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a b s t r a c t

In this paper, we present an empirical balanced truncation method for nonlinear systems whose input
vector fields are constants. First, we define differential reachability and observability Gramians. They
are matrix valued functions of the state trajectory (i.e. the initial state and input trajectory), and it
is difficult to find them as functions of the initial state and input. The main result of this paper is to
show that for a fixed state trajectory, it is possible to compute the values of these Gramians by using
impulse and initial state responses of the variational system. Therefore, balanced truncation is doable
along the fixed state trajectory without solving nonlinear partial differential equations, differently from
conventional nonlinear balancing methods. We further develop an approximation method, which only
requires trajectories of the original nonlinear systems.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Along with the development of new technologies, control sys-
ems are becoming more complex and large-scale. To capture sys-
ems’ components which are essential for analysis and controller
esign, model order reduction techniques have been established,
ee e.g. Antoulas (2005). In systems and control, typical meth-
ds are balanced truncation and moment matching (Antoulas,
005), (Zhou, Doyle, & Glover, 1996, Chapters 7, 8). Both of
hem have been extended to nonlinear systems (Astolfi, 2010;
esselink, van de Wouw, Scherpen, & Nijmeijer, 2014; Fujimoto
Scherpen, 2005; Ionescu & Astolfi, 2016; Kawano & Scherpen,
017b; Scherpen, 1993). In contrast to successive theoretical de-
elopments, nonlinear model reduction methods still have com-
utational challenges, since they require solutions to nonlinear
artial differential equations (PDEs) in general. There are few
apers tackling this challenging problem such as Fujimoto and
subakino (2008), Kawano, Besselink, Scherpen, and Cao (2020),
ewman and Krishnaprasad (2000), Sassano and Astolfi (2014)
nd Scarciotti and Astolfi (2017). As a data-driven model or-
er reduction method, proper orthogonal decomposition (POD)
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(Antoulas, 2005; Holmes, Lumley, Berkooz, & Rowley, 2012) is
often used in practice. However, POD is mainly proposed for
non-control systems.

For linear time-invariant (LTI) systems, POD and balancing
are connected based on the fact that the controllability and ob-
servability Gramians can be computed by using impulse and
initial state responses, respectively. That is, balanced truncation
of LTI systems can be performed by using empirical data. Apply-
ing linear empirical methods to nonlinear systems has attracted
various research interests, see e.g., Condon and Ivanov (2004),
Hahn and Edgar (2002a, 2002b), Himpe (2018), Lall, Marsden, and
Glavaški (2002) andWillcox and Peraire (2002). Such methods are
exploited to reduce the computational complexity of nonlinear
controller design such as model predictive control (Choroszucha,
Sun, & Butts, 2016; Hahn, Kruger, & Edgar, 2002).

However, these empirical methods have been proposed only
around a steady-state because the aforementioned nonlinear bal-
ancing method gives the same reduced order model as the linear
balancing method at a steady-state. For analysis and control of
nonlinear systems, a steady-state is not always important. For
instance, in a trajectory tracking control problem, a reduced order
model around the trajectory could be useful. As another exam-
ple, preserving a limit cycle under model order reduction could
be interesting to research. To study such problems, it is worth
developing empirical nonlinear model reduction methods, which
are also applicable around transient states. Recently, a connection
between POD and nonlinear controllability functions has been
established by Kashima (2016) in a stochastic setting. Empiri-
cal nonlinear observability Gramians have also been proposed
(Krener & Ide, 2009; Powel & Morgansen, 2015). Nevertheless,

https://doi.org/10.1016/j.automatica.2021.109534
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109534&domain=pdf
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either of these two methods deals with both controllability
nd observability Gramians, and there is no direct connection
etween these two works.
In this paper, we propose an empirical balancing method

or nonlinear systems whose input vector fields are constants
y utilizing its variational system. Since the variational system
an be viewed as a linear time-varying (LTV) system along the
rajectory of the nonlinear system, one can extend the concept of
he controllability and observability Gramians of the LTV system
Kawano & Scherpen, 2019a; Verriest & Kailath, 1983). We call
hese extensions the differential reachability and observability
ramians, respectively. They depend on the state trajectory of the
onlinear system. In general, it is not easy to obtain them as func-
ions of the trajectory. Nevertheless, we show that their values
t each fixed trajectory can be computed from the impulse and
nitial state responses of the variational system along this fixed
rajectory. These obtained trajectory-wise Gramians are constant
atrices, and thus one can compute balanced coordinates and a

educed order model in a similar manner as in the LTI case.
The proposed empirical balancing method requires the varia-

ional system model. For large-scale systems, computing it may
e challenging. Therefore, we further develop approximation
ethods, which do not require the variational model. Since the
ariational system is a state space representation of the Fréchet
erivative of an operator defined by the nonlinear system, we use
ts discretization approximation. For the observability Gramian,
imilar approximation methods are found in Krener and Ide
2009), Powel and Morgansen (2015). However, there has been
o corresponding controllability Gramian, which has been a bot-
leneck for developing the corresponding balancing method.

