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Abstract

In systems biology, it is becoming increasingly common to measure biochemi-
cal entities at different levels of the same biological system. Hence, data fusion
problems are abundant in the life sciences. With the availability of a multitude
of measuring techniques, one of the central problems is the heterogeneity of the
data. In this paper, we discuss a specific form of heterogeneity, namely, that of
measurements obtained at different measurement scales, such as binary, ordi-
nal, interval, and ratio-scaled variables. Three generic fusion approaches are
presented of which two are new to the systems biology community. The methods
are presented, put in context, and illustrated with a real-life genomics example.
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1 INTRODUCTION

1.1 General
With the availability of comprehensive measurements collected in multiple related data sets in the life sciences, the need
for a simultaneous analysis of such data to arrive at a global view on the system under study is of increasing importance.
There are many ways to perform such a simultaneous analysis, and these go also under very different names in different
areas of data analysis: data fusion, data integration, global analysis, and multiset or multiblock analysis to name a few.
We will use the term data fusion in this paper.

Data fusion plays an especially important role in the life sciences; eg, in genomics, it is not uncommon to measure
gene expression (array data or RNA-sequencing [RNAseq] data), methylation of DNA, and copy number variation (CNV).
Sometimes, also proteomics and metabolomics measurements are available. All these examples serve to show that having
methods in place to integrate these data is not a luxury anymore.

1.2 Types of data fusion
Without trying to build a rigorous taxonomy of data fusion, it is worthwhile to distinguish several distinctions in data
fusion. The first distinction is between model-based and exploratory data fusion. The former uses background knowledge
in the form of models to fuse the data, one example being genome-scale models in biotechnology.1 The latter does not
rely on models, since these are not available or poorly known, and thus uses empirical modeling to explore the data. In
this paper, we will focus on exploratory data fusion.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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The next distinction is between low-, medium-, and high-level fusion.2 In low-level fusion, the data sets are combined
at the lowest level, that is, at the level of the (preprocessed) measurements. In medium-level fusion, each separate data set
is first summarized, eg, by using a dimension reduction method or through variable selection. The reduced data sets are
subsequently subjected to the fusion. In high-level fusion, each data set is used for prediction or classification of an out-
come, and the prediction or classification results are then combined, eg, by using majority voting.3 In machine learning,
this is known as early, intermediate, and late integration. All these types of fusions have advantages and disadvantages,
which are beyond the scope of this paper. In this paper, we will focus on low- and medium-level fusion.

The final characteristic of data fusion relevant for this paper is heterogeneity of the data sets to be fused. Different
types of heterogeneity can be distinguished. The first one is the type of data, such as metabolomics, proteomics, and
RNAseq data in genomics. Clearly, these data relate to different parts of the biological system. The second one is the type
of measurement scale in which the data are measured that are going to be fused. In genomics, an example is a data set
where gene expressions are available and mutation data in the processed form of single-nucleotide variants (SNVs). The
latter are binary data, and gene expression is quantitative data. They are clearly measured at a different scale. Ideally, data
fusion methods should consider the scale of such measurements, and this will be the topic of this paper.

1.3 Types of measurement scales
The history of measurement scales goes back a long time. A seminal paper drawing attention to this issue appeared in
the 40 ties.4 Since then, numerous papers, reports, and books have appeared.5-10 The measuring process assigns numbers
to aspects of objects (an empirical system), eg, weights of persons. Hence, measurements can be regarded as a mapping
from the empirical system to numbers, and scales are properties of these mappings.

In measurement theory, there are two fundamental theorems6: the representation theorem and the uniqueness
theorem. The representation theorem asserts the axioms to be imposed on an empirical system to allow for a homomor-
phism of that system to a set of numerical values. Such a homomorphism into the set of real numbers is called a scale
and thus represents the empirical system. A scale possesses uniqueness properties: We can measure the weight of per-
sons in kilograms or in grams, but if one person weighs twice as much as another person, this ratio holds true regardless
the measurement unit. Hence, weight is a so-called ratio-scaled variable, and this ratio is unique. The transformation
of measuring in grams instead of kilograms is called a permissible transformation since it does not change the ratio of
two weights. For a ratio-scaled variable, only similarity transformations are permissible; ie, x̃ = 𝛼x; 𝛼 > 0 where x is the
variable on the original scale and x̃ is the variable on the transformed scale. This is because

x̃i

x̃𝑗
= 𝛼xi

𝛼x𝑗
= xi

x𝑗
. (1)

Note that this coincides with the intuition that the unit of measurement is immaterial.
The next level of scale is the interval-scaled measurement. The typical example of such a scale is degrees Celsius, and

the permissible transformation is affine; ie, x̃ = 𝛼x + 𝛽; 𝛼 > 0. In that case, the ratio of two intervals is unique because

x̃i − x̃𝑗
x̃k − x̃l

=
(𝛼xi + 𝛽) − (𝛼x𝑗 + 𝛽)
(𝛼xk + 𝛽) − (𝛼xl + 𝛽)

=
𝛼(xi − x𝑗)
𝛼(xk − xl)

=
xi − x𝑗
xk − xl

. (2)

Stated differently, the zero point and the unit are arbitrary on this scale.
Ordinal-scaled variables represent the next level of measurements. Typical examples are scales of agreement in surveys:

strongly disagree, disagree, neutral, agree, and strongly agree. There is a rank order in these answers but no relationship in
terms of ratios or intervals. The permissible transformation of an ordinal scale is a monotonic increasing transformation
since such transformations keep the order of the original scale intact.

Nominal-scaled variables are next on the list. These variables are used to encode categories and are sometimes also
called categorical. Typical examples are gender, race, brands of cars, and the like. The only permissible transformation
for a nominal-scaled variable is the one-to-one mapping. A special case of a nominal-scaled variable is the binary (0/1)
scale. Binary data can have different meanings; they can be used as categories (eg, gender) and are then nominal-scale
variables. They can also be two points on a higher-level scale, such as absence and presence (eg, for methylation data).

