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Abstract
The quantitative description of individual observations in non-linear mixed effects models over time is complicated when

the studied biomarker has a pulsatile release (e.g. insulin, growth hormone, luteinizing hormone). Unfortunately, standard

non-linear mixed effects population pharmacodynamic models such as turnover and precursor response models (with or

without a cosinor component) are unable to quantify these complex secretion profiles over time. In this study, the statistical

power of standard statistical methodology such as 6 post-dose measurements or the area under the curve from 0 to 12 h

post-dose on simulated dense concentration–time profiles of growth hormone was compared to a deconvolution-analysis-

informed modelling approach in different simulated scenarios. The statistical power of the deconvolution-analysis-in-

formed approach was determined with a Monte-Carlo Mapped Power analysis. Due to the high level of intra- and inter-

individual variability in growth hormone concentrations over time, regardless of the simulated effect size, only the

deconvolution-analysis informed approach reached a statistical power of more than 80% with a sample size of less than 200

subjects per cohort. Furthermore, the use of this deconvolution-analysis-informed modelling approach improved the

description of the observations on an individual level and enabled the quantification of a drug effect to be used for

subsequent clinical trial simulations.

Keywords Statistical power � Deconvolution � Chronopharmacometrics � Population models � Endocrinology

Introduction

Drugs are administered with the aim to affect various

physiological, biochemical and behavioral clinical markers

to the benefit of patients. Many of these markers vary based

on time-of-day and it is well recognized that the endoge-

nous ‘‘circadian’’ clock lies at the basis of these often

wave-shaped pharmacodynamic patterns. It is only logical

to assume that optimizing the time of drug administration

may increase clinical efficacy and safety in some cases,

which indeed has been shown, e.g., for glucocorticoids,

antihypertensives and antibiotics [1–4].

In order to improve treatment of diseases that have

clinically relevant circadian components, there is a

growing interest to apply systems chronotherapeutics

approaches [5]. Using mathematical models, wave shaped

patterns can be described by single or double cosine

functions over time-of-day, like e.g. heart rate, QT interval

and blood pressure [6, 7]. Also, more complex biological

processes that are under circadian control can be readily

described with precursor-dependent indirect response

(pool) models, with or without agonist–antagonist inter-

action submodels e.g. prolactin release by the pituitary

[8, 9]. However, endogenous compounds that have a very

short half-life and are released in pulses do not show such a

nicely flowing curvature, as can be seen for endogenous

growth hormone secretion presented in Fig. 1a, and are

therefore less easy to capture using cosine functions or pool

models. This release pattern is commonly encountered in

endocrine systems (e.g. growth hormone, glucose,

luteinizing hormone, cortisol) which creates a challenge for

the correct description of such a profile in a modelling

approach.

Due to the high level of intra- and inter-individual

variability that exists on the pulsatile release of growth

hormone (Fig. 1a), a combination of more than 2 or 3
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cosinor functions would need to be adapted on an indi-

vidual level for each individual profile and structural

modifications to the model would be required on a day-to-

day level to describe the data. This multitude of required

parameters complicates the quantification of the individual

endogenous release and might not result in accurate indi-

vidual descriptions of the data [10]. Moreover, it compli-

cates the quantification of a concentration-effect

relationship and thus increases the required number of

subjects in studies in order achieve adequate statistical

power. Finally, simulations with variability on these

parameters may result in non-realistic secretion shapes

over time due to the interaction of multiple cosinor

functions.

In order to quantitate the pulsatile release of growth

hormone over time, a non-linear mixed effects (population)

model can be used more accurately and more efficiently if

the underlying pulse times are known, thereby reducing the

number of parameters that need to be estimated by the

model. In order for the identification of the underlying

pulse times, we can make use of an initial deconvolution

step on the dataset. In short, with deconvolution, the pul-

satile pattern is analyzed on an individual level and the

underlying pulse times are extracted [11, 12]. This

deconvolution methodology works by randomly inserting

pulses as underlying secretion variables and judging if

inclusion of that pulse time improves the description of the

data. The algorithm continues until the best combination of

pulse times has been identified for an individual profile.

The advantage of this method is that it can handle highly

stochastic profiles in which the timing of the underlying

stimulatory event is unknown.

Having quantified the pulse times a priori reduces the

degrees of freedom in the model and enables the quantifi-

cation of only the remaining parameters required to fit a

pulsatile profile, such as the pulse amplitudes, pulse

secretion width, and a continuous zero-order (non-pul-

satile) endogenous release. Previous publications have

shown that this methodology provides an accurate

description of the pulsatile data and is capable of quanti-

fying drug effects on highly variable datasets [13, 14].

