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Abstract

Background: Anastomotic leakage in patients undergoing colorectal surgery is associated with morbidity and mortality. Although
multiple risk factors have been identified, the underlying mechanisms are mainly unknown. The aim of this study was to perform a
transcriptome analysis of genes underlying the development of anastomotic leakage.

Methods: A set of human samples from the anastomotic site collected during stapled colorectal anastomosis were used in the study.
Transcriptomic profiles were generated for patients who developing anastomotic leakage and case-matched controls with normal
anastomotic healing to identify genes and biological processes associated with the development of anastomotic leakage.

Results: The analysis included 22 patients with and 69 without anastomotic leakage. Differential expression analysis showed that
44 genes had adjusted P < 0.050, consisting of two upregulated and 42 downregulated genes. Co-functionality analysis of
the 150 most upregulated and 150 most downregulated genes using the GenetICA framework showed formation of clusters of genes
with different enrichment for biological pathways. The enriched pathways for the downregulated genes are involved in immune
response, angiogenesis, protein metabolism, and collagen cross-linking. The enriched pathways for upregulated genes are involved
in cell division.

Conclusion: These data indicate that patients who develop anastomotic leakage start the healing process with an error at the level
of gene regulation at the time of surgery. Despite normal macroscopic appearance during surgery, the transcriptome data identified
several differences in gene expression between patients who developed anastomotic leakage and those who did not. The expressed
genes and enriched processes are involved in the different stages of wound healing. These provide therapeutic and diagnostic targets
for patients at risk of anastomotic leakage.

Introduction
Anastomotic leakage occurs in approximately 10 per cent of

patients who undergo colorectal resection with primary anasto-
mosis. A leak is associated with prolonged hospital stay, reinter-
vention, permanent ostomies, and even death1,2. There is limited

evidence for preventative measures, such as diverting ostomies,
omentoplasties, and bowel preparation3–5. Many factors increase
the risk of anastomotic leakage: poor perfusion of the bowel, in-

creased tension on the anastomosis, technically imperfect anas-
tomosis, chronic use of immune suppressive agents, and co-
morbidity including diabetes or atherosclerosis6,7. In addition, it

has been shown that anastomotic leakage is associated with low
microbial diversity and the presence of bacteria such as
Enterococcus faecalis at the anastomotic site8,9. However, the bio-

logical signalling pathways involved in normal or impaired

colonic wound healing and thus the pathophysiology of anasto-

motic leakage are incompletely understood.
Therefore, the aim of this study was to undertake a transcrip-

tome analysis of genes underlying the development of colorectal

anastomotic leakage.

Methods
The samples used for this study were obtained from patients who

participated in the C-seal trial10. The trial was registered in the

Netherlands National Trial Register (NTR3080). For patients who

gave additional consent, the doughnuts, comprising small rings

of colon and/or rectum cut by the circular stapler, were stored in

RNAlaterVR (ThermoFisher Scientific, Waltham, Massachusetts,

USA) at –80�C. Patients who developed anastomotic leak were

Received: April 04, 2020. Revised: July 17, 2020. Accepted: October 03, 2020
VC The Author(s) 2021. Published by Oxford University Press on behalf of BJS Society Ltd. All rights reserved.
For permissions, please email: journals.permissions@oup.com

2
BJS, 2021, 108, 326–333

DOI: 10.1093/bjs/znaa066
Advance Access Publication Date: 30 January 2021

Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/bjs/article/108/3/326/6124101 by U

niversity of G
roningen user on 09 April 2021



matched for sex, age, and preoperative chemotherapy and radio-
therapy with patients who did not develop leakage.