The above four scales are the most used ones, but others exist.6,10 Counts, eg, have a fixed unit and are therefore some-
times called absolute-scaled variables.9 Another scale is the one for which the power transformation is permissible; ie,
x̃ = 𝛼x𝛽 ; 𝛼, 𝛽 > 0, which is called a log-interval scale because a logarithmic transformation of such a scale results in
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an interval scale. An example is density.6 Sometimes, the scales are lumped in quantitative (ie, ratio and interval) and
qualitative (ordinal and nominal) data.

An interesting aspect of measurement scales is to what extent meaningful statistics can be derived from such scales (see
table 1 in Stevens4). A prototypical example is using a mean of a sample of nominal-scaled variables, which is generally
regarded as being meaningless. This has also provoked a lot of discussion,5,11 and there are nice counterexamples of
apparently meaningless statistics that still convey information about the empirical system.12 As always, the world is not
black or white.

1.4 Motivating example
Examples of fusing data of different measurement scales are abundant in modern life science research. We will first give
a short description of modern measurements in genomics that will illustrate this. In a sample extracted from biological
systems (eg, cells), it is possible to measure the mRNA molecules. This is done nowadays with RNAseq techniques, and in
essence, the mRNAs are counts per volume, hence a concentration. Epigenetics concerns, among others, the methylation
of some of the sites of a DNA molecule and is in essence a binary variable (yes/no methylated at a given location of the
DNA). Another feature in genetics is whether a location of the DNA is mutated, a phenomenon called SNVs, which is also
binary. Lastly, there are CNVs of genes on the genome, which is in essence a (limited) number of counts and sometimes
expressed as copy number abberations (CNAs) with a binary coding (no: normal number of copies, yes: aberrant number
of copies). If we move to the field of metabolomics and proteomics, then most of the measurements are relative intensities
and in some cases—when calibration lines have been made—concentrations, which are ratio scaled.

The above exposition clearly shows that if we want to fuse different types of genomics data or fuse genomics data with
metabolomics and/or proteomics, then there is a problem of different measurement scales. This problem is aggravated by
the fact that some of these data are very high dimensional. Single-nucleotide polymorphism (SNP) and methylation data
can contain 100.000 features or variables, and RNAseq data have usually around 20.000 genes. Shotgun proteomics data
(based on liquid chromatography—mass spectrometry [LC-MS] or liquid chromatography with tandem mass spectrom-
etry [LC-MS/MS]) can also easily contain 100.000 features. Hence, in many cases, dimension reduction has to take place,
asking for methods to deal properly with the corresponding measurement scale. For some of the methods to be discussed
in this paper, there are already examples in the literature. There are examples of the use of the parametric approach using
latent variables 13,14 and also of the optimal scaling approach.15,16 For the third approach to be discussed, we have not
found examples yet in the life sciences. We will come back to these examples in Section 4.

1.5 Goal of the paper
In this paper, we describe low- and mid-level fusion ideas of data of different measurement scales. We will restrict
ourselves to data sharing the object mode. Mid-level fusion first selects variables and then is subjected to the meth-
ods described below. These methods can be applied in different fields of science, but we will illustrate them by using a
genomics example.

We think this paper is needed since the different methods originate from different fields of data analysis, psychometrics,
and bioinformatics with limited cross talk between those fields; we will try to fill this gap. Moreover, there are relationships
between the methods, and this might help in selecting the proper method for a particular application. Hence, we will also
discuss the properties of the different methods.

We will select and discuss methods that provide coordinates of the objects that can be used for plotting and visualizing
the relationships between the objects. Moreover, we think it is also worthwhile to consider methods that generate impor-
tance values for the variables in the different blocks since this will facilitate interpretation of the results in substantive
terms.

2 THEORY
2.1 Three basic ideas
We will describe three basic ideas that can be used for fusion of data of different measurement scales on a conceptual
level. A more detailed explanation is given in following sections. One of these methods is parametric and thus depends
on distributions.13 The other two methods are nonparametric and based on concepts of representation matrices17,18 and
optimal scaling. 19

The first idea17 is illustrated in Figure 1. Supposing we have three blocks of data, the first block (X1) contains ratio-scaled
data, the second block (X2) binary data, and the third block (X3) categorical data with each of the J3 variables having four
categories (labeled A, B, C, and D). Each variable in each block is represented by an I × I representation matrix (to be
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FIGURE 1 Heterofusion using
representation matrices (see text)

FIGURE 2 Heterofusion using optimal
scaling (see text)

explained later). Then, these representation matrices can be stacked, and the resulting three-way array can be analyzed
by a suitable three-way method using R components giving coordinates for the objects and weights for the variables.

The second idea19,20 is illustrated in Figure 2. The original matrices are subjected to optimal scaling, and the fusion
problem is solved as one global optimization problem (to be explained later). The idea of optimal scaling goes back already
to R. Fisher and nice introductions are available.21 For the first block, the variables remain the same, but for the second and
third blocks, these variables are (optimally) transformed. Using optimal scaling, the three blocks are made comparable
and are analyzed simultaneously by a multiblock method (eg, simultaneous component analysis or consensus principal
component analysis [PCA]) giving R coordinates for the objects (the I × R matrix) and loadings (the J1 × R, J2 × R, and
J3 × R matrices) for the transformed variables.

The third idea relies on the explicit use of the R latent variables collected in Z (see Figure 3).13 These latent variables are
then thought to generate the manifest variables in the different blocks using different distributions. For the ratio-scaled
block, a regression model is assumed based on the normal distribution and with parameters 𝜶j1 and 𝜷 j1. For the binary
block, a logit or probit model is assumed with parameters 𝜶j2 and 𝜷 j2. The final—categorical—block is modeled by a
multilogit model with parameters 𝜶j3c and 𝜷 j3c where c = A,B,C,D.