Similar nonlinear balanced realizations are found in flow bal-
ncing (Verriest, 2008; Verriest & Gray, 2000, 2004) and in dif-
erential balancing (Kawano & Scherpen, 2017b). However, they
re not empirical methods and require solutions to nonlinear
DEs, and Kawano and Scherpen (2017b) do not give the concept
f a Gramian. A preliminary version of our work is found in
awano and Scherpen (2017a). In this paper, we further develop
he discretization approximation methods of the variational sys-
ems. Moreover, we newly propose another differential balancing
ethod for a class of nonlinear systems, which only requires the

mpulse responses of the variational system.
The remainder of this paper is organized as follows. In Sec-

ion 2, we provide comprehensive background of linear balanced
runcation to help understanding the whole picture of this paper.
n Section 3, we define the differential reachability and observ-
bility Gramians and then a differentially balanced realization
long a trajectory of the system. In Section 4, we show that the
alue of the differential reachability/observability Gramian can be
omputed by using the impulse/initial state responses of the vari-
tional system. Then, we develop approximation methods, which
nly require empirical data of the original nonlinear system. In
ection 5, we propose another differential balancing method,
hich is further computationally oriented. In Section 6, an ex-
mple demonstrates the proposed method. Finally in Section 7,
e conclude the paper by summarizing our results.

. Review of linear empirical balancing

In this section, we summarize the results for balanced trunca-
ion of linear time-invariant (LTI) systems (for more details, see,
.g. Antoulas, 2005; Willcox & Peraire, 2002) to help understand-
ng the whole picture of this paper.

Consider the following SISO LTI system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

2

where x(t) ∈ Rn and u(t), y(t) ∈ R; A ∈ Rn×n, B ∈ Rn, and
C⊤

∈ Rn. Its general solution is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

BeA(t−τ )u(τ )dτ . (1)

From the general solution, the controllability and observability
Gramians are defined by

Gc(t0, tf ) :=

∫ tf

t0

eA(t−t0)BB⊤eA
⊤(t−t0)dt, (2)

Go(t0, tf ) :=

∫ tf

t0

eA
⊤(t−t0)C⊤CeA(t−t0)dt. (3)

They both are positive definite for the finite interval [t0, tf ], tf >
t0 if and only if the system is controllable and observable.

Let us assume that the system is exponentially stable, control-
lable, and observable. When t0 = 0 and tf → ∞, it is known
that the eigenvalues of the product Go(0,∞)Gc(0,∞) correspond
to the Hankel singular values of the linear system. Furthermore,
there is a change of coordinates z = Tx such that

TGc(0,∞)T⊤
= T−⊤Go(0,∞)T−1

= diag{σ1, . . . , σn}, σi ≥ σi+1,

where TGc(0,∞)T⊤ and T−⊤Go(0,∞)T−1 are the controllability
and observability Gramians in the z-coordinates; see e.g. Antoulas
(2005, Lemma 7.3). In these coordinates, the elements zi are
sorted in descending order corresponding to the Hankel singular
values σi without loss of generality. If σi > σi+1, zi is more impor-
tant in capturing the input–output behavior than zi+1. Therefore,
a reduced order model is constructed by truncating the state
variables corresponding to small Hankel singular values.

It is possible to compute the controllability/observability
Gramian based on the impulse/initial state responses. From (1),
the impulse response of the linear system is xImp(t) = eA(t−t0)B.
From (2), one notices that

Gc(t0, tf ) =

∫ tf

t0

xImp(t)x⊤

Imp(t)dt.

Next, let eni ∈ Rn, i = 1, . . . , n denote the standard basis,
i.e., whose ith element is 1, and the other elements are zero, and
let yIs,i(t) denote the corresponding output response. Then, we
have

yIs(t) :=
[

yIs,1(t) · · · yIs,n(t)
]

= CeA(t−t0).

Moreover, from (3), one notices that

Gc(t0, tf ) =

∫ tf

t0

y⊤

Is (t)yIs(t)dt.

Therefore, balanced truncation can be achieved based on empir-
ical data. In this paper, we consider to extend these empirical
results to nonlinear systems.

3. Differential balancing along a trajectory

We present an empirical balancing method for a nonlinear
system whose input vector fields are constants by using its vari-
ational system; the reason considering such a vector field is
elaborated in Remark 4.1 later. The proposed empirical balancing
method is based on two Gramians, which we call differential
reachability and observability Gramians. They can be viewed as
extensions of Gramians for linear time-varying (LTV) systems
(Kawano & Scherpen, 2019a; Verriest & Kailath, 1983) because
the variational system can be viewed as an LTV system along a

trajectory of the nonlinear system.
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.1. Preliminaries

Consider the following nonlinear system whose input vector
ields are constants:

:

{
ẋ(t) = f (x(t)) + Bu(t),
y(t) = h(x(t)),

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and B ∈ Rn×m. Functions
f : Rn

→ Rn and h : Rn
→ Rp are of class C2. Let ϕt−t0 (x0, u)

denote the state trajectory x(t) of the system Σ starting from
x(t0) = x0 ∈ Rn for each choice of u ∈ Lm2 [t0,∞). Note that since f
is of class C2, if u is also of class C2, then the solution ϕt−t0 (x0, u)
s a class C2 function of (t, x0) as long as it exists. Throughout the
aper, we assume that (ϕt−t0 (x0, u), u(t)) are of class C2 in a finite

time interval [t0, tf ].
In our method, we use the prolonged system (Cortés, van der

Schaft, & Crouch, 2005) of the system Σ , which consists of the
original system Σ and its variational system dΣ along x(t) =

t−t0 (x0, u),

dΣ :

⎧⎪⎪⎨⎪⎪⎩
δẋ(t) :=

dδx(t)
dt

=
∂ f (ϕt−t0 )
∂ϕt−t0

δx(t) + Bδu(t),

δy(t) =
∂h(ϕt−t0 )
∂ϕt−t0

δx(t),

here δx(t) ∈ Rn, δu(t) ∈ Rm and δy(t) ∈ Rp. In the time
nterval [t0, tf ], the solution δx(t) exists for any bounded input
u(t) because the variational system dΣ is an LTV system along
t−t0 (x0, u).
Since the variational system is an LTV system, it is possible

o extend the aforementioned linear empirical balancing method
o a nonlinear system via the variational system. To this end, we
ompute the solution δx(t) of dΣ . It follows from the chain rule
hat
d
dt
∂ϕt−τ (xτ , u)

