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Abstract
Data mining has a significant role in hyrdrologic research. Among several methods of data mining, Bayesian network theory has
great importance and wide applications as well. The drought indices are very useful tools for drought monitoring and forecasting.
However, the multi-scaling nature of standardized type drought indices creates several problems in data analysis and reanalysis at
regional level. This paper presents a novel framework of data mining for hydrological research—the Bayesian Integrated
Regional Drought Time Scale (BIRDts). The mechanism of BIRDts gives effective and sufficient time scales by considering
dependency/interdependency probabilities from Bayesian network algorithm. The resultant time scales are proposed for further
investigation and research related to the hydrological process. Application of the proposed method consists of 46 meteorological
stations of Pakistan. In this research, we have employed Standardized Precipitation Temperature Index (SPTI) drought index for
1-, 3-, 6-, 9-, 12-, 24-, and ()month time scales. Outcomes associated with this research show that the proposed method has
rationale to aggregate time scales at regional level by configuring marginal posterior probability as weights in the selection
process of effective drought time scales.

Keywords Datamining . Drought . Bayesian network . Standardized Precipitation Temperature Index (SPTI) . Time scales

1 Introduction

Due to advancement in technology, the growing sources of
information have created large and complex data in several
disciplines. One aspect of handling big and complex data is
data mining. Data mining is a process that examines large
preexisting databases to generate new information (Han et al.,
2012). In several fields of research, data mining helps to

understand the complex nature of data (Babovic, 2005). In
hydrological and geo-science research, data mining has a cru-
cial role. In the past research, several authors have worked on
various data mining techniques for drought modeling and mon-
itoring (Tadesse et al., 2004, 2009; Farokhnia et al., 2019).

To handle large and complex data, machine learning and
advanced methods of statistics play very important role, for
example, the application of Bayesian networks theory in var-
ious fields (Lee et al., 2019; Bertone et al., 2018; Moglia et al.,
2018; and Liu et al., 2015). Enhancements in computational
capabilities, innovations in observation and measurement de-
vices open new and fascinating scenarios for the application of
data-driven modeling techniques. Consequently, increased
availability of hydrological data of different time, spatial
scales, and data mining approaches is helpful for discovery
of new knowledge. Under the design of Bayesian network, the
exploitation of such a great bulk of new information can con-
tribute greatly to enhance the robustness of hydrological
models. Hence, accuracy and efficiency in temporal monitor-
ing and forecasting can be gained in a more comprehensive
way.

* Sadia Qamar
diyaqau@gmail.com

Abdul Khalique
drkhalique@ncbae.edu.pk

Marco Andreas Grzegorczyk
m.a.grzegorczyk@rug.nl

1 Department of Statistics, National College of Business
Administration and Economics, Lahore, Pakistan

2 Johann Bernoulli Institute, Groningen University,
Groningen, The Netherlands

https://doi.org/10.1007/s00704-021-03530-2

/ Published online: 16 January 2021

Theoretical and Applied Climatology (2021) 143:1677–1695

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-021-03530-2&domain=pdf
mailto:diyaqau@gmail.com


In hydrology andwater science, characterization of drought
and its monitoring are the main challenges. Emerging issue in
hydrology and related sciences is drought monitoring.
Hydrologic droughts are the extension of meteorological and
agricultural drought. It is caused due to imbalance between
precipitation and surface water (Dracup et al., 1980). Since
drought is a natural hazard, it is classified by various climato-
logical and hydrological parameters (Mishra and Singh 2010).
Drought occurs due to absence of rainfall or low rainfall in a
region for a long time period, and it happens because of var-
ious reasons including deforestation, global warming, and
many other human activities. The effect of this climatic con-
dition on the environment as well as the living beings is very
disastrous. Drought is the natural disaster which occurs virtu-
ally in all geographical areas (Hao et al., 2018). Drought is
caused by multiple climatic factors that have different charac-
teristics in their spatio-temporal data. Consequently, under-
standing drought hazards is a more difficult task than other
natural hazards (Wilhite et al., 2014; Kiem et al., 2016). In
addition, drought has recurrent features whose characteristics
differ from one climate region to another. Usually, drought
has four main classes named as meteorological drought, hy-
drological drought, agricultural drought, and socioeconomic
drought (Anderson et al., 2011; Wilhite and Glantz 1985).