We will use the following conventions for notations. A vector x is a bold lowercase, and a matrix (X), a bold uppercase.
Running indices will be used for samples (i=1,… ,I) with I is the number of samples; we will use likewise the indices
k=1,… ,K for the data blocks; variables within a data block are indexed by jk=1,… ,Jk, and we will use r=1,… ,R as an
index for latent variables or components.
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FIGURE 3 Heterofusion using parametric models (see text)

2.2 Representation matrices approaches
2.2.1 Representation matrices
Idea of representation matrices
Suppose we have a data matrix X(I × J) with columns xj containing the measurements of the objects on variable j. Such
measurements can be a ratio-scaled value but can also be a binary value, a categorical value, or an ordinal-scaled value.
A representation operator works on this vector and produces a representation matrix, which serves as a building block to
calculate associations between variables and to analyze several variables simultaneously.17,18 Such a representation matrix
can be a vector (I × 1), a rectangular matrix (I × R;R < I), or a square matrix (I × I). Let Sj and Sk be the representation
matrices for variables j and k, respectively. Then, a general equation of the association between variables j and k is

q𝑗k =
2tr(ST

𝑗
Sk)

tr(ST
𝑗

S𝑗) + tr(ST
k Sk)

, (3)

where the symbol tr is used to indicate the trace of a matrix. In most cases that follow below, the representation matrices
are standardized (centered and scaled to length one*), and in these cases, Equation (3) simplifies to

q̃𝑗k = tr(ST
𝑗 Sk), (4)

since both tr(ST
𝑗

S𝑗) and tr(ST
k Sk) are one. As will be shown in the following, Equation (4) can generate the familiar associa-

tions such as the Pearson correlation or the Spearman correlation. An extensive description of all kinds of representation
matrices is beyond the scope of this paper; we will discuss the most relevant ones for the problem of heterofusion. The
idea of representation matrices† goes back to the work of Janson and Vegelius22 and Zegers.18 Examples of different
representation matrices are given in Appendix A.

Representation matrices for ratio- and interval-scaled values
For ratio- and interval-scaled values, two types of representation matrices can be defined: vectors and square matrices. If
xj represents the raw measurements of the objects on variable j, then the vector quantification can be this vector itself (ie,
sj = xj) or a standardized version of it. When the latter is used in Equation (4), Pearson's R value is obtained. In standard
multivariate analysis, this is by far the most used representation matrix.

There is also another possibility for ratio- and interval-scaled values, namely, square representation matrices. Two
examples are the following. Define

S̃𝑗 = (x𝑗1T − 1xT
𝑗 ), (5)

where 1 is an I × 1 column of ones. This S̃𝑗 generates a skew-symmetric matrix enumerating all differences between
the object scores of variable j (for an example, see A.2). Hence, distances between objects are obtained per variable, and

*An alternative is scaling to variance 1, but this only differs with the same constant for each variable.
†Their original name was quantification matrices, but that name has also been used differently. Hence, our choice to rename such matrices.
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these distance matrices can be subjected to an INdividual Differences SCALing (INDSCAL) model.17 Upon standardizing
S̃𝑗 by S𝑗 = (trS̃T

𝑗
S̃𝑗)−1∕2S̃𝑗 and using this Sj (and a similarly defined Sk) in Equation (4) gives again Pearson's R value.

Another example is using S𝑗 = s𝑗sT
𝑗

where sj is the standardized version of xj. Using this Sj (and a similarly defined
Sk) in Equation (4) gives Pearson's R2 value. Such representation matrices correspond to the blue-squared matrices in
Figure 1 and are the basis of kernel and multidimensional scaling methods. Note that it is also possible to calculate
distance matrices between the I samples of X across all variables resulting in an I×I distance matrix. The crucial difference
with the representation approach is that this distance matrix is calculated across all variables and thus, variable-specific
information is lost.

Representation matrices for ordinal-scaled values
When the data are ordinal scaled, then the vector of readings can be encoded in terms of rank-orders rj(I × 1). For the
earlier example of strongly disagree, disagree, neutral, agree, and strongly agree such a ranking may be encoded as 1
(strongly disagree) to 5 (strongly agree). Then, again, as in the ratio-scaled variables, representation can be done using the
vector rj or their standardized version. In the latter case, applying Equation (4) to this version gives Spearman's rank-order
correlation coefficient. Another representation is by using (the raw) rj in Equation (5) instead of xj, and this generates
Spearman's rank-order correlation coefficient after using Equation (3).

Representation matrices for nominal-scaled values
We will discuss the representation matrices for nominal-scaled variables separately for binary data and categorical data.
We first discuss representation matrices for categorical data. We have to distinguish two situations: one in which all
categorical variables have the same number of categories and the situation that this is not the case. Since the latter is more
general and encountered more often, we will restrict ourselves to this case. Then, only square representation matrices are
available. These are based on indicator matrices.17-19 If variable xj has four categories (A, B, C, and D), then this can be
encoded in the rectangular matrix Gj(I × 4) where each column gjk in Gj represents a category and each row an object.
This matrix has only zeros or ones, where gijk is one, if and only if object i belongs to the category represented by k. The
representation matrix can now be built using the products G𝑗GT

𝑗
(I × I). There are very many versions of such square

representation matrices based on indicator matrices, and some of them give rise to a known correlation, eg,

JG𝑗D−1
𝑗 GT

𝑗 J, (6)

where J(I × I) is the centering operator (I − 11T∕I) with I being the unity matrix and 1 a column of ones and Dj(Cj × Cj)
is a diagonal matrix containing the marginal frequencies of categories 1, … ,Cj for variable j. The corresponding correla-
tion coefficient is the so-called T2 coefficient.23 These representation matrices correspond to the red-square matrices in
Figure 1. Examples are given in Appendix A.3.

For binary data (if all variables are binary), then rectangular representation matrices are possible. This comes down
to the same idea as above, namely, to consider the binary variables as representing two categories. This results then in
representation matrices Gj of sizes (I × 2). When fusing with other types of variables is the goal, then a squared type
of representation is needed such as in Equation (6) and visualized in Figure 1 (green matrices). Examples are given in
Appendix A.4.

2.2.2 Data fusion using representation matrices
To illustrate how to use representation matrices, we will work with four data matrices, each on a different measurement
scale and that share the same set of I samples. The first matrix X1(I× J1) contains binary data; the second matrix X2(I× J2)
contains ordinal-scaled data; the third X3(I × J3) contains nominal data; and the last matrix X4(I × J4) contains ratio- or
interval-scaled data.

