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We study the Berry phase correction to the electron density of states and present

a number of its applications. It is now well recognized that the Berry phase of the

electronic wave function plays an important role in the dynamics of Bloch electrons.

For instance, the electron will acquire an anomalous velocity term transverse to the

applied electric field, giving rise to an intrinsic contribution to the anomalous Hall

effect. On the other hand, we find that the Berry phase also has a fundamental

effect on the electron phase space, and leads to a modification of the phase-space

density of states. This surprising result has a number of applications, which we shall

discuss in detail. We first derive an explicit expression of the orbital magnetization

(zero and finite temperature), where it is shown that contributions to the orbital
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magnetization can be classified into a local rotation of the electron and global center-

of-mass motion. Based on this formula, we develop a theory of the Berry-phase

effect in anomalous transport in ferromagnets driven by statistical forces such as

the gradient of temperature or chemical potential. We also study the Berry phase

effect on magnetotransport, showing that a linear (in field) magnetoresistance is

possible in ferromagnets. Finally, we propose that in graphene with broken inversion

symmetry, a valley Hall effect exists and the finite valley polarization can be detected

by measuring the magnetization.
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Chapter 1

Introduction

1.1 Geometric Phase

One of the most fundamental differences between quantum mechanics and its clas-
sical counterpart is the phase factor associated with each quantum state, which is
absent in classical mechanics. In fact, it is probably not an exaggeration to say
that it is this very phase factor that makes quantum mechanics such an intriguing
subject and gives rise to so many fascinating phenomena.

Among these phenomena, we shall discuss the Aharonov-Bohm (AB) effect [1]
in detail since it gives a very nice example illustrating the geometric phase in quan-
tum mechanics. Let us consider the experiment shown in Fig. 1.1. In the absence
of the magnetic field, this is the classic double-slit experiments with electrons from
the source going through the double slits, then forming an interference pattern on
the screen. Now, we turn on the magnetic field B confined in a very thin solenoid.
From a classical point of view, since the two paths C1 and C2 are far away from the
solenoid, the magnetic field cannot have an effect on the electrons. Therefore the
interference patter should remain the same. However, in quantum mechanics, it is
the vector potential A rather than the field B enters into the Schrodinger equation,
i.e.,

1
2m

(−ih̄∇ + eA)2ψ = εψ , (1.1)

where m is the electron mass and ε is the energy. We choose the convention that
the electron charge is −e. The physical quantities should be invariant with respect

1



to the following gauge transformation

A→ A + ∇χ , (1.2)

where χ is an arbitrary function. Accordingly, the wave function can at most change
by a phase factor under this transformation,

ψ → eiφψ . (1.3)

It is straightforward to verify that ∇φ = −(e/h̄)∇χ. Therefore the electron moving
along the path Ci will acquire a phase

φi = −i e
h̄

∫
Ci

dl ·A(r) , (1.4)

and electrons from different paths will have a phase difference

∆φ =
e

h̄

∮
C
dl ·A(r) =

e

h̄

∫
S
dS ·B , (1.5)

where S is the surface enclosed by the loop C = C1 +C2. We have used the Stokes
theorem to convert the line integral into a surface integral. As a result, one should be
able to observe a phase shift of the interference patter on the screen. It is noteworthy
that although φi depends on the gauge choice of the vector potential A, the phase
∆φ an electron acquired along a closed loop is gauge invariant.

In fact, the AB effect is a particular example of the more general geometric
phase in quantum mechanics. It was first discovered by Pancharatnam in 1956 [2],
and rediscovered by Berry in 1984 [3]. Since Berry is responsible for making this
concept known to the physics and mathematics community, the geometric phase is
also called the Berry phase. In order to show the existence of the Berry phase, we
shall follow Berry’s original paper [3]. Let us consider a system described by the
Hamiltonian H(R) that is a function of a set of parameters R = {R1, R2, · · · , Rn}.
To explore an analogy with the AB effect, we shall consider the case of three pa-
rameters. The adiabatic evolution of the system can be described by the path of the
R point in the parameter space as time changes. At time t1 we assume the system
is in one of its eigenstates |ψ0(R(t1))〉. The adiabatic condition requires that the
system stays in the eigenstate |ψ0(R(t))〉 during the evolution. We can therefore
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Source
C1