RNA isolation
Total RNA was extracted from proximal doughnuts using a proto-
col involving a combination of bead beating and a MaxwellVR 16
LEV simplyRNA Tissue Kit (Promega, Madison, Wisconsin, USA).
Briefly, up to 60 mg tissue sample, 245 ll 1-thioglycerol/
Homogenization Solution (provided with kit) and minibead glass
beads were added to an Eppendorf tube and disrupted in a bead
beater three times each for 45 s. Subsequently the homogenates
were heated at 70�C for 2 min and cooled for 1 min. Samples
were then centrifuged at 13 200g for 5 min, and 200 ll superna-
tant transferred into new tubes with 200 ll Kit Lysis Buffer. The
samples were vortexed and transferred into MaxwellVR 16 LEV
Cartridge Purification Kit cartridges. An additional 10 ll kit
DNAse I was added to the other wells of the cartridges as de-
scribed by the protocol, and 40 ll nuclease-free water was used
for elution.

RNA quality check
Quantity and quality were assessed with a NanoDrop spectropho-
tometer (Thermoscientific). Only RNA samples with a 260/280 ra-
tio of 1.9–2.1 and 260/230 ratio over 2.0 were used. Additional
quality checking of the extracted total RNA and total RNA quanti-
fication of the samples was done by capillary electrophoresis us-
ing a LabChip GX (PerkinElmer, Waltham, Massachusetts, USA).
Samples were included for further analysis if the 28S/18S ribo-
somal RNA ratio was greater than 0.8 and the mean RNA quality
score exceeded 5.0.

Messenger RNA sequencing
Libraries of cDNA fragments were generated using BiooScientific
Nextflex mRNA sample preparation kits (BiooScientific, Austin,
Texas, USA) and a Sciclone NGS Liquid Handler (PerkinElmer). In
the event of Scicluna contamination of adapter duplexes, an ex-
tra purification of the libraries was performed using a LabChip
XT automated agarose gel separation system (PerkinElmer). The
cDNA fragment libraries obtained from the samples were se-
quenced using a NextSeq500 System (Illumina, San Diego,
California, USA), with a single-end read and a read length of 75
base pairs in four pools of 24 samples.

Quality control of sequencing data
Quality control was performed by sequenced read and by sample,
and quality control metrics were calculated from the raw
sequencing data by using FastQC/0.11.3-Java-1.7.0_80.
Subsequently all reads were aligned to the reference genome
build 37 human ensemble release 75, using HISAT/0.1.5-beta-goolf-
1.7.20 with default mode, allowing for two mismatches in the
alignment11. Gene-level quantification in raw counts was per-
formed by HTSeq/0.6.1p1 using default settings, and Ensembl
version 75 was used as gene annotation database12.

Differential gene expression analysis
Differential expression of the genes was analysed using DEseq2
package in R version 3.4.3 (R Foundation for Statistical
Computing, Vienna, Austria). First, genes that did not have at
least three samples with normalized counts exceeding 10 were
prefiltered13. Thereafter, differential analysis was performed, cre-
ating a list of upregulated and downregulated genes based on the
log2 fold change and P value13. In addition, P values were adjusted
for multiple comparisons by use of the Benjamini–Hochberg false

discovery rate (a¼ 0.05). Adjusted P < 0.050 was considered sig-
nificant.

Heatmap and hierarchical clustering
A heatmap was created with the 150 most upregulated and
150 most downregulated genes based on the adjusted P value in
the data set using the ClustVis tool14, which is available online.
The clustering distances were based on Pearson correlation sub-
tracted from 1, and the Ward linkage method was used.

