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Abstract

Subcellular localization is a critical aspect of protein function and the potential application of proteins either as drugs or

drug targets, or in industrial and domestic applications. However, the experimental determination of protein localization is

time consuming and expensive. Therefore, various localization predictors have been developed for particular groups of

species. Intriguingly, despite their major representation amongst biotechnological cell factories and pathogens, a

meta-predictor based on sorting signals and specific for Gram-positive bacteria was still lacking. Here we present GP4, a

protein subcellular localization meta-predictor mainly for Firmicutes, but also Actinobacteria, based on the combination of

multiple tools, each specific for different sorting signals and compartments. Novelty elements include improved cell-wall

protein prediction, including differentiation of the type of interaction, prediction of non-canonical secretion pathway target

proteins, separate prediction of lipoproteins and better user experience in terms of parsability and interpretability of the

results. GP4 aims at mimicking protein sorting as it would happen in a bacterial cell. As GP4 is not homology based, it has a

broad applicability and does not depend on annotated databases with homologous proteins. Non-canonical usage may

include little studied or novel species, synthetic and engineered organisms, and even re-use of the prediction data to

develop custom prediction algorithms. Our benchmark analysis highlights the improved performance of GP4 compared to

other widely used subcellular protein localization predictors. A webserver running GP4 is available at http://gp4.hpc.rug.nl/

Key words: protein subcellular localization prediction; prediction methods; homology-based prediction; sorting signals;

Gram-positive; GP4

Background

Subcellular localization (SCL) is a key element in the functional

annotation of proteins, their use in biotechnology, and their

potential as drug candidates or targets. Ideally, SCL should

be determined experimentally. Unfortunately, however, this is
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time consuming, expensive and impractical due to the recent

explosion in the numbers of whole-genome-sequenced organ-

isms. For such reasons,multiple approaches to predict SCLs have

been developed (extensively reviewed in [1–5]).

Given that the prediction of SCL always starts from the

amino acidic sequence of a protein, and the desired output is a
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designated cellular compartment or the extracellular milieu, the

presently available approaches can be categorized based on the

method of SCL assignment: (1) physico-chemical properties of

the protein, (2) detectable sorting signals and (3) homology and

transfer of knowledge. Each approach has its own advantages

and disadvantages but, additionally, there can still be different

methods implemented within each category that have their

own specific pros and cons [1–5]. In this paper, we address the

most relevant aspects that should be taken into account and

present a newprotein subcellular localizationmeta-predictor for

Firmicutes, named GP4, which is also suitable for Actinobacteria.

Historically, the physico-chemical properties of a protein

were the first parameters employed to predict signal peptides

(SPs) for protein export from the cytoplasm and SCLs. However,

physico-chemical properties by themselves are nowadays

considered too broad for obtaining accurate results. Instead,

two other approaches are regarded as more promising. SCL

prediction based on known sorting signals is probably the

most suitable approach, as the detection of specific localization

tags embedded within the amino acidic sequence is also what

cells do to sort their proteins [1, 6, 7]. However, a sufficiently

detailed understanding of protein sorting mechanisms in the

organism of interest is necessary to identify these localization

tags with bioinformatic tools for SCL prediction. On the other

hand, homology-based methods infer SCL by transferring the

annotation of the best hit of a BLAST search to the query

protein [2–5]. This last method is frequently used to functionally

annotate genomes, genes and proteins. Unfortunately, however,

it was estimated that homology-based annotations in the Gene

Ontology (GO) database as of March 2006 showed an error rate

of 49%. In contrast, homology-independent methods resulted in

estimated error rates between 13 and 18% [8]. Altogether, the

combination of a low number [9, 10] and biased distribution

[11, 12] of studied and annotated entries in protein databases

has resulted in the percolation of erroneous annotations [13, 14].

Moreover,while the transfer of annotationsmay appear effective

[15, 16], different similarity thresholds can heavily influence

the outcome, and will lead to annotation errors in case of low

similarity [10, 16–18].

In addition to the three aforementioned methods for SCL

assignment, also hybrid methods have been developed, which

exploit the strengths and compensate for the weaknesses of

the combined approaches and algorithms. This hybrid category

encompasses the most frequently used and reliable SCL predic-

tors, such as PsortB [19],CELLO [20], pLoc-mGpos [21] or Proteome

Analyst [22].

Given the apparent lack of rational design in protein function

or structure, it is important to consider the easiness by which

evolution re-uses sequences for novel scopes, nullifying the

‘from sequence to structure to function’, and thus localization

hypothesis [10, 18, 23]. Consequently, only annotations whose

primary information source is experimental should be regarded

with a certain confidence. Other types of annotation should be

considered with care [24] and have in extreme cases led to the

propagation of mistakes [25, 26]. Yet, experimental verification

of protein SCL is also not flawless, as there is always cross-

contamination during cell disruption, and it is hard to sepa-

rate living cells from dead cells and their debris that has been

released into the extracellular milieu [27].

Due to the major differences in the cellular structures

encountered among the three main kingdoms of life (Bacteria,

Eukarya and Archaea), bioinformatics tools generally specialize

in SCL predictions for one of these domains of life.Unfortunately,

within the Bacterial kingdom, the most common subdivision

used is between Gram-positive and Gram-negative bacteria.

