical neurons.

TABLE II
MLP+BP VS. SNN+STDP: HARDWARE COST IN [13]

Neural net-
work

# in-
puts /
oper-
ator

area
(mm2)

Energy
(uJ)

Delay
(ns)

#
cycles
/ im-
age

Energy
/
cycle
(mJ)

MLP+BP
(784−100−10)

ni=01 01.05 000.38 2.24 882 000.43
ni=16 06.36 000.29 2.25 057 005.08
expanded 79.63 000.06 3.79 004 015.00

SNN+STDP
(784−300)

ni=01 02.56 471.58 1.15 791×500 001.19
ni=16 14.25 325.69 1.84 056×500 011.63
expanded 38.89 214.70 2.61 500 429.40

As shown in Table II, and according to [13], the SNN is
only better than the MLP in terms of delay. The SNN is
less efficient in terms of total area (except for the spatially
expanded implementation), and is not even comparable in
terms of energy, as it is 1000× more consuming on average for
the spatially folded architectures and 3500× for the spatially
expanded ones.

We conclude from this comparison study that the MLP+BP
has a better accuracy and a more efficient hardware im-

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: University of Groningen. Downloaded on April 14,2021 at 09:55:45 UTC from IEEE Xplore.  Restrictions apply. 



plementation than the SNN+STDP in terms of total area
(except for the expanded architecture) and energy. However,
the neuroscience-inspired SNN+STDP remains intellectually
attractive due to its closer relationship to the biological brain,
as it allows the neural network to learn while it performs
its task and it could become more attractive than machine-
learning models for very large-scale implementations. Still,
these results contradict our first intuition, since we showed that
the SNN neuron model (LIF) is simpler than the MLP neuron
model (perceptron), while it is here 2× more consuming per
cycle on average for the spatially folded and 28× for the
spatially expanded. We suppose that the SNN implementation
in [13] was penalized by:

• The energy consumption of the embedded spike conver-
sion of the MNIST input data.

• The STDP on-line unsupervised learning algorithm.
• The Leaky characteristic of the LIF neuron.

In order to understand the impact of information coding on
the hardware implementation cost of ANNs, we implemented
in this work both MLP and SNN with feed-forward topologies
and BP, using a custom spike-based MNIST database and a
simple Integrate-and-Fire (IF) neuron for the SNN, to have the
fairest possible comparison.

III. NEURAL NETWORKS BUILDING, TRAINING AND TEST

The first step was the software simulation of both MLP and
SNN. To avoid recoding the whole simulator for both formal
and impulsion models, a comparative study of the available
ANNs simulators was conducted.

A. Neural Networks simulators comparison

The comparison shows two families of ANNs simulators:
• Machine-learning simulators [1]: TensorFlow, Torch or

Caffe that simulate DNN with BP learning for machine-
learning oriented applications like image detection and
recognition, mostly used with GPU accelerators.

• Neuroscience simulators [7]: Neuron, Nest or Brian that
simulate large-scale bio-mimetic and bio-inspired neural
networks with different neuron models (LIF, Izhikevich,
Hodgkin-Huxley, etc.) and information codings (rate cod-
ing, time coding, etc.). Such simulators are designed to
run on CPU/GPU, but also on specific neural networks
simulating platforms like SpiNNaker. Some other simula-
tors highlight the learning algorithm, like DeepSpike that
implements a spike-based BP [15].

Among the different neural network simulators, N2D2 [16]
gives the possibility to simulate both machine-learning and
neuroscience models, typically the MLP+BP and SNN+BP
for our work, and to compare their performances in terms of
recognition rate and computational cost.

B. Learning on MNIST database with N2D2

Both MLP and SNN were trained on the MNIST database
of handwritten digits, a training set of 60,000 examples, and
then tested on the test set of 10,000 examples. To build
our networks, two main parameters have to be determined:

the number of hidden layers, and the number of neurons in
each layer. This is a common problem in any neural network
design, as there is no proved mathematical rule on how to
fix these parameters. However, experience in machine-learning
has brought some rules of thumb in this domain.