The representation matrices Sj can now be used in a three-way model for symmetric data. The basic model for a single
data block is the INDSCAL model:

min
Z,A𝑗

J∑
𝑗=1

||S𝑗 − ZA𝑗ZT||2, (7)

where Aj is the diagonal matrix with the jth row of the loadings A(J×R) on its diagonal and the matrix Z(I×R) contains the
object scores. The loadings A(J × R) are nonnegative to ensure the fitted part of the model (ZA𝑗ZT) to be positive (semi-)
definite. If the additional constraint that ZTZ = I is used, then the model is called INDORT (INDscal with ORThogonal
constraints).17
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The INDORT method can now be generalized to analyze simultaneously all blocks by simply stacking all similarity
matrices on top of each other (see Figure 1):

min
Z,A𝑗k

4∑
k=1

Jk∑
𝑗k=1

||S𝑗k − ZA𝑗k ZT||2, (8)

where A𝑗k is the diagonal matrix with the jkth row of the loadings Ak(Jk × R) on its diagonal and the matrix Z(I × R)
contains the object scores. This model is called IDIOMIX for obvious reasons.17

2.3 Optimal scaling approaches
There are many ways to explain optimal scaling; we will follow the exposition given by Michailidis and de Leeuw.20

Suppose that the matrix X(I × J) contains J categorical variables not necessarily with the same number of categories.
Each variable xj can now be encoded with indicator matrix Gj(I × Lj) where Lj is the number of categories for variable
j as discussed before. The idea of optimal scaling is to find objects scores Z(I × R) and category quantification matrices
Yj(Lj × R; j = 1, … , J) such that the following problem is solved20:

min
Z,Y𝑗

J∑
𝑗=1

||Z − G𝑗Y𝑗||2, (9)

under the constraints that (1∕I)ZTZ = I and these scores are centered around 0 (to avoid trivial solutions of Equation 9).
This method—including the alternating optimization method to solve Equation (9)—is called homogeneity analysis or
HOMALS for short.19 The rows of Z give a low-dimensional representation of the objects, and the matrices Yj(j = 1, … , J)
give the optimal quantifications of the categorical variables. Note that these matrices Yj(j = 1, … , J) are not loadings; they
give quantifications for the categorical variables, which are different for the R components, namely, yjr(Lj×1; r = 1, … ,R)
where yjr is the rth column of Yj.

Upon restricting the rank of Yj(j = 1, … , J) to be 1, we arrive at nonlinear PCA (PRINCALS).19,20 Then, Equation (9)
can be rewritten as

min
Z,y𝑗 ,a𝑗

J∑
𝑗=1

||Z − G𝑗y𝑗aT
𝑗||2, (10)

with the same constraints on Z as before (ie, (1∕I)ZTZ = I). As an identification constraint for yj and aj, we impose
yT
𝑗

GT
𝑗

G𝑗y𝑗 = I. Now, the vectors aj(R × 1) are the loadings, and yj(Lj × 1) contain the quantifications, which are the same
for all R dimensions of the solution. The relationship between (linear) PCA and nonlinear PCA becomes clear when
rewriting Equation (10) (following Gifi,19 pp. 167-168) as

min
Z,y𝑗 ,a𝑗

J∑
𝑗=1

||Z − G𝑗y𝑗aT
𝑗 ||2 = (11)

min
Z,y𝑗 ,a𝑗

∑
𝑗

tr(ZTZ) − 2
∑
𝑗

tr(ZTG𝑗y𝑗aT
𝑗 ) +

∑
𝑗

tr(a𝑗yT
𝑗 GT

𝑗 G𝑗y𝑗aT
𝑗 ) =

min
Z,y𝑗 ,a𝑗

IJtrI − 2
∑
𝑗

tr(ZTG𝑗y𝑗aT
𝑗 ) + I

∑
𝑗

tr(a𝑗aT
𝑗 ),

using the constraints on Z and yj. The function in Equation (2.3) differs only a constant from the function

g(Z, y𝑗 , a𝑗) =
∑
𝑗

||G𝑗y𝑗 − Za𝑗||2, (12)
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as follows from rewriting g(Z, yj, aj) using the constraints on Z and yj:

g(Z, y𝑗 , a𝑗) = (13)∑
𝑗

yT
𝑗 GT

𝑗 G𝑗y𝑗 − 2
∑
𝑗

tr(aT
𝑗 ZTG𝑗y𝑗) +

∑
𝑗

tr(aT
𝑗 ZTZa𝑗) =

IJ − 2
∑
𝑗

tr(ZTG𝑗y𝑗aT
𝑗 ) + I

∑
𝑗

tr(aT
𝑗 a𝑗).

Thus, it has been shown that problem Equation (10) subject to the constraints (1∕I)ZTZ = I and yT
𝑗

GT
𝑗

G𝑗y𝑗 = I is
equivalent to the problem

min
Z,y𝑗 ,a𝑗

J∑
𝑗=1

||G𝑗y𝑗 − Za𝑗||2 = (14)

min
Z,y𝑗 ,a𝑗

||[G1y1|...|GJyJ] − ZAT||2 =

min
Z,y𝑗 ,a𝑗

||X∗ − ZAT||2,
where A has rows aT

𝑗
and [G1y1|… |GJyJ] is written as X∗ where the superscript “*” represents the optimal scaled data

and this is seen to be the (nonlinear) analog of ordinary PCA.19

The nature of the measurement scale can now be incorporated by allowing the quantifications to be free for
nominal-scale data and monotonic for ordinal-scaled data. The latter quantification ensures the order in the ordinal-scaled
data. Framed in terms of Equation (2.3), this becomes

x∗i𝑗 > x∗k𝑗 i𝑓 xi𝑗 > xk𝑗 , (15)

where x∗ij and x∗kj are elements of X∗ and xij and xkj are elements of X. Ties in the original data can be treated in different ways
depending on whether the underlying measurements can be considered continuous or discrete,24-26 but this is beyond the
scope of this paper.