Co-functionality network analysis
A guilt-by-association approach was used that predicts likely
functions for genes based on gene co-regulation (manuscript in
preparation). A description of the underlying method can be
found in Appendix S1. This framework enables researchers to cre-
ate a comprehensive network of predicted functionalities of indi-
vidual genes(http://www.genetica-network.com). Based on this
framework, the likelihood of every gene set as defined in a se-
lected database can be calculated. This results in a vector of n
likelihoods for each individual gene. The number of gene sets in
the selected database determines n. Next, the correlation be-
tween the vectors of likelihoods of the different genes is calcu-
lated. The GenetICA framework then shows a network of genes in
which all genes have at least a correlation with another gene
above, with a least one correlation above the selected threshold.
When selecting a clustered network of genes, it shows the
enriched function of the Gene Ontology Biological Process (GO BP)
gene sets and its enrichment value (Z-transformed P values), con-
sidered significant when the Z-score is greater than 1.96. For the
present data set, the 150 most upregulated and 150 most downre-
gulated genes based on adjusted P value were used with a thresh-
old of 0.600 to separate clusters of genes. Clusters with at least 10
genes were used to perform the enrichment studies adequately.

Results
The study was started with 123 doughnut samples; 29 of these were
from patients who developed anastomotic leakage. After quality
control of extracted RNA and sequencing results, the analysis was
continued with 91 samples. Of these, 22 samples were from patients
who developed anastomotic leakage within 30 days of surgery, ex-
cept for one patient who developed a leak 40 days after operation,
and 69 were from patients who did not develop anastomotic leakage
(Fig. S1). Baseline characteristics for both groups included in subse-
quent analyses are shown in Table 1. With the exception of
BMI (P¼ 0.023), no significant differences were observed.

Genes with significant differential expression
between anastomotic leak and non-leak samples
Four hundred and sixteen genes were significantly (P< 0.050)
upregulated and 1479 were downregulated in samples from
patients with anastomotic leakage compared with samples from
those with no leak. Forty-four of these genes had adjusted P <

0.050, two upregulated and 42 downregulated genes (Fig. 1 and
Table 2). A list of all genes is available in File S1.

Heatmap with hierarchical clustering
A heatmap of the top 150 most significantly upregulated and top
150 most significantly downregulated genes in patients who de-
veloped anastomotic leak is shown in Fig. 2. Most (15 of 22) of the
anastomotic leak samples had a similar pattern of gene expres-
sion, as they clustered together. Differences in upregulation and
downregulation in the samples from patients who did or did not
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develop anastomotic leak were seemingly dichotomous and were

homogeneous within the groups, with the exception of three

samples. These three samples (numbers 42, 118, and 123)

belonged to the group without anastomotic leak, and showed a

different, outlying pattern compared with other samples in this

group. They showed greater upregulation in a subset of genes

(MMP3 to TLR4) (Fig. 2).

Co-functionality network analysis
The GenetICA co-functionality network of the top 150 upregu-

lated genes consisted of eight clusters of genes, ranging from 2 to

11 genes sharing predicted co-functionality. Only cluster 1 con-
tained more than 10 genes (Fig. 3), showing enrichment of the
pathways GO organelle fission (Z-score 5.60), GO transfer RNA
metabolic process (Z-score 5.36), GO DNA repair (Z-score 5.31),
GO amide biosynthetic process (Z-score 5.17), and GO non-coding
RNA processing (Z-score 5.02). Because these pathways are
related to cell division, this cluster 1 was labelled ‘cell division’
(Table S1).

The clusters formed by the downregulated genes consisted
of 2 to 38 genes (Fig. 4). Three clusters contained more than
10 genes. Cluster 1 showed 37 genes that were enriched for path-
ways in the immune response, such as GO leucocyte activation
(Z-score 7.77), GO defence response to bacterium (Z-score 6.98),
and GO defence response to other organism (Z-score 6.94).
Cluster 2 (16 genes) enriched for pathways that involve angiogen-
esis: GO vasculature development (Z-score 4.72), GO blood vessel
morphogenesis (Z-score 4.34), and GO angiogenesis (Z-score 4.33).
Cluster 3 (24 genes) enriched for pathways such as GO mRNA
processing (Z-score 5.43), GO DNA repair (Z-score 5.33), and the
pathway GO peptidyl lysine modification (Z-score 5.05). The path-
ways of cluster 3 are related to protein synthesis and collagen
cross-linking (Table S2).

