University of Groningen

Measurement of the CKM angle γ in $\mathrm{B} \pm \rightarrow \mathrm{DK} \pm$ and $\mathrm{B} \pm \rightarrow \mathrm{D} \pi \pm$ decays with $\mathrm{D} \rightarrow \mathrm{KOSh}+\mathrm{h}-$
De Bruyn, K.; Onderwater, C. J. G.; van Veghel, M.; LHCb Collaboration
Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP02(2021)169

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
De Bruyn, K., Onderwater, C. J. G., van Veghel, M., \& LHCb Collaboration (2021). Measurement of the CKM angle γ in $\mathrm{B} \pm \rightarrow \mathrm{DK} \pm$ and $\mathrm{B} \pm \rightarrow \mathrm{D} \pi \pm$ decays with $\mathrm{D} \rightarrow \mathrm{K} 0$ Sh $+\mathrm{h}-$. Journal of High Energy Physics, 2021(2), [169]. https://doi.org/10.1007/JHEP02(2021)169

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Measurement of the CKM angle γ in $B^{ \pm} \rightarrow D K^{ \pm}$ and $B^{ \pm} \rightarrow D \pi^{ \pm}$decays with $D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$

LHCb

The LHCb collaboration

E-mail: mikkel.bjoern@physics.ox.ac.uk

Abstract: A measurement of $C P$-violating observables is performed using the decays $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$, where the D meson is reconstructed in one of the selfconjugate three-body final states $K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $K_{\mathrm{S}}^{0} K^{+} K^{-}$(commonly denoted $K_{\mathrm{S}}^{0} h^{+} h^{-}$). The decays are analysed in bins of the D-decay phase space, leading to a measurement that is independent of the modelling of the D-decay amplitude. The observables are interpreted in terms of the CKM angle γ. Using a data sample corresponding to an integrated luminosity of $9 \mathrm{fb}^{-1}$ collected in proton-proton collisions at centre-of mass energies of 7 , 8 , and 13 TeV with the LHCb experiment, γ is measured to be $\left(68.7_{-5.1}^{+5.2}\right)^{\circ}$. The hadronic parameters $r_{B}^{D K}, r_{B}^{D \pi}, \delta_{B}^{D K}$, and $\delta_{B}^{D \pi}$, which are the ratios and strong-phase differences of the suppressed and favoured $B^{ \pm}$decays, are also reported.

Keywords: B physics, CKM angle gamma, CP violation, Flavor physics, Hadron-Hadron scattering (experiments)

ArXiv EPRINT: 2010.08483

Contents

1 Introduction 1
2 Analysis overview 2
3 LHCb detector 6
4 Selection 7
5 The $D K$ and $D \pi$ invariant-mass spectra 9
$6 \quad C P$ observables 14
7 Systematic uncertainties 16
8 Interpretation 20
9 Conclusions 21
A Correlation matrices 23
The LHCb collaboration 30

1 Introduction

In the framework of the Standard Model, $C P$ violation can be described by the angles and lengths of the Unitarity Triangle constructed from elements of the CKM matrix [1, 2]. The angle $\gamma \equiv \arg \left(-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right)$ has particularly interesting features. It is the only CKM angle that can be measured in decays including only tree-level processes, and is experimentally accessible through the interference of $\bar{b} \rightarrow \bar{c} u \bar{s}$ and $\bar{b} \rightarrow \bar{u} c \bar{s}$ (and $C P$ conjugate) decay amplitudes. In addition, there are negligible theoretical uncertainties when interpreting the measured observables in terms of $\gamma[3]$. Hence, in the absence of unknown physics effects at tree level, a precision measurement of γ provides a Standard Model benchmark that can be compared with indirect determinations from other CKMmatrix observables more likely to be affected by physics beyond the Standard Model [4]. Such comparisons are currently limited by the precision of direct measurements of γ, which is about $5^{\circ}[5,6]$ dominated by LHCb results.

Decays such as $B^{ \pm} \rightarrow D K^{ \pm}$, where D represents a superposition of D^{0} and \bar{D}^{0} states, are used to observe the effects of interference between $\bar{b} \rightarrow \bar{c} u \bar{s}$ and $\bar{b} \rightarrow \bar{u} c \bar{s}$ (and $C P$ conjugate) decay amplitudes. The interference arises when the decay channel of the D meson is common to both D^{0} and \bar{D}^{0} mesons. The $B^{ \pm} \rightarrow D K^{ \pm}$decay has been studied
extensively with a wide range of D-meson final states [7-11]. The exact choice of observables from each of these analyses is dependent on the method that is most appropriate for the D decay used [12-20]. The methods can be extended to a variety of different B-decay modes [8, 21-24].

This paper presents a model-independent study of the decay modes $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$where the chosen D decays are the self-conjugate decays $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$(denoted $\left.D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}\right)$. The analysis of the $B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$ decay chain is powerful due to the rich resonance structure of the D-decay modes, as has been described in refs. [17-19]. The data used in this analysis were accumulated with the LHCb detector over the period 2011-2018 in $p p$ collisions at energies of $\sqrt{s}=7,8,13 \mathrm{TeV}$, corresponding to a total integrated luminosity of approximately $9 \mathrm{fb}^{-1}$.

The presence of interference leads to differences in the phase-space distributions of D decays from reconstructed B^{+}and B^{-}decays. In order to interpret any observed difference in the context of the angle γ, knowledge of the strong phase of the D^{0} decay amplitude, and how it varies over phase space, is required. An attractive model-independent approach makes use of direct measurements of the strong-phase difference between D^{0} and \bar{D}^{0} decays, averaged over regions of the phase space [17, 25, 26]. Quantum correlated pairs of D mesons produced in decays of $\psi(3770)$ give direct access to the strong-phase differences. These have been measured by the CLEO collaboration [27], and more recently the BESIII collaboration [28-30]. Measurements using the inputs in ref. [27] have been used by the $\mathrm{LHCb}[10,21,31]$ and Belle $[32,33]$ collaborations. An alternate method is to use an amplitude model of the D decay to determine the strong-phase variation [34-36]. The separation of data into binned regions of the Dalitz plot leads to a loss of statistical sensitivity in comparison to using an amplitude model. However, the advantage of using the direct strong-phase measurements resides in the model-independent nature of the systematic uncertainties. Where the direct strong-phase measurements are used, there is only a systematic uncertainty associated with the finite precision of such measurements. Conversely, systematic uncertainties associated with determining a phase from an amplitude model are difficult to evaluate, as common approaches to amplitude-model building violate the optical theorem [37]. Therefore, the loss in statistical precision is compensated by reliability in the evaluation of the systematic uncertainty, which is increasingly important as the overall precision on the CKM angle γ improves. The analysis approach is laid out in section 2, while section 3 describes the LHCb detector used to collect the data sample, and section 4 summarises the selection criteria. The measurement is based on a two-step fit procedure covered in section 5 , where the fit to the invariant-mass distribution is detailed, and section 6 , which describes how the $C P$ observables are determined. The systematic uncertainties are reported in section 7 , and the results are interpreted to determine the value of γ in section 8 . Finally, the conclusions are presented in section 9.

2 Analysis overview

The sum of the favoured and suppressed contributions to the $B^{-} \rightarrow D K^{-}$amplitude can be written as

$$
\begin{equation*}
A_{B}\left(m_{-}^{2}, m_{+}^{2}\right) \propto A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)+r_{B}^{D K} e^{i\left(\delta_{B}^{D K}-\gamma\right)} A_{\bar{D}}\left(m_{-}^{2}, m_{+}^{2}\right) \tag{2.1}
\end{equation*}
$$

where $A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)$ is the $D^{0} \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$decay amplitude, and $A_{\bar{D}}\left(m_{-}^{2}, m_{+}^{2}\right)$ is the $\bar{D}^{0} \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$decay amplitude. The hadronic parameters $r_{B}^{D K}$ and $\delta_{B}^{D K}$ are the ratio of the magnitudes of the amplitudes of $B^{-} \rightarrow \bar{D}^{0} K^{-}$and $B^{-} \rightarrow D^{0} K^{-}$and the strong-phase difference between them, respectively. Finally, the position of the decay in the Dalitz plot is defined by m_{-}^{2} and m_{+}^{2}, which are the squared invariant masses of the $K_{\mathrm{S}}^{0} h^{-}$and $K_{\mathrm{S}}^{0} h^{+}$particle combinations, respectively. The equivalent expression for the charge-conjugated decay $B^{+} \rightarrow D K^{+}$is obtained by making the substitutions $\gamma \rightarrow-\gamma$ and $A_{D}\left(m_{-}^{2}, m_{+}^{2}\right) \leftrightarrow A_{\bar{D}}\left(m_{-}^{2}, m_{+}^{2}\right)$.

The D-decay phase space is partitioned into $2 \times \mathcal{N}$ bins labelled from $i=-\mathcal{N}$ to $i=+\mathcal{N}$ (excluding zero), symmetric around $m_{-}^{2}=m_{+}^{2}$ such that if (m_{-}^{2}, m_{+}^{2}) is in bin i then $\left(m_{+}^{2}, m_{-}^{2}\right)$ is in bin $-i$. The bins for which $m_{-}^{2}>m_{+}^{2}$ are defined to have positive values of $i .{ }^{1}$ The strong-phase difference between the D^{0} - and \bar{D}^{0}-decay amplitudes at a given point on the Dalitz plot is denoted as $\delta_{D}\left(m_{-}^{2}, m_{+}^{2}\right)$. The cosine of $\delta_{D}\left(m_{-}^{2}, m_{+}^{2}\right)$ weighted by the D-decay amplitude and averaged over bin i is written as $c_{i}[17]$, and is given by

$$
\begin{equation*}
c_{i} \equiv \frac{\int_{i} d m_{-}^{2} d m_{+}^{2}\left|A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)\right|\left|A_{D}\left(m_{+}^{2}, m_{-}^{2}\right)\right| \cos \left[\delta_{D}\left(m_{-}^{2}, m_{+}^{2}\right)-\delta_{D}\left(m_{+}^{2}, m_{-}^{2}\right)\right]}{\sqrt{\int_{i} d m_{-}^{2} d m_{+}^{2}\left|A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)\right|^{2} \int_{i} d m_{-}^{2} d m_{+}^{2}\left|A_{D}\left(m_{+}^{2}, m_{-}^{2}\right)\right|^{2}}}, \tag{2.2}
\end{equation*}
$$

where the integrals are evaluated over bin i. An analogous expression can be written for s_{i}, which is the sine of the strong-phase difference weighted by the decay amplitude and averaged over the bin phase space.

The expected yield of B^{-}decays in bin i is found by integrating the square of the amplitude given in eq. (2.1) over the region of phase space defined by the i th bin. The effects of charm mixing and $C P$ violation are ignored, as is the presence of $C P$ violation and matter regeneration in the neutral K^{0} decays. These effects are expected to have a small impact [38, 39] on the distribution of events on the Dalitz plot. Selection requirements and reconstruction effects lead to a non-uniform efficiency over phase space, denoted by $\eta\left(m_{-}^{2}, m_{+}^{2}\right)$. At LHCb the typical efficiency variation over phase space for a $D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$decay from a region of high efficiency to low efficiency is approximately 60% [21]. The fractional yield of pure D^{0} decays in bin i in the presence of this efficiency profile is denoted F_{i}, given by

$$
\begin{equation*}
F_{i}=\frac{\int_{i} d m_{-}^{2} d m_{+}^{2}\left|A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)\right|^{2} \eta\left(m_{-}^{2}, m_{+}^{2}\right)}{\sum_{j} \int_{j} d m_{-}^{2} d m_{+}^{2}\left|A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)\right|^{2} \eta\left(m_{-}^{2}, m_{+}^{2}\right)}, \tag{2.3}
\end{equation*}
$$

where the sum in the denominator is over all Dalitz plot bins, indexed by j. Neglecting $C P$ violation in these charm decays, the charge-conjugate amplitudes satisfy the relation $A_{\bar{D}}\left(m_{-}^{2}, m_{+}^{2}\right)=A_{D}\left(m_{+}^{2}, m_{-}^{2}\right)$, and therefore $F_{i}=\bar{F}_{-i}$, where \bar{F}_{i} is the fractional yield of \bar{D}^{0} decays to bin i. The physics parameters of interest, $r_{B}^{D K}, \delta_{B}^{D K}$, and γ, are translated into four $C P$-violating observables [40] that are measured in this analysis and are the real and imaginary parts of the ratio of the suppressed and favoured B decay amplitudes,

$$
\begin{equation*}
x_{ \pm}^{D K} \equiv r_{B}^{D K} \cos \left(\delta_{B}^{D K} \pm \gamma\right) \text { and } y_{ \pm}^{D K} \equiv r_{B}^{D K} \sin \left(\delta_{B}^{D K} \pm \gamma\right) . \tag{2.4}
\end{equation*}
$$

[^0]Using the relations $c_{i}=c_{-i}$ and $s_{i}=-s_{-i}$ the $B^{+}\left(B^{-}\right)$yields, $N^{+}\left(N^{-}\right)$, in bin i and $-i$ are given by

$$
\begin{align*}
& N_{+i}^{+}=h_{B^{+}}\left[F_{-i}+\left(\left(x_{+}^{D K}\right)^{2}+\left(y_{+}^{D K}\right)^{2}\right) F_{+i}+2 \sqrt{F_{i} F_{-i}}\left(x_{+}^{D K} c_{+i}-y_{+}^{D K} s_{+i}\right)\right] \\
& N_{-i}^{+}=h_{B^{+}}\left[F_{+i}+\left(\left(x_{+}^{D K}\right)^{2}+\left(y_{+}^{D K}\right)^{2}\right) F_{-i}+2 \sqrt{F_{i} F_{-i}}\left(x_{+}^{D K} c_{+i}+y_{+}^{D K} s_{+i}\right)\right] \tag{2.5}\\
& N_{+i}^{-}=h_{B^{-}}\left[F_{+i}+\left(\left(x_{-}^{D K}\right)^{2}+\left(y_{-}^{D K}\right)^{2}\right) F_{-i}+2 \sqrt{F_{i} F_{-i}}\left(x_{-}^{D K} c_{+i}+y_{-}^{D K} s_{+i}\right)\right] \\
& N_{-i}^{-}=h_{B^{-}}\left[F_{-i}+\left(\left(x_{-}^{D K}\right)^{2}+\left(y_{-}^{D K}\right)^{2}\right) F_{+i}+2 \sqrt{F_{i} F_{-i}}\left(x_{-}^{D K} c_{+i}-y_{-}^{D K} s_{+i}\right)\right]
\end{align*}
$$

where $h_{B^{+}}$and $h_{B^{-}}$are normalisation constants. The value of $r_{B}^{D K}$ is allowed to be different for each charge and is constructed from either $\left(r_{B}^{D K}\right)^{2}=\left(x_{+}^{D K}\right)^{2}+\left(y_{+}^{D K}\right)^{2}$ or $\left(r_{B}^{D K}\right)^{2}=\left(x_{-}^{D K}\right)^{2}+\left(y_{-}^{D K}\right)^{2}$. A single value of $r_{B}^{D K}$ is determined when the $C P$ observables are subsequently interpreted to determine the physics parameters of interest. The normalisation constants can be written as a function of γ, analogous to the global asymmetries studied in decays where the D meson decays to a $C P$ eigenstate [8]. However, not only is this global asymmetry expected to be small since the $C P$-even content of the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decay modes is close to 0.5 , it is also expected to be heavily biased due to the effects of $K_{\mathrm{S}}^{0} C P$ violation [39] on total yields. Therefore the global asymmetry is ignored and the loss of information is minimal. An advantage of this approach is that the normalisation constants $h_{B^{+}}$and $h_{B^{-}}$are independent of each other, and will implicitly contain the effects of the production asymmetry of $B^{ \pm}$mesons in $p p$ collisions and the detection asymmetries of the charged kaon from the B decay. This leads to a $C P-$ violation measurement that is free of systematic uncertainties associated to these effects.

The system of equations provides $4 \mathcal{N}$ observables and $4+2 \mathcal{N}$ unknowns, assuming that the available measurements of c_{i} and s_{i} are used. This is solvable for $\mathcal{N} \geq 2$, but in practice the simultaneous fit of the $F_{i}, x_{ \pm}^{D K}$, and $y_{ \pm}^{D K}$ parameters leads to large uncertainties on the $C P$ observables, and hence some external knowledge of the F_{i} parameters is desirable. The F_{i} parameters could be computed from simulation and an amplitude model, but the systematic uncertainties associated with the LHCb simulation would be significant. Recent analyses $[10,31]$ have used the semileptonic decay $B \rightarrow D^{*} \mu \nu$, where the flavour-tagged yields of D^{0} mesons are corrected for the differences in selection between the semileptonic channel and the signal mode. However, with the increased signal yields, the uncertainty due to this necessary correction will be approximately half the statistical uncertainty on the measurement presented in this paper, and therefore a different method is adopted.