To mitigate the bad impact of drought, more sound and com-
prehensive procedures are required for its continuousmonitoring,
prediction, and temporal and spatial analysis of drought (Ali
et al., 2019b, 2018). In the past research, many authors have
developed several methods for effective drought mitigation pol-
icies (Kogan, 2000;Hayes et al., 2004). Some of them are Palmer
Drought Severity Index (PDSI) (Palmer 1965), Standardized
Precipitation Index (SPI) (McKee et al., 1993), Effective
Drought Index (EDI) (Byun and Wilhite 1999), Aggregate
Drought Index (ADI) (Keyantash and Dracup 2004),
Reconnaissance Drought Index (RDI) (Tsakiris and Vangelis
2005), the Standardized Precipitation Evapotranspiration Index
(SPEI) (Vicente-Serrano et al., 2010), Standardized Precipitation
Temperature Index (SPTI) (Ali et al., 2017), etc. A comprehen-
sive list along with data requirements of different available
drought indices is available (Svoboda and Fuchs 2016).

One of the major aspects of drought monitoring is the multi-
scaling characteristics of droughtmonitoring. For example, some
authors have reported that short-term time scales (i.e., 1-, 3-, or 6-
month) are useful for metrological and agricultural drought. On
the other hand, higher time scales are providing information
related to hydrological drought. However, the multi-scaling na-
ture of drought indices reduces efficiency and accuracy in data
analysis and reanalysis (Bazrafshan et al., 2014). Further, the
interpretations of various drought events in various time scales
are cumbersome for decision-makers and drought practitioners at
regional level (Ali et al., 2019).

Therefore, the fundamental objective in hydrological
modeling is to resolve the multi-scaling problem of drought

indices through some state-of-the-art procedures. In previous
research, different authors have provided a range of statistical
approaches for multi-scaling problems. For example,
Bazrafshan et al. (2014) have provided Multivariate
Standardized Precipitation Index (MSPI) by applying princi-
pal component analysis (PCA) on various time scales of SPI.
In a recent research, Ali et al. (2019) have proposed Boruta
algorithm of machine learning for the selection of important
time scales in SPTI index.

This research develops a comprehensive data mining
framework under Bayesian network theory for resolving the
multi-scaling problem of multi-scalar drought indices. The
proposed framework is mainly based on three Monte Carlo
Markov Chain (MCMC) based simulation runs of Bayesian
network theory. The application of the proposed framework is
based on the novel multi-scalar drought index called SPTI
index. In this research, meteorological stations located in var-
ious climatological clusters and regional administrative
boundaries of Pakistan have been considered.

2 Material and methods

2.1 Data and study area

In this research, we have acquired time series data of precipita-
tion and temperature. Therefore, the data is collected from
Pakistan Meteorological department through Karachi Data
Processing Center (KDPC). Detailed descriptions on the source
and quality data can be found in Ali et al. (2019a, 2019b).

In the computational section, the research includes 46 me-
teorological stations of Pakistan (see Fig. 1). Those stations
which have poor quality or unavailability issues of time series
data are neglected. The division of the selected is further made
into five regions (i.e., Punjab, Azad Jamu and Kashmir (AJK),
Sindh, Baluchistan and Khyber Pakhtunkhwa (KPK)). The
division is based on the provincial/administrative boundaries.
For detailed description on the computational procedure, one
meteorological station is chosen randomly (without replace-
ment) from every region. So, the selected five meteorological
stations from above five characterized regions are Sargodha
(32o 03′, 72o 40′), Muzaffarabad (72o 40′, 73o 29′), Hyderabad
(25o 23′, 68o 25′), Quetta (30o11’, 66o57’), and Gupis (36o

10′, 73o 24′), respectively.

2.2 Standardized drought indices (SDI)

The enhancement of a drought index is conceptually based
upon multiple factors. Around the world, several drought in-
dices have been developed and used over the years. However,
SDI is considered more suitable for drought monitoring
(Erhardt and Czado, 2015). Various authors have proposed
various indicators for obtaining SDI type drought index. For
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example, McKee et al. (1993) have proposed the Standardized
Precipitation Index (SPI) as a meteorological drought moni-
toring and analysis. SPI can be calculated for 1-, 3-, 6-, 12-,
24-, and 48-month time scales. The SPI is recommended by
the World Meteorological Organization (WMO) as a standard
drought monitoring index. The SPI is simple and flexible that
is why it is distinctive than other indices. McKee et al. (1993)
used Gamma distribution to calculate SPI and Guttman (1998,
1999) used Pearson III distribution to calculate SPI. One
drawback of SPI is that it uses only a single climatic variable.