A subset of the downregulated genes in the immune response
cluster were genes that were relatively downregulated owing to
the three previously mentioned outlying samples. This subset of
genes accounted for a large part of the enrichment of GO defence
response to bacterium, GO inflammatory response, and GO de-
fence response to other organism. These pathways had lower

Table 1 Patient characteristics

Total (n 5 91) Anastomotic leakage (n 5 22) No anastomotic leakage (n 5 69) P§

Age (years)* 64.0 (10.3) 65.0 (10.5) 63.7 (10.3) 0.628¶

Sex ratio (M : F) 64:27 17:5 47:22 0.442
BMI (kg/m2)† 26.5 (24.0–29.4) 27.7 (24.8–31.2) 25.9 (23.8–28.2) 0.023
Indication for surgery 0.160

Colorectal cancer 85 (93) 22 (100) 63 (91)
Diverticular disease 4 (4) 0 (0) 4 (6)
Other 2 (2) 0 (0) 2 (3)‡

Co-morbidities
Cardiovascular 42 (46) 11 (50) 31 (45) 0.677
Pulmonary 14 (15) 5 (23) 9 (13) 0.278
Neurological 11 (12) 3 (14) 8 (12) 0.806
Gastrointestinal 21 (23) 6 (27) 15 (22) 0.598
Urogenital 16 (18) 6 (27) 10 (14) 0.175
Musculoskeletal 15 (16) 5 (23) 10 (14) 0.371
Endocrine 16 (18) 3 (14) 13 (19) 0.584
Infectious 1 (1) 0 (0) 1 (1) 0.589
Concomitant malignancy 17 (19) 4 (18) 13 (19) 0.951

Curatively treated 15 (16) 4 (18) 11 (16)
ASA grade 0.262

I 18 (20) 7 (32) 11 (16)
II 61 (67) 12 (55) 49 (71)
III 12 (13) 3 (14) 9 (13)

Chronic corticosteroid 1 (1) 0 (0) 1 (1) 0.589
Preoperative treatment

Chemoradiotherapy, 50 Gy 19 (21) 4 (18) 15 (22) 0.721#

Chemotherapy only 1 (1) 0 (0) 1 (1)
Short-course radiotherapy, 25 Gy 31 (34) 7 (32) 24 (35) 0.798#

With chemotherapy 2 (2) 0 (0) 2 (3)
Diverting ileostomy 0 (0) 0 (0) 0 (0) 1.000#

Diverting colostomy 5 (5) 1 (5) 4 (6) 0.823#

Hartmann 1 (1) (0) 1 (1)
During surgery

New ostomy 40 (44) 8 (36) 32 (46) 0.416
C-seal 47 (52) 13 (59) 34 (49) 0.428

Values in parentheses are percentages unless indicated otherwise; values are *mean(s.d.) and †median (i.q.r.). Co-morbidities are defined as disease under
specialists’ treatment.‡Adenoma and recurrent pelvic leiomyosarcoma. §Mann–Whitney U test, except ¶Welch’s t test and #Pearson v2 test.
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Fig. 1 Volcano plot showing distribution of gene expression patterns
The dotted lines are the adjusted P-value < 0.050 (horizontal) and the
Log2 fold change <–1.0 or >1.0 (vertical).
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Z-scores (5.00 or less) when the subset genes were left out of the
analysis. However, a cluster of genes that enriched for innate im-
mune response-related pathways such as GO leucocyte activa-
tion (Z-score 9.52), GO activation of immune response (Z-score
7.23), and GO regulation of innate immune response (Z-score
6.90) were still present if these outliers were excluded from the
enrichment analyses (Table S3).