The $B^{ \pm} \rightarrow D \pi^{ \pm}$decay mode is expected to have F_{i} parameters that are the same as those for $B^{ \pm} \rightarrow D K^{ \pm}$if a similar selection is applied due to the common topology and the ability to use same signatures in the detector to select the candidates. The $B^{ \pm} \rightarrow D \pi^{ \pm}$ decay is expected to exhibit $C P$ violation through the interference of $\bar{b} \rightarrow \bar{c} u \bar{d}$ and $\bar{b} \rightarrow \bar{u} c \bar{d}$ transitions, analogous to the $B^{ \pm} \rightarrow D K^{ \pm}$decay but suppressed by one order of magnitude [41]. Further effects from $K_{\mathrm{S}}^{0} C P$ violation and matter regeneration have been recently shown to have only a small impact on the distribution over the Dalitz plot [39], in contrast to
their impact on the global asymmetry. Therefore the $B^{ \pm} \rightarrow D \pi^{ \pm}$channel can be used to determine the F_{i} parameters if the small level of $C P$ violation in the $B^{ \pm}$decay is accounted for.

Pseudoexperiments are performed in which the two B-decay modes are fit together assuming common F_{i} parameters. Independent $x_{ \pm}$and $y_{ \pm}$observables are required for the two B decay modes due to different values of the hadronic parameters, r_{B} and δ_{B}. The value of r_{B} in $B^{ \pm} \rightarrow D K^{ \pm}$is approximately 0.1 , and it is expected that it will be a factor 20 smaller in $B^{ \pm} \rightarrow D \pi^{ \pm}$decays [41]. The yields of $B^{ \pm} \rightarrow D \pi^{ \pm}$are described by a set of equations analogous to eq. (2.5), with the substitutions $x_{ \pm}^{D K} \rightarrow x_{ \pm}^{D \pi}$ and $y_{ \pm}^{D K} \rightarrow y_{ \pm}^{D \pi}$. An analysis that simultaneously measures the $F_{i}, x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{ \pm}^{D \pi}$, and $y_{ \pm}^{D \pi}$ parameters is found to be stable only if $r_{B}^{D \pi}>0.03$. At the expected value $r_{B}^{D \pi}=0.005$ the fit is unstable due to high correlations between the F_{i} and $x_{ \pm}^{D \pi}$ and $y_{ \pm}^{D \pi}$. Therefore an alternate parameterisation $[42,43]$ is introduced, which utilises the fact that γ is a common parameter, and that the $C P$ violation in $B^{ \pm} \rightarrow D \pi^{ \pm}$decays can therefore be described by the addition of a single complex variable

$$
\begin{equation*}
\xi^{D \pi}=\left(\frac{r_{B}^{D \pi}}{r_{B}^{D K}}\right) \exp \left(i \delta_{B}^{D \pi}-i \delta_{B}^{D K}\right) \tag{2.6}
\end{equation*}
$$

and in terms of $x_{\xi}^{D \pi} \equiv \operatorname{Re}\left(\xi^{D \pi}\right)$ and $y_{\xi}^{D \pi} \equiv \operatorname{Im}\left(\xi^{D \pi}\right)$, the $\left(x_{ \pm}^{D \pi}, y_{ \pm}^{D \pi}\right)$ parameters are given by

$$
\begin{equation*}
x_{ \pm}^{D \pi}=x_{\xi}^{D \pi} x_{ \pm}^{D K}-y_{\xi}^{D \pi} y_{ \pm}^{D K}, \quad y_{ \pm}^{D \pi}=x_{\xi}^{D \pi} y_{ \pm}^{D K}+y_{\xi}^{D \pi} x_{ \pm}^{D K} \tag{2.7}
\end{equation*}
$$

With this parameterisation, the simultaneous fit to $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}, y_{\xi}^{D \pi}$ (the $C P$ observables) and F_{i} parameters is stable for all values of $r_{B}^{D \pi}$. The simultaneous fit of $B^{ \pm} \rightarrow D \pi^{ \pm}$ and $B^{ \pm} \rightarrow D K^{ \pm}$candidates has two advantages. Firstly, the extraction of F_{i} in this manner is expected to have negligible associated systematic uncertainty, and reduces significantly the reliance on simulation. Secondly, the $C P$-violating observables in $B^{ \pm} \rightarrow D \pi^{ \pm}$ using other D-decay modes $[8,9]$ are not routinely included in the γ combination of all results because they allow for two solutions of $\left(r_{B}^{D \pi}, \delta_{B}^{D \pi}\right)$, which makes the statistical interpretation of the full $B^{ \pm} \rightarrow D h^{ \pm}$combination problematic [44]. The measurement in the $B^{ \pm} \rightarrow D \pi^{ \pm}, D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$decays has the potential to resolve this redundancy, and allow for a more straightforward inclusion of all $B^{ \pm} \rightarrow D \pi^{ \pm}$results in the combination. A small disadvantage is that the measurement of γ will incorporate information from both $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$decay modes and the contribution of each cannot be disentangled. However, since the size of contribution from the $B^{ \pm} \rightarrow D \pi^{ \pm}$decay to the precision is expected to be negligible in comparison to that from the $B^{ \pm} \rightarrow D K^{ \pm}$decay, this is considered an acceptable compromise.

The measurements of c_{i} and s_{i} are available in four different 2×8 binning schemes for the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decay. This analysis uses the scheme called the optimal binning, where the bins have been chosen to optimise the statistical sensitivity to γ, as described in ref. [27]. The optimisation was performed assuming a strong-phase difference distribution as predicted by the BaBar model presented in ref. [45]. For the $K_{\mathrm{S}}^{0} K^{+} K^{-}$final state, three choices of binning schemes are available, containing $2 \times 2,2 \times 3$, and 2×4 bins. The guiding model used to determine the bin boundaries is taken from the BaBar study described in ref. [46].

Figure 1. Binning schemes for (left) $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decays and (right) $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decays. The diagonal line separates the positive and negative bins, where the positive bins are in the region in which $m_{-}^{2}>m_{+}^{2}$ is satisfied.

The $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decay mode is dominated by the intermediate $K_{\mathrm{S}}^{0} \phi$ and $K_{\mathrm{S}}^{0} a(980)$ states which are $C P$-odd and $C P$-even, respectively, and the narrow $K_{\mathrm{S}}^{0} \phi$ resonance is encapsulated within the second bin of the 2×2 scheme. Therefore, most of the sensitivity is encompassed by this scheme, and the additional small gains from the more detailed schemes are offset by low yields and fit instabilities that arise when these bins are used. Therefore, the 2×2 bin is used for the analysis of the $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decay mode. The measurements of c_{i} and s_{i} are not biased by the use of a specific amplitude model in defining the bin boundaries. The choice of the model only affects this analysis to the extent that a poor model description of the underlying decay would result in a reduced statistical sensitivity of the γ measurement. The binning choices for the two decay modes are shown in figure 1.

Measurements of the c_{i} and s_{i} parameters in the optimal binning scheme for the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decay and in the 2×2 binning scheme for the $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decay are available from both the CLEO and BESIII collaborations. A combination of results from both collaborations is presented in ref. [29] and ref. [30] for the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decays, respectively. The combinations are used within this analysis.

3 LHCb detector

The LHCb detector [47, 48] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the $p p$ interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm , and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at $200 \mathrm{GeV} / c$. The minimum
distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $\left(15+29 / p_{\mathrm{T}}\right) \mu \mathrm{m}$, where p_{T} is the component of the momentum transverse to the beam, in GeV / c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The events that are selected for the analysis either have final-state tracks of the signal decay that are subsequently associated with an energy deposit in the calorimeter system that satisfies the hardware stage trigger, or are selected because one of the other particles in the event, not reconstructed as part of the signal candidate, fulfils any hardware stage trigger requirement. At the software stage, it is required that at least one particle should have high p_{T} and high χ_{IP}^{2}, where χ_{IP}^{2} is defined as the difference in the primary vertex fit χ^{2} with and without the inclusion of that particle. A multivariate algorithm [49] is used to identify secondary vertices consistent with being a two-, three-, or four-track b-hadron decay. The PVs are fitted with and without the tracks of the decay products of the B candidate, and the PV that gives the smallest χ_{IP}^{2} is associated with the B candidate.

Simulation is required to model the invariant-mass distributions of the signal and background contributions and determine the selection efficiencies of the background relative to the signal decay modes. It is also used to provide an approximation for the efficiency variations over the phase space of the D decay for systematic studies. In the simulation, $p p$ collisions are generated using Pythia [50, 51] with a specific LHCb configuration [52]. Decays of unstable particles are described by EVTGEN [53], in which final-state radiation is generated using Photos [54]. The decays $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$are generated uniformly over phase space. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [55, 56] as described in ref. [57]. With the exception of the signal decay, the simulated event is reused multiple times [58]. Some subdominant backgrounds are generated with a fast simulation [59] that can mimic the geometric acceptance and tracking efficiency of the LHCb detector as well as the dynamics of the decay.

4 Selection

The selection closely follows that of ref. [10]. Decays of $K_{\mathrm{S}}^{0} \rightarrow \pi^{+} \pi^{-}$are reconstructed in two different ways: the first involving K_{S}^{0} mesons that decay early enough for the pions to be reconstructed in the vertex detector; and the second containing K_{S}^{0} that decay later such that track segments of the pions cannot be formed in the vertex detector. The first and second types of reconstructed K_{S}^{0} decays are referred to as long and downstream candidates, respectively. The long candidates have the best mass, momentum and vertex resolution, but approximately two-thirds of the signal candidates belong to the downstream category.

The D meson candidates are built by combining a K_{S}^{0} candidate with two tracks assigned either the pion or kaon hypothesis. A B candidate is then formed by combining the D meson candidate with a further track. At each stage of combination, selection requirements are placed to ensure good quality vertices, and K_{S}^{0} and D candidate invariantmasses are required to be close to their nominal mass [60]. Mutually exclusive particle identification (PID) requirements are placed on the companion track from the B decay to separate $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates, where the companion refers to the final state $\pi^{ \pm}$or $K^{ \pm}$meson produced in the $B^{ \pm} \rightarrow D h^{ \pm}$decay. PID requirements are also placed on the charged decay products of the D meson to reduce combinatorial background. A series of selection requirements are placed on the candidates to remove background from other B meson decays. A background from $B^{ \pm} \rightarrow D h^{ \pm}$decays where the D meson decays to either $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$or $K^{+} K^{-} \pi^{+} \pi^{-}$is rejected by requiring that the long K_{S}^{0} candidates decay a significant distance from the D vertex. Similarly, the D meson is required to have travelled a significant distance from the B vertex to suppress B decays with the same final state, but where there is no intermediate D meson decay. Semileptonic decays of the type $D^{0} \rightarrow K^{*-} l^{+} \nu$, where charge-conjugate decays are implied, can be reconstructed as $D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$with expected contamination rates of the order of a percent. To suppress electron to pion misidentification, a veto is placed on the pion from the D decay that has the opposite charge with respect to the companion particle, if the PID response suggests it is an electron. To suppress the similar muonic background, it is required that the charged track from the D decay has no corresponding activity in the muon detector. This veto also suppresses signal decays where the pion or kaon meson decays before reaching the muon detector. Therefore, it is applied on both charged tracks from the D decay, as these events have a worse resolution on the Dalitz plot, which is undesirable. Finally, the same requirement is placed on the companion track to suppress $B \rightarrow D \mu \nu$ decays.

The large remaining combinatorial background is suppressed through the use of a boosted decision tree (BDT) [61, 62] multivariate classifier. The BDT is trained on simulated signal events. The background training sample is obtained from the far upper sideband of the $m\left(D h^{ \pm}\right)$mass distribution between $5800-7000 \mathrm{MeV} / c^{2}$, in order to provide a sample independent from the data which will be used in the fit to determine the $C P$ observables. A separate BDT is trained for B decays containing long or downstream K_{S}^{0} candidates. The input variables given to each BDT include momenta of the B, D, and companion particles, the absolute and relative positions of decay vertices, as well as parameters that quantify the fit quality in the reconstruction; the parameter set is identical to the one used in the previous LHCb measurement and listed in detail in ref. [10]. The BDT has been proven not to bias the $m\left(D h^{ \pm}\right)$distribution. A series of pseudoexperiments are run to find the threshold values for the two BDTs which provide the best sensitivity to γ. This requirement rejects approximately 98% of the combinatorial background that survives all other selection requirements, while having an efficiency of approximately 93% in simulated $B^{ \pm} \rightarrow D K^{ \pm}$decays. The selection applied to $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates is identical between the two decay modes with the exception of the PID requirement on the companion track.

Figure 2. Dalitz plot for D decays of (left) $B^{+} \rightarrow D K^{+}$and (right) $B^{-} \rightarrow D K^{-}$candidates in the signal region, in the (top) $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and (bottom) $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$channels. The horizontal and vertical axes are interchanged between the B^{+}and B^{-}decay plots to aid visualisation of the $C P$ asymmetries between the two distributions.

A signal region is defined as within $30 \mathrm{MeV} / c^{2}$ of the B-meson mass [60]. The phasespace distributions for candidates in this range are shown in the Dalitz plots of figure 2 for $B^{ \pm} \rightarrow D K^{ \pm}$candidates. The data are split by the final state of the D decay and by the charge of the B meson. Small differences between the phase-space distributions in $B^{+} \rightarrow D K^{+}$and $B^{-} \rightarrow D K^{-}$decays are visible in the $K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$final state.

5 The $D K$ and $D \pi$ invariant-mass spectra

The analysis uses a two-stage strategy to determine the $C P$ observables. First, an extended maximum-likelihood fit to the invariant-mass spectrum of all selected $B^{ \pm}$candidates in the mass range 5080 to $5800 \mathrm{MeV} / c^{2}$ is performed, with no partition of the D phase space. This fit is referred to as the global fit. The global fit is used to determine the signal and background component parameterisations, which are subsequently used in a second stage

Figure 3. Invariant mass distributions for the (left) $B^{ \pm} \rightarrow D K^{ \pm}$channel and (right) $B^{ \pm} \rightarrow D \pi^{ \pm}$ channel with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$. The top (bottom) plots show data where the K_{S}^{0} candidate is long (downstream). Square brackets in the legend denote a particle that has not been reconstructed.
where the data are split by B charge and partitioned into the Dalitz plot bins to determine the $C P$ observables.

The invariant mass distributions of the selected $B^{ \pm}$candidates are shown for $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$candidates in figures 3 and 4 , respectively, together with the results of the global fit superimposed. The invariant mass is kinematically constrained through a fit imposed on the full $B^{ \pm}$decay chain [63]. The D and K_{S}^{0} candidates are constrained to their known masses [60] and the $B^{ \pm}$candidate momentum vector is required to point towards the associated PV . The data sample is split into 8 categories depending on the reconstructed B decay, D decay mode, and K_{S}^{0} category, since the latter exhibits slightly different mass resolutions. The fit is performed simultaneously for all categories in order to allow parameters to be shared.