Vicente-Serrano et al. (2010) have proposed another SDI
index named as the Standardized Precipitation Evaporation
Index (SPEI). SPEI is estimated by taking the difference be-
tween the Precipitation (P) and the estimated amount of
Potential Evapotranspiration (PET). One advantage of SPEI
over SPI is that it accounts the effect of temperature by using
estimated potential evaporation in the standardization
procedure. The main disadvantage of SPEI is that it
has an estimation problem in low and high temperature
regions (Ali et al., 2017).

In the recent years (Ali et al., 2017), proposed Standardized
Precipitation Temperature Index (SPTI) for drought monitor-
ing which utilizes the regional temperature. SPTI drought in-
dex can account the role of temperature and precipitation over
different time scales.

There are numerous other paradigms and procedures for
multivariate data modeling of drought indices. The
Multivariate Standardized Drought Index (MSDI) is the com-
bination of SPI and the Standardized Soil Moisture Index
(SSI) for drought characterization probabilistically (Hao and
AghaKouchak, 2013). Bazrafshan et al. (2014) proposed a
new multivariate drought index—the Multivariate
Standardized Precipitation Index (MSPI) which is used to re-
solve multi-scaling issues in univariate SDI method.

Many indices have been developed to monitor drought
impact. To quantify and classify droughts’ temporal trends,
different drought indices play a vital role. Many drought indi-
ces are reviewed along with their pros and cons under different
conditions in Mishra and Singh (2010, 2011). However, SPTI
(Ali et al., 2017) is one of the indices with the key feature to

Fig. 1 Geographical distribution of the selected meteorological stations (Ali et al., 2019)
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detect and monitor drought conditions with different time
scales. SPTI is a multivariate multi-scaler drought index.
That is, it uses the De Martonne Aridity Index (DMAI) (De
Martonne 1926) which is based on precipitation and temper-
ature data. Unlike SPEI, SPTI has no overestimation and un-
derestimation problem (Ali et al., 2017).

This research is based on the SPTI index,where the time series
data of DMAI is standardized under the standardization proce-
dure provided in Abramowitz and Stegun (1965). The detained
description on SPTI index can be found in Ali et al. (2017).

2.3 Bayesian network theory

Bayesian network (BN) algorithms are among the most prac-
tical approaches to certain types of learning problems, and
their results are comparable to the performance of other clas-
sifiers (Cheng and Greiner, 1999; Mayfield et al., 2020). BNs
can be applied to many areas including estimation, classifica-
tion, recognition, inference, and prediction (Grzegorczyk,
2010). There are many advantages of BNs as it pools infor-
mation from multiple drought indices and comes up with a
better estimate for drought severity as well as it offers proba-
bilistic estimates for droughts. It decreases the uncertainty of
the individual drought indices. Since BNs uniquely defines a
joint probability model, inference, drawing conclusions based
on observations has solid rules of probability calculus. This
implies that there is mathematical consistency and correctness.

Let L be the time series data set on n variables. Here, the
problem is to find the relationship among the variables in L. In
BNs learning, the posterior probabilities of network graph B
are computed by following equation.

P B=Lð Þ ¼ P L=Bð ÞP Bð Þ
P Lð Þ ð1Þ

Here, the computation of posterior probability depends on
the average of over all possible networks of any hypothesis of
interest. Consider f be the structural function depicted as an
indicator function. Then, the estimated posterior probabilities
for certain feature f are estimated as follows:

P f =Lð Þ ¼ ∑
B
P B=Lð Þ f Bð Þ ð2Þ

where B represents a model and f(B) is one if there is a feature
in B; otherwise, it is zero. After having sample of DAGs (B1,
B2, B3, ….Br) from posterior distribution, the next step is to
compute Marginal Posterior Probability (MPP) of each edge.
From the context of sampling graph via MCMC simulations,
the following equation gives the estimator of marginal poste-
rior probabilities of edges.

bP f =Lð Þ ¼ 1

T
∑
T

t¼1
I f Btð Þ ð3Þ

where If(.) is used as a binary indicator function for all the
graph. Here, if the existence of edge relation will be 1 and
zero otherwise. FromBNs approach, the main aim is to extract
the information on feature dependencies from marginal pos-
terior probabilities.

3 The proposed framework—the Bayesian
Integrated Regional Drought Time Scale
(BIRDts)

This section describes stepwise execution of the proposed
framework (see Fig. 2). The BIRDts have four phases. The
first phase is related to the choices of selection of regions,
stations, and drought indices, while the second phase de-
scribes the estimation of drought indices. The third phase con-
sists of the integration and implementation of Bayesian net-
work models. The fourth phase descriptively defines the most
important time scale using mode statistics. A brief description
on each phase is as follows.