Discussion
This study presents a unique transcriptome analysis of 91 human
colonic samples from the anastomotic site and subsequent clinical
outcome. Despite normal macroscopic appearance during surgery,
the transcriptomic data identified several differences in gene ex-
pression between patients who developed anastomotic leak and
those who did not. The majority of these genes were downregu-
lated at the time of surgery in patients who developed an anasto-
motic leak. These genes are interesting individually but should
be considered in the context of pathway regulation. A co-
functionality network analysis identified three clusters of more

than 10 downregulated genes in patients who developed anasto-
motic leak that can be labelled with the themes: immune response
(cluster 1), angiogenesis (cluster 2), and protein synthesis and col-
lagen cross-linking (cluster 3). The upregulated genes comprised
one cluster with more than 10 genes that seemed to be involved in
cell division processes. This analysis of the transcriptomic level be-
tween patients who did or did not develop anastomotic leakage
shows a multifactorial transcriptomic signature of samples
obtained just before the process of wound healing starts.

The upregulated cluster of genes that seems to regulate cell
division is also found in skin fibroblasts from patients with
Ehlers–Danlos syndrome15. In this disorder, mainly collagen type
V is affected negatively; this has a central role in fibrillogenesis
and influences the activation of other collagen types16,17.
Although none of the studied patients had Ehlers–Danlos syn-
drome, a negative influence on collagen type V could impair crea-
tion of extracellular matrix. However, uncontrolled upregulated
cell division could also indicate the presence of colorectal cancer
cells18; however, all samples had a large macroscopic tumour-
free resection margin.

Table 2 Genes that were differentially expressed between patients with or without anastomotic leakage (adjusted P < 0.050)