The peaks centered around $5280 \mathrm{MeV} / c^{2}$ correspond to the signal $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates. The parameterisation for the signal invariant-mass shape is determined from simulation; the invariant-mass distribution is modelled with a sum of the probability density function (PDF) for a Gaussian distribution, $f_{G}\left(m \mid m_{B}, \sigma\right)$, and a modified Gaussian PDF that is used to account for the radiative tail and the wider resolution

Figure 4. Invariant mass distributions for the (left) $B^{ \pm} \rightarrow D K^{ \pm}$channel and (right) $B^{ \pm} \rightarrow D \pi^{ \pm}$ channel with $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$. The top (bottom) plots show data where the K_{S}^{0} candidate is long (downstream). Square brackets in the legend denote a particle that has not been reconstructed.
of signal events that are poorly reconstructed. The modified Gaussian has the form

$$
f_{\mathrm{MG}}\left(m \mid m_{B}, \sigma, \alpha_{L}, \alpha_{R}, \beta\right) \propto\left\{\begin{array}{l}
\exp \left[\frac{-\Delta m^{2}\left(1+\beta \Delta m^{2}\right)}{2 \sigma^{2}+\alpha_{L} \Delta m^{2}}\right], \Delta m=m-m_{B}<0 \tag{5.1}\\
\exp \left[\frac{-\Delta m^{2}\left(1+\beta \Delta m^{2}\right)}{2 \sigma^{2}+\alpha_{R} \Delta m^{2}}\right], \Delta m=m-m_{B}>0,
\end{array},\right.
$$

which is Gaussian when $\Delta m^{2} \ll \sigma^{2} / \alpha_{L / R}$ or $\Delta m^{2} \gg \beta^{-1}$ (with widths of σ and $\sqrt{\alpha_{L / R} / \beta}$, respectively), with an exponential-like transition that is able to model the effect of the experimental resolution of LHCb . Thus, the signal PDF has the form

$$
\begin{align*}
f_{\text {signal }}\left(m \mid m_{B}, \sigma, \alpha_{L}, \alpha_{R}, \beta, k\right)= & k \cdot f_{\mathrm{MG}}\left(m \mid m_{B}, \sigma, \alpha_{L}, \alpha_{R}, \beta\right) \\
& +(1-k) \cdot f_{\mathrm{G}}\left(m \mid m_{B}, \sigma\right) \tag{5.2}
\end{align*}
$$

The values of the tail parameters $\left(\alpha_{L}, \alpha_{R}, \beta\right)$ and k are fixed from simulation and are common for the two D decays (which is possible due to the applied kinematic constraints) but different for each B decay and type of K_{S}^{0} candidate. The signal mass, m_{B}, is determined in data and is the same for all categories. The width, σ, of the signal PDF is determined by
the data and allowed to be different for each B decay and type of K_{S}^{0} candidate. The width is narrower in $B^{ \pm} \rightarrow D K^{ \pm}$decays compared to $B^{ \pm} \rightarrow D \pi^{ \pm}$decays due to the smaller free energy in the decay. The width is approximately 3% narrower in decays with long K_{S}^{0} candidates. The signal yield is determined in each of the categories where the candidates are reconstructed as $B^{ \pm} \rightarrow D \pi^{ \pm}$. The signal yield in the corresponding category where the candidates are reconstructed as $B^{ \pm} \rightarrow D K^{ \pm}$is determined by multiplying the $B^{ \pm} \rightarrow D \pi^{ \pm}$ yield by the parameters $\mathcal{B} \times \epsilon$. The parameter \mathcal{B} corresponds to the ratio of the branching fractions for $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$decays, while the correction factor, ϵ, takes into account the ratio of PID and selection efficiencies, and is determined for each pair of $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$categories and fixed in the fit. The parameter \mathcal{B} is shared across all categories and is found to be consistent with ref. [60].

To the right of the $B^{ \pm} \rightarrow D K^{ \pm}$peak there is a visible contribution from $B^{ \pm} \rightarrow D \pi^{ \pm}$ decays that are reconstructed as $B^{ \pm} \rightarrow D K^{ \pm}$decays. The corresponding contribution in the $B^{ \pm} \rightarrow D \pi^{ \pm}$category is minimal due to the smaller branching fraction of $B^{ \pm} \rightarrow D K^{ \pm}$, but is accounted for in the fit. The rates of these cross-feed backgrounds are fixed from PID efficiencies determined in calibration data, which is reweighted to match the momentum and pseudorapidity distributions of the companion track of the signal. A data-driven approach is used to determine the PDF of $B^{ \pm} \rightarrow D \pi^{ \pm}$decays that are reconstructed as $B^{ \pm} \rightarrow D K^{ \pm}$candidates, by using $B^{ \pm} \rightarrow D \pi^{ \pm}$decays and recalculating the invariant mass when the Kaon hypothesis is applied to the companion particle. Full details of the procedure are described in ref. [10]. The same procedure is implemented to determine the PDF of $B^{ \pm} \rightarrow D K^{ \pm}$decays reconstructed as $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates.

The background observed at invariant masses smaller than the signal peak are candidates that originate from other B-meson decays where not all decay products have been reconstructed. Due to the selected invariant-mass range it is only necessary to consider B meson decays where a single photon or pion has not been reconstructed. This background type is split into three sources; the first where the candidate originates from a $B^{ \pm}$or B^{0} meson, referred to as partially reconstructed background, the second where the candidate originates from a B_{s}^{0} meson, and the third where the candidate originates from a $B^{ \pm}$or B^{0} and furthermore one of the reconstructed tracks is assigned the kaon hypothesis, when the true particle is a pion. The latter type of background appears in the $B^{ \pm} \rightarrow D K^{ \pm}$ candidates and is referred to as misidentified partially reconstructed background. The corresponding type of background is not modelled in the $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates, since it is suppressed due to the branching fractions involved and the majority is removed by the lower invariant-mass requirement.

There are contributions from $B^{0} \rightarrow D^{* \pm} h^{\mp}$ and $B^{ \pm} \rightarrow D^{* 0} h^{ \pm}$decays in all categories, where the pion or the photon originating from the D^{*} meson is not reconstructed. The invariant-mass distributions of these decays depend on the spin and mass of the missing particle as described in ref. [24]. The parameters of these shapes are determined from simulation, with the exception of a free parameter in the fit to characterise the resolution. The decays $B^{ \pm, 0} \rightarrow D \pi^{ \pm} \pi^{0, \mp}$ contribute to the $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates where one of the pions from the B decay is not reconstructed. The shape of this background is determined from simulated $B^{ \pm} \rightarrow D \rho^{ \pm}$and $B^{0} \rightarrow D \rho^{0}$ decays. The decays $B^{ \pm} \rightarrow D K^{ \pm} \pi^{0}$
and $B^{0} \rightarrow D K^{+} \pi^{-}$contribute to the $B^{ \pm} \rightarrow D K^{ \pm}$candidates where the pion is not reconstructed. The invariant-mass distribution for these events is based on the amplitude model of $B^{0} \rightarrow D K^{+} \pi^{-}$decays [64]. The model is used to generate four-vectors of the decay products, which are smeared to account for the LHCb detector resolution. The invariant mass is then calculated omitting the particle that is not reconstructed, and this distribution is subsequently fit to determine the fixed distribution for the fit. The same shape is used for the $B^{ \pm} \rightarrow D K^{ \pm} \pi^{0}$ decay as the corresponding amplitude model is not available. Finally, the $B^{ \pm} \rightarrow D K^{ \pm}$candidates also have a contribution from $B_{s}^{0} \rightarrow \bar{D}^{0} \pi^{+} K^{-}$decays where the pion is not reconstructed. The shape of this contribution is determined in a similar manner to that of $B^{0} \rightarrow D K^{+} \pi^{-}$decays using the $B_{s}^{0} \rightarrow \bar{D}^{0} \pi^{+} K^{-}$amplitude model determined in ref. [65].

The yield of the partially reconstructed background is a free parameter in each $B^{ \pm} \rightarrow D \pi^{ \pm}$sample and related to the yield in the corresponding $B^{ \pm} \rightarrow D K^{ \pm}$sample via the free parameter $\mathcal{B}_{\mathcal{L}}$ and correction factors from PID and selection efficiencies. Analogously to the signal-yield parameterisation, $\mathcal{B}_{\mathcal{L}}$ is a single parameter, common to all categories, but in this case has no direct physical meaning. The relative yield of $B^{ \pm} \rightarrow D^{*}(\rightarrow D[\gamma]) \pi^{ \pm}$and $B^{0} \rightarrow D^{*}\left(\rightarrow D\left[\pi^{\mp}\right]\right) \pi^{ \pm}$decays, where the particle within the square brackets is the one not reconstructed, are fixed from branching fractions [60], and selection efficiencies determined from simulation. The fractional yields of $B^{ \pm} \rightarrow D^{* 0}(\rightarrow D[\gamma]) \pi^{ \pm}$, and $B^{ \pm, 0} \rightarrow D\left[\pi^{0, \mp}\right] \pi^{ \pm}$decays are determined in the fit and are constrained to be the same for each $B^{ \pm} \rightarrow D \pi^{ \pm}$sample. Due to the lower yields in the $B^{ \pm} \rightarrow D K^{ \pm}$category and presence of additional backgrounds, the relative fractions of the various $B^{ \pm}$and B^{0} components are all fixed using information from branching fractions [60] and selection efficiencies from simulation. The yield of the $B_{s}^{0} \rightarrow \bar{D}^{0} \pi^{+} K^{-}$decays is fixed relative to the yield of $B^{ \pm} \rightarrow D \pi^{ \pm}$decays in the corresponding category using branching fractions [60], the fragmentation fraction [66], and relative selection efficiencies. Hence in total there are six free parameters to determine the partially reconstructed background yields. Four of these measure the yield in each $B^{ \pm} \rightarrow D \pi^{ \pm}$sample and a further single parameter determines the yield in the corresponding $B^{ \pm} \rightarrow D K^{ \pm}$sample. A final floating parameter determines the relative yield between two of the background components.

The shapes for the misidentified partially reconstructed backgrounds are determined from simulation, weighted by the PID efficiencies from calibration data. The yield of these backgrounds are determined from the partially reconstructed yields in the $B^{ \pm} \rightarrow D \pi^{ \pm}$ candidates, and the relative selection efficiencies, which include the PID efficiencies from calibration data and the selection efficiency due to requiring the reconstructed invariant mass to be above $5080 \mathrm{MeV} / c^{2}$. The final component of background is combinatorial which is parameterised by an exponential function. The yield and slope of this background in each category are free parameters. The yields of the different signals and background types are integrated in the signal region $5249-5309 \mathrm{MeV} / c^{2}$ and reported in table 1. The $B^{ \pm} \rightarrow D K^{ \pm}$ yields in categories of different D decay and type of K_{S}^{0} candidate have uncertainties that are smaller than their Poisson uncertainty since they are determined using the value of \mathcal{B}, which is measured from all $B^{ \pm} \rightarrow D K^{ \pm}$candidates.

	Reconstructed as:	$B^{ \pm} \rightarrow D K^{ \pm}$		$B^{ \pm} \rightarrow D \pi^{ \pm}$	
D decay	Component	long	downstream	long	downstream
$D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	$B^{ \pm} \rightarrow D K^{ \pm}$	3798 ± 41	8735 ± 89	182 ± 3	433 ± 8
	$B^{ \pm} \rightarrow D \pi^{ \pm}$	342 ± 3	691 ± 5	55096 ± 240	124786 ± 368
	Part. reco. background	114 ± 3	246 ± 6	36 ± 7	81 ± 12
	Combinatorial	206 ± 36	458 ± 60	392 ± 66	1142 ± 127
$D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$	$B^{ \pm} \rightarrow D K^{ \pm}$	576 ± 8	1203 ± 15	29 ± 1	61 ± 1
	$B^{ \pm} \rightarrow D \pi^{ \pm}$	56 ± 1	104 ± 2	8196 ± 92	17863 ± 137
	Part. reco background	17 ± 2	34 ± 2	5 ± 3	11 ± 5
	Combinatorial	44 ± 13	75 ± 20	127 ± 32	288 ± 52

Table 1. The signal and background yields in the region $m_{B} \in[5249,5309] \mathrm{MeV} / c^{2}$ as obtained in the fit. For the $B^{ \pm} \rightarrow D K^{ \pm}$candidates, the yield of the partially reconstructed background includes the contributions from B_{s}^{0} decays and misidentified partially reconstructed backgrounds.

$6 \quad C P$ observables

To determine the $C P$ observables the data are divided into 16 categories (B decay, B charge, D decay, type of K_{S}^{0} candidate) and then further split into each Dalitz plot bin. A simultaneous fit to the invariant-mass distribution is performed in all categories and Dalitz plot bins. The mass shape parameters are all fixed from the global mass fit. The lower limit of the invariant mass is increased to $5150 \mathrm{MeV} / c^{2}$ to remove a large fraction of the partially reconstructed background. The signal yield in each bin is parameterised using eq. (2.5) or the analogous set of expressions for $B^{ \pm} \rightarrow D \pi^{ \pm}$. These equations are normalised such that the parameters $h_{B^{ \pm}}$represent the total observed signal yield in each category, and these are measured independently. The yield of misidentified $B^{ \pm} \rightarrow D \pi^{ \pm}\left(B^{ \pm} \rightarrow D K^{ \pm}\right)$decays in each $B^{ \pm} \rightarrow D K^{ \pm}\left(B^{ \pm} \rightarrow D \pi^{ \pm}\right)$sample is determined by the PID efficiencies and the signal yield in the corresponding $B^{ \pm} \rightarrow D \pi^{ \pm}\left(B^{ \pm} \rightarrow D K^{ \pm}\right)$sample.

The parameters $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$ are free parameters in the fit and common to the K_{S}^{0} and D decay categories. The parameters c_{i} and s_{i} are fixed to those determined from the combination of BESIII and CLEO data in ref. [29] for the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decays and in ref. [30] for the $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$decays. The F_{i} parameters for each D decay are determined in the fit; separate sets of F_{i} parameters are determined for the two types of K_{S}^{0} candidates because the efficiency profile over the Dalitz plot differs between the K_{S}^{0} selections. Since the F_{i} parameters must satisfy the constraints $\sum_{i} F_{i}=1, F_{i} \in[0,1]$, the fit can suffer from instability if they are included in a naive way due to large correlations. Therefore, the F_{i} parameters are reparameterised as a series of recursive fractions with parameters, \mathcal{R}_{i}, determined in the fit. The relation between the F_{i} and \mathcal{R}_{i} parameters is given by

$$
F_{i}=\left\{\begin{array}{cl}
\mathcal{R}_{i}, & i=-\mathcal{N} \tag{6.1}\\
\mathcal{R}_{i} \prod_{j<i}\left(1-\mathcal{R}_{j}\right), & -\mathcal{N}<i<+\mathcal{N} \\
\prod_{j<i}\left(1-\mathcal{R}_{j}\right), & i=+\mathcal{N} .
\end{array}\right.
$$

for a binning scheme with $2 \times \mathcal{N}$ bins.

The yield of the combinatorial background in each bin is a free parameter. The yield of the partially reconstructed background from $B^{ \pm}$or B^{0} decays in the $B^{ \pm} \rightarrow D \pi^{ \pm}$and $B^{ \pm} \rightarrow D K^{ \pm}$samples is also a free parameter in each bin. The composition of the partially reconstructed background is determined from the global fit described in section 5, taking into account the change in the lower limit of invariant mass. The yield of the misidentified partially reconstructed background in the $B^{ \pm} \rightarrow D K^{ \pm}$samples is determined via the background yield in the corresponding $B^{ \pm} \rightarrow D \pi^{ \pm}$bin and the relative PID and selection efficiencies. The yield of the $B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$background is fixed from the global fit and is divided into the Dalitz plot bins according to the F_{i} such that it has the distribution of a D^{0} decay in the B^{+}categories and the distribution of a \bar{D}^{0} decay in the B^{-}categories.

There is a small fraction of bins where either the partially reconstructed background or combinatoric background yield is less than one. These bins are identified in a preliminary fit and the background yield is fixed to zero. This procedure is carried out to improve the fit stability.

Pseudoexperiments are performed to investigate any potential biases or remaining instabilities in the fit. The candidate yields and mass distributions in these pseudoexperiments are based on the global fit results. The pull distributions are well described by a Gaussian function and are found to have mean and width consistent with 0 and 1 , respectively.

The results for $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$ are presented in figure 5 along with their likelihood contours, where only statistical uncertainties are considered. The two vectors defined by the origin and the end-point coordinates $\left(x_{-}^{D K}, y_{-}^{D K}\right)$ and $\left(x_{+}^{D K}, y_{+}^{D K}\right)$ give the values for $r_{B}^{D K}$ for B^{-}and B^{+}decays. The signature for $C P$ violation is that these vectors must have non-zero length and have a non-zero opening angle between them, since this angle is equal to 2γ, as illustrated on the figure. Therefore, the data exhibit unambiguous features of $C P$ violation as expected. The relation between the hadronic parameters in $B^{ \pm} \rightarrow D \pi^{ \pm}$and $B^{ \pm} \rightarrow D K^{ \pm}$decays is also illustrated in figure 5, where the vector defined by the coordinates $\left(x_{\xi}^{D \pi}, y_{\xi}^{D \pi}\right)$ is the relative magnitude of r_{B} between the two decay modes. It is consistent with the expectation of $5 \%[41]$. The normalization constants give global asymmetries that are consistent with the expectation of asymmetries from production, detection and neutral kaon effects.