Furthermore, this deconvolution-analysis-informed mod-

elling approach can be used for more realistic clinical trial

simulations that mimic the endogenous secretion pattern, in

which the high variability from different sources (differ-

ences in pulse times, variability in pulse amplitude, vari-

ability in the pharmacokinetics, etc.) is incorporated.

Even though approaches exist for the quantification of

densely sampled pulsatile concentration–time profiles,

growth hormone concentrations are commonly studied by

measuring only a single sample, or the mean of multiple

samples as primary outcome [15]. This approach seems

most likely taken for clinical feasibility and reduction of

patient burden that would accompany obtaining a multi-

hour dense profile. Unfortunately, even though less sam-

ples are required, these methods of statistical analysis

oversimplify the complex secretory profile which may

impact the statistical power when investigating significant

changes between groups.

In this study we investigate the impact of several stan-

dard statistical methods and the potential advantage of

applying a deconvolution-analysis-informed model on

growth hormone data in a simulated clinical trial. The

statistical power of quantifying a significant change

between simulated placebo and active treated subjects was

investigated by use of a (1) linear mixed effects model on 1

pre-dose growth hormone and 6 post-dose growth hormone

measurements, (2) a linear model on the area under the

growth hormone concentration curve on dense data sam-

pled from 0 to 12 h (AUC0-12 h) post-dose, and (3) a

deconvolution-analysis-informed modelling approach on

dense growth hormone data sampled from 2 h pre-dose to

12 h post-dose, while simulating multiple inhibitory drug

effect sizes (25%, 50%, and 75%) on the pulsatile

secretion.

Fig. 1 a Growth hormone profiles sampled at 20-min intervals during

daytime of eight healthy male subjects. b Ten random simulated

placebo growth hormone profiles simulated at 20-min intervals. c Ten
random simulated growth hormone profiles with an inhibitory drug

(tmax 2 h, t1/2 3 h, 75% inhibition of pulsatile secretion at tmax)

administered at time 0. In-house data (a) and simulation model from

Van Esdonk et al. [14]
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Methods

Simulation

A previously developed growth hormone model in healthy

male volunteers was used for the simulation of growth

hormone profiles [14]. This growth hormone model was

based on dense concentration–time profiles with sampling

performed at 20 min intervals for a duration of 14 h. The

model was able to describe the individual pulsatile release

of growth hormone secretion and each individual growth

hormone pulse was quantified using a pulse secretion

width, a pulse amplitude, and the time of the pulse

parameter (Eq. 2). The pulse times were simulated for this

study based on the mean and standard deviation of the

interval in minutes between the pulses on log transformed

data from this literature population (natural log mean =

4.33, natural log standard deviation = 0.98), resulting in

realistic simulated profiles to be used for the analysis in this

study (Fig. 1b and c). Based on the used parameters, an

individual growth hormone concentration–time profile

showed a mean of 7 pulses (range 0–15) during a 14 h

timeframe and was highly variable across individuals. The

simulated pulse times were included in the dataset as

separate columns to be used in NONMEM V7.3 for sim-

ulation and parameter estimation [13].

The linear models and the deconvolution-analysis-in-

formed analysis was performed on simulated data of a

parallel study design with a sample size of 200 placebo and

200 active treated subjects. Active treated subjects received

a hypothetical oral drug following 1-compartment distri-

bution kinetics with first-order absorption and elimination

(parameters fixed to: absorption rate constant = 0.95/h,

volume of distribution = 65L, clearance = 15 L/h, dose =

102) resulting in a pharmacokinetic (PK) profile with a

tmax at 2 h, a Cmax of 1, and a half-life of 3 h. At the

maximal concentration, the drug induced an inhibition of

25%, 50%, or 75% of the pulsatile secretion of growth

hormone, which was implemented as a linear concentra-

tion-effect relationship (Eq. 1–4).

Effect tð Þ ¼ ConcentrationðtÞ � slope ð1Þ

Sn tð Þ ¼ eln Amplitudenð Þ�1
2
�ðt�PulseTimen

SecretionSD
Þ2 � ð1� Effect tð ÞÞ ð2Þ

GHsecretion tð Þ ¼ baselineþ S1 tð Þ þ S2 tð Þ þ S3 tð Þ. . .SnðtÞ
ð3Þ

dCGH

dt
¼ GHsecretion tð Þ � kel � CGHðtÞ ð4Þ

where slope was fixed to 0.25, 0.5, or 0.75 to simulate the

different effect sizes driven by the Concentration of the

drug over time. In Eq. 2 and 3, Sn(t) represents the secre-

tion of pulse n at time t, Amplituden is the amplitude of

pulse n and changes between each pulse within an indi-

vidual, PulseTimen is the time of maximum secretion for

pulse n, extracted from the dataset and based on the initial

deconvolution step, and SecretionSD is the standard devi-

ation of the pulse width which is identical for all pulses in

an individual. The Amplitude of a pulse changes between

individual pulses based on the variance identified previ-

ously [14]. Effect is a proportional inhibition of the

secretion of pulse n over time. The total growth hormone

secretion at time t (Eq. 3) is a zero-order endogenous

baseline secretion of growth hormone plus the sum of Sn
for all pulses at time t, which is the input of the ordinary

differential equation of the measured growth hormone

concentration (CGH, Eq. 4). Growth hormone gets elimi-

nated with the first-order elimination rate constant kel and

the differential equation is initialized at baseline.