3.1 Phase I. The choices

The first phase theoretically defines the choices of meteoro-
logical stations and the type of drought indices. This phase has
two steps. The first step consists of the selection of regions and
meteorological stations. The second step consists of the selec-
tion of drought indices. A brief description on each step is
given below.

3.1.1 Selection of regions and stations

The selection of regions in drought monitoring has great sig-
nificance for accurate and efficient drought mitigation poli-
cies. In Pakistan, over the last few decades, a rise is observed
in the occurrence and strength of intense climatic events, and
about 40% of the people are affected due to different disasters
including droughts (Hussain et al., 2010). Pakistan is the
country, which is exposed to several natural calamities, in-
cluding cyclones, floods, drought, intense rainfall, and earth-
quakes. In this research, 46 meteorological stations are
taken from all over Pakistan. However, some regions
have a long duration of hot season, while some have
cold climate during the year.

3.1.2 Selection of drought indices

The drought condition of a region is monitored by drought
indices. In the past few decades, several drought indices have
been proposed, but some of those are region specific and have
limitations of applicability in other climatic conditions. Here,
for drought monitoring of regional temperature, SPTI is the
most appropriate to utilize because it monitors drought in a
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Fig. 2 Flow chart of the proposed
framework

Fig. 3 Observed characteristic of
probability function of DMAI-1
series at Gupis Stations. (a)
Histogram and (b) Q-Q plot
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specified region and deals with multi-scaling. Furthermore,
over different time scales, SPTI can be used for monitoring,
examining, and detecting drought conditions.

3.2 Phase II. Estimation of drought indices

This phase is straightforward. In this phase, a suitable estima-
tion procedure of drought indices is suggested. In this re-
search, we followed the estimation procedure provided by
Stagge et al. (2015). We recommend to include multiparame-
ter extreme values probability distributions for the computa-
tion drought indices. To make the list of candidate distribu-
tions, one can employ goodness of fit criteria such as chi-
squared test and Anderson darling test using easyfit (or other
software. In addition, the selection of the appropriate distribu-
tion can be based on Bayesian Information Criterion (BIC).

3.3 Phase III. Configuration of BNs model

This phase explains the utilization of BNs models on SDI
scales data of different meteorological stations. Basically,
BNs are directed acyclic graphs (DAGs), in which nodes
represent variables in the Bayesian logic. Conditional
dependencies are presented by edges. In each node, there is
a probability function that takes input from a particular set of
values. Moreover, BNs is applied for decision-making pro-
cesses under conditions of climatic variability and uncertainty,
providing logical and holistic reasoning in complex systems.
Further, BNs effectively translate the relationship between
variables under probabilistic approach (Catenacci and
Giupponi 2009). Here, the main purpose is to identify a better

scale by obtaining a probabilistic model signifying the uncer-
tainty in the network of various time scales of SPTI
index. This phase configures BNs on various time
scales of SPTI index.

3.4 Phase IV. The choice of time scale

The main objective of this study is to develop a new frame-
work for the selection of time scale for meteorological stations
by incorporating algorithm BIRDts and SPTI time series data.
From the results of probabilistic paradigm of BNs, a
scale is recommended for all meteorological stations
by following three steps:

(a) Let S1, S2, Sk be the time scale at a particular meteoro-
logical stations. Consider that the marginal posterior distribu-
tion at a particular station in a single BNs run has the follow-
ing mathematical form.

S1 S2 … Sn
S1
S2
⋮
Sn

τ11 τ12 ⋯ τ1n
τ21 τ22 ⋯ τ2n
⋮ ⋮ ⋱ ⋮
τn1 τn2 ⋯ τnn

2
664

3
775

By utilizing Eq. (3), the elements in the above matrix are
obtained. There are at least three MCMC simulations (means
three 7*7 matrices). In the above matrix, the Dependence
Probability (DP) between seven scales is shown by the lower
side of off diagonal, while independence features are ex-
plained by the upper diagonal.