A series of cross checks is carried out by performing separate fits by splitting the data sample into data-taking periods by year, type of K_{S}^{0} candidate, D-decay, hardware trigger path, and magnet polarity. The results are consistent between the datasets. As an additional cross check, the two-stage fit procedure is repeated with a number of different selections applied to the data. Of particular interest are the alternative selections that significantly affect the presence of specific backgrounds: the fits where the value of the BDT threshold is varied to decrease the level of combinatorial background and those where the choice of PID selection is changed to result in a substantially lower level of misidentified $B^{ \pm} \rightarrow D \pi^{ \pm}$decays and misidentified partially reconstructed background in the $B^{ \pm} \rightarrow D K^{ \pm}$candidates. The variations in the central values for the $C P$ observables are consistent within the statistical uncertainty associated with the change in the data sample.

In order to assess the goodness of fit and to demonstrate that the equations involving the $C P$ parameters provide a good description of the signal yields in data, an alternative fit

Figure 5. Confidence levels at 68.2% and 95.5% probability for (left, blue) $\left(x_{+}^{D K^{ \pm}}, y_{+}^{D K^{ \pm}}\right)$, (left, red) $\left(x_{-}^{D K^{ \pm}}, y_{-}^{D K^{ \pm}}\right)$, and (right, green) $\left(x_{\xi}^{D \pi^{ \pm}}, y_{\xi}^{D \pi^{ \pm}}\right)$as measured in $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$ decays with a profile likelihood scan. The black dots show the central values
is performed where the signal yield in each $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$bin is measured independently. The alternate fit is performed simultaneously in all categories in order to correctly determine the yield of misidentified candidates. These yields are compared with those predicted from the values of $\left(x_{ \pm}^{D K}, y_{ \pm}^{D K}\right)$ in the default fit and a high level of agreement is found. In order to visualise the observed $C P$ violation, the asymmetry, $\left(N_{-i}^{-}-N_{+i}^{+}\right) /\left(N_{-i}^{-}+N_{+i}^{+}\right)$, is computed for effective bin pairs, defined to comprise bin i for a B^{+}decay and bin $-i$ for a B^{-}decay. Figure 6 shows the obtained asymmetries and those predicted by the values of the $C P$ observables obtained in the fit. A further fit that does not allow for $C P$ violation is carried out by imposing the conditions $x_{+}^{D K}=x_{-}^{D K}, y_{+}^{D K}=y_{-}^{D K}$. This determines the predicted asymmetry arising from detector and production effects. In the $B^{ \pm} \rightarrow D K^{ \pm}$sample the $C P$ violation is clearly visible as the data are inconsistent with the $C P$-conserved hypothesis. The observed asymmetries correspond to a $\sim 10 \sigma$ deviation given the expectation in the $C P$-conserving scenario. The predicted asymmetries in the $B^{ \pm} \rightarrow D \pi^{ \pm}$decay are an order of magnitude smaller. The data in this analysis cannot distinguish between the $C P$-violating and $C P$-conserving predictions for $B^{ \pm} \rightarrow D \pi^{ \pm}$due to the relatively large statistical uncertainties.

$7 \quad$ Systematic uncertainties

Systematic uncertainties on the measurements of the $C P$ observables are evaluated and are presented in table 2. The limited precision on $\left(c_{i}, s_{i}\right)$ coming from the combined BESIII and CLEO [29, 30] results induces uncertainties on the CP parameters. These uncertainties are evaluated by fitting the data multiple times, each time with different (c_{i},

Figure 6. The bin-by-bin asymmetries $\left(N_{-i}^{-}-N_{+i}^{+}\right) /\left(N_{-i}^{-}+N_{+i}^{+}\right)$for each Dalitz-plot bin number for (left) $B^{ \pm} \rightarrow D K^{ \pm}$decays and (right) $B^{ \pm} \rightarrow D \pi^{ \pm}$decays. The prediction from the central values of the $C P$-violation observables is shown with a solid line and the asymmetries obtained in fits with independent bin yields are shown with the error bars. The predicted asymmetries in a fit that does not allow for $C P$ violation are shown with a dotted line. The vertical dashed line separates the $K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$and $K_{\mathrm{S}}^{0} K^{+} K^{-}$bins on the horizontal axis.

Source	$\sigma\left(x_{-}^{D K}\right)$	$\sigma\left(y_{-}^{D K}\right)$	$\sigma\left(x_{+}^{D K}\right)$	$\sigma\left(y_{+}^{D K}\right)$	$\sigma\left(x_{\xi}^{D \pi}\right)$	$\sigma\left(y_{\xi}^{D \pi}\right)$
Statistical	0.96	1.14	0.98	1.23	1.99	2.33
Strong-phase inputs	0.23	0.35	0.18	0.28	0.14	0.18
Efficiency correction of $\left(c_{i}, s_{i}\right)$	0.11	0.05	0.05	0.10	0.08	0.09
Mass-shape parameters	0.05	0.08	0.03	0.08	0.16	0.17
PID efficiencies	0.03	0.03	0.01	0.05	0.02	0.02
Fixed yield ratios	0.05	0.06	0.03	0.06	0.02	0.02
Mass-shape bin dependence	0.05	0.07	0.04	0.08	0.07	0.09
Part. reco. physics effects	0.04	0.10	0.15	0.05	0.10	0.09
Small backgrounds	0.11	0.16	0.13	0.12	0.08	0.13
Dalitz-bin migration	0.04	0.08	0.08	0.11	0.18	0.10
$C P$ violation of K_{S}^{0}	0.03	0.04	0.08	0.08	0.09	0.46
D mixing	0.04	0.01	0.00	0.02	0.02	0.01
Bias correction	0.04	0.03	0.02	0.04	0.09	0.05
Total LHCb-related uncertainty	0.20	0.25	0.24	0.26	0.32	0.54
Total systematic uncertainty	0.31	0.43	0.30	0.38	0.35	0.57

Table 2. Overview of all sources of uncertainty, σ, on $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$. All uncertainties are quoted $\times 10^{-2}$.
s_{i}) values sampled according to their experimental uncertainties and correlations. ${ }^{2}$ The resulting standard deviation of each distribution of the $C P$ observables is assigned as the systematic uncertainty. The size of the systematic uncertainty is notably much smaller than the corresponding uncertainty in ref. [10] due to the improvement in the knowledge of these strong-phase parameters [29, 30].

The non-uniform efficiency profile over the Dalitz plot means that the values of $\left(c_{i}, s_{i}\right)$ appropriate for this analysis can differ from those measured in refs. [29, 30], which correspond to the case where there is no variation in efficiency over the Dalitz plot. Amplitude models from refs. $[46,67]$ are used to calculate the values of c_{i} and s_{i} both with and without the efficiency profiles determined from simulation. The shift in the c_{i} and s_{i} values is taken as an estimate of the size of this effect. Pseudoexperiments are generated assuming the shifted c_{i} and s_{i} values and fit with the default values of c_{i} and s_{i}. The mean bias of each $C P$ observable is assigned as a systematic uncertainty. The assumption that the relative variation of efficiency over the Dalitz plot is the same in selected $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$candidates is verified in simulated samples of similar size to the $B^{ \pm} \rightarrow D \pi^{ \pm}$ yields observed in data. No statistically significant difference is observed and no systematic uncertainty is assigned.

The uncertainties from the fixed invariant-mass shapes determined in the global fit are propagated to the $C P$ observables through a resampling method [68]. The following procedure, which takes into account the fact that some parameters are determined in simulation and others in data, is carried out a hundred times. First, the simulated decays that were used to determine the nominal mass shape parameters are each resampled with replacement and fit to determine an alternative set of parameters. Then, the final dataset is resampled with replacement and the global fit is repeated using the alternative fixed shape parameters, to determine alternative values for the parameters that are determined from real data. Finally, the $C P$ fit is performed using the alternative invariant-mass parameterisations, without resampling the final dataset. The standard deviation of the $C P$ observables obtained via this procedure is taken as the systematic uncertainty due to the fixed parameterisation.

The PID efficiencies are varied within their uncertainties in the global and $C P$ fit and the standard deviation of the $C P$ parameters is taken as the systematic uncertainty. A similar method is used to determine the uncertainties due to the fixed fractions between different partially reconstructed backgrounds where the uncertainties on the fixed fractions are those from the branching fractions [60] and the selection efficiencies.

The $C P$ fit assumes the same mass shape for each component in each Dalitz plot bin. For the signal and cross-feed backgrounds the shapes are redetermined in each bin using the same procedures described in section 5 . The variance is very small due to weak correlations between phase-space coordinates and particle kinematics. The combinatorial slope can also vary from bin to bin, as the relative rate of combinatorial background with and without a real D^{0} meson will not be constant. The size of this effect is determined through the study of the high invariant-mass sideband where only combinatorial background contributes.

[^1]Pseudodata are generated where this variation in mass shape across the Dalitz plot bins is replicated for signal, cross-feed and combinatorial backgrounds, and the generated samples are fit with the default fit assumptions of the same shape in each bin. The mean bias is assigned as the systematic uncertainty.

The partially reconstructed background shape is also expected to vary in each bin, however the leading source of this effect is due to the individual components of this background having a different distribution over the Dalitz plot. Some partially reconstructed backgrounds will be distributed as $D^{0}\left(\bar{D}^{0}\right) \rightarrow D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$for reconstructed $B^{-}\left(B^{+}\right)$ candidates, while others will be distributed as a $D^{0}-\bar{D}^{0}$ admixture depending on the relevant $C P$-violation parameters. Pseudodata are generated, where the D-decay phase-space distributions for $B^{ \pm} \rightarrow D^{*} K^{ \pm}$and $B^{ \pm} \rightarrow D K^{*+}$ background events are based on the $C P$ parameters reported in ref. [69]. No $C P$ violation is introduced into the partially reconstructed background in the $B^{ \pm} \rightarrow D \pi^{ \pm}$samples since it is expected to be small, and the $B^{0} \rightarrow D \rho^{0}$ background is treated as an equal mix of D^{0} and \bar{D}^{0} since either pion can be reconstructed. The generated pseudodata are fitted with the default fit and the mean bias is assigned as the systematic uncertainty.

Systematic uncertainties are assigned for small residual backgrounds that contaminate the data sample but are not accounted for in the fit. Their impact is assessed by generating pseudoexperiments that contain these backgrounds and are fit with the default model. The mean bias is assigned as the uncertainty. One source of background is from $\Lambda_{b}^{0} \rightarrow D p \pi^{-}$ decays where the pion is not reconstructed and the proton is misidentified as a kaon. This background is modelled as a \bar{D}^{0}-like contribution in B^{-}decays, and has an expected yield of 0.5% of the $B^{ \pm} \rightarrow D K^{ \pm}$signal. A further, even smaller, background is $\Lambda_{b}^{0} \rightarrow$ $\Lambda_{c}^{+}\left(\rightarrow p K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\right) \pi^{-}$decays where the π^{+}meson in the Λ_{c}^{+}decay is missed, and the p reconstructed as the π^{+}from the D-decay. The effective distribution of the reconstructed D meson is unknown and is assigned to be \bar{D}^{0} like in B^{-}decays to be conservative. The mass shapes and rates of these backgrounds are determined from simulation. Another source of background comes from residual $B \rightarrow D \mu \nu$ decays, where the rate (less than 0.2% relative to the signal mode, after the applied veto) and shape are determined from simulation with PID efficiencies from calibration data. The residual semileptonic D decay background has a rate of less than 0.1% of signal and the distribution of these events on the Dalitz plot is determined through a simplified simulation [59] taking into account various K^{*} mesons. Finally, a small peaking background from $B^{ \pm} \rightarrow D\left(\rightarrow K^{ \pm} \pi^{\mp}\right) K_{\mathrm{S}}^{0} \pi^{ \pm}$decays where the kaon is reconstructed as the companion and the other particles are assigned to the D decay is considered. The yield of this background is determined to be 0.5% of the signal yield in $B^{ \pm} \rightarrow D K^{ \pm}$by a data driven study of the invariant-mass distribution of switched tracks. The distribution on the Dalitz plot is determined through the simplified simulation [59] where different $K^{* \pm} \rightarrow K_{\mathrm{S}}^{0} \pi^{ \pm}$resonances are generated.

The main effect of migration from one Dalitz plot bin to another is implicitly taken into account by using the data to determine the F_{i}, which thus include the effects of the net bin migration. However, a small effect arises because of the differences in the distributions of the $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$decays due to the differing hadronic decay parameters. To investigate this, data points are generated according to the amplitude model in ref. [67]
with $C P$ observables consistent with expectation $[5,69]$. To smear these data points on the Dalitz plot, an event is selected from full LHCb simulation and the difference in m_{+}^{2} and m_{-}^{2} between its true and reconstructed quantities is applied to the data point in order to determine its reconstructed bin. The difference between true and reconstructed quantities is multiplied by a factor of 1.2 to account for differences in resolution between data and simulation. Pseudoexperiments are generated based on the expected reconstructed yields in each bin and fit with a nominal fit where the c_{i} and s_{i} parameters are determined by the amplitude model [67]. The mean bias in the $C P$ violation parameters is taken as the systematic uncertainty, which is small.

The impact of ignoring the $C P$ violation and matter effects in K_{S}^{0} decays is determined through generating pseudoexperiments taking into account all these effects as detailed in ref. [39], where LHCb simulation is used to obtain the K_{S}^{0} lifetime acceptance and momentum distribution. The size of the bias found is consistent with those expected from ref. [39], where it was also predicted that the relative uncertainties on $B^{ \pm} \rightarrow D \pi^{ \pm}$ observables are be expected to be larger than for $B^{ \pm} \rightarrow D K^{ \pm}$observables. This is found to be true, but even the most significant uncertainty, on $y_{\xi}^{D \pi}$, is an order of magnitude smaller than the corresponding statistical uncertainty. The effect of ignoring charm mixing is expected to be minimal, given that the first-order effects are inherently taken into account when the F_{i} parameters are measured as a part of the fit [38]. This is verified by generating pseudoexperiments that include charm mixing and fitting them with the nominal fit.

In previous studies, a bias correction has been necessary when similar measurements have been performed with lower signal yields [10] leading to some fit instabilities. In this case, the higher yields have resulted in a bias that is of negligible size and hence no correction is applied. Nonetheless, the uncertainty on the biases are assigned as the systematic uncertainties.

In general, all the systematic uncertainties are small in comparison to the statistical uncertainties. There is no dominant source of systematic uncertainty for all $C P$ observables, however the description of backgrounds, either those not modelled or the modelling of the partially reconstructed backgrounds are some of the larger sources. The uncertainty attributed to the precision of the strong-phase measurements is of similar size to the total LHCb-related systematic uncertainty.

8 Interpretation

The $C P$ observables are measured to be

$$
\begin{align*}
x_{-}^{D K} & =(5.68 \pm 0.96 \pm 0.20 \pm 0.23) \times 10^{-2}, \\
y_{-}^{D K} & =(6.55 \pm 1.14 \pm 0.25 \pm 0.35) \times 10^{-2}, \\
x_{+}^{D K} & =(-9.30 \pm 0.98 \pm 0.24 \pm 0.18) \times 10^{-2}, \\
y_{+}^{D K} & =(-1.25 \pm 1.23 \pm 0.26 \pm 0.28) \times 10^{-2}, \tag{8.1}\\
x_{\xi}^{D \pi} & =(-5.47 \pm 1.99 \pm 0.32 \pm 0.14) \times 10^{-2}, \\
y_{\xi}^{D \pi} & =(0.71 \pm 2.33 \pm 0.54 \pm 0.18) \times 10^{-2},
\end{align*}
$$

where the first uncertainty is statistical, the second arises from systematic effects in the method or detector considerations, and the third from external inputs of strong-phase measurements from the combination of CLEO and BESIII [27, 29] results. The correlation matrices for each source of uncertainty are available in the appendices in tables 3-5.