There are close similarities between optimal scaling and multiple correspondence analysis.17,20 Binary data represent
a special case. When considered as categorical data, nonlinear PCA using optimal scaling is the same as performing a
(linear) PCA on the standardized binary data; for a proof, see Appendix A. 17,27

2.3.1 Data fusion using optimal scaling matrices
There are different ways to use optimal scaling for fusing data. One method generalizes (generalized) canonical corre-
lation analysis (OVERALS28), and the other method generalizes simultaneous component analysis (SCA) (MORALS21).
Experiences with generalized canonical correlations show that this method tends to overfit for high-dimensional data. An
attempt to overcome this problem is by introducing sparsity constraints,29 but it is not trivial to combine this with opti-
mal scaling. Hence, we chose to use the extension of SCA. Note that SCA was originally developed for analyzing multiple
data sets sharing the same set of variables,30 but it can likewise be formulated for multiple data sets having the sampling
mode in common.31 Using the latter interpretation of SCA leads to the following approach.

We take the same data matrices as in Section 2.2.2, and upon writing X∗ = [X∗
1|X∗

2|X∗
3|X∗

4], the problem becomes

min
Par

||X∗ − ZAT||2 = min
Par

||[X∗
1|X∗

2|X∗
3|X∗

4] − Z[AT
1|AT

2|AT
3|AT

4]||2, (16)

with an obvious partition of the loading matrix A and where the term Par stands for all parameters. Apart from the scores
Z and loadings A, these are the following. For the ratio, interval-scaled block, there are no extra parameters since the
original scale is used (ie, X∗

1 = X1). The second–ordinal scaled—block puts restrictions on X∗ following the restrictions
of Equation (15) estimation of which can be done with monotonic regression methods.32 The third (nominal) block has
underlying indicator matrices G and associated quantifications y, and loadings A3 obey the rules of Equation (10). Finally,
the binary block X∗

4 is simply the standardized version of X4, and this ensures an optimal scaling as mentioned above.
Note that this way of fusing data assumes an identity link function33 and is thus an extension of methods like consensus
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PCA and SCA. We will call this method OS-SCA in the sequel. There is no differentiation between common and distinct
components 34

2.4 Parametric approaches
A different class of methods has its roots in factor analysis and can be summarized as follows (see Figure 3). The basic idea
is that a set of (shared) latent variables is responsible for the variation in all the blocks13,14,35 and, subsequently, models
are built for the individual blocks based on those shared latent variables. We will describe the generalized simultaneous
component analysis (GSCA) method36 in more detail since that is the method used in this paper. If X1 is the binary data
matrix, then we assume that there is a low-dimensional deterministic structure Θ1(I× J1) underlying X1 and the elements
of X1 follow a Bernoulli distribution with parameters 𝜙(𝜃1ij), thus x1ij ∼ B(𝜙(𝜃1ij)). The function 𝜙(.) can be taken as the
logit link 𝜙(𝜃) = (1 + exp(−𝜃))−1, and x1ij, 𝜃1ij are the ijth elements of X1 and Θ1, respectively. The Θ1 is now assumed to
be equal to 1𝝁T

1 +ZA1, where 𝜇1 represents the offset term, Z the common scores, and A1 the loadings for the binary data.
The quantitative measurements X2 are assumed to follow the model X2 = 1𝝁T

2 + ZA2 + E where the elements eij of E
are normally distributed with mean 0 and variance 𝜎2. The matrix A2 contains the loadings of the quantitative data set;
Z are again the common scores; and the constraints ZTZ = IIR and 1TZ = 0 are imposed for identifiability. The shared
information between X1 and X2 is assumed to be represented fully by the common latent variables Z. Thus, X1 and X2 are
stochastically independent given these latent variables, and the negative log-likelihoods of both parts can be summed:

𝑓1(Θ1) = −
I∑
i

J1∑
𝑗

[x1i𝑗 log(𝜙(𝜃1i𝑗)) + (1 − x1i𝑗)log(1 − 𝜙(𝜃1i𝑗)], (17)

𝑓2(Θ2, 𝜎
2) = 1

2𝜎2 ||X2 − Θ2||2F + 1
2

log(2𝜋𝜎2),

𝑓 (Θ1,Θ2, 𝜎
2) = 𝑓1(Θ1) + 𝑓2(Θ2, 𝜎

2),

and minimized simultaneously. This requires some extra constraints; details are given elsewhere.36

3 PRACTICAL ISSUES AND EXAMPLES

3.1 Genomics example
The genomics example is from the field of cancer research, and the data are obtained from the Genomics in Drugs Sensitiv-
ity in Cancer from the Sanger Institute (http://www.cancerrxgene.org/). Briefly, this repository consists of measurements
performed on cell lines pertaining to different types of cancer. We used the CNA and gene-expression data of the cell lines
related to breast cancer (BRCA), lung cancer (LUAD), and skin cancer (SKCM). After the samples, which had values for
all these types of cancer, are selected, we filtered the gene-expression data by selecting the 1000 variables with the highest
variance across the samples. The CNA data contain amplifications and losses of DNA regions as compared with the aver-
age copy numbers in the population. Both amplifications and losses are encoded as ones indicating deviances. The zeros
in the CNA data indicate a normal diploid copy number. This provides us with I = 160 samples; J1 = 410 binary values
for the CNA data; and J2 = 1000 variables for the gene-expression data.

For the representation approach, we built a three-way array of size 160×160×(410+1000) and performed an IDIOMIX
analysis. For the binary part, this array contains the slabs Sj according to Equation (6), and for the gene-expression part,
the slabs Sj are defined by the outer products of the samples in the gene-expression data after autoscaling the columns of
that data. The optimal scaling results are obtained by autoscaling both raw data sets and subsequently perform an OS-SCA
on the concatenated data Xsc = [X1sc|X2sc]. The final way of fusing the two data sets is by using the GSCA model where
the autoscaled genomics data are fused with the logit-transformed binary data as explained in Section 2.4.