Table 2 BIC values of candidate distributions of all stations at different scales

Scales Station

Gupis Muzaffarabad Sargodha Quetta Hyderabad

SPTI-1 Distribution 4P beta 4P beta 3P Weibull 3P Weibull Generalized extreme value

BIC −374.235 −576.816 −296.306 −563.222 −287.974
SPTI-3 Distribution Chi-square Rayleigh Gamma 4P beta 3P Weibull

BIC −432.182 −645.512 −298.317 −495.494 −416.633
SPTI-6 Distribution Johnson SU Chi-square Rayleigh 3P Weibull 3P Weibull

BIC −410.039 −705.226 −424.626 −523.324 −331.421
SPTI-9 Distribution Johnson SU Log-normal Chi-Square Rayleigh Exponential

BIC −463.209 −925.242 −499.759 −535.565 −366.749
SPTI-12 Distribution Johnson SU Gumbel Rayleigh Trapezoidal Gamma

BIC −466.565 −827.293 −503.759 −633.020 −377.403
SPTI-24 Distribution Scaled/shifted t Gumbel Cosine Log-normal Triangular

BIC −629.456 −570.797 −311.136 −530.517 −310.916
SPTI-48 Distribution Inverse Gaussian Logistic Laplace Logistic Laplace

BIC −532.519 −976.548 −431.542 −659.830 −471.643
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(b) The average of each MPP distribution matrix column is

taken separately, i.e., τ :1 ¼
∑
n

i¼1
τ :i

n . We called the probabilities
as Average Dependency Probabilities (ADP). Therefore, each
scale has three ADP (i.e., ADP1, ADP2, and ADP3).

(c) Furthermore, let the grand average be called Average
Marginal Posterior Probability (AMPP) (Ali et al., 2020c) for
each scale by the following equation:

AMPP ¼ ADP1þ ADP2þ ADP3

3
ð4Þ

As we have seven columns (i.e., 7 time scales), therefore,
there are seven AMPP values for each station. By following
this procedure, the best scale is chosen for all meteoro-
logical stations based on maximum AMPP values for
further data mining.

Time 

Scales

Gupis Muzaffarabad Sargodha

1

3

6

9

12

24

48

a

Fig. 4 (a) Temporal behavior of SPTI time scales in some selected stations and (b) temporal behavior of SPTI time scales in some selected stations
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4 Simulation settings and quality measures

4.1 Data setting and simulation study

In the independent run of BNs, the SPTI is configured into
seven columns. Each column consists of time series data of
individual time scale. This study is based on seven time scales
(i.e., SPTI-1, SPTI-3, SPTI-6, SPTI-9, SPTI-12, SPTI-24, and
SPTI-48); therefore, we have seven columns. In

structure MCMC simulation setting, a total of 200,000
iterations with 100 burn-in steps are configured subjec-
tively (Grzegorczyk, 2010).

4.2 Quality measure and validation

The main objective of this research is the identification of the
best time scale of SPTI index based on AMPP. In this article,
the dependency of time scale was assessed by observing

Time 

Scales

Quetta Hyderabad

1

3

6

9

12

24

48

b

Fig. 4 (continued)
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maximum MPP values. In the previous research, Ali et al.
(2020c) have used AMPP of three simulation runs for the
identification of the most important time scale.

For the validation of the model, we propose to observe the
convergence of the posterior predictive probabilities in the
three MCMC simulation runs. Here, posterior predictive
checks are a form of internal model validation. In addition,
the quality of results is proposed to be assessed using three

independent simulation runs. Moreover, the final inference is
based on the average of three AMPP values. To observe
the convergence, scatter plots between each simulation
run can be used. Further, the homogenous behavior of
each simulation can be observed using trace plots. In
this article, some results associated with quality measure
are presented graphically, while most of the results are
archived in the author’s gallery.

Simulation run 1

Scatter plots of the marginal posterior probability estimates
Simulation run 3

Trace plot
Simulation run 3

a

Fig. 5 (a) MPP matrix of three simulation runs and their scatter plots at
Gupis stations, (b) MPP matrix of three simulation runs and their scatter
plots at Muzaffarabad stations, (c) MPP matrix of three simulation runs
and their scatter plots at Sargodha stations, (d. MPP matrix of three

simulation runs and their scatter plots at Quetta stations, and (e) MPP
matrix of three simulation runs and their scatter plots at Hyderabad
stations
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5 Results

5.1 Estimation of drought indices

To assess and evaluate the proposed framework, we computed
time series data of SPTI using varying probability distribution
concept provided by Stagge et al. (2015). A brief description
on the standardization process is as follows:

In this first step, we employed fitDistr function of R pack-
age propagate (Spiess, 2014) to find the appropriate probabil-
ity function under Bayesian Information Criterion (BIC). For
example, Fig. 3 shows the appropriate probability distribution
for DMAI-1 series at Gupis Stations. QQ-plot in Fig. 3 shows
the scatter plot of theoretical and empirical density. All find-
ings related to probability distribution fitness are done accord-
ingly. We have selected those probability functions that have

stations

Simulation run 1

Scatter plots of the marginal posterior probability estimatesSimulation run 3

Simulation run 3 Trace plot

b

Fig. 5 (continued)
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minimum BIC values. Table 1 shows the BIC values of all
candidate distributions in the estimation phase of SPTI-1 in
five stations. For all the 46 stations, similar practice with all
time scales has been done.