This distinction is based on the outcome of Gram-staining

with crystal violet rather than the cellular architecture and,

consequently, leaves space for misinterpretations [28, 29]. Given

the different morphology, the possible SCLs to be predicted

differ substantially. In Gram-positive bacteria as traditionally

defined, there are four classical sub-cellular compartments,

namely the cytoplasm, the plasma membrane, the cell wall and

the extracellular space. A further fifth compartment has been

named the inner wall zone [30], which includes the ‘periplasmic’

area between the plasma membrane and the cell wall. However,

to date, the inner wall zone has not been considered by

SCL prediction tools. Despite an overall agreement on the

different SCLs, there is little consensus amongst the different

prediction tools about which proteins should be included in

each compartment and the respective terminology [28]. Some

proteins are unequivocal regarding their SCL, both from the

computational and experimental points of view. Other proteins

pose challenges since they may be experimentally found in

multiple compartments, or may have been identified in SCLs

that contrast with their in silico predicted SCLs. Additionally,

some compartments can either be further subdivided or may be

‘atypical’, as exemplified by fimbriae, pili or spores, which do

in fact possess their own peculiar subdivision (e.g., basal body,

spore coat, cortex and core).

A crucial aspect in SCL prediction is its scope, or the origin of

the query sequence. This can relate to a wild-type protein from a

known or novel organism, or to a synthetically designed protein.

Although this issue has been theoretically addressed [31], the

latter category has never been thoroughly investigated. Thismay

relate to the, thus far, limited needs to predict SCLs for synthetic

proteins, but the design and realization of synthetic organisms

is becoming more common and will probably increase in the

future [32]. To properly address this kind of synthetic proteins, it

is important to notice how they may be decontextualized from

their original source or environment, i.e., the original organism.

In such cases, it may be misleading to directly assign the SCL

retrieved from its closest wild-type homologue to the query

sequence.

Lastly, a key aspect demanded by all users is the ease of

interpretation of SCL predictions [7, 31]. Here, one also needs

to consider context information that cannot be submitted

with the query sequence, e.g., the investigated species and its

peculiarities or the applied design. One option to solve this

dilemma is to increase the customizability and flexibility of

the prediction tool, thereby allowing the user to include tailored

options.

Taking into account so many aspects of SCL prediction is

challenging, andmultiple solutions with different pros and cons

are possible. Here, we present a basic prediction pipeline for

Gram-positive organisms called GP4 (Gram-Positive Protein Pre-

diction Pipeline). In brief, GP4 is based on already available tools

for different aspects of SCL prediction, which mainly rely on

sorting signals or motif detection. GP4 minimizes the usage of

homology to avoid the aforementioned biases. GP4 is particularly

suitable for Firmicutes, and it is also effective for Actinobacteria,

although it cannot predict their outer membrane proteins. GP4 is

available as a webserver with an easy and user-friendly interface

at http://gp4.hpc.rug.nl/ (Figure 1). The only required input is a

list of fasta amino acid sequences, which can also be submitted

as file. Additionally, GP4 can be used as a standalone program,

but only as a pipeline script to produce the relevant data with

the implemented tools, to combine them and to return the final

SCL prediction.
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GP4: an integrated Gram-Positive Protein Prediction Pipeline for subcellular localization mimicking bacterial sorting 3

Figure 1. Homepage of the GP4 webserver. Input can either be pasted into the text box or uploaded as a file, both in fasta format. Optionally, it is possible to provide

an email address to which the link with results will be sent. The interface is kept simple and no settings options are necessary. Results are stored for 7 days and can

be retrieved at any moment through the specific page.

Material and methods

Rationale and general approach

GP4 assigns up to five SCLs, including the four ‘classical’ ones,

namely the cytoplasm, trans-membrane (TM), cell wall and

extracellular. In addition, GP4 can also return lipoproteins as

a result. Despite the latter not being a proper SCL, it was

included in GP4 as a lipidic retention signal is often more

informative with regard to protein sorting than the actual SCL.

In contrast to other prediction tools, only integral membrane

proteins with one or more TM α-helices are predicted by GP4 as

membrane proteins. In contrast, peripheral membrane proteins

associated with the cytoplasmic side of the membrane, which

pose a semantic challenge in regard to their localization [7], are

predicted to be cytosolic. Furthermore, we felt that membrane-

bound proteins, like lipoproteins, should be classified on their

own for the sake of clarity. To our knowledge, no other SCL

prediction tool takes into account this issue, despite being

discussed in literature [7, 31, 33]. Similarly, cell-wall proteinsmay

be covalently attached to the peptidoglycan, or only transiently

interact with it. In the absence of specific tools, we have tried

to discriminate among these two possibilities. Furthermore, for

extracellular proteins, GP4 provides the most likely secretion

pathway based on detected signals, taking into account not only

the main Sec and Tat pathways, but also alternative ones such

as SecA2, the Wss route (i.e., the WXG100 secretion system,

also called T7SSb), the flagellar export apparatus (FEA), the

fimbrilin-protein exporter (FPE), and some lantibiotics and

bacteriocins. Such aspects may be of lower relevance when

analyzing bulk genomes for statistical purposes, but they may

play major roles when analyzing specific protein candidates or

engineered proteins. Lastly, it should be mentioned that GP4

fulfills the theorized properties of an expert system predictor

[7, 31], based on its high interpretability, explanatory power, and

its accountability for synthetically designed proteins.

Software used

To develop GP4, multiple candidate tools were evaluated to cover

all relevant aspects, including (i) detection of all possible secre-

tion pathways; (ii) determination of TM topologies; and (iii)

detection of domains, motifs, and repeats. For each aspect, the

selection was further based on the reliability and efficiency of

the various tools. Finally, usability and accessibility played a

major role during selection. Considered criteria were the avail-

ability of downloadable or standalone versions, and limitations

in the numbers or lengths of sequences that can be analyzed.

Additionally, an overall parsimony approach was applied.

Signal peptides and secretion pathways

Detection and prediction of the correct secretion pathway is

possibly one of the most challenging aspects of SCL prediction.