The amounts of explained variations are shown in Table 1, which contains a lot of information and should be interpreted
with care. First, for IDIOMIX, OS-SCA, and the quantitative part of the GSCA model, the explained variation is calculated
using sums of squares. This is not the case for the binary part of GSCA (for details, see Song et al36). Second, IDIOMIX on
the one hand and OS-SCA and GSCA on the other hand are very different types of models; ie, they use the data directly
(OS-SCA, GSCA) or indirectly (IDIOMIX) so a simple comparison of explained sums of squares between these types of
models is difficult. The final column of the table reports the amounts of explained variation of a regular PCA on the
(autoscaled) gene-expression data.
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TABLE 1 Variances explained by the various methods (expressed as %)

Method IDIOMIX OS-SCA GSCA PCA
Data Type Binary Quant Total Binary Quant Total Binary Quant Total Quant
SC1 0.06 9.32 6.60 13.65 22.15 16.14 63.58 22.11 23.64 22.15
SC2 0.03 2.38 1.69 5.66 10.17 7.48 15.72 10.19 10.39 10.17
SC3 3.73 0.01 1.10 4.99 4.52 4.35 6.17 4.48 4.54 4.52
Cum 3.82 11.70 9.39 24.29 36.84 27.96 85.47 36.77 38.58 36.84

Abbreviations: GSCA, generalized SCA; PCA, principal component analysis; SC, simultaneous component; SCA, simultaneous
component analysis.

The first observation to make regarding the values in Table 1 is that the amounts of explained variations of the PCA
model of the gene-expression data is closely followed by the amounts of explained variations in the gene-expression simul-
taneous components for OS-SCA and GSCA. This means that the data fusion is dominated by the gene-expression block.
This is confirmed by plotting the scores of PC1 and PC2 of the PCA on gene expression against the SC scores 1 and 2 of
OS-SCA and GSCA: These are almost on a straight line (plot not shown). Although the explained variances for IDIOMIX
are much lower, the same observation is valid for IDIOMIX: Also, for this method, the first two SC scores resemble the
ones of a PCA on the gene expression almost perfectly. This dominance of the gene-expression block in the data fusion
as reflected in the first two components cannot completely be explained by the differences in block sizes (1000 variables
for gene expression and 410 variables for the CNA block) but is also due to dominant intrinsic systematic patterns in the
gene-expression data.

To get a feeling for what is represented in the first two SCs (that are virtually identical across the three methods), we
show the scores for the GSCA method on SC1 and SC2 in Figure 4. The scores show a clear separation in cancer types

FIGURE 4 Scores on SC1 and SC2 for the GSCA model (see text)

FIGURE 5 Score plots of
SC1 versus SC3 of in the
genomics example using all
models (see text). Left:
IDIOMIX; middle: OS-SCA;
right: GSCA
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FIGURE 6 Score plots of
SC1-SC3 for all fusion methods.
Optimal scaling is OS-SCA;
representation is IDIOMIX

FIGURE 7 Left panels: score plots of
PC3 of principal component analysis
(PCA) on gene-expression data (x-axis)
compared with the SC3 from the fusion
results (y-axis); optimal scaling is
OS-SCA, and representation is
IDIOMIX. Right panels: scores of SC3 of
all methods compared with copy
number abberation (CNA) frequency



12 of 19 SMILDE ET AL.

FIGURE 8 Left panels: PC3 loadings
of PCA on gene-expression data (x-axis)
compared with the SC3 loadings from
the fusion results (y-axis); optimal
scaling is OS-SCA, and representation is
IDIOMIX. Right panels: loadings of SC3
of all fusion methods, amplifications
(black) and losses (red)

with specific subclusters for hormone-positive breast cancer (within the BRCA group) and MITF high melanoma (in the
SKCM group) (for a more elaborate interpretation, see Song et al36).

Whereas the three approaches give similar results for the first two simultaneous components, qualitative differences can
be seen in SC3. This is especially apparent in Table 1 where the third component for IDIOMIX is now dominated by the
CNA data. This is visualized in Figure 5, which shows the score plots of SC1 versus SC3 for all methods, which are clearly
different. To further confirm this, the scores of the different methods for the three different components were plotted
against each other (see Figure 6), and this confirms that indeed, the first two SCs are very similar for all methods, but
that SC3 shows differences where GSCA is the most deviating. To shed some light on this deviating behavior, we plotted
the scores of a PCA on the gene-expression data against the SC scores of the fusion methods for the third component, see
Figure 7. The left panels in this figure show that SC3 from GSCA is very similar to the PC3 of a PCA on the gene-expression
data alone (see also again Table 1). The same does not hold true for the other methods. The CNA values are available for
each sample, and thus, the scores on the fusion SC3 can be plotted against the frequency at which such an aberration
occurs (number of ones divided by the total). From the right panels of Figure 7, it then becomes clear that SC3 of IDIOMIX
and OS-SCA are mostly picking up the differences in frequencies, contrary to the GSCA-SC3 scores.

A similar comparison can be made for the loadings (see Figure 8). The left panels show the PC3 loadings from gene
expression using PCA and the fusion methods. In the right panels, the fusion loadings are plotted against CNA frequencies
(now across DNA positions), and those show no correlation. As explained earlier, the aberrations can either be amplifica-
tions or losses. The amplification frequencies (black dots) are clearly correlated with the IDIOMIX and OS-SCA loadings,
and such frequencies are biologically not the most interesting ones.

To interpret the GSCA loadings, these loadings were subjected to a gene set enrichment analysis (GSEA). This resulted
in a highly significant enrichment for epithelial-mesenchymal transition (EMT), a process undergone by tumor cells
frequently associated with invasion of surrounding tissues and subsequent metastases (see Table A2 in Appendix). The
largest positive loading on GSCA-PC3 for the gene expression is ZEB1, a transcription factor associated with EMT. A plot



SMILDE ET AL. 13 of 19

FIGURE 9 SC3 loadings of GSCA. In red: SMAD4loss (see text)

of the loadings of the CNA data is shown in Figure 9, and one of the loadings identifies SMAD4 loss as an important
factor. SMAD4 is required for TGF-𝛽–driven EMT, which confirms the finding that the GSCA gene-expression loadings
are strongly enriched for EMT. 37

Summarizing, IDIOMIX and OS-SCA are very similar for the whole analysis. For the first two SCs, also, the GSCA
resembles the other approaches. The difference of GSCA is in the third SC. It seems that GSCA is focusing more on the
gene-expression data, whereas IDIOMIX and OS-SCA pick up specific aspects of the CNA data in this third SC. The results
of the GSCA-SC3 are biologically relevant; this is less the case for SC3 of the other approaches. It may be that GSCA is
focusing more on the common variation between the two data sets and is less influenced by the distinctive parts.34 This
needs further exploration in a follow-up paper.