After the selection of the probability functions at varying
time scales for all stations, the next step is to standardize their
CDF under the appropriate standardization procedure. By fol-
lowing Ali et al. (2017) and Vicente-Serrano et al. (2010), this
research employed standardization procedure provided by
McKee et al. (1993).

Table 2 shows BIC values of selected distributions in some
stations at different scales. We have observed that for the
estimation of SPTI-1, 4P beta distribution is best fitted for
Gupis and Muzaffarabad stations, while 3P Weibull

distribution is more appropriate for Sargodha (BIC = −
296.306) and Quetta (BIC = − 563.222) stations. On the other
hand, generalized extreme value distribution with BIC value
− 287.974 is selected for Hyderabad region.

While the Rayleigh distribution is more appropriate for the
estimation of SPTI-3 for Muzaffarabad. Further, results reveal
that Rayleigh distribution is also best fitted for the estimation
of SPTI-6 and SPTI-12 in Sargodha station. On the same lines,
3PWeibull distribution is fitted for the estimation of SPTI-1 in
Quetta and Sargodha and for the estimation of SPTI-3 in
Quetta stations again. The calculation and inference on the
rest of all the stations are carried out on the same line.

Figure 4 a and b present the temporal behavior of drought
indices in their various time scales in some selected stations.

Simulation run 1

Scatter plots of the marginal posterior 

probability estimatesSimulation run 3

Trace plotSimulation run 3

c

Fig. 5 (continued)
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The inferential data on the distribution selection process and
standard time series of all the stations are archived in the
author’s gallery and available on request.

5.2 Bayesian networks implementation and the
choice of the scale for metrological station

After the estimation of drought indices, the next step is
to configure time series data in BNs and to draw infer-
ence according to the proposed framework. In this arti-
cle, time series data of seven scales of SPTI index at 46
meteorological stations is considered, where separate
BNs mode l s a r e app l i ed on a l l t he se l ec t ed

meteorological stations under structured MCMC simula-
tion. The quality of simulation runs is assessed by scat-
ter plot of three independent runs of MCMC. The scat-
ter plots are based on posterior probabilities that are
investigated for validation of Bayesian network.

Figures 5 a–e show MPP matrix of three simulation
runs, their scatter plots, and the trace plots at Gupis,
Muzaffarabad, Sargodha, Quetta, and Hyderabad, re-
spectively. Outcome associated with the three simulation
runs show that there is no significant difference between
each marginal posterior probability matrix. Similar find-
ings have been observed in another time scales and
stations as well.

Simulation run 1

Scatter plots of the marginal posterior probability estimatesSimulation run 3

Simulation run 3

Trace plot

d

Fig. 5 (continued)
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The ADPs and AMPP for Gupis, Muzaffarabad, Sargodha,
Quetta, and Hyderabad in each scale are shown in Table 3. Based
on the highest values of AMPP, it has been observed that SPTI-9 is
the most appropriate time scale in all the five selected stations.

Table 4 shows the ADPs and AMPP values for Gupis,
Muzaffarabad, Sargodha, Quetta, and Hyderabad. Results
show that SPTI-9 is best representative for Gupis,
Muzaffarabad, and Sargodha with AMPP values 0.78648,

0.55795, and 0.511742, respectively, while SPTI-12 is select-
ed for Hyderabad and Quetta region with AMPP values
0.50225 and 0.55433, respectively.

For the whole region, the mode measure of central
tendency is used to confer important time scale. Hence,
Table 5 provides the list of stations and important time
scales in various administrative boundaries of Pakistan.
This completes the analysis.

Simulation run 1

Scatter plots of the marginal posterior probability estimatesSimulation run 3

Simulation run 3 Trace plot

e

Fig. 5 (continued)
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Table 4 AMPP values in all stations

Region Station Latitude Longitude Scale-
1

Scale-
3

Scale-
6

Scale-
9

Scale-
12

Scale-
24

Scale-
48

AJK Garhi dupatta 34o 13’ 73o 37’ 0.2684 0.4213 0.4428 0.5632 0.4440 0.3747 0.2768