The $C P$ observables are interpreted in terms of the underlying physics parameters γ, and r_{B} and δ_{B} for each $B^{ \pm}$decay mode. The interpretation is done via a maximum likelihood fit using a frequentist treatment as described in ref. [44]. The solution for the physics parameters has a two-fold ambiguity as the equations are invariant under the simultaneous substitutions $\gamma \rightarrow \gamma+180^{\circ}$ and $\delta_{B} \rightarrow \delta_{B}+180^{\circ}$. The solution that satisfies $0<\gamma<180^{\circ}$ is chosen, and leads to

$$
\begin{align*}
\gamma & =\left(68.7_{-5.1}^{+5.2}\right)^{\circ}, \\
r_{B}^{D K^{ \pm}} & =0.0904_{-0.0075}^{+0.0077}, \\
\delta_{B}^{D K^{ \pm}} & =\left(118.3_{-5.6}^{+5.5},\right. \tag{8.2}\\
r_{B}^{D \pi^{ \pm}} & =0.0050 \pm 0.0017, \\
\delta_{B}^{D \pi^{ \pm}} & =\left(291_{-26}^{+24}\right)^{\circ} .
\end{align*}
$$

Pseudoexperiments are carried out to confirm that the value of γ is extracted without bias. This is the most precise single measurement of γ to date. The result is consistent with the indirect determination $\gamma=\left(65.66_{-2.65}^{+0.90}\right)^{\circ}$ [6]. The confidence limits for γ are illustrated in figure 7 , while figure 8 shows the two-dimensional confidence regions obtained for the (γ, $\left.r_{B}\right)$ and $\left(r_{B}, \delta_{B}\right)$ parameter combinations. The results for $\gamma, r_{B}^{D K}$, and $\delta_{B}^{D K}$ are consistent with their current world averages $[5,6]$ which include the LHCb results obtained with the 2011-2016 data. The knowledge of $r_{B}^{D \pi}$ and $\delta_{B}^{D \pi}$ from other sources is limited, with the combination of many observables presented in ref. [44] providing two possible solutions. The results here have a single solution, and favour a central value that is consistent with the expectation for $r_{B}^{D \pi}$, given the value of $r_{B}^{D K}$ and CKM elements [41]. This is likely to remove the two-solution aspect in future combinations of γ and associated hadronic parameters. The low value of $r_{B}^{D \pi}$ means that the direct contribution to γ from $B^{ \pm} \rightarrow D \pi^{ \pm}$ decays in this measurement is minimal. However the ability to use this decay mode to determine the efficiency has approximately halved the total LHCb related experimental systematic uncertainty in comparison to ref. [10]. The new inputs from the BESIII collaboration have led to the strong-phase related uncertainty on γ to be approximately 1°, which is a significant reduction compared to the propagated uncertainty when only CLEO measurements were available.

9 Conclusions

In summary, the decays $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$or $D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}$obtained from the full LHCb dataset collected to date, corresponding to an integrated luminosity of $9 \mathrm{fb}^{-1}$, have been analysed to determine the CKM angle γ. The sensitivity to γ comes almost entirely from $B^{ \pm} \rightarrow D K^{ \pm}$decays where the signal yields of reconstructed events are approximately 13600 (1900) in the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\left(D \rightarrow K_{\mathrm{S}}^{0} K^{+} K^{-}\right)$

Figure 7. Confidence limits for the CKM angle γ obtained using the method described in ref. [44].

Figure 8. The 68% and 95% confidence regions for combinations of the physics parameters $\left(\gamma, r_{B}^{D K}, \delta_{B}^{D K}, r_{B}^{D \pi}, \delta_{B}^{D \pi}\right)$ obtained using the methods described in ref. [44].
decay modes. The $B^{ \pm} \rightarrow D \pi^{ \pm}$data is primarily used to control effects due to selection and reconstruction of the data, which leads to small experimental systematic uncertainties. The analysis is performed in bins of the D-decay Dalitz plot and a combination of measurements performed by the CLEO and BESIII collaborations presented in refs. [29, 30] are used to provide input on the D-decay strong-phase parameters (c_{i}, s_{i}). Such an approach allows the analysis to be free from model-dependent assumptions on the strong-phase variation across the Dalitz plot. The analysis also determines the hadronic parameters r_{B} and δ_{B} for each $B^{ \pm}$decay mode. Those of the $B^{ \pm} \rightarrow D K^{ \pm}$decay are consistent with current averages, and those of the $B^{ \pm} \rightarrow D \pi^{ \pm}$decay are obtained with the best precision to date, and have not previously been measured using these D-decay modes. The CKM angle γ is determined to be $\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}$, where the result is limited by statistical uncertainties. This is the most precise measurement of γ from a single analysis, and supersedes the results in refs. [10, 31].

Acknowledgments

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, Thousand Talents Program, and Sci. \& Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

A Correlation matrices

The correlations matrices for the measured observables are shown in tables $3-5$ for the statistical uncertainties, the experimental systematic uncertainties, and the strong-phaserelated uncertainties, respectively.

Uncertainty $\left(\times 10^{-2}\right)$						
	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$
σ	0.96	1.14	0.98	1.23	1.99	2.33

Correlation matrix

	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$
$x_{-}^{D K}$	1	-0.125	-0.013	0.019	0.037	-0.161
$y_{-}^{D K}$		1	-0.011	-0.010	0.097	0.041
$x_{+}^{D K}$			1	0.105	-0.108	0.032
$y_{+}^{D K}$				1	-0.070	-0.147
$x_{\xi}^{D \pi}$					1	0.150
$y_{\xi}^{D \pi}$						1

Table 3. Statistical uncertainties, σ, and correlation matrix for $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$.

Uncertainty $\left(\times 10^{-2}\right)$						
	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$
σ	0.20	0.25	0.24	0.26	0.32	0.54

Correlation matrix

	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$
$x_{-}^{D K}$	1	0.864	0.734	0.897	0.349	0.318
$y_{-}^{D K}$		1	0.874	0.903	0.408	0.362
$x_{+}^{D K}$			1	0.771	0.563	0.447
$y_{+}^{D K}$				1	0.507	0.451
$x_{\xi}^{D \pi}$					1	0.484
$y_{\xi}^{D \pi}$						1

Table 4. Total LHCb-related systematic uncertainties, σ, for $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$, and the corresponding correlation matrix.

Uncertainty $\left(\times 10^{-2}\right)$							
	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$	
σ	0.23	0.35	0.18	0.28	0.14	0.18	

Correlation matrix

	$x_{-}^{D K}$	$y_{-}^{D K}$	$x_{+}^{D K}$	$y_{+}^{D K}$	$x_{\xi}^{D \pi}$	$y_{\xi}^{D \pi}$
$x_{-}^{D K}$	1	-0.047	-0.490	0.322	0.189	0.144
$y_{-}^{D K}$		1	0.059	-0.237	-0.116	-0.117
$x_{+}^{D K}$			1	0.061	0.004	-0.139
$y_{+}^{D K}$				1	0.127	-0.199
$x_{\xi}^{D \pi}$					1	0.638
$y_{\xi}^{D \pi}$						1

Table 5. Systematic uncertainties, σ, for $x_{ \pm}^{D K}, y_{ \pm}^{D K}, x_{\xi}^{D \pi}$, and $y_{\xi}^{D \pi}$ due to strong-phase inputs, the corresponding correlation matrix.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [inSPIRE].
[2] M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [inSPIRE].
[3] J. Brod and J. Zupan, The ultimate theoretical error on γ from $B \rightarrow D K$ decays, JHEP 01 (2014) 051 [arXiv:1308.5663] [INSPIRE].
[4] M. Blanke and A.J. Buras, Emerging ΔM_{d}-anomaly from tree-level determinations of $\left|V_{c b}\right|$ and the angle γ, Eur. Phys. J. C 79 (2019) 159 [arXiv: 1812.06963] [inSPIRE].
[5] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, arXiv:1909. 12524 [inSPIRE].
[6] CKMfitter Group collaboration, CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [inSPIRE].
[7] LHCb collaboration, Measurement of CP observables in $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$with $D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ decays, JHEP 06 (2020) 058 [arXiv:2002.08858] [inSPIRE].
[8] LHCb collaboration, Measurement of CP observables in $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$with two- and four-body D decays, Phys. Lett. $B 760$ (2016) 117 [arXiv:1603.08993] [InSPIRE].
[9] LHCb collaboration, A study of $C P$ violation in $B^{\mp} \rightarrow D h^{\mp}(h=K, \pi)$ with the modes $D \rightarrow K^{\mp} \pi^{ \pm} \pi^{0}, D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $D \rightarrow K^{+} K^{-} \pi^{0}$, Phys. Rev. D 91 (2015) 112014 [arXiv:1504.05442] [INSPIRE].
[10] LHCb collaboration, Measurement of the CKM angle γ using $B^{ \pm} \rightarrow D K^{ \pm}$with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays, JHEP 08 (2018) 176 [Erratum ibid. 10 (2018) 107] [arXiv:1806.01202] [INSPIRE].
[11] Belle collaboration, First measurement of the CKM angle ϕ_{3} with $B^{ \pm} \rightarrow D\left(K_{\mathrm{S}}^{0} \pi^{+} \pi^{-} \pi^{0}\right) K^{ \pm}$decays, JHEP 10 (2019) 178 [arXiv:1908.09499] [inSPIRE].
[12] D. Atwood, I. Dunietz and A. Soni, Enhanced CP-violation with $B \rightarrow K D^{0}\left(\bar{D}^{0}\right)$ modes and extraction of the CKM angle gamma, Phys. Rev. Lett. 78 (1997) 3257 [hep-ph/9612433] [INSPIRE].
[13] D. Atwood, I. Dunietz and A. Soni, Improved methods for observing CP-violation in $B^{ \pm} \rightarrow K D$ and measuring the CKM phase gamma, Phys. Rev. D 63 (2001) 036005 [hep-ph/0008090] [INSPIRE].
[14] M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172 [InSPIRE].
[15] M. Gronau and D. London, How to determine all the angles of the unitarity triangle from $B_{d}^{0} \rightarrow D K_{s}$ and $B_{s}^{0} \rightarrow D_{\varphi}$, Phys. Lett. B 253 (1991) 483 [inSPIRE].
[16] M. Nayak et al., First determination of the CP content of $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $D \rightarrow K^{+} K^{-} \pi^{0}$, Phys. Lett. B 740 (2015) 1 [arXiv:1410.3964] [InSPIRE].
[17] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Determining gamma using $B^{ \pm} \rightarrow D K^{ \pm}$with multibody D decays, Phys. Rev. D 68 (2003) 054018 [hep-ph/0303187] [inSPIRE].
[18] A. Bondar, Proceedings of BINP special analysis meeting on Dalitz analysis, unpublished, 24-26 September 2002.
[19] Belle collaboration, Measurement of ϕ_{3} with Dalitz plot analysis of $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$decay, Phys. Rev. D 70 (2004) 072003 [hep-ex/0406067] [INSPIRE].
[20] Y. Grossman, Z. Ligeti and A. Soffer, Measuring gamma in $B^{ \pm} \rightarrow K^{ \pm}\left(K K^{*}\right)_{D}$ decays, Phys. Rev. D 67 (2003) 071301 [hep-ph/0210433] [InSPIRE].
[21] LHCb collaboration, Model-independent measurement of the CKM angle γ using $B^{0} \rightarrow D K^{* 0}$ decays with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $K_{S}^{0} K^{+} K^{-}$, JHEP 06 (2016) 131 [arXiv:1604.01525] [inSPIRE].
[22] LHCb collaboration, Measurement of CP observables in $B^{ \pm} \rightarrow D K^{* \pm}$ decays using two- and four-body D final states, JHEP 11 (2017) 156 [Erratum ibid. 05 (2018) 067] [arXiv:1709.05855] [inSPIRE].
[23] LHCb collaboration, Study of $B^{-} \rightarrow D K^{-} \pi^{+} \pi^{-}$and $B^{-} \rightarrow D \pi^{-} \pi^{+} \pi^{-}$decays and determination of the CKM angle γ, Phys. Rev. D 92 (2015) 112005 [arXiv:1505.07044] [INSPIRE].
[24] LHCb collaboration, Measurement of $C P$ observables in $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$and $B^{ \pm} \rightarrow D^{(*)} \pi^{ \pm}$ decays, Phys. Lett. $B 777$ (2018) 16 [arXiv:1708.06370] [inSPIRE].
[25] A. Bondar and A. Poluektov, Feasibility study of model-independent approach to ϕ_{3} measurement using Dalitz plot analysis, Eur. Phys. J. C 47 (2006) 347 [hep-ph/0510246] [inSPIRE].
[26] A. Bondar and A. Poluektov, The use of quantum-correlated D^{0} decays for ϕ_{3} measurement, Eur. Phys. J. C 55 (2008) 51 [arXiv:0801.0840] [INSPIRE].
[27] CLEO collaboration, Model-independent determination of the strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{S, L}^{0} h^{+} h^{-}(h=\pi, K)$ and its impact on the measurement of the CKM angle γ / ϕ_{3}, Phys. Rev. D 82 (2010) 112006 [arXiv:1010.2817] [inSPIRE].
[28] BESIII collaboration, Determination of strong-phase parameters in $D \rightarrow K_{S, L}^{0} \pi^{+} \pi^{-}$, Phys. Rev. Lett. 124 (2020) 241802 [arXiv:2002.12791] [inSPIRE].
[29] BESIII collaboration, Model-independent determination of the relative strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{S, L}^{0} \pi^{+} \pi^{-}$and its impact on the measurement of the CKM angle γ / ϕ_{3}, Phys. Rev. D 101 (2020) 112002 [arXiv:2003.00091] [inSPIRE].
[30] BESIII collaboration, Improved model-independent determination of the strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{\mathrm{S}, \mathrm{L}}^{0} K^{+} K^{-}$decays, Phys. Rev. D 102 (2020) 052008 [arXiv:2007.07959] [INSPIRE].
[31] LHCb collaboration, Measurement of the CKM angle γ using $B^{ \pm} \rightarrow D K^{ \pm}$with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}, K_{\mathrm{S}}^{0} K^{+} K^{-}$decays, JHEP 10 (2014) 097 [arXiv:1408.2748] [InSPIRE].
[32] Belle collaboration, First measurement of ϕ_{3} with a model-independent Dalitz plot analysis of $B^{ \pm} \rightarrow D K, D \rightarrow K_{s}^{o} \pi \pi$ decay, Phys. Rev. $D 85$ (2012) 112014 [arXiv:1204.6561] [INSPIRE].
[33] Belle collaboration, First model-independent Dalitz analysis of $B^{0} \rightarrow D K^{* 0}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$ decay, PTEP 2016 (2016) 043C01 [arXiv:1509.01098] [INSPIRE].
[34] BABAR collaboration, Evidence for direct CP-violation in the measurement of the Cabibbo-Kobayashi-Maskawa angle gamma with $B^{\mp} \rightarrow D^{(*)} K^{(*) \mp}$ decays, Phys. Rev. Lett. 105 (2010) 121801 [arXiv:1005.1096] [InSPIRE].
[35] Belle collaboration, Evidence for direct CP-violation in the decay $B \rightarrow D^{(*)} K$, $D \rightarrow K_{s} \pi^{+} \pi^{-}$and measurement of the CKM phase ϕ_{3}, Phys. Rev. D 81 (2010) 112002 [arXiv:1003.3360] [INSPIRE].
[36] LHCb collaboration, Measurement of CP violation and constraints on the CKM angle γ in $B^{ \pm} \rightarrow D K^{ \pm}$with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays, Nucl. Phys. B 888 (2014) 169 [arXiv:1407.6211] [InSPIRE].
[37] M. Battaglieri et al., Analysis tools for next-generation hadron spectroscopy experiments, Acta Phys. Polon. B 46 (2015) 257 [arXiv:1412.6393] [InSPIRE].
[38] A. Bondar, A. Poluektov and V. Vorobiev, Charm mixing in the model-independent analysis of correlated $D^{0} \bar{D}^{0}$ decays, Phys. Rev. D 82 (2010) 034033 [arXiv:1004.2350] [inSPIRE].
[39] M. Bjørn and S. Malde, CP violation and material interaction of neutral kaons in measurements of the CKM angle γ using $B^{ \pm} \rightarrow D K^{ \pm}$decays where $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$, JHEP 07 (2019) 106 [arXiv:1904.01129] [inSPIRE].
[40] BaBAR collaboration, Measurement of γ in $B^{\mp} \rightarrow D^{(*)} K^{\mp}$ decays with a Dalitz analysis of $D \rightarrow K_{S}^{0} \pi^{-} \pi^{+}$, Phys. Rev. Lett. 95 (2005) 121802 [hep-ex/0504039] [INSPIRE].
[41] M. Kenzie, M. Martinelli and N. Tuning, Estimating $r_{B}^{D \pi}$ as an input to the determination of the CKM angle γ, Phys. Rev. D 94 (2016) 054021 [arXiv: 1606.09129] [INSPIRE].
[42] J. Garra Ticó, A strategy for a simultaneous measurement of $C P$ violation parameters related to the CKM angle γ in multiple B meson decay channels, arXiv:1804. 05597 [INSPIRE].
[43] J. Garra Ticó, V. Gibson, S.C. Haines, C.R. Jones, M. Kenzie and G. Lovell, Study of the sensitivity to CKM angle γ under simultaneous determination from multiple B meson decay modes, Phys. Rev. D 102 (2020) 053003 [arXiv:1909.00600] [INSPIRE].
[44] LHCb collaboration, Measurement of the CKM angle γ from a combination of LHCb results, JHEP 12 (2016) 087 [arXiv:1611.03076] [inSPIRE].
[45] BABAR collaboration, Improved measurement of the CKM angle γ in $B^{\mp} \rightarrow D^{(*)} K^{(* \mp)}$ decays with a Dalitz plot analysis of D decays to $K_{S}^{0} \pi^{+} \pi^{-}$and $K_{S}^{0} K^{+} K^{-}$, Phys. Rev. D 78 (2008) 034023 [arXiv:0804.2089] [INSPIRE].
[46] BABAR collaboration, Evidence for direct CP-violation in the measurement of the Cabibbo-Kobayashi-Maskawa angle gamma with $B^{\mp} \rightarrow D^{(*)} K^{(*) \mp}$ decays, Phys. Rev. Lett. 105 (2010) 121801 [arXiv: 1005.1096] [INSPIRE].
[47] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [InSPIRE].
[48] LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
[49] V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [InSPIRE].
[50] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [inSPIRE].
[51] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [inSPIRE].
[52] LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [InSPIRE].
[53] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
[54] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
[55] J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].
[56] GEANT4 collaboration, GEANT4 - a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
[57] LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [inSPIRE].
[58] D. Müller, M. Clemencic, G. Corti and M. Gersabeck, ReDecay: a novel approach to speed up the simulation at LHCb, Eur. Phys. J. C 78 (2018) 1009 [arXiv:1810.10362] [InSPIRE].
[59] G.A. Cowan, D.C. Craik and M.D. Needham, RapidSim: an application for the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun. 214 (2017) 239 [arXiv:1612.07489] [inSPIRE].
[60] Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [InSPIRE].
[61] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, CA, U.S.A. (1984) [inSPIRE].
[62] Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
[63] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552 (2005) 566 [physics/0503191] [inSPIRE].
[64] LHCb collaboration, Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^{0} \rightarrow D K^{+} \pi^{-}$decays, Phys. Rev. D 93 (2016) 112018 [Erratum ibid. 94 (2016) 079902] [arXiv:1602.03455] [INSPIRE].
[65] LHCb collaboration, Dalitz plot analysis of $B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays, Phys. Rev. D 90 (2014) 072003 [arXiv:1407.7712] [inSPIRE].
[66] LHCb collaboration, Measurement of b hadron fractions in 13 TeV pp collisions, Phys. Rev. $D 100$ (2019) 031102 [arXiv: 1902.06794$]$ [INSPIRE].
[67] BaBar and Belle collaborations, Measurement of $\cos 2 \beta$ in $B^{0} \rightarrow D^{(*)} h^{0}$ with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays by a combined time-dependent Dalitz plot analysis of BaBar and Belle data, Phys. Rev. D 98 (2018) 112012 [arXiv:1804.06153] [inSPIRE].
[68] M.R. Chernick, Bootstrap methods: a practitioner's guide, Wiley-Interscience publication, U.S.A. (1999).
[69] LHCb collaboration, Update of the LHCb combination of the CKM angle γ, Tech. Rep. LHCb-CONF-2018-002, CERN, Geneva, Switzerland (2018).