First, we know that our data are not linearly separable. Thus,
we need to use at least one hidden layer, and it is sufficient
for the large majority of problems, as the situations in which
performance improves with a second or third hidden layer are
very few [3]. Therefore, we use only one hidden layer.

Second, MNIST handwritten digits are 28 pixels x 28 pixels
images for a total of 784 pixels / image. Hence, we need 784
input neurons and 10 output neurons, since the classification
result is an integer between 0 and 9. Furthermore, from the
study in [3], error on the MNIST test set using a one-hidden
layer MLP is 4.7% for a network with 300 hidden neurons, and
4.5% for a network with 1000 hidden neurons. It shows that it
is a much better compromise to use 300 hidden neurons, which
is sufficient for more complex image classification tasks.

In conclusion, the topology of our neural networks is 784-
300-10. We use the same topology for both MLP and SNN
so that we could have a fair comparison on accuracy and
hardware implementation cost, the only difference being the
neuron computation and information coding model.

1) MLP learning: We built a 784-300-10 MLP in N2D2
with fully connected layers and a bias neuron for the input and
hidden layers. The MNIST input data were first normalized, as
the convergence is usually faster if the average of each input
variable over the training set is close to zero [17]. The network
was trained with the hyperparameters shown in Table III, that
we fixed following the work of LeCun [3] and the experimental
results we obtained using N2D2. After the learning process,

TABLE III
MLP TRAINING HYPERPARAMETERS

Hyperparameter Value
Validation 0.2
BatchSize 1
Momentum 0
Learning rate 0.001
Learning rate decay 0.01

we extracted the learning synaptic weights from N2D2 output
files to prepare the hardware implementation. After performing
the test over the 10000 MNIST test images, we obtained a
recognition rate of 95.73% which is slightly better than the
result from [3] on the same topology.

2) SNN learning: We built a 784-300-10 SNN in N2D2
with the same hyperparameters as for the MLP, except for the
spike-based computing, where we use specific hyperparame-
ters1. We used the Poissonian distribution in order to have the
same as the custom spike-based MNIST database that we used
as input for the FPGA simulation to validate the behavior of
the SNN. N2D2 uses BP for the training of both MLP and
SNN, but since we cannot use classical BP on a SNN, mainly

1StimulusType=Poissonian; Threshold=1; BipolarThreshold=0
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because some modules within the SNN are not differentiable
[15], N2D2 is performing the training on the formal (MLP)
version of the SNN, and then converting the learning weights
to adapt to the new computation model of the SNN [18].

IV. NEUROMORPHIC ARCHITECTURES

When we obtained the learning synaptic weights for both
MLP and SNN, we moved to the hardware design (VHDL) of
their neuromorphic architectures. We worked under Intel Quar-
tus 17.0 for FPGA prototyping, and ModelSim for simulation
in order to validate the behavior of our designs.

A. MLP design

We first describe the architecture of the perceptron neuron,
that has three computational parts as shown in Fig. 5: product,
sum and activation. We implemented a spatially expanded ver-

Fig. 5. Perceptron neuron hardware architecture

sion of the MLP where each neuron is physically implemented,
except for input neurons that are temporally multiplexed in one
physical input neuron. If the MLP reads all the 784 image
pixels at once, the case where we need 784 physical input
neurons, each hidden neuron will receive all its 784 inputs
simultaneously, and will need 784 multipliers to perform
its computation. That would be too expensive in terms of
hardware cost, especially that each multiplier implies a DSP
block in the FPGA device. Therefore, we used temporally
multiplexed neuron inputs, where each neuron performs its
computation synapse per synapse. Since the input neurons are
only buffers and receive pixels one by one, we only used one
hardware neuron.

The simplified hardware architecture of the MLP is shown
in Fig. 6. The MLP uses one input neuron, n hidden neurons
and m output neurons that are generated during compilation,
n and m being generic parameters that we can change de-
pending on the size of our MLP. The neurons interconnections
are coded in signed fixed-point Q3.7. The learning synaptic
weights are stored in each neuron during synthesis. We used a
local memory and assigned each weight to the corresponding
synapse of the corresponding neuron. The input neuron is a
buffer that outputs the image pixel per pixel. The hidden and
output neurons do the same computation, they only differ in
the number of inputs. The product is coded in Q3.7, while
the sum is coded in Q11.7 to prevent overflow. As shown
in Fig. 5, the activation function is implemented with LUTs

Fig. 6. Input-time-multiplexed neuromorphic architectures

for more efficiency. Finally, we used a hidden counter and an
output counter to synchronize the neurons computations with
the inputs reading, as the inputs are time-multiplexed.