∂xτ
=

∂

∂xτ

dϕt−τ (xτ , u)
dt

=
∂ f (ϕt−τ (xτ , u))

∂xτ

=
∂ f (ϕt−τ (xτ , u))

∂ϕt−τ

∂ϕt−τ (xτ , u)
∂xτ

, (4)

where in the first equality, the orders of derivatives are commuta-
tive because ϕt−τ (xτ , u) is a class C2 function of (t, xτ ). Therefore,
∂ϕt−τ (xτ , u)/∂xτ is the transition matrix of ∂ f (ϕt−τ )/∂ϕt−τ as an
LTV system. From the general solution of an LTV system, the
solution δx(t) to the variational system dΣ starting from δx(t0) =

δx0 with input δu(t) along the trajectory ϕt−t0 (x0, u) is obtained
as

δx(t) =
∂ϕt−t0 (x0, u)

∂x
δx0 +

∫ t

t0

∂ϕt−τ (x(τ ), u)
∂x

Bδu(τ )dτ . (5)

or the analysis, furthermore, we use the corresponding output
o δu ≡ 0. Substituting (5) with δu ≡ 0 into the output equation
f dΣ yields

y(t) =
∂h(ϕt−t0 (x0, u))

∂ϕt−t0

∂ϕt−t0 (x0, u)
∂x

δx0. (6)

The variational system is used to evaluate the sensitivity of the
system Σ . Consider a pair of initial states (x0, x′

0) ∈ Rn
× Rn and

a pair of inputs (u(t), u′(t)). For the paths γ (s) = (1 − s)x0 + sx′

0
and ν(t, s) = (1 − s)u(t) + su′(t), one notices that δx(t) =

∂φt−t0 (γ (s), ν(t, s))/∂s and δu(t) = ∂ν(t, s)/∂s satisfy the dy-
namics of the variational system. Note that ∂φt−t0 (γ (s), ν(t, s))/∂s
evaluates the sensitivity of φt−t0 (γ (s), ν(t, s)) with respect to s.
Especially for s = 0, the sensitivity of φt−t0 (x0, u) can be evalu-
ated. The motivation of using the variational system is to develop
a model reduction method based on the sensitivity.
3

3.2. Differential balanced realization

Inspired by results for LTI or LTV systems (Kawano & Scherpen,
2019a; Verriest & Kailath, 1983), we define the differential reach-
ability and observability Gramians from the variational systems
as follows.

Definition 3.1. For given x0 ∈ Rn and u ∈ Lm2 [t0, tf ], the
differential reachability Gramian is defined as

GR(t0, tf , x0, u) :=

∫ tf

t0

∂ϕt−t0

∂x
B
(
∂ϕt−t0

∂x
B
)⊤

dt, (7)

where the arguments of ϕt−t0 are (x0, u). ◁

efinition 3.2. For given x0 ∈ Rn and u ∈ Lm2 [t0, tf ], the
ifferential observability Gramian is defined as

O(t0, tf , x0, u)

:=

∫ tf

t0

(
∂h(ϕt−t0 )
∂ϕt−t0

∂ϕt−t0

∂x

)⊤
∂h(ϕt−t0 )
∂ϕt−t0

∂ϕt−t0

∂x
dt, (8)

where the arguments of ϕt−t0 are (x0, u). ◁

The differential Gramians exist in [t0, tf ] from the assumption
hat the solution ϕt−t0 (x0, u) exists and is of class C2 in [t0, tf ]. In
he LTI case, the Gramians defined by (7) and (8) respectively are
he controllability Gramian (2) and observability Gramian (3).

In a similar manner as a standard procedure, one can define
balanced realization between the differential reachability and
bservability Gramians. Since these differential Gramians are de-
ined as functions of ϕ(x0, u), we define our balanced realization
rajectory-wise as follows.

efinition 3.3. Let the differential reachability Gramian GR(t0,
f , x0, u) ∈ Rn×n and differential observability Gramian GO(t0, tf ,
x0, u) ∈ Rn×n at fixed ϕt−t0 (x0, u) be positive definite. A real-
ization of the system Σ is said to be a differentially balanced
realization along ϕt−t0 (x0, u) if there exists a constant diagonal
matrix

Λ = diag{σ1, . . . , σn}, σ1 ≥ · · · ≥ σn > 0

such that GR(t0, tf , x, u) = GO(t0, tf , x, u) = Λ. ◁

It is possible to show that there always exists a differentially
balanced realization along ϕt−t0 (x0, u) if the differential Gramians
are positive definite. The positive definiteness of the differential
reachability Gramian and differential observability Gramian have
relations with local strong accessibility and local observability of
the nonlinear system Σ , respectively; for more details, see the
arXiv version of this paper (Kawano & Scherpen, 2019b).

Theorem 3.4. Suppose that the differential Gramians GR(t0, tf ,
x0, u) and GO(t0, tf , x0, u) are positive definite at fixed ϕt−t0 (x0, u).
Then, there exists a non-singular matrix Tϕ ∈ Rn×n which achieves

TϕGR(t0, tf , x0, u)T⊤

ϕ = T−⊤

ϕ GO(t0, tf , x0, u)T−1
ϕ = Λ. (9)

That is, a differentially balanced realization along ϕt−t0 (x0, u) is
obtained after a coordinate transformation z = Tϕx.