The classical secretion pathway (Sec/signal peptidase I [SpI]) is

the most studied and best characterized one, and thus, predic-

tion of the respective SPs is most reliable. To detect these SPs,

SignalP v. 4.1 [34], SignalP v. 5.0 [35], Phobius [36] and Predisi were

exploited as they are specific for Sec SP detection. Additionally,

also LipoP [37, 38], despite being mainly designed for lipoprotein

SPs (Sec/signal peptidase II [SpII]) can help to determine the type

of secretion pathway. Similar to LipoP, also SignalP 5 has the

ability to detect lipoprotein SPs, as well as Tat SPs (Tat/SpI). To

complement this ability of SignalP 5, also TatP [39]was integrated

in the GP4 pipeline.

Unfortunately, tools to specifically predict other secretion

pathways are currently not available. In particular, neither the
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signal peptides nor the proteins associated with protein secre-

tion through ABC transporters, the SecA2 machinery, the FEA,

FPEs, holins, the Wss route and any other non-classical secre-

tion system (including moonlighting proteins) can thus far be

predicted with dedicated tools. To at least partially overcome

this limitation, InterPro signatures peculiar to these classes of

proteins have been exploited in GP4 (see below).

Trans-membrane topology

TM helix detection is possibly one of the oldest predictable

protein features. To detect them, TMHMM [40] has been used in

GP4. Although TMHMM is a relatively old prediction tool, it is still

considered efficient and reliable in its simplicity. To complement

its ability to detect TM helices, topology predictions by Phobius

were also taken into account.

Domains, motifs and repeats

For any other type of signal detection, signatures from InterPro

[41] were used. InterPro collects and merges the entries from

multiple databases and, additionally, manually curates them.

This makes the various entries highly reliable. Nevertheless,

given the fact that different methods and databases are used by

InterProScan [42], different implemented signatures may have

different levels of sensibility and sensitivity.

Manually curated lists of InterPro identifiers were created

(Supplementary Table 1) for some of the main SCL targets,

namely the secretion-associated signatures, Tat-associated

signatures, lipoprotein-associated signatures and cell-wall

associated signatures (in turn, subdivided into covalent bonds,

non-covalent bonds and spore). In addition to those, and given

the peculiar nature of some proteins, three additional lists

were created to give a second, more detailed, level of SCL

predictions: surface-associated signatures, pseudo-pilin- and

fimbrilin-associated signatures and short secreted peptide-

associated signatures (e.g., lantibiotics, bacteriocins or similar).

Of note, even though most of the selected signatures are known

and widely used to associate proteins with SCLs, they are

not officially associated to any SCL (more precisely any GO

compartment).

To exploit the full InterPro potential, lists of specific GO

terms were created (Supplementary Table 1). During the motif

and domain analysis through the GO compartment field, Inter-

ProScan may detect some that are officially associated to a

specific SCL.

Other included tools

Lastly, ProtCompB [43], an online predictor for bacterial SCLs,

was added to GP4 for additional support in the decision-making

process. ProtCompB combines several prediction methods,

namely: ‘neural networks-based prediction, direct comparison

with bases of homologous proteins of known localization,

comparisons of pentamer distributions calculated for query

and database sequences and prediction of certain functional

peptide sequences, such as signal peptides and transmembrane

segments’ [43]. Thus, ProtCompB is fully complementary to

the other aforementioned tools. In cases of doubtful decision-

making, due to its highly reliable predictions [44, 45], ProtCompB

can help in steering the results in the right direction.

Discarded tools

Despite the availability of additional tools for certain spe-

cific tasks (e.g., TM/SP discrimination or cell-wall-binding

predictions), it was decided to discard them, because these tools

Table 1. Composition of the T1 protein dataset used for GP4 bench-
marking

Localization Number of proteins

Cell wall (CW) 58

Cytosolic (CYTO) 88

Extracellular (EXTRA) 133

Lipoproteins (LIPO) 9

Transmembrane (TM) 84

Multi-location (CW-TM) 2

Total 374

could not analyze more than one sequence at a time, the tool

size would not be compatible with most users’ machines, the

outputs were graphical and would not be correctly parsed, or

there were other usability issues.

Dataset

The GP4 prediction algorithm was designed based on the cur-

rent state-of-the-art knowledge about protein sorting in Gram-

positive bacteria, in particular in Bacillus subtilis. Accordingly, in

detail, testingwas done based on the proteome of B. subtilis strain

168 (UP000001570).

Benchmark evaluation was performed with a test set, desig-

nated T1, of 374 proteins (summarized in Table 1; details of the

dataset are presented in Supplementary Table 2). The dataset

was built by retrieving from SwissProt [46], release 2020_02, all

proteins belonging to the phyla of Firmicutes (id:1239) and Acti-

nobacteria (id:1760) for which experimental evidence regarding

the SCLwas available for the respective species, and removing all

proteins from in B. subtilis strain 168 (id:224308). This resulted in

a set of 568 proteins. Afterwards, the redundancy was decreased

to 25% identity bymeans of CD-HIT [47] (with standard settings),

resulting in a total of 406 proteins. Finally, the dataset was fur-

ther manually curated removing too short peptides or proteins

whose SCL was classified as experimentally determined, but for

which the published evidence was either poor or debatable. This

yielded the final dataset of 374 proteins with known localization

and at least one associated publication.Nevertheless, one should

bear in mind that this curated dataset may still include some

wrongly annotated proteins as there may be mistakes in the

literature. This is exemplified by a public benchmarking dataset

[21, 48] where, amongst proteins classified as cytosolic, there

are also some secreted proteins, such as Q933K8 (now P9WJD9

[49, 50]) or P34020 [51]. Most likely, at the time of publication,

the respective secretion system was yet to be discovered. This

underscores the need to perform benchmarking always on the

latest state-of-art datasets.