Gene symbol Gene name Log2 fold change P Adjusted P

Upregulated
PROC Protein C, inactivator of coagulation factors Va and VIIIa 1.182 4.35E–05 3.10E–02
RP4-740C4.7 RP4-740C4.7 0.776 4.48E–05 3.10E–02
Downregulated
AQP9 Aquaporin 9 –2.489 1.41E–07 2.79E–03
HCAR3 Hydroxycarboxylic acid receptor 3 –2.473 5.38E–06 1.53E–02
MMP10 Matrix metallopeptidase 10 –2.305 9.41E–05 4.58E–02
PROK2 Prokineticin 2 –2.235 8.74E–06 1.74E–02
FCAR Fc fragment of IgA receptor –2.193 3.21E–06 1.06E–02
FCGR3B Fc fragment of IgG receptor IIIb –2.132 1.11E–06 6.22E–03
APOBEC3A Apolipoprotein B mRNA editing enzyme catalytic subunit 3A –2.070 2.91E–06 1.06E–02
LUCAT1 Lung cancer associated transcript 1 –2.030 6.35E–05 3.54E–02
CXCR2 C–X–C motif chemokine receptor 2 –1.973 1.15E–06 6.22E–03
CXCR1 C–X–C motif chemokine receptor 1 –1.905 1.35E–05 1.85E–02
MTRNR2L8 MT-RNR2-like 8 –1.905 4.52E–05 3.10E–02
FPR2 Formyl peptide receptor 2 –1.849 2.37E–05 2.35E–02
KCNJ15 Potassium voltage-gated channel subfamily J member 15 –1.833 1.40E–05 1.85E–02
MMP3 Matrix metallopeptidase 3 –1.757 3.53E–05 2.81E–02
SLC11A1 Solute carrier family 11 member 1 –1.586 7.23E–06 1.70E–02
CSF3R Colony-stimulating factor 3 receptor –1.570 1.25E–06 6.22E–03
FPR1 Formyl peptide receptor 1 –1.449 6.00E–05 3.54E–02
MGAM Maltase-glucoamylase –1.289 2.02E–05 2.22E–02
SELL Selectin L –1.157 9.45E–05 4.58E–02
SLC16A7 Solute carrier family 16 member 7 –1.051 1.08E–05 1.79E–02
EMP1 Epithelial membrane protein 1 –0.997 3.33E–05 2.81E–02
NAMPT Nicotinamide phosphoribosyltransferase –0.991 6.40E–05 3.54E–02
NAMPTL Nicotinamide phosphoribosyltransferase-like –0.986 1.09E–04 4.91E–02
RP11-443N24.1 RP11-443N24.1 –0.880 2.12E–05 2.22E–02
HGF Hepatocyte growth factor –0.855 2.90E–05 2.74E–02
ZBED6 Zinc finger BED-type containing 6 –0.749 1.81E–05 2.12E–02
SLC2A13 Solute carrier family 2 member 13 –0.678 6.07E–05 3.54E–02
IKZF2 IKAROS family zinc finger 2 –0.666 1.49E–05 1.85E–02
IL6ST Interleukin 6 signal transducer –0.612 9.88E–05 4.65E–02
N4BP2 NEDD4-binding protein 2 –0.588 7.55E–05 3.95E–02
JMJD1C Jumonji domain containing 1C –0.532 4.44E–05 3.10E–02
CHD1 Chromodomain helicase DNA-binding protein 1 –0.524 6.20E–05 3.54E–02
GPR126 G protein-coupled receptor 126 –0.522 6.24E–05 3.54E–02
AHR Aryl hydrocarbon receptor –0.518 5.87E–05 3.54E–02
AGO2 Argonaute 2, RISC catalytic component –0.517 1.27E–05 1.85E–02
DOCK4 Dedicator of cytokinesis 4 –0.495 1.03E–05 1.79E–02
QSER1 Glutamine and serine rich 1 –0.488 1.01E–04 4.65E–02
SOCS4 Suppressor of cytokine signalling 4 –0.467 3.53E–05 2.81E–02
B4GALT6 b-1,4-Galactosyltransferase 6 –0.459 6.81E–05 3.66E–02
DENND4A DENN domain containing 4A –0.444 7.69E–06 1.70E–02
ZNF800 Zinc finger protein 800 –0.417 8.76E–05 4.47E–02
PCGF5 Polycomb group ring finger 5 –0.325 3.21E–05 2.81E–02
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The identified downregulated gene clusters can all be related
to wound healing, in which three stages are identified: inflamma-
tion, proliferation, and remodelling. There are no studies on the
time course of normal intestinal healing; most analyses have fo-
cused on particular areas (such as epithelial cells) or diseased
healing (for example inflammatory bowel disease)19,20. However,
from a biological viewpoint it is likely that wound healing pro-
cesses in the human body largely work in the same way.

Transcriptomic analysis of different types of tissue has shown
distinct activation and upregulation of genes involved in the im-
mune and inflammatory response, especially in the early (in-
flammation) stages of healing21–23. Compared with the normal
wound healing response, the present results indicated that there

was downregulation of the innate immune response in patients
who developed anastomotic leak versus those without a leak. The
downregulation of gene sets related to the immune responses
such as GO leucocyte activation and GO activation of immune re-
sponse (immune response cluster) in an environment with an
overabundance of microorganisms could cause an unfavourable
situation for the healing colon after surgery and may be an im-
portant factor in development of anastomotic leakage.

However, the downregulated genes enriching for GO defence
response to bacteria in anastomotic leak samples were mainly
explained by high differential expression of three samples in the
group without anastomotic leak. Although these samples seem
to be outliers, the characteristics of the patients from whom they

112
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Fig. 2 Heatmap of differentially expressed genes with hierarchical clustering

The top 150 downregulated and top 150 upregulated genes are shown (rows) for each sample analysed (columns). The lower key refers to variance-stabilizing
transformation of count data. AL, anastomotic leakage.
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were obtained were not divergent. It could be that these patients
had such a high response to bacteria that they were unlikely to
develop leakage caused by bacteria. Another explanation could
be that a (larger amount of) lymph node was included in the
doughnut.