This parameter set simulates a maximal inhibition of the

pulsatile growth hormone secretion at 2 h post-dose with

thereafter a decline of more than 3 half-lifes in a 12 h post-

dose timeframe. No drug effect on the endogenous (non-

pulsatile) baseline growth hormone secretion was imple-

mented. Inter-individual variability on the baseline, Se-

cretionSD and the kel parameters were implemented based

on the values of Van Esdonk et al.[14]. No inter-individual

variability on the PK or on the PK/PD relationship was

introduced in the simulation.

Statistical analysis

Three statistical analysis methods on which the power was

based were investigated: (1) a linear mixed effects model

on 1 pre-dose growth hormone and 6 post-dose growth

hormone measurements up to 12 h post-dose, (2) a linear

model on the derived AUC0-12 h based on growth hormone

concentrations sampled every 20 min for 12 h post-dose,

and (3) a deconvolution-analysis-informed modelling

approach based on growth hormone concentrations sam-

pled every 20 min starting 2 h pre-dose up to 12 h post-

dose.

The 95% confidence interval of the estimated power for

each methodology was calculated by 1000 iterations of the

simulation and power estimation step of the 6 post-dose

measurements and AUC0-12 h. The mean, minimal, and

maximal power of 10 Monte-Carlo Mapped Power analy-

ses for each effect size were plotted due to a lower degree

of uncertainty in this outcome combined with computa-

tional limitations (2 threads, Intel� Xeon� CPU E5-2690

v2 @ 3.00gHz, MCMP runtime * 15 h per analysis).
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Method 1: linear mixed effects on multiple post-dose
samples

In the linear mixed effects model, 1 pre-dose growth hor-

mone concentration was measured and growth hormone

concentrations were determined at 1 h, 2 h, 4 h, 6 h, 8 h

and 12 h post-dose, mimicking a sampling schedule of an

early phase clinical trial study design. A linear mixed

effects model with treatment by time and the pre-dose

growth hormone concentration as fixed effects and subject

identifier as random effects on the intercept was fitted to

the data. The treatment contrast (active vs. placebo) was

computed using the least-squares means and was trans-

formed to the Cohen’s effect size. The power was deter-

mined based on the Cohen’s effect size with a two-sided

two-sample t-test and an alpha of 0.05. The R syntax used

for the linear mixed effects model is shown below:

lmerðGH concentration� Treatment � Sampling time
þ 0 pre� dose baseline concentration0

þ ð1jSubject identifierÞ; data
¼ . . .Þ

where GH concentration are the observed growth hormone

concentrations, Treatment is a factor with two levels (ac-

tive vs. placebo), Sampling time is a factor with the 6 levels

of the sampling times, pre-dose baseline concentration is

the pre-dose baseline growth hormone concentration for

each individual and Subject identifier is a unique identifier

for each individual.

Method 2: linear model on the area
under the concentration–time curve up to 12 h post-dose

For the linear model, the AUC0-12 h was calculated using

the linear trapezoid rule on growth hormone concentrations

from dosing up to 12 h post-dose, measured at 20 min

intervals, and was analyzed with a linear model with

treatment and the pre-dose growth hormone concentration

as fixed effects. As only one observation was present per

subject, no random effects were added to the model. The

treatment contrast (active vs. placebo) was computed using

the least-squares means and transformed to the Cohen’s

effect size. The power was determined based on the

Cohen’s effect size with a two-sided two-sample t-test and

an alpha of 0.05. The R syntax used for the linear model is

shown below:

lmðAUC0�12h � Treatment
þ 0 pre - dose baseline concentration’, data¼. . .Þ

Method 3: deconvolution-analysis-informed modelling
approach

The deconvolution-analysis-informed modelling approach

was performed on growth hormone concentrations from

2 h pre-dose up to 12 h post-dose, sampled at 20-min

intervals. A Monte-Carlo Mapped Power (MCMP) analysis

was used as a tool to evaluate the power of this modelling

approach on the quantification of a significant drug effect

[16].