Implementation

The prediction algorithm, summarized in Figure 2 (for more

details see also Supplementary Table 3), was written in Python

v. 3.6. It combines the outputs of the above-mentioned tools

with a simple scoring system to return a putative SCL. Results

from the different exploited tools are parsed and, depending on

each tool’s output, scores for protein designation to the various

compartments are increased or decreased. For each compart-

ment’s score, there is a minimum threshold, which indicates

the minimum amount of ‘evidences’ needed to assign an SCL

TAG to a particular query protein. Additionally, if a sequence
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GP4: an integrated Gram-Positive Protein Prediction Pipeline for subcellular localization mimicking bacterial sorting 5

Figure 2. Summary of the prediction algorithm. The query protein is introduced in FASTA format and evaluated with multiple prediction tools. Based on the respective

outputs, the values of 14 numerical and Boolean variables are calculated. If certain conditions or thresholds aremet, then specific TAGs plus additional information will

be assigned to the query protein. Lastly, a check of the different assigned TAGs is performed in order to remove redundant information. If certain TAGs are in conflict,

‘Unknown’ is returned as a result. ∗, For the sake of clarity, particular details have been documented in Supplementary Table 3.

contains a compartment-related feature that indicates unequiv-

ocally a SCL, Boolean variables can override the scores. This has

been implemented particularly in regard to InterPro signatures.

Finally, through a series of simple ‘if-then-else’ conditionals,

scores and Boolean variables are combined in order to assign

one, or more SCL TAGs to a protein. Whenever a compartment’s

score is higher than the set threshold, the respective SCL TAG is

appended to the results for the query protein.The samehas been

implemented for Boolean variables.Normally,multiple TAGs can

be assigned, if each of them individually meets its own require-

ments. Nevertheless, a last consistency check is performed:

TAG combinations are evaluated and, in some cases, modified

either because they are meaningless or potentially misleading.

In such cases, either redundant information is removed (e.g.,

‘EXTRA CW’ becomes ‘CW’, as cell-wall proteins are intrinsically

extracellular) or, when in conflict, ‘Unknown’ is returned as a

result (e.g., ‘EXTRA CYTO’ becomes ‘Unknown’, as there is no

combination of signals that could lead to such a prediction).

Additionally, ‘Unknown’ is also returned if no score reaches

the required threshold. Next to the main SCL prediction, GP4

provides additional information, such as the secretion pathway

used by a particular secretory protein, the signal peptidase cleav-

age site of putative SPs or the anticipated type of interaction

with the cell wall. Such information is provided either paired

with a specific SCL (e.g., detection of an LPXTGmotif for covalent

protein attachment to the cell wall) or independently (e.g., a Tat

motif or pilin-likemotif, as thesemotifs may suggest a final SCL,

but do not completely determine it).

Evaluation method

The test set T1 was used to evaluate the current prediction

method and to compare it with other tools, namely PsortB [19]

v. 3, LocTree3 [52], pLoc_bal-mGpos [21], Cello v. 2.5 [20] and

BUSCA [53]. Proteins were analyzed, and predictions were used

to calculate sensitivity, specificity, precision, accuracy and the

Matthews correlation coefficient (MCC) for each class of proteins.

These parameters are defined as follows:

• Sensitivity :
TP

TP + FN

• Specificity :
TN

TN + FP

• Precision :
TP

TP + FP

• Accuracy :
TP + TN

TP + TN + FP + FN

• MCC :
TP × TN − FP × FN

√
(TP + FN) (TP + FP) (TN + PF) (TN + FN)

TP, FP, TN and FN indicate true positives, false positives, true

negatives and false negatives, respectively, for each localization.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa302/5998864 by U

niversity of G
roningen user on 07 April 2021
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For a perfect set of predictions, the MCC value is 1, for a com-

pletely random prediction it will be 0 and for a perfect reverse

prediction the MCC is −1. Lastly, the overall values for each tool

were calculated as the weighted average between the various

classes.

Results and discussion

Benchmark of SCL predictions

Benchmark comparative analyses with GP4 were performed

using themajority of currently existing tools, normally returning

alternate results [1, 53–59]. This was to be expected considering

the fact that the composition of the train and test sets [60]

and the relative internal amino acid sequence similarity levels

[16, 20] will have a major impact on the outcome. The more

the query sequence, or the species from which it is derived, is

related to elements incorporated in the training set, the more

precise the result returned by most tools will be. Even more

so, this bias is present in homology-based prediction tools that

rely on the presence and correct annotation of proteins within

the respective database. Nevertheless, also tools based on the

identification of motifs and signatures can have similar biases.

This possibility should therefore be considered with respect to

the following sections of this paper on the performance of GP4.

In addition to GP4, five other SCL predictors, namely PsortB

v. 3 [19], LocTree3 [52], pLoc_bal-mGpos [21], CELLO v. 2.5 [20]

and BUSCA [53] were benchmarked on the T1 dataset of 374

protein with known localization. The overall results are summa-

rized in Table 2. LocTree3 turned out to be the best-performing

tool with an overall MCC of 0.760. Nevertheless, it should be

noted that LocTree3 is not able to discriminate between proteins

from Gram-positive and Gram-negative bacteria. Additionally, it

is not able to predict the cell wall as a compartment, classi-

fying cell wall proteins simply as extracellular. Similarly, also

BUSCA can only predict three compartments in Gram-positive

bacteria, lacking the cell wall class. Similar to GP4, BUSCA is

based on combining multiple tools for the detection of sort-

ing signals, but, unfortunately, for Gram-positive bacteria, only

SPs and TM helices are searched. Lacking many of the known

bacterial sorting signals, BUSCA performs worse than LocTree3

with an MCC of 0.625, but it still provides useful information

about the position of potential TM helices in detected SPs. Due

to their simplicity, both tools can be an interesting choice to

obtain a broad idea of the overall distribution of proteins. Nev-

ertheless, in case of querying single proteins, or when a high

level of precision is needed, more suitable tools are available.