Proof. Since the values GR(t0, tf , x0, u) and GO(t0, tf , x0, u) are
constants and positive definite, one can find Tϕ and Λ satisfy-
ing (9) in a similar manner as Antoulas (2005, Lemma 7.3). After
the change of coordinates z = Tϕx, it follows that{

ż(t) = Tϕ f (T−1
ϕ z(t)) + TϕBu(t),

−1
y(t) = h(Tϕ z(t)),
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nd its solution is z(t) = Tϕϕt−t0 (T
−1
ϕ z0, u). From their defini-

tions in (7) and (8), the differential reachability and observability
Gramians in the new coordinates are obtained as TϕGR(t0, tf ,
T−1
ϕ z0, u)T⊤

ϕ and T−⊤
ϕ GO(t0, tf , T−1

ϕ z0, u)T−1
ϕ , respectively. From

z0 = Tϕx0 and (9), the system is differentially balanced in
the z-coordinates. □

Now, we consider the balanced coordinates z = Tϕx under the
assumption σr > σr+1. Correspondingly, we divide the system in
the z-coordinates into⎧⎪⎨⎪⎩

[
ż1(t)
ż2(t)

]
=

[
f̄1(z1(t), z2(t))

f̄2(z1(t), z2(t))

]
+

[
B̄1

B̄2

]
u,

y(t) = h̄(z1(t), z2(t)),

where z1(t) ∈ Rr and z2(t) ∈ Rn−r . This system is differentially
balanced according to Theorem 3.4. A reduced order model is
constructed as{

żr (t) = f̄1(zr (t), 0) + B̄1u,
yr (t) = h̄(zr (t), 0).

Clearly, a reduced order model depends on a trajectory ϕt−t0 and
time interval [t0, tf ].

4. Empirical methods

4.1. Empirical differential gramians

In the previous section, we defined a differentially balanced
realization along a fixed trajectory ϕt−t0 (x0, u). For computing the
differential Gramians as functions of ϕt−t0 (x0, u), or equivalently
(x0, u), one needs to solve nonlinear partial differential equations
(PDEs) as for similar nonlinear balancing methods (Kawano &
Scherpen, 2017b; Verriest, 2008; Verriest & Gray, 2000, 2004)
in general. Hereafter, we focus on computing the values of the
differential Gramians trajectory-wise.

First, we show that the differential reachability Gramian
GR(t0, tf , x0, u) along a fixed trajectory ϕt−t0 (x0, u) can be com-
puted by using an impulse response of the variational system
dΣ . Let δD(·) be Dirac’s delta function, and let δxImp,i(t) be the
impulse response of the variational system dΣ along the trajec-
tory ϕt−t0 (x0, u) with δu(t) = emi δD(t − t0), where emi ∈ Rm is the
standard basis. Then, substituting δx0 = 0 and u(t) = emi δD(t − t0)
into (5) yields

δxImp,i(t) =
∂ϕt−t0 (x0, u)

∂x
Bi, (10)

here Bi is the ith column vector of B. Note that δxImp,i(t) exists
as long as ϕt−t0 (x0, u) exists. From (7), we obtain

GR(t0, tf , x0, u) =

∫ tf

t0

δxImp(t)δx⊤

Imp(t)dt, (11)

δxImp(t) :=
[
δxImp,1(t) · · · δxImp,m(t)

]
.

Therefore, for each x0 ∈ Rn and u ∈ Lm2 [t0, tf ], the value of the
differential reachability Gramian GR(t0, tf , x0, u) is obtained by
using the impulse response of dΣ .

Remark 4.1. The equality (10) does not hold if B is not constant.
Indeed, for the system ẋ = f (x, u) and its trajectory ψt−t0 (x0, u),
the differential reachability Gramian is

ḠR(t0, tf , x0, u)

=

∫ tf

t0

∂ψt−t0

∂x
∂ f (ψt−t0 , u)

∂u

(
∂ψt−t0

∂x
∂ f (ψt−t0 , u)

∂u

)⊤

dt.
4

However, the impulse response of the corresponding variational
system is

δx̄Imp(t)

=

∫ t

t0

∂ψt−τ (x(τ ), u)
∂x

∂ f (ψτ−t0 (x0, u), u)
∂u

δD(τ − t0)dτ

=
∂ψt−t0 (x0, u)

∂x
∂ f (x0, u(t0))

∂u
.

The reachability Gramian and impulse response do not coincide
with each other for non-constant B. ◁

Next, we show that the differential observability Gramian
O(t0, tf , x0, u) along a fixed trajectory ϕt−t0 (x0, u) can be com-
uted by using initial state responses. By substituting δx0 = eni
nd δu = 0 into (6), one obtains the initial output response of
Σ along ϕt−t0 (x0, u) as

yIs,i(t) =
∂h(ϕt−t0 (x0, u))

∂x
∂ϕt−t0 (x0, u)

∂x
eni , (12)

From (8), we obtain

GO(t0, tf , x0, u) =

∫ tf

t0

δy⊤

Is (t)δyIs(t)dt,

δyIs(t) :=
[
δyIs,1(t) · · · δyIs,n(t)

]
.

Thus, for each x0 ∈ Rn and u ∈ Lm2 [t0, tf ], the value of the
differential observability Gramian GO(t0, tf , x0, u) is obtained by
using the initial state responses of dΣ .

In summary, the value of the differential reachability/
observability Gramian for given x0 and u is obtained by com-
puting impulse/initial state responses of a variational system
dΣ along the trajectory ϕt−t0 (x0, u). Therefore, trajectory-wise
differential balanced truncation is doable based on empirical data.

4.2. Approximation of the Fréchet Derivative

The empirical approach in the previous subsection requires
the variational system model in addition to the original system
model. If the original nonlinear systems are large-scale, comput-
ing the variational system model may need an effort. Therefore,
we present approximation methods not requiring the variational
system model.