The results also identified the angiogenesis cluster with down-
regulated genes enriched for GO vasculature development and
GO angiogenesis pathways, among others. Angiogenesis, result-
ing in adequate supply of oxygen and nutrients, is one of the
pillars of the second, proliferative, phase of wound healing24.
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Fig. 3 Co-functionality network of top 150 upregulated genes within GO Biological Processes

The threshold in the GenetICA framework was set at 0.600. The network consists of nine different gene clusters sharing co-functionality, with the largest cluster
containing 11 genes (cluster 1).
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Fig. 4 Co-functionality network of top 150 downregulated genes within GO Biological Processes

The threshold in the GenetICA framework was set at 0.600. These genes aggregate in three larger clusters. Clockwise, the first and largest cluster (cluster 1)
contains 38 genes, the second (cluster 2) consists of 16 genes, and cluster 3 consists of 24 genes.
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The healing of colonic anastomoses is considered to be more de-
pendent on angiogenesis (microvasculature) than on oxygen dif-
fusion through pre-existing macrovasculature25,26. In addition,
antiangiogenic agents have been associated with delayed wound
healing and increased anastomotic leakage27,28.

The third phase of wound healing, the remodelling phase,
mainly comprises collagen restructuring. Anastomotic healing,
which can be considered as secondary wound healing, starts with
granulation. As the clotting matrix is transformed, a collagen
network is formed, reducing the wound defect. Therefore, the
balance of collagen production and fusion of the submucosal col-
lagen matrix, which provides strength to the bowel, is an essen-
tial part of the healing of the anastomosis9,23,24. Downregulation
of the pathway GO peptidyl lysine modification, which is involved
in collagen cross-linking29, may therefore be another factor pre-
disposing to anastomotic leakage.

There are several limitations to this study. First, only the prox-
imal doughnut was used as the distal one was needed for patho-
logical evaluation. It was therefore not possible to look at the
downstream protein levels. In addition, the data would have had
more impact if they also included information on microbial gene
expression. The predictive value of the gene signatures in the pre-
sent study is debatable, but this work provides new directions in
the search for the mechanisms underpinning anastomotic leak-
age. Future work should focus on the biological status of the pa-
tient. From these data it has been possible to identify genes and
biological routes that could be targeted for modulation or guided
imaging. These could be used for risk profiling or even prediction
of the development of anastomotic leak. However, confirmatory
studies with a larger sample size, including preoperative samples,
should be performed. Future in-depth analyses of the influences
of different cell types using techniques such as microdissection
could help improve understanding of the mechanisms underly-
ing healing and thus leakage. A follow-up study using metatran-
scriptomics to analyse the gene expression of both host and
microbes is planned.

Although there is no literature on how the pathways behave
as soon as anastomotic wound healing has started, the hypothe-
sis based on the present findings is that patients who eventually
develop anastomotic leak start the healing process with an error.
These patients have a status or trait at the level of gene regula-
tion at the time of surgery that predisposes them to anastomotic
leak. This predisposition is mainly based on the immune
response, angiogenesis, protein metabolism, and collagen cross-
linking, all of which are seemingly involved in the different stages
of wound healing.

Disclosure. The authors declare no conflict of interest.

Supplementary material
Supplementary material is available at BJS online.

References
1. Buchs NC, Gervaz P, Secic M, Bucher P, Mugnier-Konrad B, Morel

P. Incidence, consequences, and risk factors for anastomotic de-

hiscence after colorectal surgery: a prospective monocentric

study. Int J Colorectal Dis 2008;23:265–270

2. Hammond J, Lim S, Wan Y, Gao X, Patkar A. The burden of gas-

trointestinal anastomotic leaks: an evaluation of clinical and

economic outcomes. J Gastrointest Surg 2014;18:1176–1185

3. Wong NY, Eu KW. A defunctioning ileostomy does not prevent

clinical anastomotic leak after a low anterior resection: a

prospective, comparative study. Dis Colon Rectum 2005;48:

2076–2079
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