In particular, the here presented GP4 prediction tool, together

with PsortB, pLoc_bal-mGpos and CELLO, is more suitable for a

comparison as they include the four main SCLs of Gram-positive

bacteria. Of note, GP4 provides an extra prediction result, namely

‘LIPO’ for lipoproteins, which does not in itself represent a sub-

cellular compartment, but predicts with striking precision the

membrane association of such proteins, resulting in an MCC of

1. Among these four tools, pLoc_bal-mGpos performed strikingly

worse than expected with an overall MCC of 0.349. In contrast,

CELLO proved to be better overall, but predicted only one cell-

wall protein in the whole dataset, which lowered the overall

scores. Given these results, it would make more sense to use

simpler tools, like BUSCA or LocTree3, which can deliver better

overall predictions. GP4, instead, performed slightly better than

PsortB,with respectiveMCCs of 0.709 and 0.698.This outcome for

PsortB was comparable with previous benchmarking analyses

[57, 61]. It must be noted that, despite the similar MCC values,

PsortB predicted 17.11% of the proteins as unknown, while for

GP4, only 3.74% were predicted as unknown. More in detail, GP4

turned out the best-performing tool among the tested ones,with

an MCC of 0.670, for cell-wall proteins (0.574 for PsortB; see also

Supplementary Table 4). Instead, PsortB performed apparently

better for extracellular proteins with an MCC of 0.736 (0.615 for

GP4), but it must be noted that these values are influenced by

the relevant difference in the rates of ‘unknown’ predictions for

secreted proteins, namely 25.56% for PsortB versus 0.75% for GP4.

This makes GP4 the best option to predict extracellular proteins

in absolute numbers (i.e., taking into account the ‘unknown’

predictions by the two tools), as well as the most accurate. The

improvement gained by GP4 for the prediction of extracellular

and cell-wall proteins can probably be attributed to the detection

of specific compartment-related domains.

Usage on modified proteins

If SCL prediction tools would be classified as text editors, PsortB

would be considered as a WYSIWYM (what you see is what you

mean), because it returns the SCL for the specific class of pro-

teins. On the contrary, GP4 would be considered as a WYSIWYG

(what you see is what you get) tool that predicts only what can

be directly evinced from the actual query sequence. This is best

exemplified by barnases, which are extracellular ribonucleases

produced by various Bacillus species. As most secreted proteins,

barnases do possess a Sec SP necessary for their export. The

reference barnase was first discovered in Bacillus amyloliquefa-

ciens (P00648) and possesses a SP and a propeptide according

to SwissProt. Among homologous proteins with at least 90%

identity, there is another barnase from Bacillus circulans (P35078).

According to the annotation, this protein is 47 residues shorter

and lacks a SP (Figure 3). The apparent lack of a SP is proba-

bly to be attributed to misannotation or low-quality sequence

assembly, although we were not able to retrieve SP from the

corresponding nucleotide sequence (data not shown). However,

the protein in this form, i.e., without a SP, is unlikely to be

secreted by a Gram-positive bacterium. Similarly, if we were to

produce such a truncated protein in a heterologous strain, e.g., B.

subtilis, it would hardly be secreted. Yet, all the tested prediction

tools designated both barnases of B. amyloliquefaciens and B.

circulans as extracellular proteins. This is formally correct for the

regular barnases, but not for the barnase of B. circulans as it was

annotated. On the contrary, GP4 predicted the B. amyloliquefaciens

barnase to be secreted via Sec, while the truncated barnase of B.

circulans was predicted to be cytoplasmic, as the amino acidic

sequence lacks a SP. The latter approach is certainly favorable

in the context of engineered organisms, but may be misleading

when annotating wild-type genomes, and it can certainly not

compensate for annotation errors. The latter can instead be

managed by other approaches.

The main consequence of a WYSYWIG approach is the

impossibility to predict protein sorting based on unknown or

poorly characterized pathways. This should not be regarded as a

negative aspect, but rather an incentive to improve the current

knowledge and understanding of bacterial-sorting mechanisms

and, at the same time, to develop novel and more precise

tools to detect specific sorting signals embedded in the amino

acidic sequence. In fact, in the present study, we show how

SCL prediction based on detectable sorting signals can be more

powerful than other approaches, regardless of the fact thatmany

signals or motifs are still to be discovered or elucidated with

respect to their function.
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Table 2. Summary of the GP4 benchmark analysis. The table summarizes the sensitivity, specificity, precision, accuracy and MCC for all
benchmarked tools

Tool Sensitivity Specificity Precision Accuracy MCC

GP4 0.781 0.909 0.823 0.88 0.709

PsortB 0.774 0.916 0.812 0.783 0.698

LocTree3 0.829 0.93 0.858 0.917 0.76

pLoc_bal-mGpos 0.524 0.827 0.529 0.773 0.349

BUSCA 0.714 0.908 0.823 0.793 0.625

CELLO v. 2.5 0.698 0.857 0.746 0.834 0.546

Figure 3. Sequence alignment of barnases from B. amyloliquefaciens and B.

circulans. The barnase sequences were aligned with Clustal Omega. Gray shading

marks the SP of the B. amyloliquefaciens barnase (P00648), which is absent from

the barnase of B. circulans (P35078). Depending on the selected SCL prediction

approach, P35078 would either be assigned as an extracellular protein since it

belongs to a family of extracellular RNases, or as a cytosolic protein since it lacks

a SP. Clearly, in absence of an appropriate SP, bacterial export of a protein with

the P35078 sequence is unlikely.

Conclusions and future perspectives

In conclusion, the here presented GP4 tool seems to perform

better than other SCL predictors, despite its intrinsic inability

to predict SCLs for proteins that follow poorly characterized

sorting pathways. In particular, GP4 should be appropriate for

synthetic organisms, or organisms with little studied genomes.