Kotli 33o 31’ 73o 54’ 0.2804 0.4730 0.4294 0.5285 0.3879 0.3954 0.3268

Muzaffarabad 34o 22’ 73o 29’ 0.2638 0.3973 0.4179 0.5580 0.4268 0.3367 0.2575

Baluchistan Zhob 31o-21′ 69o-28′ 0.3743 0.3716 0.4550 0.4119 0.3890 0.3795 0.3662

Sibbi 29o-33′ 67o-53′ 0.2527 0.4811 0.6296 0.4744 0.5160 0.3764 0.4070

Quetta 30o-11′ 66o-57′ 0.4094 0.4597 0.5390 0.5008 0.5543 0.3887 0.3741

Panjgur 26o 58’ 64o 06’ 0.3741 0.3232 0.4139 0.3817 0.4301 0.3271 0.3616

Nokkundi 29o 44’ 62o 94’ 0.3587 0.4445 0.4439 0.4477 0.4891 0.4037 0.3029

Lesbella 25o 00’ 66o 29’ 0.2788 0.2501 0.3252 0.4305 0.3695 0.3580 0.3440

Kalat 29o02’ 66o35’ 0.5480 0.4537 0.5457 0.5833 0.5355 0.3502 0.2615

Dalbadin 28o54’ 64o64’ 0.4319 0.4265 0.4996 0.5192 0.5096 0.3444 0.2767

Jiwani 25o38’ 61o07’ 0.4144 0.6087 0.5195 0.4693 0.5805 0.3600 0.2941

Pasni 25o 16’ 63o 29’ 0.2901 0.3293 0.3666 0.3670 0.3753 0.3301 0.2502

KPK & Northern Area Astor 35o 20’ 74o 54’ 0.3898 0.4982 0.5636 0.5225 0.5389 0.3462 0.2814