B. SNN design

The architecture of the IF neuron has only one computa-
tional part for the sum, a comparator and multiplexers. We
multiplexed the output of the sum such that it is equal to the
sum of the previous potential and the synaptic weight when
the synaptic input is equal to 1 (i.e. the previous layer’s neuron
connected to that synapse emitted a spike) and only equal to
the previous potential if the synaptic input is equal to 0, as
shown in Fig. 7. The neuron sums all the synaptic weights
for which there is an input spike along its synaptic inputs,
and when the sum is complete, if it is equal or exceeds the
threshold then the neuron emits a spike and the sum is reseted.

Fig. 7. Integrate-and-Fire neuron hardware architecture

An important remark is that the IF neuron only does the
comparison to the threshold once the sum is complete over
all the synaptic inputs, which means that even if the sum
(potential) exceeds the threshold before its end, the neuron
waits until the end to spike if the sum is still above the
threshold (which is not guaranteed, since we have negative
weights). The reason is that the spikes generated from the
previous layer neurons are supposed to arrive at the same time,
but since we used the same spatially expanded architecture
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than the MLP where the inputs are temporally multiplexed,
the spikes are received one by one.

The time window and the frequency of spikes depend on the
conversion we make to go from the formal to an event-based
MNIST dataset. For the validation of our design, we generated
a custom spike-based version of the original MNIST database.
Therefore, for each image, we have a matrix of 784 × 100
logical variables (true = spike event; false = no event). As
described in [18], the brighter the pixel, the more spikes are
generated. The SNN has the same feed-forward topology and
input-time-multiplexed architecture than the MLP shown in
Fig. 6, the only difference being the neurons interconnections
that are coded on 1 bit, as the neurons only receive and
transmit spikes.

V. MLP+BP VS. SNN+BP: COMPARISON RESULTS

We compare in this section the MLP and SNN over two
main criteria: accuracy and hardware cost for FPGA and ASIC
implementations. We implemented four topologies with 10,
50, 100 and 300 hidden neurons. The results on the reference
topology (784-300-10) are summarized in Table IV.

TABLE IV
MLP+BP VS. SNN+BP: COMPARISON STUDY SUMMARY

Neural Network MLP
784-
300-10

SNN
784-
300-10

SNN
gain
(%)

Accuracy on
MNIST
database

Accuracy (%) 95.73 95.37 -00.38
Read events /
virtual synapse
/ pattern

1 0.268 73.20

Hardware
cost

FPGA:
Al-
tera
Cy-
clone
V

Pins 113 14 87.62
Logic (ALMs) 61809 34950 43.46
Registers 6274 34950 43.56
Max number of
neurons

0342 1007 194.45

DSP blocks 310 0 100.00
Dynamic
power (mW)

012.03 004.95 58.86

Total power
(mW)

538.78 530.21 01.60

ASIC:
CMOS
65nm

Ports 113 014 87.62
Total cell area
(mm2)

01.888 00.869 53.98

Cell internal
power (mW)

00.740 00.400 45.91

Net switching
power (mW)

00.141 00.026 81.62

Dynamic
power (mW)

00.881 00.426 51.63

Cell leakage
power (mW)

51.224 28.040 45.26

Total power
(mW)

52.106 28.467 45.37

A. Image recognition accuracy

In terms of accuracy, the SNN has almost the same per-
formances as the MLP (-00.38%), as shown in Fig. 8. We
conclude that the spike-based coding does not penalize the
network in terms of accuracy. Hence in [13], it is mainly the
learning algorithm that reduces the recognition rate, while it
offers the advantage of on-line unsupervised learning.