4 DISCUSSION

In this paper, we have described and compared three methods of fusing data of different measurement scales. We used the
example of quantitative and binary data, but all methods can also deal with ordinal data. For the example, it appears that
IDIOMIX and OS-SCA give very similar results, whereas GSCA is different. One of the reasons may be that the methods
deal differently with common and distinct parts of the data.

All methods have meta-parameters; that is, prior choices have to be made. For IDIOMIX, this is the type of representa-
tion to select; for OS-SCA, it is the type of restrictions to apply; for GSCA, it is the distribution to assume for the separate
data sets. All methods also require selecting the complexity of the models, ie, the number of components. The selection
of all these meta-parameters will, in practice, be made based on a mixture of domain knowledge and validation, such as
cross validation or scree tests for selecting model complexity.

We hesitate in giving recommendations regarding which method to use for a particular application. First, the example
of this paper concerns an exploratory study for which it is always difficult to judge the relative merits of the methods.
Second, the cultural background of the investigator plays a role. In data analysis and chemometrics, the culture is to
avoid distributional assumptions and have a more data analytic approach, thus resulting in a preference for IDIOMIX or
OS-SCA. In statistics and, to some extent, in bioinformatics, there is more a tendency to go for parametric modes, hence
GSCA in our context. Third, these methods have not yet been used to a large extent by researchers; hence, experience on
their behavior upon which a recommendation can be based is lacking.
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In terms of ease of use, we have a slight preference for IDIOMIX. Once the representation matrices are built, standard
three-way analysis software can be used to fit the models. There is also software available for OS-SCA and GSCA, but this
software is more difficult to implement.

There remain open issues to be investigated. Some of the more prominent ones is to understand the behavior of the
methods regarding common, distinct, and local components in fusing data sets. Little has been done in this field regarding
data of different measurement scales.
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A.1 Optimal scaling of binary data equals analyzing standardized data
The fact that optimal scaling of binary data equals the analysis of standardized data can be shown as follows. Suppose
that a binary vector has n0 values of 0, n1 values of 1, and n values in total and a is the optimal scaled value for the zeros
and b for the ones. In optimal scaling, the optimal scaled variables need to get some kind of normalization. A common
set of choices (see Gifi19) is to make sure that the scaled values have mean 0 and variance 1. This leads to the following
two equations:

n0a + n1b = 0,
n0a2 + n1b2 = n, (A1)

and these equations can be solved for a and b since n0,n1, and n are known. This gives two values for a: one positive and
one negative. The values of b follow automatically with the opposite sign. Hence, both solutions are practically equal. The
values a and b are the optimal scaling constants for the binary data.

A.2 Examples of representation matrices for ratio- and interval-scaled data
We will illustrate some ideas of representation matrices using a small example of an (4 × 2) matrix X = [x1|x2]:

X =
⎛⎜⎜⎜⎝

2 9
4 9
6 10
8 12

⎞⎟⎟⎟⎠ , (A2)

and the standardized version of this is

Xs =
⎛⎜⎜⎜⎝
−0.671 −0.408
−0.224 −0.408
0.224 0
0.671 0.816

⎞⎟⎟⎟⎠ , (A3)

where indeed, xT
s1xs1 = 1, xT

s2xs2 = 1, and xT
s1xs2 = 0.913, the latter being the correlation between x1 and x2. The

square representation using Equation (5) on x1 gives

S̃1 =
⎛⎜⎜⎜⎝

0 −2 −4 −6
2 0 −2 −4
4 2 0 −2
6 4 2 0

⎞⎟⎟⎟⎠ , (A4)

https://doi.org/10.1002/cem.3200
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which is skew-symmetric (S̃T
1 = −S̃1) and contains all the differences between the elements of x1. The standardized

version of S̃1 is

S1 =
⎛⎜⎜⎜⎝

0 −0.158 −0.316 −0.474
0.158 0 −0.158 −0.316
0.316 0.158 0 −0.158
0.474 0.316 0.158 0

⎞⎟⎟⎟⎠ , (A5)

and a similar matrix can be made for x2. Then, using Equation (4) on the pairs (S1, S1) and (S2, S2) gives a value of 1, and
on the pair (S1, S2) gives 0.913, which is the Pearson's correlation again.

Alternative square representations of xs1 and xs2 are

SA1 = xs1xT
s1 =

⎛⎜⎜⎜⎝
0.45 0.15 −0.15 −0.45
0.15 0.05 −0.05 −0.15
−0.15 −0.05 0.05 0.15
−0.45 −0.15 0.15 0.45

⎞⎟⎟⎟⎠ , (A6)

and

SA2 = xs2xT
s2 =

⎛⎜⎜⎜⎝
0.167 0.167 0 −0.333
0.167 0.167 0 −0.333

0 0 0 0
−0.333 −0.333 0 0.667

⎞⎟⎟⎟⎠ , (A7)

and using Equation (4) on SA1 and SA2 gives 0.833, which is the squared Pearson's correlation between the original
variables.

A.3 Examples of representation matrices for nominal data
We will illustrate some ideas on representing nominal data using two categorical variables x1 and x2. The first variable
contains four categories encoded as A, B, C, and D and reads x1 = (A,B,A,C,D,C,B,D)T; the second variable has three
categories encoded as I, II, and III and reads x2 = (I, II, II, I, III, III, I, II)T where the roman capitals are used to show that
the two variables encode different types of categories. The indicator matrices are now

G1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A8)

and

G2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 1 0
1 0 0
0 0 1
0 0 1
1 0 0
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A9)

and a special feature of this kind of data becomes present, namely, that some objects have exactly the same rows in G1 (and
similarly in G2). Moreover, the matrices show closure (GT

11 = 1,GT
21 = 1). The marginal frequencies are collected in

D1 =
⎛⎜⎜⎜⎝

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞⎟⎟⎟⎠ = GT
1 G1, (A10)
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and