The LHCb collaboration

R. Aaij ${ }^{31}$, C. Abellán Beteta ${ }^{49}$, T. Ackernley ${ }^{59}$, B. Adeva ${ }^{45}$, M. Adinolfi ${ }^{53}$, H. Afsharnia ${ }^{9}$, C.A. Aidala ${ }^{84}$, S. Aiola ${ }^{25}$, Z. Ajaltouni ${ }^{9}$, S. Akar ${ }^{64}$, J. Albrecht ${ }^{14}$, F. Alessio ${ }^{47}$, M. Alexander ${ }^{58}$, A. Alfonso Albero ${ }^{44}$, Z. Aliouche ${ }^{61}$, G. Alkhazov ${ }^{37}$, P. Alvarez Cartelle ${ }^{47}$, S. Amato ${ }^{2}$, Y. Amhis ${ }^{11}$, L. An^{21}, L. Anderlini ${ }^{21}$, A. Andreianov ${ }^{37}$, M. Andreotti ${ }^{20}$, F. Archilli ${ }^{16}$, A. Artamonov ${ }^{43}$, M. Artuso ${ }^{67}$, K. Arzymatov ${ }^{41}$, E. Aslanides ${ }^{10}$, M. Atzeni ${ }^{49}$, B. Audurier ${ }^{11}$, S. Bachmann ${ }^{16}$, M. Bachmayer ${ }^{48}$, J.J. Back ${ }^{55}$, S. Baker ${ }^{60}$, P. Baladron Rodriguez ${ }^{45}$, V. Balagura ${ }^{11}$, W. Baldini ${ }^{20}$, J. Baptista Leite ${ }^{1}$, R.J. Barlow ${ }^{61}$, S. Barsuk ${ }^{11}$, W. Barter ${ }^{60}$, M. Bartolini ${ }^{23, i}$, F. Baryshnikov ${ }^{80}$, J.M. Basels ${ }^{13}$, G. Bassi ${ }^{28}$, B. Batsukh ${ }^{67}$, A. Battig ${ }^{14}$, A. Bay ${ }^{48}$, M. Becker ${ }^{14}$, F. Bedeschi ${ }^{28}$, I. Bediaga ${ }^{1}$, A. Beiter ${ }^{67}$, V. Belavin ${ }^{41}$, S. Belin ${ }^{26}$, V. Bellee ${ }^{48}$, K. Belous ${ }^{43}$, I. Belov ${ }^{39}$, I. Belyaev ${ }^{38}$, G. Bencivenni ${ }^{22}$, E. Ben-Haim ${ }^{12}$, A. Berezhnoy ${ }^{39}$, R. Bernet ${ }^{49}$, D. Berninghoff ${ }^{16}$, H.C. Bernstein ${ }^{67}$, C. Bertella ${ }^{47}$, E. Bertholet ${ }^{12}$, A. Bertolin ${ }^{27}$, C. Betancourt ${ }^{49}$, F. Betti ${ }^{19, e}$, M.O. Bettler ${ }^{54}$, Ia. Bezshyiko ${ }^{49}$, S. Bhasin ${ }^{53}$, J. Bhom ${ }^{33}$, L. Bian ${ }^{72}$, M.S. Bieker ${ }^{14}$, S. Bifani ${ }^{52}$, P. Billoir ${ }^{12}$, M. Birch 60, F.C.R. Bishop ${ }^{54}$, A. Bizzeti $^{21, s}$, M. Bjørn ${ }^{62}$, M.P. Blago ${ }^{47}$, T. Blake ${ }^{55}$, F. Blanc ${ }^{48}$, S. Blusk ${ }^{67}$, D. Bobulska ${ }^{58}$, V. Bocci ${ }^{30}$, J.A. Boelhauve ${ }^{14}$, O. Boente Garcia ${ }^{45}$, T. Boettcher ${ }^{63}$, A. Boldyrev ${ }^{81}$, A. Bondar ${ }^{42, v}$, N. Bondar ${ }^{37}$, S. Borghi ${ }^{61}$, M. Borisyak ${ }^{41}$, M. Borsato ${ }^{16}$, J.T. Borsuk ${ }^{33}$, S.A. Bouchiba ${ }^{48}$, T.J.V. Bowcock ${ }^{59}$, A. Boyer ${ }^{47}$, C. Bozzi ${ }^{20}$, M.J. Bradley ${ }^{60}$, S. Braun ${ }^{65}$, A. Brea Rodriguez ${ }^{45}$, M. Brodski ${ }^{47}$, J. Brodzicka ${ }^{33}$, A. Brossa Gonzalo ${ }^{55}$, D. Brundu ${ }^{26}$, A. Buonaura ${ }^{49}$, C. Burr ${ }^{47}$, A. Bursche ${ }^{26}$, A. Butkevich ${ }^{40}$, J.S. Butter ${ }^{31}$, J. Buytaert ${ }^{47}$, W. Byczynski ${ }^{47}$, S. Cadeddu ${ }^{26}$, H. Cai ${ }^{72}$, R. Calabrese ${ }^{20, g}$, L. Calefice ${ }^{14}$, L. Calero Diaz ${ }^{22}$, S. Cali ${ }^{22}$, R. Calladine ${ }^{52}$, M. Calvi ${ }^{24, j}$, M. Calvo Gomez ${ }^{83}$, P. Camargo Magalhaes ${ }^{53}$, A. Camboni ${ }^{44}$, P. Campana ${ }^{22}$, D.H. Campora Perez ${ }^{47}$, A.F. Campoverde Quezada ${ }^{5}$, S. Capelli ${ }^{24, j}$, L. Capriotti ${ }^{19, e}$, A. Carbone ${ }^{19, e}$, G. Carboni ${ }^{29}$, R. Cardinale ${ }^{23, i}$, A. Cardini ${ }^{26}$, I. Carli ${ }^{6}$, P. Carniti ${ }^{24, j}$, K. Carvalho Akiba ${ }^{31}$, A. Casais Vidal ${ }^{45}$, G. Casse ${ }^{59}$, M. Cattaneo ${ }^{47}$, G. Cavallero ${ }^{47}$, S. Celani ${ }^{48}$, J. Cerasoli ${ }^{10}$, A.J. Chadwick ${ }^{59}$, M.G. Chapman ${ }^{53}$, M. Charles ${ }^{12}$, Ph. Charpentier ${ }^{47}$, G. Chatzikonstantinidis ${ }^{52}$, C.A. Chavez Barajas ${ }^{59}$, M. Chefdeville ${ }^{8}$, C. Chen ${ }^{3}$, S. Chen ${ }^{26}$, A. Chernov ${ }^{33}$, S.-G. Chitic ${ }^{47}$, V. Chobanova ${ }^{45}$, S. Cholak ${ }^{48}$, M. Chrzaszcz ${ }^{33}$, A. Chubykin ${ }^{37}$, V. Chulikov ${ }^{37}$, P. Ciambrone ${ }^{22}$, M.F. Cicala ${ }^{55}$, X. Cid Vidal ${ }^{45}$, G. Ciezarek ${ }^{47}$, P.E.L. Clarke ${ }^{57}$, M. Clemencic ${ }^{47}$, H.V. Cliff ${ }^{54}$, J. Closier ${ }^{47}$, J.L. Cobbledick ${ }^{61}$, V. Coco ${ }^{47}$, J.A.B. Coelho ${ }^{11}$, J. Cogan ${ }^{10}$, E. Cogneras ${ }^{9}$, L. Cojocariu ${ }^{36}$, P. Collins ${ }^{47}$, T. Colombo ${ }^{47}$, L. Congedo ${ }^{18}$, A. Contu ${ }^{26}$, N. Cooke ${ }^{52}$, G. Coombs ${ }^{58}$, G. Corti ${ }^{47}$, C.M. Costa Sobral ${ }^{55}$, B. Couturier ${ }^{47}$, D.C. Craik ${ }^{63}$, J. Crkovská ${ }^{66}$, M. Cruz Torres ${ }^{1}$, R. Currie ${ }^{57}$, C.L. Da Silva ${ }^{66}$, E. Dall'Occo ${ }^{14}$, J. Dalseno ${ }^{45}$, C. D'Ambrosio ${ }^{47}$, A. Danilina ${ }^{38}$, P. d'Argent ${ }^{47}$, A. Davis ${ }^{61}$, O. De Aguiar Francisco ${ }^{61}$, K. De Bruyn ${ }^{77}$, S. De Capua ${ }^{61}$, M. De Cian ${ }^{48}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, M. De Serio ${ }^{18, d}$, D. De Simone ${ }^{49}$, P. De Simone ${ }^{22}$, J.A. de Vries ${ }^{78}$, C.T. Dean ${ }^{66}$, W. Dean ${ }^{84}$, D. Decamp ${ }^{8}$, L. Del Buono ${ }^{12}$, B. Delaney ${ }^{54}$, H.-P. Dembinski ${ }^{14}$, A. Dendek ${ }^{34}$, V. Denysenko ${ }^{49}$, D. Derkach ${ }^{81}$, O. Deschamps ${ }^{9}$, F. Desse ${ }^{11}$, F. Dettori ${ }^{26, f}$, B. Dey ${ }^{72}$, P. Di Nezza ${ }^{22}$, S. Didenko ${ }^{80}$, L. Dieste Maronas ${ }^{45}$, H. Dijkstra ${ }^{47}$, V. Dobishuk ${ }^{51}$, A.M. Donohoe ${ }^{17}$, F. Dordei ${ }^{26}$, M. Dorigo ${ }^{28, w}$, A.C. dos Reis ${ }^{1}$, L. Douglas ${ }^{58}$, A. Dovbnya ${ }^{50}$, A.G. Downes ${ }^{8}$, K. Dreimanis ${ }^{59}$, M.W. Dudek ${ }^{33}$, L. Dufour ${ }^{47}$, V. Duk ${ }^{76}$, P. Durante ${ }^{47}$, J.M. Durham ${ }^{66}$, D. Dutta ${ }^{61}$, M. Dziewiecki ${ }^{16}$, A. Dziurda ${ }^{33}$, A. Dzyuba ${ }^{37}$, S. Easo ${ }^{56}$, U. Egede ${ }^{68}$, V. Egorychev ${ }^{38}$, S. Eidelman ${ }^{42, v}$, S. Eisenhardt ${ }^{57}$, S. Ek-In ${ }^{48}$, L. Eklund ${ }^{58}$, S. Ely ${ }^{67}$, A. Ene ${ }^{36}$, E. Epple ${ }^{66}$, S. Escher ${ }^{13}$, J. Eschle ${ }^{49}$, S. Esen ${ }^{31}$, T. Evans ${ }^{47}$, A. Falabella ${ }^{19}$, J. Fan ${ }^{3}$, Y. Fan ${ }^{5}$, B. Fang ${ }^{72}$, N. Farley ${ }^{52}$, S. Farry ${ }^{59}$, D. Fazzini ${ }^{24, j}$, P. Fedin ${ }^{38}$, M. Féo ${ }^{47}$, P. Fernandez Declara ${ }^{47}$, A. Fernandez Prieto ${ }^{45}$, J.M. Fernandez-tenllado Arribas ${ }^{44}$, F. Ferrari ${ }^{19, e}$, L. Ferreira Lopes ${ }^{48}$, F. Ferreira Rodrigues ${ }^{2}$, S. Ferreres Sole ${ }^{31}$, M. Ferrillo ${ }^{49}$, M. Ferro-Luzzi ${ }^{47}$, S. Filippov ${ }^{40}$, R.A. Fini ${ }^{18}$, M. Fiorini ${ }^{20, g}$, M. Firlej ${ }^{34}$, K.M. Fischer ${ }^{62}$, C. Fitzpatrick ${ }^{61}$,
T. Fiutowski ${ }^{34}$, F. Fleuret ${ }^{11, b}$, M. Fontana ${ }^{47}$, F. Fontanelli ${ }^{23, i}$, R. Forty ${ }^{47}$, V. Franco Lima ${ }^{59}$, M. Franco Sevilla ${ }^{65}$, M. Frank ${ }^{47}$, E. Franzoso ${ }^{20}$, G. Frau ${ }^{16}$, C. Frei ${ }^{47}$, D.A. Friday ${ }^{58}$, J. Fu ${ }^{25}$, Q. Fuehring ${ }^{14}$, W. Funk ${ }^{47}$, E. Gabriel ${ }^{31}$, T. Gaintseva ${ }^{41}$, A. Gallas Torreira ${ }^{45}$, D. Galli ${ }^{19, e}$, S. Gallorini ${ }^{27}$, S. Gambetta ${ }^{57}$, Y. Gan ${ }^{3}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{25}$, Y. Gao ${ }^{4}$, M. Garau ${ }^{26}$, L.M. Garcia Martin ${ }^{55}$, P. Garcia Moreno ${ }^{44}$, J. García Pardiñas ${ }^{49}$, B. Garcia Plana ${ }^{45}$,
F.A. Garcia Rosales ${ }^{11}$, L. Garrido ${ }^{44}$, D. Gascon ${ }^{44}$, C. Gaspar ${ }^{47}$, R.E. Geertsema ${ }^{31}$, D. Gerick ${ }^{16}$, L.L. Gerken ${ }^{14}$, E. Gersabeck ${ }^{61}$, M. Gersabeck ${ }^{61}$, T. Gershon ${ }^{55}$, D. Gerstel ${ }^{10}$, Ph. Ghez ${ }^{8}$, V. Gibson ${ }^{54}$, M. Giovannetti ${ }^{22, k}$, A. Gioventù ${ }^{45}$, P. Gironella Gironell ${ }^{44}$, L. Giubega ${ }^{36}$, C. Giugliano ${ }^{20, g}$, K. Gizdov ${ }^{57}$, E.L. Gkougkousis ${ }^{47}$, V.V. Gligorov ${ }^{12}$, C. Göbel ${ }^{69}$, E. Golobardes ${ }^{83}$, D. Golubkov ${ }^{38}$, A. Golutvin ${ }^{60,80}$, A. Gomes ${ }^{1, a}$, S. Gomez Fernandez ${ }^{44}$, F. Goncalves Abrantes ${ }^{69}$, M. Goncerz ${ }^{33}$, G. Gong ${ }^{3}$, P. Gorbounov ${ }^{38}$, I.V. Gorelov ${ }^{39}$, C. Gotti ${ }^{24, j}$, E. Govorkova ${ }^{31}$, J.P. Grabowski ${ }^{16}$, R. Graciani Diaz ${ }^{44}$, T. Grammatico ${ }^{12}$, L.A. Granado Cardoso ${ }^{47}$, E. Graugés ${ }^{44}$, E. Graverini ${ }^{48}$, G. Graziani ${ }^{21}$, A. Grecu ${ }^{36}$, L.M. Greeven ${ }^{31}$, P. Griffith ${ }^{20}$, L. Grillo ${ }^{61}$, S. Gromov ${ }^{80}$, L. Gruber ${ }^{47}$, B.R. Gruberg Cazon ${ }^{62}$, C. Gu ${ }^{3}$, M. Guarise ${ }^{20}$, P. A. Günther ${ }^{16}$, E. Gushchin ${ }^{40}$, A. Guth ${ }^{13}$, Y. Guz ${ }^{43,47}$, T. Gys ${ }^{47}$, T. Hadavizadeh ${ }^{68}$, G. Haefeli ${ }^{48}$, C. Haen ${ }^{47}$, J. Haimberger ${ }^{47}$, S.C. Haines ${ }^{54}$, T. Halewood-leagas ${ }^{59}$, P.M. Hamilton ${ }^{65}$, Q. Han^{7}, X. Han ${ }^{16}$, T.H. Hancock ${ }^{62}$, S. Hansmann-Menzemer ${ }^{16}$, N. Harnew ${ }^{62}$, T. Harrison ${ }^{59}$, C. Hasse ${ }^{47}$, M. Hatch ${ }^{47}$, J. He ${ }^{5}$, M. Hecker ${ }^{60}$, K. Heijhoff ${ }^{31}$, K. Heinicke ${ }^{14}$, A.M. Hennequin ${ }^{47}$, K. Hennessy ${ }^{59}$, L. Henry ${ }^{25,46}$, J. Heuel ${ }^{13}$, A. Hicheur ${ }^{2}$, D. Hill ${ }^{62}$, M. Hilton ${ }^{61}$, S.E. Hollitt ${ }^{14}$, P.H. Hopchev ${ }^{48}$, J. Hu^{16}, J. Hu ${ }^{71}$, W. Hu ${ }^{7}$, W. Huang ${ }^{5}$, X. Huang ${ }^{72}$, W. Hulsbergen ${ }^{31}$, R.J. Hunter ${ }^{55}$, M. Hushchyn ${ }^{81}$, D. Hutchcroft ${ }^{59}$, D. Hynds ${ }^{31}$, P. Ibis ${ }^{14}$, M. Idzik ${ }^{34}$, D. Ilin ${ }^{37}$, P. Ilten ${ }^{52}$, A. Inglessi ${ }^{37}$, A. Ishteev ${ }^{80}$, K. Ivshin ${ }^{37}$, R. Jacobsson ${ }^{47}$, S. Jakobsen ${ }^{47}$, E. Jans ${ }^{31}$, B.K. Jashal ${ }^{46}$, A. Jawahery ${ }^{65}$, V. Jevtic ${ }^{14}$, M. Jezabek ${ }^{33}$, F. Jiang ${ }^{3}$, M. John ${ }^{62}$, D. Johnson ${ }^{47}$, C.R. Jones ${ }^{54}$, T.P. Jones ${ }^{55}$, B. Jost ${ }^{47}$, N. Jurik ${ }^{47}$, S. Kandybei ${ }^{50}$, Y. Kang ${ }^{3}$, M. Karacson ${ }^{47}$, J.M. Kariuki ${ }^{53}$, N. Kazeev ${ }^{81}$, M. Kecke ${ }^{16}$, F. Keizer ${ }^{54,47}$, M. Kenzie ${ }^{55}$, T. Ketel ${ }^{32}$, B. Khanji ${ }^{47}$, A. Kharisova ${ }^{82}$, S. Kholodenko ${ }^{43}$, K.E. Kim ${ }^{67}$, T. Kirn ${ }^{13}$, V.S. Kirsebom ${ }^{48}$, O. Kitouni ${ }^{63}$, S. Klaver ${ }^{31}$, K. Klimaszewski ${ }^{35}$, S. Koliiev ${ }^{51}$, A. Kondybayeva ${ }^{80}$, A. Konoplyannikov ${ }^{38}$, P. Kopciewicz ${ }^{34}$, R. Kopecna ${ }^{16}$, P. Koppenburg ${ }^{31}$, M. Korolev ${ }^{39}$, I. Kostiuk ${ }^{31,51}$, O. Kot 51, S. Kotriakhova ${ }^{37,30}$, P. Kravchenko ${ }^{37}$, L. Kravchuk ${ }^{40}$, R.D. Krawczyk ${ }^{47}$, M. Kreps ${ }^{55}$, F. Kress ${ }^{60}$, S. Kretzschmar ${ }^{13}$, P. Krokovny ${ }^{42, v}$, W. Krupa ${ }^{34}$, W. Krzemien ${ }^{35}$, W. Kucewicz ${ }^{33, l}$, M. Kucharczyk ${ }^{33}$, V. Kudryavtsev ${ }^{42, v}$, H.S. Kuindersma ${ }^{31}$, G.J. Kunde ${ }^{66}$, T. Kvaratskheliya ${ }^{38}$, D. Lacarrere ${ }^{47}$, G. Lafferty ${ }^{61}$, A. Lai ${ }^{26}$, A. Lampis ${ }^{26}$, D. Lancierini ${ }^{49}$, J.J. Lane ${ }^{61}$, R. Lane ${ }^{53}$, G. Lanfranchi ${ }^{22}$, C. Langenbruch ${ }^{13}$, J. Langer ${ }^{14}$, O. Lantwin ${ }^{49,80}$, T. Latham ${ }^{55}$, F. Lazzari ${ }^{28, t}$, R. Le Gac ${ }^{10}$, S.H. Lee ${ }^{84}$, R. Lefèvre ${ }^{9}$, A. Leflat ${ }^{39}$, S. Legotin ${ }^{80}$, O. Leroy ${ }^{10}$, T. Lesiak ${ }^{33}$, B. Leverington ${ }^{16}$, H. Li ${ }^{71}$, L. Li ${ }^{62}$, P. Li ${ }^{16}$, X. Li^{66}, Y. Li^{6}, Y. Li^{6}, Z. Li^{67}, X. Liang ${ }^{67}$, T. Lin^{60}, R. Lindner ${ }^{47}$, V. Lisovskyi ${ }^{14}$, R. Litvinov ${ }^{26}$, G. Liu ${ }^{71}$, H. Liu ${ }^{5}$, S. Liu^{6}, X. Liu ${ }^{3}$, A. Loi ${ }^{26}$, J. Lomba Castro ${ }^{45}$, I. Longstaff ${ }^{58}$, J.H. Lopes ${ }^{2}$, G. Loustau ${ }^{49}$, G.H. Lovell ${ }^{54}$, Y. Lu ${ }^{6}$, D. Lucchesi ${ }^{27, m}$, S. Luchuk ${ }^{40}$, M. Lucio Martinez ${ }^{31}$, V. Lukashenko ${ }^{31}$, Y. Luo ${ }^{3}$, A. Lupato ${ }^{61}$, E. Luppi ${ }^{20, g}$, O. Lupton ${ }^{55}$, A. Lusiani ${ }^{28, r}$, X. Lyu ${ }^{5}$, L. Ma ${ }^{6}$, S. Maccolini ${ }^{19, e}$, F. Machefert ${ }^{11}$, F. Maciuc ${ }^{36}$, V. Macko ${ }^{48}$, P. Mackowiak ${ }^{14}$, S. Maddrell-Mander ${ }^{53}$, O. Madejczyk ${ }^{34}$, L.R. Madhan Mohan ${ }^{53}$, O. Maev ${ }^{37}$, A. Maevskiy ${ }^{81}$, D. Maisuzenko ${ }^{37}$, M.W. Majewski ${ }^{34}$, S. Malde ${ }^{62}$, B. Malecki ${ }^{47}$, A. Malinin ${ }^{79}$, T. Maltsev ${ }^{42, v}$, H. Malygina ${ }^{16}$, G. Manca ${ }^{26, f}$, G. Mancinelli ${ }^{10}$, R. Manera Escalero ${ }^{44}$, D. Manuzzi ${ }^{19, e}$, D. Marangotto ${ }^{25, o}$, J. Maratas ${ }^{9, u}$, J.F. Marchand ${ }^{8}$, U. Marconi ${ }^{19}$, S. Mariani ${ }^{21,47, h}$, C. Marin Benito ${ }^{11}$, M. Marinangeli ${ }^{48}$, P. Marino ${ }^{48}$, J. Marks ${ }^{16}$, P.J. Marshall ${ }^{59}$, G. Martellotti ${ }^{30}$, L. Martinazzoli ${ }^{47, j}$, M. Martinelli ${ }^{24, j}$, D. Martinez Santos ${ }^{45}$, F. Martinez Vidal ${ }^{46}$, A. Massafferri ${ }^{1}$, M. Materok ${ }^{13}$, R. Matev ${ }^{47}$, A. Mathad ${ }^{49}$, Z. Mathe ${ }^{47}$, V. Matiunin ${ }^{38}$, C. Matteuzzi ${ }^{24}$, K.R. Mattioli ${ }^{84}$, A. Mauri ${ }^{31}$, E. Maurice ${ }^{11, b}$, J. Mauricio ${ }^{44}$, M. Mazurek ${ }^{35}$, M. McCann ${ }^{60}$, L. Mcconnell ${ }^{17}$, T.H. Mcgrath ${ }^{61}$, A. McNab ${ }^{61}$, R. McNulty ${ }^{17}$, J.V. Mead ${ }^{59}$, B. Meadows ${ }^{64}$,
C. Meaux ${ }^{10}$, G. Meier ${ }^{14}$, N. Meinert ${ }^{75}$, D. Melnychuk ${ }^{35}$, S. Meloni ${ }^{24, j}$, M. Merk ${ }^{31,78}$, A. Merli ${ }^{25}$, L. Meyer Garcia ${ }^{2}$, M. Mikhasenko ${ }^{47}$, D.A. Milanes ${ }^{73}$, E. Millard ${ }^{55}$, M. Milovanovic ${ }^{47}$, M.-N. Minard ${ }^{8}$, L. Minzoni ${ }^{20, g}$, S.E. Mitchell ${ }^{57}$, B. Mitreska ${ }^{61}$, D.S. Mitzel ${ }^{47}$, A. Mödden ${ }^{14}$, R.A. Mohammed ${ }^{62}$, R.D. Moise ${ }^{60}$, T. Mombächer ${ }^{14}$, I.A. Monroy ${ }^{73}$, S. Monteil ${ }^{9}$, M. Morandin ${ }^{27}$, G. Morello ${ }^{22}$, M.J. Morello ${ }^{28, r}$, J. Moron ${ }^{34}$, A.B. Morris ${ }^{74}$, A.G. Morris ${ }^{55}$, R. Mountain ${ }^{67}$, H. Mu ${ }^{3}$, F. Muheim ${ }^{57}$, M. Mukherjee ${ }^{7}$, M. Mulder ${ }^{47}$, D. Müller ${ }^{47}$, K. Müller ${ }^{49}$, C.H. Murphy ${ }^{62}$, D. Murray ${ }^{61}$, P. Muzzetto ${ }^{26}$, P. Naik ${ }^{53}$, T. Nakada ${ }^{48}$, R. Nandakumar ${ }^{56}$, T. Nanut ${ }^{48}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{57}$, I. Neri ${ }^{20, g}$, N. Neri ${ }^{25, o}$, S. Neubert ${ }^{74}$, N. Neufeld ${ }^{47}$, R. Newcombe ${ }^{60}$, T.D. Nguyen ${ }^{48}$, C. Nguyen-Mau ${ }^{48}$, E.M. Niel ${ }^{11}$, S. Nieswand ${ }^{13}$, N. Nikitin ${ }^{39}$, N.S. Nolte ${ }^{47}$, C. Nunez^{84}, A. Oblakowska-Mucha ${ }^{34}$, V. Obraztsov ${ }^{43}$, D.P. O'Hanlon ${ }^{53}$, R. Oldeman ${ }^{26, f}$, C.J.G. Onderwater ${ }^{77}$, A. Ossowska ${ }^{33}$, J.M. Otalora Goicochea ${ }^{2}$, T. Ovsiannikova ${ }^{38}$, P. Owen ${ }^{49}$, A. Oyanguren ${ }^{46}$, B. Pagare ${ }^{55}$, P.R. Pais ${ }^{47}$, T. Pajero ${ }^{28,47, r}$, A. Palano ${ }^{18}$, M. Palutan ${ }^{22}$, Y. Pan ${ }^{61}$, G. Panshin ${ }^{82}$, A. Papanestis ${ }^{56}$, M. Pappagallo ${ }^{18, d}$, L.L. Pappalardo ${ }^{20, g}$, C. Pappenheimer ${ }^{64}$, W. Parker ${ }^{65}$, C. Parkes ${ }^{61}$, C.J. Parkinson ${ }^{45}$, B. Passalacqua ${ }^{20}$, G. Passaleva ${ }^{21}$, A. Pastore ${ }^{18}$, M. Patel ${ }^{60}$, C. Patrignani ${ }^{19, e}$, C.J. Pawley ${ }^{78}$, A. Pearce ${ }^{47}$, A. Pellegrino ${ }^{31}$, M. Pepe Altarelli ${ }^{47}$, S. Perazzini ${ }^{19}$, D. Pereima ${ }^{38}$, P. Perret ${ }^{9}$, K. Petridis ${ }^{53}$, A. Petrolini ${ }^{23, i}$, A. Petrov ${ }^{79}$, S. Petrucci ${ }^{57}$, M. Petruzzo ${ }^{25}$, A. Philippov ${ }^{41}$, L. Pica ${ }^{28}$, M. Piccini ${ }^{76}$, B. Pietrzyk ${ }^{8}$, G. Pietrzyk ${ }^{48}$, M. Pili ${ }^{62}$, D. Pinci ${ }^{30}$, J. Pinzino ${ }^{47}$, F. Pisani ${ }^{47}$, A. Piucci ${ }^{16}$, Resmi P.K ${ }^{10}$, V. Placinta ${ }^{36}$, S. Playfer ${ }^{57}$, J. Plews ${ }^{52}$, M. Plo Casasus ${ }^{45}$, F. Polci ${ }^{12}$, M. Poli Lener ${ }^{22}$, M. Poliakova ${ }^{67}$, A. Poluektov ${ }^{10}$, N. Polukhina ${ }^{80, c}$, I. Polyakov ${ }^{67}$, E. Polycarpo ${ }^{2}$, G.J. Pomery ${ }^{53}$, S. Ponce ${ }^{47}$, A. Popov ${ }^{43}$, D. Popov ${ }^{5,47}$, S. Popov ${ }^{41}$, S. Poslavskii ${ }^{43}$, K. Prasanth ${ }^{33}$, L. Promberger ${ }^{47}$, C. Prouve ${ }^{45}$, V. Pugatch ${ }^{51}$, A. Puig Navarro ${ }^{49}$, H. Pullen ${ }^{62}$, G. Punzi ${ }^{28, n}$, W. Qian ${ }^{5}$, J. Qin ${ }^{5}$, R. Quagliani ${ }^{12}$, B. Quintana ${ }^{8}$, N.V. Raab ${ }^{17}$, R.I. Rabadan Trejo ${ }^{10}$, B. Rachwal ${ }^{34}$, J.H. Rademacker ${ }^{53}$, M. Rama ${ }^{28}$, M. Ramos Pernas ${ }^{55}$, M.S. Rangel ${ }^{2}$, F. Ratnikov ${ }^{41,81}$, G. Raven ${ }^{32}$, M. Reboud ${ }^{8}$, F. Redi ${ }^{48}$, F. Reiss ${ }^{12}$, C. Remon Alepuz ${ }^{46}$, Z. Ren ${ }^{3}$, V. Renaudin ${ }^{62}$, R. Ribatti ${ }^{28}$, S. Ricciardi ${ }^{56}$, D.S. Richards ${ }^{56}$, K. Rinnert ${ }^{59}$, P. Robbe ${ }^{11}$, A. Robert ${ }^{12}$, G. Robertson ${ }^{57}$, A.B. Rodrigues ${ }^{48}$, E. Rodrigues ${ }^{59}$, J.A. Rodriguez Lopez ${ }^{73}$, A. Rollings ${ }^{62}$, P. Roloff ${ }^{47}$, V. Romanovskiy ${ }^{43}$, M. Romero Lamas ${ }^{45}$, A. Romero Vidal ${ }^{45}$, J.D. Roth ${ }^{84}$, M. Rotondo ${ }^{22}$, M.S. Rudolph ${ }^{67}$, T. Ruf ${ }^{47}$, J. Ruiz Vidal ${ }^{46}$, A. Ryzhikov ${ }^{81}$, J. Ryzka ${ }^{34}$, J.J. Saborido Silva ${ }^{45}$, N. Sagidova ${ }^{37}$, N. Sahoo ${ }^{55}$, B. Saitta ${ }^{26, f}$, D. Sanchez Gonzalo ${ }^{44}$, C. Sanchez Gras ${ }^{31}$, C. Sanchez Mayordomo ${ }^{46}$, R. Santacesaria ${ }^{30}$, C. Santamarina Rios ${ }^{45}$, M. Santimaria ${ }^{22}$, E. Santovetti ${ }^{29, k}$, D. Saranin ${ }^{80}$, G. Sarpis ${ }^{61}$, M. Sarpis ${ }^{74}$, A. Sarti ${ }^{30}$, C. Satriano ${ }^{30, q}$, A. Satta ${ }^{29}$, M. Saur ${ }^{5}$, D. Savrina ${ }^{38,39}$, H. Sazak ${ }^{9}$, L.G. Scantlebury Smead ${ }^{62}$, S. Schael ${ }^{13}$, M. Schellenberg ${ }^{14}$, M. Schiller ${ }^{58}$, H. Schindler ${ }^{47}$, M. Schmelling ${ }^{15}$, T. Schmelzer ${ }^{14}$, B. Schmidt ${ }^{47}$, O. Schneider ${ }^{48}$, A. Schopper ${ }^{47}$, M. Schubiger ${ }^{31}$, S. Schulte ${ }^{48}$, M.H. Schune ${ }^{11}$, R. Schwemmer ${ }^{47}$, B. Sciascia ${ }^{22}$, A. Sciubba ${ }^{30}$, S. Sellam ${ }^{45}$, A. Semennikov ${ }^{38}$, M. Senghi Soares ${ }^{32}$, A. Sergi ${ }^{52,47}$, N. Serra ${ }^{49}$, J. Serrano ${ }^{10}$, L. Sestini ${ }^{27}$, A. Seuthe ${ }^{14}$, P. Seyfert ${ }^{47}$, D.M. Shangase ${ }^{84}$, M. Shapkin ${ }^{43}$, I. Shchemerov ${ }^{80}$, L. Shchutska ${ }^{48}$, T. Shears ${ }^{59}$, L. Shekhtman ${ }^{42, v}$, Z. Shen ${ }^{4}$, V. Shevchenko ${ }^{79}$, E.B. Shields ${ }^{24, j}$, E. Shmanin ${ }^{80}$, J.D. Shupperd ${ }^{67}$, B.G. Siddi ${ }^{20}$, R. Silva Coutinho ${ }^{49}$, G. Simi ${ }^{27}$, S. Simone ${ }^{18, d}$, I. Skiba ${ }^{20, g}$, N. Skidmore ${ }^{74}$, T. Skwarnicki ${ }^{67}$, M.W. Slater ${ }^{52}$, J.C. Smallwood ${ }^{62}$, J.G. Smeaton ${ }^{54}$, A. Smetkina ${ }^{38}$, E. Smith ${ }^{13}$, M. Smith ${ }^{60}$, A. Snoch ${ }^{31}$, M. Soares ${ }^{19}$, L. Soares Lavra ${ }^{9}$, M.D. Sokoloff ${ }^{64}$, F.J.P. Soler ${ }^{58}$, A. Solovev ${ }^{37}$, I. Solovyev ${ }^{37}$, F.L. Souza De Almeida ${ }^{2}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{14}$, E. Spadaro Norella ${ }^{25, o}$, P. Spradlin ${ }^{58}$, F. Stagni ${ }^{47}$, M. Stahl ${ }^{64}$, S. Stahl ${ }^{47}$, P. Stefko ${ }^{48}$, O. Steinkamp ${ }^{49,80}$, S. Stemmle ${ }^{16}$, O. Stenyakin ${ }^{43}$, H. Stevens ${ }^{14}$, S. Stone ${ }^{67}$, M.E. Stramaglia ${ }^{48}$, M. Straticiuc ${ }^{36}$, D. Strekalina ${ }^{80}$, S. Strokov ${ }^{82}$, F. Suljik ${ }^{62}$, J. Sun ${ }^{26}$, L. Sun ${ }^{72}$, Y. Sun ${ }^{65}$, P. Svihra ${ }^{61}$, P.N. Swallow ${ }^{52}$, K. Swientek ${ }^{34}$, A. Szabelski ${ }^{35}$, T. Szumlak ${ }^{34}$, M. Szymanski ${ }^{47}$, S. Taneja ${ }^{61}$, Z. Tang ${ }^{3}$, T. Tekampe ${ }^{14}$, F. Teubert ${ }^{47}$, E. Thomas ${ }^{47}$, K.A. Thomson ${ }^{59}$, M.J. Tilley ${ }^{60}$, V. Tisserand ${ }^{9}$, S. T'Jampens ${ }^{8}$, M. Tobin ${ }^{6}$, S. Tolk ${ }^{47}$,
L. Tomassetti ${ }^{20, g}$, D. Torres Machado ${ }^{1}$, D.Y. Tou ${ }^{12}$, M. Traill ${ }^{58}$, M.T. Tran ${ }^{48}$, E. Trifonova ${ }^{80}$,
C. Trippl ${ }^{48}$, A. Tsaregorodtsev ${ }^{10}$, G. Tuci ${ }^{28, n}$, A. Tully ${ }^{48}$, N. Tuning ${ }^{31}$, A. Ukleja ${ }^{35}$, D.J. Unverzagt ${ }^{16}$, A. Usachov ${ }^{31}$, A. Ustyuzhanin ${ }^{41,81}$, U. Uwer ${ }^{16}$, A. Vagner ${ }^{82}$, V. Vagnoni ${ }^{19}$, A. Valassi ${ }^{47}$, G. Valenti ${ }^{19}$, N. Valls Canudas ${ }^{44}$, M. van Beuzekom ${ }^{31}$, H. Van Hecke ${ }^{66}$, E. van Herwijnen ${ }^{80}$, C.B. Van Hulse ${ }^{17}$, M. van Veghel ${ }^{77}$, R. Vazquez Gomez ${ }^{45}$, P. Vazquez Regueiro ${ }^{45}$, C. Vázquez Sierra ${ }^{31}$, S. Vecchi ${ }^{20}$, J.J. Velthuis ${ }^{53}$, M. Veltri ${ }^{21, p}$, A. Venkateswaran ${ }^{67}$, M. Veronesi ${ }^{31}$, M. Vesterinen ${ }^{55}$, D. Vieira ${ }^{64}$, M. Vieites Diaz ${ }^{48}$, H. Viemann ${ }^{75}$, X. Vilasis-Cardona ${ }^{83}$, E. Vilella Figueras ${ }^{59}$, P. Vincent ${ }^{12}$, G. Vitali ${ }^{28}$, A. Vollhardt ${ }^{49}$, D. Vom Bruch ${ }^{12}$, A. Vorobyev ${ }^{37}$, V. Vorobyev ${ }^{42, v}$, N. Voropaev ${ }^{37}$, R. Waldi ${ }^{75}$, J. Walsh ${ }^{28}$, C. Wang ${ }^{16}$, J. Wang ${ }^{3}$, J. Wang ${ }^{72}$, J. Wang ${ }^{4}$, J. Wang ${ }^{6}$, M. Wang ${ }^{3}$, R. Wang ${ }^{53}$, Y. Wang ${ }^{7}$, Z. Wang ${ }^{49}$, D.R. Ward ${ }^{54}$, H.M. Wark ${ }^{59}$, N.K. Watson ${ }^{52}$, S.G. Weber ${ }^{12}$, D. Websdale ${ }^{60}$, C. Weisser ${ }^{63}$, B.D.C. Westhenry ${ }^{53}$, D.J. White ${ }^{61}$, M. Whitehead ${ }^{53}$, D. Wiedner ${ }^{14}$, G. Wilkinson ${ }^{62}$, M. Wilkinson ${ }^{67}$, I. Williams ${ }^{54}$, M. Williams ${ }^{63,68}$, M.R.J. Williams ${ }^{57}$, F.F. Wilson ${ }^{56}$, W. Wislicki ${ }^{35}$, M. Witek ${ }^{33}$, L. Witola ${ }^{16}$, G. Wormser ${ }^{11}$, S.A. Wotton ${ }^{54}$, H. Wu ${ }^{67}$, K. Wyllie ${ }^{47}$, Z. Xiang ${ }^{5}$, D. Xiao ${ }^{7}$, Y. Xie ${ }^{7}$, H. Xing ${ }^{71}$, A. Xu ${ }^{4}$, J. Xu ${ }^{5}$, L. Xu ${ }^{3}$, M. Xu ${ }^{7}$, Q. Xu ${ }^{5}$, Z. Xu ${ }^{5}$, Z. Xu ${ }^{4}$, D. Yang ${ }^{3}$, Y. Yang ${ }^{5}$, Z. Yang ${ }^{3}$, Z. Yang ${ }^{65}$, Y. Yao ${ }^{67}$, L.E. Yeomans ${ }^{59}$, H. Yin ${ }^{7}$, J. Yu ${ }^{70}$, X. Yuan ${ }^{67}$, O. Yushchenko ${ }^{43}$, K.A. Zarebski ${ }^{52}$, M. Zavertyaev ${ }^{15, c}$, M. Zdybal ${ }^{33}$, O. Zenaiev ${ }^{47}$, M. Zeng ${ }^{3}$, D. Zhang ${ }^{7}$, L. Zhang ${ }^{3}$, S. Zhang ${ }^{4}$, Y. Zhang ${ }^{47}$, Y. Zhang ${ }^{62}$, A. Zhelezov ${ }^{16}$, Y. Zheng ${ }^{5}$, X. Zhou ${ }^{5}$, Y. Zhou ${ }^{5}$, X. Zhu ${ }^{3}$, V. Zhukov ${ }^{13,39}$, J.B. Zonneveld ${ }^{57}$, S. Zucchelli ${ }^{19, e}$, D. Zuliani ${ }^{27}$ and G. Zunica ${ }^{61}$