Fig. 8. Accuracy Fig. 9. Operations efficiency

Another important result obtained with N2D2 is the mea-
surement of ”read events per virtual synapse per pattern (av-
erage)”. This statistic reports the average number of accumu-
lations per synapse per input stimulus (image) in the network.
For all the four tested topologies, this number is always below
1.0, which means that the spiking versions of the neural
networks are more efficient than their formal counterpart in
terms of total number of operations [16]. Furthermore, this
number is decreasing when the number of neurons increases
as shown in Fig. 9, which means that the more neurons we
use, the higher the operations efficiency of the SNN compared
to the MLP. In our case, this statistic only impacts the spike
emission frequency between neurons, since the IF neuron
always performs its computation independently from the input
spike, decreasing its effect on the total energy consumption of
the SNN. It means that we can achieve better performances for
the SNN in our future works if the IF neuron is only activated
when there is an input spike.

B. Hardware cost

1) FPGA implementation: For the FPGA implementation,
we used Altera FPGA Cyclone V: 5CGXFC9E7F35C8 device
that gives a good flexibility in terms of resources (ALMs,
memory bits and DSP blocks). The FPGA implementation
shows important gains for the SNN in terms of logic utilization
(43.46%) due to the extra ALMs used for the activation
function in the MLP, total pins (87.62%) due to the information
coding and DSP blocks (100.00%) due to the multipliers that
are used for the MLP only, with a small loss in the total
registers (-08.40%), due to the stored spike signal in the SNN.
Another important point is that we have a gain of 194,45%
in the maximum number of neurons we can implement on
this particular FPGA device, as we can use a maximum of
342 neurons for the MLP (limited by DSP blocks), while we
can use a maximum of 1007 neurons for the SNN (limited
by ALMs). In terms of clock frequency, the SNN goes up to
80MHz and has a gain of about 33%, but we chose to work
with the same clock frequency for both neural networks. In
terms of power consumption, the SNN is more efficient in
dynamic power (58.86%), even if this gain is irrelevant in the
total consumption of the FPGA device (01.60%).

2) ASIC implementation: We targeted a CMOS 65nm tech-
nology to implement our neural networks on ASIC and we
compiled our designs using Synopsys Design Compiler. The
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Fig. 10. FPGA logic Fig. 11. FPGA dynamic power

Fig. 12. ASIC total area Fig. 13. ASIC total power

ASIC implementation shows a clear advantage for the SNN,
as it is more efficient in terms of number of ports (87.62%)
and total cell area (53.98%). These results are coherent since
they reflect the SNN gains in FPGA resources. In terms of
power consumption, the SNN is more efficient in total dynamic
power (51.63%), that is approximately the same result found
in FPGA. However, the SNN is also more efficient in cell
leakage power (45.26%) as it is proportional to the used area,
and therefore more efficient in terms of total power (45,37%).

C. Discussion

In this paper, it is shown that the SNN achieves practically
the same performances than the MLP in terms of accuracy,
while it is about 50% more efficient in hardware resources and
power consumption. Here, we assume that both MLP and SNN
are embedded in continuously operating cameras. Therefore,
the power consumption gain of the SNN is equivalent to
its energy consumption gain in the same amount of time.
Consequently, the main advantage of the MLP is the speed
(processed images per second), as the SNN takes N× more
clock periods to process an image, where N is the maximum
number of spikes that can be generated for one pixel. This
number N is an important parameter influencing both the
accuracy and the image processing time of the SNN, such that
increasing N results in higher accuracy and longer processing
time, i.e. more input spikes as shown in Fig. 14. We illustrate
in Fig. 14 the evolution of the number of input spikes versus
the image resolution for two cases: the frame-driven based
systems with different N and the Dynamic Vision Sensor
(DVS) based system. The approximate plot based on the work
in [18] (poker cards) shows that systems with DVS cameras are
more efficient in terms of number of input spikes to process, as

Fig. 14. Frame-driven and frame-free (DVS) input spikes efficiency

DVS sensors only send the difference between two consecutive
frames, and that directly impacts the SNN processing time and
energy consumption.