To be self-contained, we first introduce the Fréchet deriva-
tive of a nonlinear operator. The system Σ induces an operator
from (x0, u) ∈ Rn

×L2[t0, tf ] to (xf , y) ∈ Rn
×L2[t0, tf ]. With some

abuse of notation, Σ denotes the operator (xf , y) = Σ(x0, u). A
linear operator dΣ(x0,u) is said to be the Fréchet derivative of the
operator Σ if for each x0 ∈ Rn and u ∈ L2[t0, tf ], the following
limit exists

dΣ(x0,u)(δx0, δu)

:= lim
s→0

Σ(x0 + sδx0, u + sδu) −Σ(x0, u)
s

for all δx0 ∈ Rn and δu ∈ L2[t0, tf ]. From its definition, the
réchet derivative of the nonlinear operator Σ is given by the

variational system dΣ . Therefore, by using an approximation
f the Fréchet derivative, one can approximately compute the
mpulse or initial state responses of the variational systems. A
imple approximation is

Σ(x0,u)(δx0, δu)

≈ dΣapp
(x0,u)

(δx0, δu) :=
Σ(x0 + sδx0, u + sδu) −Σ(x0, u)

s
.

Since the nonlinear operator Σ(x0, u) is given by the system
Σ , a state space representation of the discretized approximation
dΣapp

(x0,u)
(δx0, δu) is obtained as follows.

dΣapp (δx , δu) :
(x0,u) 0
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Rn
× Lm2 [t0, tf ] × Rn

× Lm2 [t0, tf ] → Rn
× Lp2[t0, tf ],

(x0, u, δx0, δu) ↦→ (xvf , yv),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t)) + Bu(t),
x(t0) = x0, u(t) = u(t)

ẋ′(t) = f (x′(t)) + Bu′(t),
x′(t0) = x0 + sδx0, u′(t) = u(t) + sδu(t)

xvf =
x′(tf ) − x(tf )

s
, yv(t) =

h(x′(t)) − h(x(t))
s

.

herefore, δx(t) and δy(t) can be approximately computed as
x(t) ≈ (x′(t) − x(t))/s and δy(t) ≈ yv(t), where δx0 and δu

coincide with the differences of a pair of the initial states (x′

0 −

0)/s and a pair of inputs (u′
− u)/s, respectively.

From the above discussion, an approximation of the impulse
esponse (10) is obtained as

xImp,i(t) ≈
x′(t) − x(t)

s
, δx0 = 0, δu = emi δD(t − t0),

i = 1, 2, . . . ,m.

Similar to the reachability Gramian, we need m + 1 trajectories
of the original nonlinear system in this computation by chang-
ing x′(t) depending on the choice of δu. Differently from the
variational system dΣ , the solution x′(t) to the impulse input
may not exist. According to Orlov (2000), by generalizing the
concept of solutions, impulse responses for nonlinear systems
can be analyzed. The discussions on the existence of impulse
responses can be avoided in practice and numerical simulations
if the impulse input is approximated by a bounded input such as

δu(t) =

{
1/∆t, t ∈ [t0, t0 +∆t]
0, t /∈ [t0, t0 +∆t] , ∆t > 0. (13)

For a bounded input, the solution x′(t) exists at least in a short
time interval.

Next, an approximation of the initial state response (12) is

δyIs,i(t) ≈ yv(t), δx0 = eni , δu = 0, i = 1, . . . , n.

In this computation, we need n + 1 trajectories of the origi-
nal nonlinear system. In summary, the differential reachability
and observability Gramians can be approximately computed by
using n + m + 1 trajectories of the original nonlinear system,
where x(t) is the same for the approximations of both differential
reachability and observability Gramians. An advantage of the
empirical method is that even if one does not have an exact
model of a real-life system, one only needs the impulse and initial
state responses. In other words, it may be possible to compute
an approximation of a differentially balanced realization along
ϕt−t0 (x0, u) by empirical data. In this paper, the forward approx-
imation of the Fréchet derivative is used for ease of explanation.
However, other approximation methods are also applicable, and
performance may differ per approximation method. Therefore, it
may be relevant to compare a few approximation methods.

By applying our empirical methods, a change of coordinates
z = Tϕx for the balanced realization is obtained, and Tϕ depends
on ϕt−t0 (x0, u). Still it is challenging to construct a reduced order
model, which gives a good approximation for all trajectories be-
cause this essentially requires solving nonlinear PDEs. A potential
solution to this problem is to apply function fitting techniques,
see e.g. Rojas (2013). We first generate Tϕ for different choices of
ϕt−t0 (xi, ui), i = 1, . . . , r and then collect pairs of data (zi, xi) =

(Tϕt−t0 (xi,ui)
xi, xi). By using a function fitting technique, we con-

struct a function ψ approximately satisfying zi = ψ(xi) for all i =

1, . . . , r . One can use the constructed z = ψ(x) as a change
of nonlinear coordinates and then achieve model reduction in
the new coordinates. The obtained reduced order model is ex-
pected to give a good approximation at least around ϕ (x , u )
t−t0 i i

5

used for the computation of Tϕ . We can take arbitrary many
trajectories, thus resulting in an approximate global method for
model reduction. Arbitrary existing function fitting techniques
can be used for constructing a function ψ . However, the obtained
reduced order model can depend on the used function fitting
technique, since there is an approximation error of a function in
general. Investigating the effect of function fitting techniques on
the model reduction is a topic for future research.