Furthermore, we consider GP4 the most widely-applicable tool

for SCL predictions in Gram-positive bacteria. Due to its supe-

riority in detecting extracellular and cell-wall proteins, it can

probably help in the identification of novel targets for drugs

against pathogenic Firmicutes and Actinobacteria. This is a con-

sequence of its design, where prior knowledge on genomes or

proteins is not necessary. On the other hand, the applicability of

GP4 is limited by our overall understanding of protein sorting. For

instance, GP4 was proven effective for SCL predictions in Acti-

nobacteria, but it cannot predict the outer membrane proteins

of this group. Only PsortB 3.0 can predict such outer membrane

proteins, but only through a homology-based approach, as there

is currently no other method or tool to detect this class of

proteins. GP4 will thus predict Actinobacterial outer membrane

proteins as secreted proteins, and it will remain a task for the

user to perform further analyses to correctly assign their SCL.

Altogether, we anticipate that experienced users will find GP4

applicable also for SCL predictions in other less-studied organ-

isms, such as Tenericutes, but due to the current lack of proteins

with known localization we have not tested this.

Particular attention should be attributed to the development

of SCL prediction tools. While various tools have thus far been

developed, none of them proved to be truly superior. Therefore,

we advocate a paradigm shift in the development of SCL predic-

tors. It was already known that meta-predictors perform better

than single-purpose predictors [57, 62–64], because the meta-

predictors exploit specific strengths while compensating for

weaknesses of the individual tools. Yet, few advancements have

been made in this direction, and no meta-predictor webserver

for Gram-positive was thus far available. At least in prokaryotes,

a stronger effort in developing sorting signal detectors, analo-

gous to SignalP, should be made. In this regard also, the usability

and parsability should be taken into account. This will lead to

the creation of tools with standalone versions that do not rely

exclusively on centralized webservers, and with standardized

outputs that are easy to programmatically read and parse. These

are prerequisites to develop better and more efficient meta-

predictors, which could even be presented in a modular form

with different tools being loaded, depending on the scope or

source of the query. With these premises, the future develop-

ment of SCL predictors may be brought to superior levels, as

was achieved for the other two classes of functional annotation

[65–69], and in other fields [70, 71].

Key Points

• Multiple methods for protein subcellular localization

prediction are available,with different advantages and

disadvantages depending on the origin of the query

sequence.
• We propose to combine multiple single-feature pre-

dictors to mimic protein sorting within Gram-positive

bacterial cells. This approach is knowledge-based and

relies on our current understanding of prokaryotic

biology, but not on prior knowledge of closely related

organisms.
• GP4 is the first tool, which encompasses the capabil-

ity to predict: (1) non-canonically secreted proteins;

(2) lipoproteins, (3) cell-wall binding and interacting

domains.
• When benchmarked against other subcellular local-

ization prediction tools, the presented GP4 outper-

forms the other tools. In addition, GP4 provides extra

information regarding the subcellular localization of

query proteins, provides all data used to draw such

conclusion and allows for a re-interpretation of results

by experienced users.
• Awebserver running GP4 is available at http://gp4.hpc.

rug.nl/.

Supplementary Data

Supplementary data are available online at https://academic.

oup.com/bib.

Data availability

The dataset used in this study, as described in the Dataset

paragraph, is available as Supplementary Data. IDs to

UniProt resources are referred to throughout the text.
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Code availability

In addition to the webserver, a standalone version of GP4 is

available at https://github.com/grassoste/GP4_standalone.

Acknowledgments

We would like to thank the developers of all prediction

tools mentioned in this paper. Without the software they

developed, the presented GP4 tool could not exist. We also

thank the team of CIT, in particular Cristian Marocico, Egon

Rijpkema and Fokke Dijkstra, who supported us in server

implementation.

Funding

This work was supported by the European Union’s Hori-

zon 2020 Program, Marie Skłodowska-Curie Actions (MSCA),

under REA grant agreement no. 642836.

References

1. Gardy JL, Brinkman FSL. Methods for predicting bacte-

rial protein subcellular localization. Nat Rev Microbiol 2006;

4:741–51.

2. Nielsen H. Protein sorting prediction. Methods Mol Biol

2017;1615:23–57.

3. Nielsen H. Predicting subcellular localization of proteins

by bioinformatic algorithms. Curr Top Microbiol Immunol

2017;404:129–58.

4. Nielsen H, Tsirigos KD, Brunak S, et al. A brief history of

protein sorting prediction. Protein J 2019;38:200–16.

5. Wan S, Mak M-W. Machine Learning for Protein Subcellular

Localization Prediction. Berlin: de Gruyter, 2015.

6. Dönnes P, Höglund A. Predicting protein subcellular local-

ization: past, present, and future. Genomics Proteomics Bioin-

formatics 2004;2:209–15.

7. Nakai K, Kanehisa M. Expert system for predicting protein

localization sites in gram-negative bacteria. Proteins Struct

Funct Genet 1991;11:95–110.

8. Jones CE, Brown AL, Baumann U. Estimating the annotation

error rate of curated GO database sequence annotations.

BMC Bioinformatics 2007;8:170.

9. Perdigão N, Heinrich J, Stolte C, et al. Unexpected fea-

tures of the dark proteome. Proc Natl Acad Sci U S A

2015;112:15898–903.

10. Valencia A. Automatic annotation of protein function. Curr

Opin Struct Biol 2005;15:267–74.

11. KumarD,KumarMondal A,KutumR, et al.Proteogenomics of

rare taxonomic phyla: a prospective treasure trove of protein

coding genes. Proteomics 2016;16:226–40.

12. Lobb B, Tremblay BJM, Moreno-Hagelsieb G, et al. An assess-

ment of genome annotation coverage across the bacterial

tree of life.Microb Genomics 2020;6:e000341.