The MCMP analysis is a tool to quantify the statistical

power of identifying a certain covariate or one or multiple

parameters in a non-linear mixed effects (population)

model. The MCMP uses the objective function value

(OFV) on an individual level (iOFV) to compare the

improvement in model fit in a model without the parameter

present (reduced model) versus the model fit in a model

with the parameter present (full model). In this case, the

reduced model did not include the slope parameter, and

therewith excluded the estimation of a PK/PD relationship

as if no drug effect was present, whereas the full model did

include this parameter.

In the first step of the MCMP analysis, the full model

was used to simulate the growth hormone profiles over

time for all individuals, including the drug effect for sub-

jects that were randomized to receive the active treatment.

Then, both full and reduced models were fitted to this

dataset and the model fit on both models were compared to

calculate the difference in the fit of the data on an indi-

vidual level (DiOFV). Then, the sum of the DiOFV (R
DiOFV) of a range of sample sizes (up to 200 subjects per

treatment in a 1:1 ratio) were extracted at random and

repeated for 10,000 iterations. For each sample size, the

proportion of the iterations that shows a significant

(p\ 0.05) improvement in model fit, based on a RDiOFV
greater than 3.84 with 1 degree of freedom, was taken as

the power for that explored sample size. This simulation,

estimation, and sampling procedure was executed 10 times

for each effect size to account for the level of variability

that was present in simulated growth hormone concentra-

tions. Only runs with successful minimization on both the

full and reduced models were included in the analysis. No

parameters were fixed in the full or in the reduced models.

Software

All data transformations and visualizations were performed

in R (V3.6.1) [17]. Power calculations of the linear (mixed

effects) models were performed with the pwr package.

Simulations and MCMP analysis were performed in

NONMEM (V7.3) in conjunction with PsN (V4.8.1)

[16, 18, 19].
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Results

The estimated mean power at three effect sizes with three

statistical analysis methods are presented in Fig. 2. The

high variability in the simulated pulsatile profiles resulted

in broad 95% confidence intervals when using the 6 post-

dose measurements or the AUC0-12 h outcomes in all sce-

narios, indicating that these analysis methods are sensitive

to the highly variable nature of growth hormone secretion.

These two statistical methods show a clear overlap, with

low statistical powers in general, showing that, even

though the AUC0-12 h was based on a dense growth hor-

mone concentration–time profile, 200 subjects per group

did not reach an 80% power in all tested effect sizes. In

comparison, the deconvolution-informed approach shows a

significant increase in power with increasing sample size

and shows that, especially when the drug effect is large, a

low sample size (\ 50 per group) can already result in a

statistical power of more than 80%.

Discussion

The choice of the study design and statistical method can

have a large influence on the obtained statistical power

when pulsatile biomarkers are being investigated. The use

of a deconvolution-analysis-informed modelling approach

on dense pulsatile concentration–time profiles improves the

quantification of significant drug effects and increases the

statistical power compared to a linear mixed effects model

on limited samples or the AUC0-12 h based on a highly

similar dense sampling protocol. Due to the high levels of

intra- and inter-individual variability in the secretion, the

low endogenous baseline, in combination with the high and

short bursts of growth hormone secretion, make standard

statistical methodology lack statistical power.

The deconvolution-analysis-informed model provides an

alternative approach to the use of cosinor functions for the

modelling of pulsatile data and improves the quantification

on an individual and population level. Clearly, sufficient

data should be collected over time to apply the deconvo-

lution technique to extract the individual pulse times. This

requires an intensive sampling schedule, especially in the

case of biomarkers with a short half-life like growth hor-

mone, which may limit its clinical applicability and thus

proof more applicable in a drug development setting.

Furthermore, in all scenarios, the power calculations were

based on a fixed population PK profile at a certain effect

size. In reality, variability in the responsiveness of an

individual to a drug and the variability in the PK parame-

ters will further increase the level of variability in the

growth hormone profiles over time, which could reduce the

identified power in the current analysis and subsequent

power analysis should therefore be performed while

including additional information on the used treatment.

Even though profiles of other pulsatile hormones, or

growth hormone secretion in acromegaly patients, will

show a different pulsatile pattern, deconvolution may be of

general use to better understand the characteristics of the

underlying pulsatile data. Besides the increased power in

estimating a significant drug effect, the deconvolution-

analysis-informed model can be used for clinical trial

Fig. 2 Mean power over sample size for the 6 post-dose measure-

ments, the area under the curve from 0 to 12 h, and the deconvo-

lution-analysis-informed model for three effect sizes (25%, 50%, and

75%). Effect sizes were implemented as the maximal effect reached at

2 h post-dose on the pulsatile secretion of growth hormone. Grey

ribbon indicates 95% confidence interval. For the deconvolution-

analysis-informed model, the grey ribbon indicates the minimal and

maximal power of 10 Monte-Carlo Mapped Power repetitions
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simulations of new study designs and treatment regimens

to better simulate realistic profiles which enhances the

accuracy of model predictions for future studies.
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