Another potential solution to avoid solving nonlinear PDEs is
to employ the basic idea of proper orthogonal decomposition
(Antoulas, 2005; Holmes et al., 2012). First, we compute the sum-
mation of differential reachability and observability Gramians,

GR(t0, tf ) :=
1
r

r∑
i=1

GR(t0, tf , xi, ui),

GO(t0, tf ) :=
1
r

r∑
i=1

GO(t0, tf , xi, ui)

for different choices of ϕt−t0 (xi, ui), i = 1, . . . , r . Second, we
construct a linear change of coordinates which simultaneously
diagonalizes GR(t0, tf ) and GO(t0, tf ), where both are supposed
o be positive definite. We then can apply truncation based on
he simultaneous diagonalization.

.3. Literature comparison

In literature, there are similar nonlinear balancing methods.
e compare our methods with them.
First, another type of differential balancing method (Kawano
Scherpen, 2017b) employs the following differential controlla-
ility and observability functions LC and LO .

C(x0, u, δx0) := inf
δu∈Lm2 (−∞,t0]

x(t0)=x0, u∈L
m
2 (−∞,t0]

δx(t0)=δx0, δx(−∞)=0

1
2

∫ t0

−∞

∥δu(t)∥2dt, (14)

nd

O(x0, δx0) :=
1
2

∫
∞

t0

∥δy(t)∥2dt,

here x(t0) = x0 ∈ Rn, u(t) ≡ 0, δx(t0) = δx0 ∈ Rn, δx(∞) = 0,
nd δu(t) ≡ 0. Note that the differential controllability function
ives the minimum energy to transfer the state of the prolonged
ystem from δx(−∞) = 0 to δx(t0) = δx0 for given x(t0) = x0 and
. Therefore, it depends on x0, u, and δx0. A similar discussion
olds for the differential observability function.
In fact, by using (6) and (8), the differential observability

unction and our differential observability Gramian are directly
elated as

O(x0, u, δx0) = lim
tf →∞

1
2
δx⊤

0 GO(t0, tf , x0, u)δx0.

However, the differential reachability Gramian in (7) and the dif-
ferential controllability function in (14) are different. This corre-
sponds to the difference between reachability and controllability
of LTV systems (Verriest & Kailath, 1983). Reachability is the
property to transfer the state from zero to an arbitrary terminal
state, and controllability is the property to transfer the state
from an arbitrary initial state to zero. Based on the controllability
Gramian of LTV systems, we define the differential controllability
Gramian as

GC(t0, x0, u) :=

∫ t0

−∞

∂ϕt0−τ

∂x
B
(
∂ϕt0−τ

∂x
B
)⊤

dτ ,

where the arguments of ϕt0−τ are (x(τ ), u). If this differential con-
trollability Gramian G (t , x , u) exists and is positive definite, the
C 0 0
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ifferential controllability function LC(x0, u, δx0) can be described
s

C(x0, u, δx0) =
1
2
δx⊤

0 G
−1
C (t0, x0, u)δx0.

he differential controllability Gramian is defined by using a
ackward trajectory of the nonlinear system Σ . In contrast, the
ifferential reachability Gramian is based on a forward trajectory
nd is computationally oriented.
Relating with differential balancing, flow balancing is pro-

osed by Verriest (2008) and Verriest and Gray (2000, 2004). For
low balancing, the reachability and observability Gramians are
efined on different time intervals, and the input is fixed for any
nitial state. Thus, the Gramians for flow balancing are defined as
unctions of the initial states. In contrast, our differential Grami-
ns also depend on the input trajectory in addition to the initial
tate. Moreover, to achieve flow balancing, solutions to PDEs are
equired. Our methods may be applicable to develop empirical
ethods for flow balancing, which is included in future work.
The papers Condon and Ivanov (2004), Hahn and Edgar (2002a,

002b), Himpe (2018), Lall et al. (2002), Willcox and Peraire
2002) extend linear empirical balancing methods to nonlinear
ystems by focusing on a steady-state and attract a lot of research
nterests as computationally tractable nonlinear model reduction
ethods. Except Condon and Ivanov (2004), these methods can
e viewed as our method with an approximation of the Fréchet
erivative at a steady-state, and Condon and Ivanov (2004) give
n empirical method with differential controllability (not reacha-
ility) and observability Gramians. In other words, we provide in-
erpretations of those methods in terms of the variational system
nd an approximation of the Fréchet derivative. For observabil-
ty, similar Gramians as ours are found for non-control systems
Krener & Ide, 2009) and control systems (Powel & Morgansen,
015). However, those papers do not provide the explicit descrip-
ion of the Gramians by using the solution of the original system
r an interpretation in terms of the Fréchet derivative and do not
stablish the corresponding controllability Gramian.
This is the first paper to develop empirical nonlinear balancing

ethods, which releases the requirement of ϕt−t0 (x0, u) being a
teady state. This relaxation is beneficial to enlarge the class of
pplications such as analysis and stabilization of a limit cycle
nd reducing computational complexity of trajectory tracking
ontroller design for an arbitrary trajectory. On the other hand,
s in Condon and Ivanov (2004), Hahn and Edgar (2002a, 2002b),
impe (2018), Lall et al. (2002) and Willcox and Peraire (2002),
ne may use non-impulse or non-initial state responses for model
eduction. These different choices of inputs or initial states enable
s to deal with wider classes of model reduction problems such
s in Heinkenschloss, Reis, and Antoulas (2011) although such
ethods may not be interpreted in terms of Gramians.