13. Gilks WR, Audit B, De Angelis D, et al.Modeling the percola-

tion of annotation errors in a database of protein sequences.

Bioinformatics 2002;18:1641–9.

14. Gilks WR, Audit B, De Angelis D, et al. Percolation of

annotation errors through hierarchically structured protein

sequence databases.Math Biosci 2005;193:223–34.

15. Imai K, Nakai K. Prediction of subcellular locations of pro-

teins: where to proceed? Proteomics 2010;10:3970–83.

16. Nair R, Rost B. Sequence conserved for subcellular localiza-

tion. Protein Sci 2009;11:2836–47.

17. Addou S, Rentzsch R, Lee D, et al.Domain-based and family-

specific sequence identity thresholds increase the levels

of reliable protein function transfer. J Mol Biol 2009;387:

416–30.

18. Devos D, Valencia A. Practical limits of function prediction.

Proteins Struct Funct Bioinforma 2000;41:98–107.

19. Yu NY,Wagner JR, Laird MR, et al. Sequence analysis PSORTb

3.0: improved protein subcellular localization prediction

with refined localization subcategories and predictive capa-

bilities for all prokaryotes. 2010;26:1608–15.

20. Yu C-S, Chen Y-C, Lu C-H, et al. Prediction of protein sub-

cellular localization. Proteins Struct. Funct. Bioinformatics

2006;64:643–51.

21. Xiao X, Cheng X, Chen G, et al. pLoc_bal-mGpos: predict

subcellular localization of gram-positive bacterial proteins

by quasi-balancing training dataset and PseAAC. Genomics

2019;111:886–92.

22. Lu Z, Szafron D, Greiner R, et al. Predicting subcellular

localization of proteins using machine-learned classifiers.

Bioinformatics 2004;20:547–56.

23. Danchin A, Ouzounis C, Tokuyasu T, et al. No wisdom in

the crowd: genome annotation in the era of big data -

current status and future prospects. Microb Biotechnol 2018;

11:588–605.

24. Promponas VJ, Iliopoulos I, Ouzounis CA. Annotation incon-

sistencies beyond sequence similarity-based function pre-

diction – phylogeny and genome structure. Stand Genomic Sci

2015;10:108.

25. Kyrpides NC, Ouzounis CA. Errors in genome reviews. Science

1998;281:1457.

26. Pallen M, Wren B, Parkhill J. Going wrong with confidence’:

misleading sequence analyses of CiaB and ClpX. Mol Micro-

biol 1999;34:195–5.

27. Krishnappa L, Dreisbach A, Otto A, et al. Extracytoplasmic

proteases determining the cleavage and release of secreted

proteins, lipoproteins, and membrane proteins in Bacillus

subtilis. J Proteome Res 2013;12:4101–10.

28. DesvauxM,HébraudM,Talon R, et al.Secretion and subcellu-

lar localizations of bacterial proteins: a semantic awareness

issue. Trends Microbiol 2009;17:139–45.

29. Megrian D, Taib N, Witwinowski J, et al. One or two mem-

branes? Diderm Firmicutes challenge the gram-positive/

gram-negative divide.Mol Microbiol 2020;113:659–71.

30. Zuber BB, Haenni M, Ribeiro T, et al. Granular layer in the

Periplasmic space of gram-positive bacteria and fine struc-

tures of enterococcus gallinarum and Streptococcus gor-

donii septa revealed by Cryo-electronmicroscopy of vitreous

sections. J Bacteriol 2006;188:6652–60.

31. Horton P, Mukai Y, Nakai K. Protein subcellular localization

prediction. Pract Bioinformatician 2004;193–216.

32. Danchin A, Fang G. Unknown unknowns: essential

genes in quest for function. Microb Biotechnol 2016;9:

530–40.

33. Nakai K, Kanehisa M. A knowledge base for predict-

ing protein localization sites in eukaryotic cells. Genomics

1992;14:897–911.

34. Petersen TN, Brunak S, Von Heijne G, et al. SignalP 4.0: dis-

criminating signal peptides from transmembrane regions.

Nat Methods 2011;8:785–6.

35. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, et al.

SignalP 5.0 improves signal peptide predictions using deep

neural networks. Nat Biotechnol 2019;37:420–3.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa302/5998864 by U

niversity of G
roningen user on 07 April 2021



GP4: an integrated Gram-Positive Protein Prediction Pipeline for subcellular localization mimicking bacterial sorting 9

36. Käll L, Krogh A, Sonnhammer ELL. A combined Transmem-

brane topology and signal peptide prediction method. J Mol

Biol 2004;338:1027–36.

37. Juncker AS, Willenbrock H, von Heijne G, et al. Prediction of

lipoprotein signal peptides in gram-negative bacteria.Protein

Sci 2003;12:1652–62.

38. Rahman O, Cummings SP, Harrington DJ, et al. Methods

for the bioinformatic identification of bacterial lipoproteins

encoded in the genomes of gram-positive bacteria. World J

Microbiol Biotechnol 2008;24:2377–82.

39. Bendtsen JD, Nielsen H, Widdick D, et al. Prediction of twin-

arginine signal peptides. BMC Bioinformatics 2005;6:167.

40. Krogh A, Larsson B, von Heijne G, et al. Predicting trans-

membrane protein topology with a hidden Markov model:

application to complete genomes. J Mol Biol 2001;305:567–80.

41. Mitchell AL, Attwood TK, Babbitt PC, et al. InterPro in 2019:

improving coverage, classification and access to protein

sequence annotations. Nucleic Acids Res 2019;47:D351–60.

42. Jones P, Binns D,ChangH-Y, et al. InterProScan 5: Genome-Scale

Protein Function Classification 2014;30:1236–40.