D2 =

( 3 0 0
0 3 0
0 0 2

)
= GT

2 G2, (A11)

with obvious properties.
Simple representations of these variables are now

S1s =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= G1GT

1 , (A12)

and

S2s =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 0 0 0 0 1
1 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= G2GT

2 , (A13)

and these representations are encoding, which objects have equal categories in the variables. The more complex
representations (according to Equation 6) are now

S1c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.375 −0.125 0.375 −0.125 −0.125 −0.125 −0.125 −0.125
−0.125 0.375 −0.125 −0.125 −0.125 −0.125 0.375 −0.125
0.375 −0.125 0.375 −0.125 −0.125 −0.125 −0.125 −0.125
−0.125 −0.125 −0.125 0.375 −0.125 0.375 −0.125 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 −0.125 −0.125 0.375
−0.125 −0.125 −0.125 0.375 −0.125 0.375 −0.125 −0.125
−0.125 0.375 −0.125 −0.125 −0.125 −0.125 0.375 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 −0.125 −0.125 0.375

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A14)

and

S1c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.375 −0.125 0.375 −0.125 −0.125 −0.125 −0.125 −0.125
−0.125 0.375 −0.125 −0.125 −0.125 −0.125 0.375 −0.125
0.375 −0.125 0.375 −0.125 −0.125 −0.125 −0.125 −0.125
−0.125 −0.125 −0.125 0.375 −0.125 0.375 −0.125 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 −0.125 −0.125 0.375
−0.125 −0.125 −0.125 0.375 −0.125 0.375 −0.125 −0.125
−0.125 0.375 −0.125 −0.125 −0.125 −0.125 0.375 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 −0.125 −0.125 0.375

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A14)

and

S2c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.208 −0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125
−0.125 0.208 0.208 −0.125 −0.125 −0.125 −0.125 0.208
−0.125 0.208 0.208 −0.125 −0.125 −0.125 −0.125 0.208
0.208 −0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 0.375 −0.125 −0.125
−0.125 −0.125 −0.125 −0.125 0.375 0.375 −0.125 −0.125
0.208 −0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125
−0.125 0.208 0.208 −0.125 −0.125 −0.125 −0.125 0.208

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A15)

which are indeed double centered and standardized. Using Equation (4) on the matrices S1c and S2c gives the correlation
coefficient T2 = 0.5.
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TABLE A1 Calculation of the 𝜙 coefficient (the values of the example between brackets) x2 = 0 x2 = 1 Total
x1 = 1 n11(1) n10(2) n1.(3)
x1 = 0 n01(4) n00(1) n0.(5)
Total n.1(5) n.0(3) n(8)

TABLE A2 GSEA results. Legend: Size is size of the gene set; ES is
enrichment score; NES is normalized enrichment score; Nom-p is nominal
p-value; FDR-q is FDR q-value; EMT is Epithelial Mesenchymal Transition;
UV-R-DN is UV Response DNA; IL2-STAT5-S is IL2-STAT5-Signaling;
KRAS-S-UP is KRAS-Signaling-UP. The value 0 means < 0.0001

Process Size ES NES Nom-p FDR-q
EMT 87 0.61 3.06 0 0
UV-R-DN 35 0.60 2.47 0 0
IL2-STAT5-S 24 -0.57 -1.76 0.003 0.040
APOPTOSIS 31 -0.47 -1.53 0.027 0.219
KRAS-S-UP 56 -0.42 -1.51 0.017 0.167

A.4 Examples of representation matrices for binary data
As an example for binary data, we will use a simple data set consisting of two binary variables x1 and x2, which are
columns of

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
1 0
1 1
0 1
1 0
0 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A16)

with indicator matrices

G1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A17)

and

G2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
1 0
0 1
0 1
1 0
0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A18)

A correlation measure between binary variables is the 𝜙 coefficient, which is defined as

n11n00 − n10n01√
n1.n0.n.0n.1

, (A19)

where the values n are shown in Table A1. For the example, this 𝜙 coefficient equals −0.4667, which is also equivalent to
the Pearson correlation between x1 and x2.

There are two alternative square representations of x1 and x2. The first uses Equation (6) based on the indicator matrices,
and the results are

S1c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.075 0.075 −0.125 −0.125 0.075 −0.125 0.075 0.075
0.075 0.075 −0.125 −0.125 0.075 −0.125 0.075 0.075
−0.125 −0.125 0.208 0.208 −0.125 0.208 −0.125 −0.125
−0.125 −0.125 0.208 0.208 −0.125 0.208 −0.125 −0.125
0.075 0.075 −0.125 −0.125 0.075 −0.125 0.075 0.075
−0.125 −0.125 0.208 0.208 −0.125 0.208 −0.125 −0.125
0.075 0.075 −0.125 −0.125 0.075 −0.125 0.075 0.075
0.075 0.075 −0.125 −0.125 0.075 −0.125 0.075 0.075

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A20)
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and

S2c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.075 0.075 −0.125 0.075 0.075 −0.125 0.075 −0.125
0.075 0.075 −0.125 0.075 0.075 −0.125 0.075 −0.125
−0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125 0.208
0.075 0.075 −0.125 0.075 0.075 −0.125 0.075 −0.125
0.075 0.075 −0.125 0.075 0.075 −0.125 0.075 −0.125
−0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125 0.208
0.075 0.075 −0.125 0.075 0.075 −0.125 0.075 −0.125
−0.125 −0.125 0.208 −0.125 −0.125 0.208 −0.125 0.208

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A21)

and when these are used in Equation (4), the result is 0.2178, which is the square of the 𝜙 coefficient.
The other representations are based on the standardized x variables z1 and z2 (with zT

1z2 = −0.4667). It now holds
that JG𝑗D−1

𝑗
GT

𝑗
J = z𝑗zT

𝑗 , and hence, both representations coincide.

A.5 GSEA results
Gene set enrichment analysis (GSEA) was performed by using the Hallmark gene sets from MSigDB.38 The
GSEA-preranked results are summarized in Table A2 and show that the EMT process has the lowest P value.

A.6 Software
The software to estimate the parameters in the different methods can be downloaded from www.bdagroup.nl.
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