. Another differential balancing method for variationally
ymmetric systems

Balancing methods including the proposed ones require com-
uting two Gramians in general. One is for controllability, and
he other is for observability. However, for linear systems, there
s a class of systems for which one Gramian is constructed from
he other. Such systems are called symmetric (Antoulas, 2005;
awano & Scherpen, 2019a; Sorensen & Antoulas, 2002). Moti-
ated by the results for symmetric systems, we develop another
ifferential balancing method.
The symmetry concept is extended to nonlinear systems

Ionescu, Fujimoto, & Scherpen, 2011) and variational systems
Kawano & Scherpen, 2016). We further extend the latter sym-
etry concept.
6

Definition 5.1. The system Σ is said to be variationally symmet-
ric if there exist a class C1 and non-singular S : Rn

→ Rn×n such
hat
n∑

i=1

∂S(x)
∂xi

fi(x) + S(x)
∂ f (x)
∂x

=

(
∂ f (x)
∂x

)⊤

S(x), (15)

S(x)B =

(
∂h(x)
∂x

)⊤

(16)

hold. ◁

Even though B is constant, a variationally symmetric system
can have a nonlinear output because S is a function. If S is
constant, the output function should be linear for a system being
variationally symmetric. Variational symmetry implies that after
a change of coordinates δz = S(x)δx, the variational system
becomes⎧⎪⎨⎪⎩ δż(t) =

(
∂ f (x(t))
∂x

)⊤

δx(t) +

(
∂h(x(t))
∂x

)⊤

δu(t),

δy(t) = B⊤δz(t).
(17)

n the LTI case, the system (17) is called the dual system of
he system Σ , and the variational symmetry property is called
ymmetry. Many physical systems such as mechanical systems
nd RL circuits have this property; see e.g. van der Schaft (2011).
For an LTI system, the observability Gramian of a system is

he controllability Gramian of its dual system, and if a system is
ymmetric, the controllability Gramian of the system yields that
f its dual system (i.e. the observability Gramian of the system
tself) (Antoulas, 2005; Kawano & Scherpen, 2019a; Sorensen &
ntoulas, 2002). Therefore, to achieve balanced truncation of an
TI symmetric system, one only has to compute the controllability
ramian of the system. Motivated by this fact, we establish the
ollowing connection between the differential reachability Grami-
ns of the system Σ and the system (17) in the variationally
ymmetric case. A similar relation holds between the differential
bservability Gramians of these two systems. Due to limitations
f space, we leave checking the relation for observability to the
eader.

heorem 5.2. For the variationally symmetric system Σ with
espect to symmetric S, the differential reachability Gramian of the
ystem (17) satisfies
∗

R(t0, tf , x0, u)

=

∫ tf

t0

S(ϕt−t0 )
∂ϕt−t0

∂x
B
(
∂ϕt−t0

∂x
B
)⊤

S⊤(ϕt−t0 )dt.

or any x0 ∈ Rn and u ∈ Lm2 [t0, tf ] if it exists, where the arguments
f ϕt−t0 are (x0, u).

roof. Throughout this proof, we omit the arguments of f , h and
, which are all ϕt−τ (xτ , u). By using (4) and (15), compute

d
dt

(
S
∂ϕt−τ

∂xτ
S−1

)
=

(
n∑

i=1

∂S
∂xi

fi + S
∂ f
∂x

)
ϕt−τ

∂xτ
S−1

=

(
∂ f
∂x

)⊤

S
∂ϕt−τ

∂xτ
S−1,

where dS−1/dt = 0 follows from S = S⊤ and (15). Thus,
S(∂ϕt−τ/∂xτ )S−1 is the transition matrix of (17).

From (16), it follows that

S
∂ϕt−t0

∂xτ
S−1

(
∂h

∂ϕt−t0

)⊤

= S
∂ϕt−τ

∂xτ
B.

Therefore, the differential reachability Gramian of (17) satisfies
the statement of the theorem. □
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Fig. 1. Eigenvalues of A.

Theorem 5.2 implies for variationally symmetric systems that
∗
R(t0, tf , x0, u) can be computed only by using the impulse re-

sponses (10) of Σ . Therefore, differential balanced truncation
ased on two differential reachability Gramians GR(t0, tf , x0, u)

and G∗
R(t0, tf , x0, u) can require less computational effort than

having to compute the differential reachability and observability
Gramians. In addition, if GR(t0, tf , x0, u) is diagonalized by an
orthogonal matrix T as

TGR(t0, tf , x0, u)T⊤
= Λ := diag{σ1, . . . , σn},

then in the new coordinates z = Tx, G∗
R(t0, tf , x0, u) is also di-

agonalized as T−⊤G∗
R(t0, tf , x0, u)T−1

= Λ, where T⊤
= T−1. For

model order reduction, we truncate zi corresponding to smaller σi
as in Section 3.2.

The above procedure for balanced truncation can be viewed as
an extension of that for symmetric LTI systems (Antoulas, 2005;
Kawano & Scherpen, 2019a; Sorensen & Antoulas, 2002). In the
linear case, the cross Gramian (Himpe, 2018; Kawano & Scherpen,
2019a) is useful for analysis of symmetric systems. However, the
concept of a cross Gramian is missing in the differential case.

An advantage of developing a balanced truncation method
based on only differential reachability Gramians is that an ef-
ficient empirical method for computing the linear controllabil-
ity Gramian (Willcox & Peraire, 2002) can be used; there is
no counterpart for the observability Gramian. This method can
be extended to the computation of the differential reachability
Gramians by using snapshots of the impulse response of the
variational system. First, we construct the kernel from snapshots.
Then, based on the obtained kernel, we can compute a low rank
approximation of the differential reachability Gramian similar to
the linear controllability Gramian.