43. Prot comp B-predict the sub-cellular localization of bacte-

rial proteins. Available at: http://www.softberry.com/berry.

phtml?topic=pcompb&group=programs&subgroup=proloc.

44. Mohammadi S, Mostafavi-Pour Z, Ghasemi Y, et al. In sil-

ico analysis of different signal peptides for the excre-

tory production of recombinant NS3-GP96 fusion protein in

Escherichia coli. Int J Pept Res Ther 2019;25:1279–90.

45. Taheri-Anganeh M, Khatami SH, Jamali Z, et al. In silico

analysis of suitable signal peptides for secretion of a recom-

binant alcohol dehydrogenasewith a key role in atorvastatin

enzymatic synthesis.Mol Biol Res Commun 2019;8:17–26.

46. UniProt Consortium. UniProt: a worldwide hub of protein

knowledge. Nucleic Acids Res 2019;47:D506–15.

47. Huang Y, Niu B, Gao Y, et al. CD-HIT suite: a web server for

clustering and comparing biological sequences. Bioinformat-

ics 2010;26:680–2.

48. Xiao X, Cheng X, Su S, et al. pLoc-mGpos: incorporate key

gene ontology information into general PseAAC for pre-

dicting subcellular localization of gram-positive bacterial

proteins. Nat Sci 2017;09:330–49.

49. Chen JM, Zhang M, Rybniker J, et al. Mycobacterium

tuberculosisEspB binds phospholipids and mediates EsxA-

independent virulence.Mol Microbiol 2013;89:1154–66.

50. McLaughlin B, Chon JS, MacGurn JA, et al. A mycobacterium

ESX-1-secreted virulence factor with unique requirements

for export. PLoS Pathog 2007;3:1051–61.

51. Croux C, Canard B, Goma G, et al. Autolysis of clostridium

acetobutylicum ATCC 824. J Gen Microbiol 1992;138:861–9.

52. Goldberg T, Hecht M, Hamp T, et al. LocTree3 prediction of

localization. Nucleic Acids Res 2014;42:W350–5.

53. Savojardo C, Martelli PL, Fariselli P, et al. BUSCA: an integra-

tiveweb server to predict subcellular localization of proteins.

Nucleic Acids Res 2018;46:459–66.

54. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, et al.

DeepLoc: prediction of protein subcellular localization using

deep learning. Bioinformatics 2017;33:3387–95.

55. Hochreiter S, Heusel M, Obermayer K. Fast model-based pro-

tein homology detection without alignment. Bioinformatics

2007;23:1728–36.

56. Kho CW, Park SG, Cho S, et al. Confirmation of Vpr as a fibri-

nolytic enzyme present in extracellular proteins of Bacillus

subtilis. Protein Expr Purif 2005;39:1–7.
57. Magnus M, Pawlowski M, Bujnicki JM. MetaLocGramN: a

meta-predictor of protein subcellular localization for gram-

negative bacteria. Biochim Biophys Acta Proteins Proteomics

1824;2012:1425–33.

58. Orioli T, Vihinen M. Benchmarking subcellular localization

and variant tolerance predictors on membrane proteins.

BMC Genomics 2019;20:547.

59. Sperschneider J, Catanzariti A-M,DeBoer K, et al. LOCALIZER:

subcellular localization prediction of both plant and effector

proteins in the plant cell. Sci Rep 2017;7:44598.

60. Zhou H, Yang Y, Shen H-B. Hum-mPLoc 3.0: predic-

tion enhancement of human protein subcellular localiza-

tion through modeling the hidden correlations of gene

ontology and functional domain features. Bioinformatics

2017;33:843–53.

61. Paramasivam N, Linke D, Clubsub P. Cluster-based subcel-

lular localization prediction for gram-negative bacteria and

archaea. Front Microbiol 2011;2:218.

62. Hooper CM, Tanz SK, Castleden IR, et al. Data and text

mining SUBAcon: a consensus algorithm for unifying the

subcellular localization data of the Arabidopsis. Proteome

2014;30:3356–64.

63. Lertampaiporn S, Nuannimnoi S, Vorapreeda T, et al. PSO-

LocBact: a consensus method for optimizing multiple clas-

sifier results for predicting the subcellular localization of

bacterial proteins. Biomed Res Int 2019;5617153:2019.

64. Liu J, Kang S, Tang C, et al. Meta-prediction of protein sub-

cellular localization with reduced voting. Nucleic Acids Res

2007;35(15):e96. doi: 10.1093/nar/gkm562.

65. Friedberg I, Harder T, Godzik A. JAFA: a protein function

annotation meta-server. Nucleic Acids Res 2006;34:W379–81.

66. Griesemer M, Kimbrel JA, Zhou CE, et al. Combining multiple

functional annotation tools increases coverage of metabolic

annotation. BMC Genomics 2018;19:948.

67. Pereira C, Denise A. Lespinet O. ameta-approach for improv-

ing the prediction and the functional annotation of ortholog

groups. BMC Genomics 2014;15(Suppl 6):S16.

68. Reijnders MJMF, Crowd GO. A wisdom of the crowd-based

gene ontology annotation tool. bioRxiv 2019;731596.

69. Zielezinski A, Dziubek M, Sliski J, et al. ORCAN - a web-

based meta-server for real-time detection and functional

annotation of orthologs. Bioinformatics 2017;33:1224–6.

70. Kara A, Vickers M, Swain M, et al. Genome-wide pre-

diction of prokaryotic two-component system networks

using a sequence-based meta-predictor. BMC Bioinformatics

2015;16:1–9.

71. Manavalan B,Basith S, Shin TH, et al.MAHTPred: a sequence-

based meta-predictor for improving the prediction of anti-

hypertensive peptides using effective feature representa-

tion. Bioinformatics 2019;35:2757–65.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa302/5998864 by U

niversity of G
roningen user on 07 April 2021