[^2]30 INFN Sezione di Roma La Sapienza, Roma, Italy
31 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
33 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35 National Center for Nuclear Research (NCBJ), Warsaw, Poland
36 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38 Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
39 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{40}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
${ }^{41}$ Yandex School of Data Analysis, Moscow, Russia
42 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43 Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44 ICCUB, Universitat de Barcelona, Barcelona, Spain
45 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47 European Organization for Nuclear Research (CERN), Geneva, Switzerland
48 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
49 Physik-Institut, Universität Zürich, Zürich, Switzerland
50 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
51 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
52 University of Birmingham, Birmingham, United Kingdom
53 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
55 Department of Physics, University of Warwick, Coventry, United Kingdom
56 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
57 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
60 Imperial College London, London, United Kingdom
61 Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
62 Department of Physics, University of Oxford, Oxford, United Kingdom
63 Massachusetts Institute of Technology, Cambridge, MA, United States
64 University of Cincinnati, Cincinnati, OH, United States
65 University of Maryland, College Park, MD, United States
66 Los Alamos National Laboratory (LANL), Los Alamos, United States
67 Syracuse University, Syracuse, NY, United States
68 School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to ${ }^{55}$
69 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
70 Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to ${ }^{7}$
71 Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to ${ }^{3}$
72 School of Physics and Technology, Wuhan University, Wuhan, China, associated to ${ }^{3}$
73 Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to ${ }^{12}$

74 Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to 16

75 Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{16}$
76 INFN Sezione di Perugia, Perugia, Italy, associated to ${ }^{20}$
${ }^{77}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ${ }^{31}$
78 Universiteit Maastricht, Maastricht, Netherlands, associated to ${ }^{31}$
79 National Research Centre Kurchatov Institute, Moscow, Russia, associated to ${ }^{38}$
80 National University of Science and Technology "MISIS", Moscow, Russia, associated to 38
81 National Research University Higher School of Economics, Moscow, Russia, associated to ${ }^{41}$
82 National Research Tomsk Polytechnic University, Tomsk, Russia, associated to ${ }^{38}$
83 DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to ${ }^{44}$
84 University of Michigan, Ann Arbor, United States, associated to ${ }^{67}$
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
${ }^{b}$ Laboratoire Leprince-Ringuet, Palaiseau, France
${ }^{\text {c P P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia }}$
${ }^{d}$ Università di Bari, Bari, Italy
e Università di Bologna, Bologna, Italy
${ }^{f}$ Università di Cagliari, Cagliari, Italy
g Università di Ferrara, Ferrara, Italy
${ }^{h}$ Università di Firenze, Firenze, Italy
${ }^{i}$ Università di Genova, Genova, Italy
${ }^{j}$ Università di Milano Bicocca, Milano, Italy
${ }^{k}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{l}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
${ }^{m}$ Università di Padova, Padova, Italy
${ }^{n}$ Università di Pisa, Pisa, Italy
o Università degli Studi di Milano, Milano, Italy
p Università di Urbino, Urbino, Italy
${ }^{q}$ Università della Basilicata, Potenza, Italy
r Scuola Normale Superiore, Pisa, Italy
s Università di Modena e Reggio Emilia, Modena, Italy
${ }^{t}$ Università di Siena, Siena, Italy
${ }^{u}$ MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
v Novosibirsk State University, Novosibirsk, Russia
${ }^{w}$ INFN Sezione di Trieste, Trieste, Italy

[^0]: ${ }^{1}$ For historical reasons, this convention defines positive bins in the opposite manner to that used to determine the charm strong-phase differences in $D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$decays.

[^1]: ${ }^{2}$ The detailed output of this study is available as supplementary material to this paper, and provides sufficient information to determine the correlation between this uncertainty and the corresponding uncertainties of future γ measurements that also rely on the same strong-phase measurements.

[^2]: 1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
 ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
 ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
 ${ }^{4}$ School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
 5 University of Chinese Academy of Sciences, Beijing, China
 ${ }^{6}$ Institute Of High Energy Physics (IHEP), Beijing, China
 7 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France Ijclab, Orsay, France
 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 School of Physics, University College Dublin, Dublin, Ireland
 INFN Sezione di Bari, Bari, Italy
 INFN Sezione di Bologna, Bologna, Italy
 INFN Sezione di Ferrara, Ferrara, Italy
 INFN Sezione di Firenze, Firenze, Italy
 INFN Laboratori Nazionali di Frascati, Frascati, Italy
 INFN Sezione di Genova, Genova, Italy
 INFN Sezione di Milano-Bicocca, Milano, Italy
 INFN Sezione di Milano, Milano, Italy
 INFN Sezione di Cagliari, Monserrato, Italy
 Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
 INFN Sezione di Pisa, Pisa, Italy
 INFN Sezione di Roma Tor Vergata, Roma, Italy