Now, the obtained results are compared to those of the spe-
cially expanded versions of both networks in the comparative
study conducted in [13]. The area gain for the same precision
is approximately the same (50%). However, there is a very
large difference in terms of SNN energy gain. In [13], the
MLP has a gain of 96.38%. In our study, the SNN has a total
energy gain of 45.37%, which fits to the theoretical study on
the computational complexity of the two models, where the IF
neuron performs a simpler computation based on spike-events.
Therefore, it is not the spike-based coding that penalizes the
SNN in the study conducted by Z. Du et al. [13], but some of
the three factors: embedded spike-conversion, STDP learning
algorithm and the Leaky part of the LIF neuron.

When implementing the MLP and the SNN on the same
target technology (CMOS 65nm) with Synopsys Design Com-
piler, we have an area gain of about 97% compared to
the one in [13], as shown in Table V. In one hand, the
comparison between SNN+BP (our study) and SNN+STDP
[13] may be unfair as the SNN+STDP implements on-line
unsupervised learning, but in another hand, the comparison
between both MLP+BP clearly shows that we have a more
efficient architecture, as we have 97.62% less area with 200
extra neurons. The reason is that even if both studies used
spatially expanded architectures, we used time-multiplexed
neuron inputs, whereas they used parallel inputs, which means
that each neuron has as much multipliers as inputs. Thus, the
main advantage of time-multiplexing neuron inputs is the hard-
ware area efficiency. Nevertheless, our time-multiplexed inputs
architecture is limited for the SNN in terms of integration to

TABLE V
OUR AREA GAINS COMPARED TO THE STUDY IN [13]

Neural
Net-
work

MultiLayer Perceptron Spiking Neural Network
Our
study

[13] Our
study

[13]

MLP+BP
784-
300-10

MLP+BP
784-
100-10

SNN+BP
784-
300-10

SNN+STDP
784-
300

Area (mm2) 01.89 79.63 00.87 38.89
Our area gain 97.62% 97.76%
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DVS cameras, as we have to gather their output data into
frames before processing them.

To overcome this limitation, the study in [18] presents an
interesting method for mapping a formal neural network to a
SNN. This method is illustrated in a DNN processing data
from a DVS camera. The system is trained in its formal
version then mapped to its spiking version. The work in [19]
shows another method for training SNNs with DVS versions
of MNIST data-base. We can notice two aspects of the SNN
architecture developed in [18]:

• The input data come directly from a bio-inspired asyn-
chronous (DVS) camera.

• The recognition occurs while the camera is providing
events-data (spikes).

These aspects are not present in our implementation: in the
SNN, the input data must be gathered into frames before
processing them. Thus, the input and computation are not
simultaneous. Integrating this approach into our system is
therefore very promising. However, we cannot apply this
method to a system trained from a standard data-base. In [18],
the DVS data-base is built following these steps:

1) Record event streams of 80ms from the DVS camera.
2) Generate images from these recordings by collecting

events during 30ms.
To get advantage from this method without recording the

whole data-set with a DVS sensor, the standard training data-
base has to be adapted. This leads us to ask the question of
the transformation of standard data-bases (frame-driven) in a
way to use them with frame-free spike coding. In addition,
recognizing images while the camera is transmitting events
is ensured in [18] thanks to a parallel (non-multiplexed)
architecture that is hardly compatible with FPGA/ASIC-based
implementations for embedded systems.

VI. CONCLUSION AND FURTHER WORKS

In the context of embedded image classification, we
showed that the neuroscience approach (SNN) reaches
the same performances than machine-learning (MLP) in
terms of accuracy, while it is about twice as efficient in
terms of hardware implementation cost (area, power). The
MLP, though, is faster in terms of number of clock cycles
for processing one image. The presented neuromorphic
architectures are spatially expanded and input time-
multiplexed, giving the required hardware efficiency of
embedded systems. Nevertheless, the integration of the SNN
with an asynchronous camera is still in progress. The obtained
results give two main perspectives: Firstly, the neuroscience
approach gives the possibility to implement Deep SNNs for
more complex applications, with low-energy consumption
for embedded systems. Secondly, SNNs give the possibility
to implement brain-inspired learning algorithms with on-line
unsupervised learning, and take a step forward going from
Deep Machine Learning that solves a specific task on labeled
data to Machine Intelligence that continuously learn from
unlabeled data to enhance the performances of autonomous

and flexible systems, and thus take a step forward in the
design of embedded artificial intelligence.
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