6. Example

Consider the following system

ẋi = sin

⎛⎝ n∑
j=1

ai,jxj

⎞⎠+ biu, i = 1, . . . , n,

y = x1,

where n = 100, b1 = 1, and bi = 0, i = 2, . . . , n. The
matrix A = (ai,j) is generated to be symmetric for making the
system variationally symmetric with respect to S = I100. In this
example, A is generated as follows. First a square matrix Ā = (āi,j)
and diagonal matrix D are generated by the Matlab commands
Ā=rand(n,n) and D=diag(20*rand(n)), respectively. Then, A
is defined by A := (Ā+ Ā⊤)/2−D. The generated A has 33 positive
real eigenvalues and 67 negative real eigenvalues. Fig. 1 shows

the eigenvalues of the matrix A.

7

Fig. 2. Eigenvalues of the differential reachability Gramian.

Fig. 3. Output trajectories of the original system and reduced-order models.

From Theorem 5.2, GR = G∗
R holds. For model reduction, we

now only have to find an orthogonal matrix T which diagonal-
izes GR as mentioned in Section 5. We compute the value of GR
numerically based on the method in Section 4.2 with s = 0.01
(but an arbitrary discretization method can be used). For this
computation, we need snapshots of the trajectories of the system.
As a numerical computational method of snapshots, we use the
forward Euler method with the step size ∆t = 0.01, and the
considered time interval is [t0, tf ] = [0, 100] (but an arbitrary
ODE solver can be used). Since the system is a single input system,
we need snapshots of two trajectories; one is x(t) around which a
reduced oder model is constructed, and the other is x′(t) needed
for the approximate computation of the impulse response of the
variational system. For instance, we choose x(t) as the trajectory
starting from x(0) = 0 with input u(t) = sin(t) + sin(3t). Next,
to approximately compute x′(t), we approximate the impulse
input as in (13). Then, the differential reachability Gramian GR
is computed numerically as follows

GR ≈ ḠR :=

100/∆t∑
k=0

δx̄(k∆t)δx̄⊤(k∆t)∆t,

δx̄(k∆t) :=
x′(k∆t) − x(k∆t)

s
.

By using ḠR, we compute reduced order models by the procedure
mentioned in Section 5. Fig. 2 shows eigenvalues of ḠR. Fig. 3
shows the output trajectories of the original system, 20-and 15-
dimensional reduced order models along transient states. It can
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e observed that the trajectory of the 20th order model follows
he trajectory of the original model well, but there is an off-set for
he trajectory of the 15th order model from that of the original
ystem.
As a comparison, other reduced order models are computed

ased on the impulse response x′′(t) along the steady-state
(x, u) = (0, 0), where we approximate the impulse input as
in (13). Again, we use the forward Euler method with the step
size ∆t = 0.01, and the considered time interval is [t0, tf ] =

[0, 100]. Namely, the following Gramian is computed as

Ḡ(0,0)
R =

100/∆t∑
k=0

x′′(k∆t)(x′′)⊤(k∆t)∆t.

ig. 3 shows the output trajectories of the 98-and 95-dimensional
educed order models along (x, u) = (0, 0); the reduced or-
er models are constructed in a similar manner as those based
n ḠR. Each trajectory has a similar behavior as the 20-and 15-
imensional reduced order models along transient states. That
s, the trajectory of the 95-dimensional reduced order model
long (x, u) = (0, 0) has an off-set from that of the original model,
hich illustrates the importance of developing model reduction
ethods along transient states.
Every process here is conducted by using Matlab 2019a on

acOS Catalina, version 10.15.3, MacBook Pro (13-inch, 2018,
our Thunderbolt 3 Ports), Processor 2.7 GHz Quad-Core Intel
ore i7, Memory 16 GB 2133 MHz LPDDR3, and Graphics Intel
ris Plus Graphics 655 1536 MB.

. Conclusion and future work

.1. Conclusion

In this paper, we have proposed a nonlinear empirical differ-
ntial balancing method along a fixed state trajectory for non-
inear systems. The proposed method is based on the differential
eachability and observability Gramians, which are functions of
he state trajectory. The values of these Gramians at each trajec-
ory are computable by using impulse and initial state responses
f the variational system along the trajectory. We have also
eveloped approximation methods for computing them, which
nly requires empirical data of the original nonlinear systems.
onstructed reduced models depend on the choice of discretiza-
ion methods, approximation methods of impulse responses and
o on. The numerics are important, and many choices can be
ade. It requires additional research work to investigate which
hoices are most beneficial.

.2. Possible application

In Choroszucha et al. (2016) and Hahn et al. (2002), empirical
alancing at a steady-state is used to reduce the computational
omplexity of nonlinear model predictive control (MPC) (Cama-
ho & Alba, 2013; Grüne & Pannek, 2011). Our proposed empirical
ifferential balancing method along a fixed state trajectory can
e used to reduce the computational complexity around tran-
ient states. In MPC, we repeatedly solve the following nonlinear
ptimal control problem.

= ϕ(x(t + T ), u(t + T )) +

∫ t+T

t
L(x(τ ), u(τ ))dτ . (18)

f the optimal control input u in the time interval [t0, t0 +∆t] is
btained, one can compute the state trajectory of the controlled
ystem in this time interval. Along this trajectory, it is possible to
chieve the proposed empirical differential balanced truncation.
hen, we have a reduced order model. To compute the optimal
8

control input in the next time interval [t0 + ∆t, t0 + 2∆t], one
can use the reduced order model. For this reduced order model,
one can compute the corresponding cost function to (18). By
solving the reduced order optimal control problem, one has the
optimal control input for the reduced order model, which is
an approximation of the optimal control input for the original
system in the time interval [t0 +∆t, t0 + 2∆t]. Thus, one can use
this input for controlling the original system and have the state
trajectory of the controlled original system in the time interval
[t0 + ∆t, t0 + 2∆t]. Then, one can again exploit our empirical
model reduction method for obtaining a reduced order model. By
repeating this procedure, one can compute an approximation of
the optimal control input in each time interval recursively.
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