Chillas 35o 25’ 74o 06’ 0.3288 0.3929 0.5291 0.3740 0.4706 0.3686 0.2476

Gilgit 35o 55’ 74o 20’ 0.3362 0.3919 0.4191 0.3297 0.4141 0.3143 0.2819

Gupis 36o 10’ 73o 24’ 0.2967 0.3582 0.4437 0.7865 0.4382 0.4104 0.2960

Skardu 35o 18’ 75o 41’ 0.3856 0.4314 0.5328 0.4851 0.5912 0.3618 0.3673

Cherat 33o 49’ 71o 33’ 0.2517 0.4011 0.3250 0.4897 0.4364 0.3189 0.2083

Chitral 35o 51’ 71o 50’ 0.4369 0.4331 0.5090 0.5635 0.5567 0.3505 0.3181

Drosh 35o 34’ 71o 47’ 0.3962 0.4929 0.5491 0.5537 0.5660 0.3320 0.3390

Kohat 33o 89’ 71o 29’ 0.2612 0.3669 0.4920 0.3969 0.5848 0.3656 0.3634

Parachinar 33o 52’ 70o 05’ 0.3449 0.3725 0.4588 0.3733 0.4498 0.4463 0.3270

Peshawar 34o 02’ 71o 56’ 0.3007 0.3264 0.3658 0.3674 0.3654 0.3321 0.2512

Risalpur 34o 51’ 71o 76’ 0.2488 0.4253 0.4239 0.5285 0.5385 0.3630 0.3653

Balakot 34o 33’ 72o 21’ 0.2491 0.4552 0.5050 0.5387 0.4790 0.4351 0.2734

Kakul 34o 11’ 73o 15’ 0.2596 0.4388 0.4420 0.5488 0.4595 0.3549 0.2551

DIK 31o 49’ 70o 56’ 0.2450 0.4763 0.4902 0.5059 0.4220 0.4814 0.3423

Punjab Murree 33°54’ 73°23’ 0.2551 0.4668 0.4637 0.3775 0.3648 0.4435 0.3200

Bahawalpur 29o 20’ 71o 47’ 0.2546 0.5218 0.3806 0.4469 0.4474 0.3389 0.2800

Bahawalngar 29o 20’ 73o 51’ 0.3825 0.3671 0.4463 0.3824 0.3426 0.3696 0.2709

Faisalabad 31o 26’ 73o 08’ 0.2866 0.4026 0.3836 0.3482 0.4076 0.3389 0.3359

Lahore PBO 31o 33’ 74o 20’ 0.2649 0.3519 0.4380 0.2978 0.4964 0.3506 0.2864

Mianwali 32o 58’ 71o 53’ 0.2461 0.4521 0.4529 0.5360 0.4811 0.3510 0.2794

Multan 30o 12’ 71o 26’ 0.2472 0.4384 0.3547 0.3664 0.4387 0.3264 0.2774

Sargodha 32o 03’ 72o 40’ 0.3410 0.3956 0.4027 0.5117 0.4996 0.3379 0.2492

Sialkot 32o 31’ 74o 32’ 0.2762 0.3952 0.4250 0.5365 0.3941 0.3417 0.2591

Khanpur 28o 39’ 70o 41’ 0.2466 0.3632 0.5210 0.1831 0.4220 0.3597 0.3776

Sindh Chor 25o 51’ 69o 76’ 0.3844 0.3622 0.4310 0.3754 0.4839 0.3651 0.3579

Rohri 27o 40’ 68o 54’ 0.2447 0.4674 0.3837 0.4716 0.3718 0.3460 0.2600

Padidian 26o 51’ 68o 08’ 0.2432 0.4608 0.3806 0.5118 0.3795 0.3552 0.3229

Nawabshah 26o 15’ 68o 22’ 0.2514 0.3507 0.4050 0.3829 0.5008 0.3593 0.3611

Jacobabad 28o 18’ 68o 28’ 0.2461 0.4670 0.4086 0.5718 0.3641 0.4708 0.3177

Hyderabad 25o 23’ 68o 25’ 0.2759 0.3972 0.5001 0.4287 0.5022 0.3700 0.3493

Badin 24o 38’ 68o 54’ 0.3292 0.3475 0.4083 0.4246 0.3852 0.3519 0.2514

Karachi 24o 54’ 66o 56’ 0.2552 0.4462 0.3823 0.4647 0.3661 0.3323 0.2461
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6 Discussion

The past studies reveal that the simultaneous inference
on drought indices at their various time scales provides
a more effective and clearer image of drought.
However, large volumes of data on various time scales
create chaotic problems for researchers in reanalysis at
regional level. Therefore, the selection of a suitable time
scale for a region is very important.

In this article, the proposed framework is used to select
important time scales at regional level. For this purpose, we
first calculate time series data of SPTI index. At this stage,
probability distributions are fitted to check the appropriateness
of the respective time series of each scale in the estimation
procedure. Here, we employed various distribution concepts
under the parametric approach (Stagge et al., 2015). This ex-
aggeration in the perceived severity of drought events and bias
in drought index values can occur if inappropriate probability
distributions are applied. Therefore, the varying probability
distribution procedures under the parametric approach are
used as suggested by Stagge et al. (2015).

For decision-making under uncertainty, BNs are increas-
ingly recognized as a valuable tool. BNs provide a transparent,
defensible evidence base for mapping and quantifying the
important scale.

To avoid the multiple scaling problems, the most appropri-
ate scale is chosen for the whole region as well as for charac-
terized five regions. Overall SPTI-9 can be utilized for the 46
meteorological stations. While region wise according to
Table 5 for Punjab SPTI-9 and SPTI-12 both scales can be
utilized, SPTI-9 can be used for Sindh, AJK, and KPK.
However, SPTI-12 followed by SPTI-9 can be used for
Baluchistan region.

7 Summary and conclusion

In drought monitoring and prediction, the choices of important
time scales are the most crucial aspect in hydrological data
analysis, reanalysis, and complex statistical modeling at a spe-
cific region. In this paper, we have proposed a new data min-
ing framework—the BIRDts. The framework of BIRDts iden-
tifies the important time scales of SPTI in a certain region. For
the validation of the model, we mainly rely on the conver-
gence of the posterior predictive probabilities in the three
MCMC simulation runs.

Application of BIRDts is made for 46 meteorological sta-
tions located in various climatological clusters and regional
administrative boundaries of Pakistan. Under the proposed
framework, the posterior predictive checks are a form of in-
ternal model validation. Our computational results show that
the models are adequate. That is, there is no need to improve
the model in current simulation settings. Moreover, the resultsTa
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and inferences of this paper are based on three indepen-
dent structures MCMC based simulation runs of
Bayesian network models.

We inferred that 9-month time scale of SPTI index is the
most important in terms of dependency probabilities of
Bayesian network theory at Sindh, AJK, KPK, and Punjab,
while 12-month time scale is the most important in
Baluchistan region. Consequently, the resultant time series
in each region are recommended for efficient, regional analy-
ses and reanalysis.

Moreover, we have concluded that (1) the problem of
multi-scaling raised by Ali et al. (2020a, b) and Bazrafshan
et al. (2014) can be addressed in more adequate and sufficient
way using Bayesian network theory and (2) the proposed
framework is rather general and can be used for any region
and any drought index. In summation, the proposed frame-
work may be considered a data mining device for efficient,
regional analyses and reanalysis of hydrological data.
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