C2

B

Figure 1.1: Schematic showing of the Aharonov-Bohm Effect in a double-slit exper-
iment.
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write the state at time t as

|ψ0(t)〉 = exp
[
− i
h̄

∫ t

t1

dt ε0(R(t))
]
exp(iφB)|ψ0(R(t))〉, (1.6)

where ε0(R) is the energy of the eigenstates |ψ0(R)〉. The first exponential is the
usual dynamical phase, and the second one, exp(iφB), is the so called Berry phase.
To find φB, we insert the above expression into the the Schrödinger equation

i
∂

∂t
|ψ0(t)〉 = H(R(t))|ψ0(t)〉 , (1.7)

and we have
φB =

∫
CR

dR · 〈ψ0(R)|i∇R|ψ0(R)〉 , (1.8)

where CR is the path in the parameter space. If we compare the above equation
with Eq. (1.4), we can see that the Berry phase and the AB phase have the same
mathematical structure, with the quantity

A(R) = 〈ψ0(R)|i∇R|ψ0(R)〉 (1.9)

playing the same role as the vector potential, but in parameter space. If we make a
gauge transformation

|ψ0(R)〉 → eiχ(R)|ψ0(R)〉 , (1.10)

then A(R) transforms as

A(R)→ A(R)−∇Rχ(R) . (1.11)

We can also define a quantity, the Berry curvature, as

Ω(R) = ∇×A(R) . (1.12)

While the vector potential A(R) depends on the gauge choice of |ψ0(R)〉, the Berry
curvature Ω(R) is gauge invariant. Just like the magnetic field B will have an effect
on the electron motion through the Lorentz force −eṙ×B, the Berry curvature will
also have an effect on the dynamics of the parameter R. As we shall see later, this
is exactly the case for the Berry phase effect on Bloch electron dynamics.
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1.2 Semiclassical Model

The semiclassical theory of Bloch electron dynamics plays a very important role
in our understanding of electronic spectral and transport properties of solids. For
example, so far the most common, and perhaps also the most accurate, probes
of the Fermi surface rely on a class of magneto-oscillatory effects, such as the de
Haas-van Alphen oscillation. These effects can be easily understood in terms of
quantization of the semiclassical electron orbits in the presence of a magnetic field.
Another example is the semiclassical transport theory of conduction in metals and
semiconductors. Armed with the Boltzmann equation, even within the simplest
relaxation time approximation, the semiclassical theory provides a successful account
of various transport phenomena, and lays the foundation of modern electronics.

In the semiclassical approach, each electron is described by a wave packet
constructed from Bloch functions under the following condition. The spread ∆k
of the wave packet in the momentum space should be small compared with the
dimensions of the Brillouin zone so that it is meaningful to speak of the momentum
k of the electron. This requirement implies that in the real space the spread ∆r of
the wave packet is on the scale of hundreds of unit cells. Therefore, in order for the
semiclassical description to be valid, external perturbations must vary slowly over
the dimensions of ∆r. The wave packet can be written as

|W (rc,kc)〉 =
∫
dk a(k)eik·(r−rc)|un(k)〉 , (1.13)

where rc and kc are the wave packet centers in the real and momentum space,
respectively, a(k) is the expansion coefficient whose exact form is not important as
long as the above requirement on the wave packet spread is satisfied, and |un(k)〉
is the periodic part of the Bloch function, |ψn(k)〉 = eik·r|un(k)〉. The spirit of the
semiclassical model is that the fast varying periodic lattice potential is taken into
account by the use of the Bloch functions |un(k)〉 while the slowly varying external
perturbations are treated semiclassically.

In the presence of weak electric (E) and magnetic (B) fields, the equation of
motion of the wave packet center is usually given in the following form [4] (we have
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neglected the subscript c on the electron position and momentum):

ṙ =
1
h̄

∂εn(k)
∂k

, (1.14a)

h̄k̇ = −eE − eṙ ×B , (1.14b)

where εn(k) is the unperturbed band energy of the electron. According to this set
of equations, the electron dynamics is solely determined by the band energy εn(k).
In fact, the quantity εn(k) is so important that techniques developed to calculate
the band structure have become an independent field in solid state physics.

Surprisingly, despite its wide usage and great success, this semiclassical model
has never been rigorous justified. To best put the situation, I shall simply quote
from Ashcroft and Mermin [4],

Perhaps a suitable attitude to take is this: If there were no under-
lying microscopic quantum theory of electrons in solids, one could still
imagine a semiclassical mechanics (. . . ) that was brilliantly confirmed
by its account of observe electronic behavior, . . . , and only very much
later given a more fundamental derivation as a limiting form of quantum
mechanics.

It turns out that this more fundamental derivation comes near seventy years
later after Bloch’s seminal paper [5] on the quantum mechanics of electrons in crystal
lattices.

1.3 Berry Phase Modified Equations of Motion

The wave packet (1.13) is expanded in the basis of the cell function |un(k)〉, which
is the eigenstate of the following effective Hamiltonian

H(k) =
h̄

2m
(−i∇ + k)2 + V (r) , (1.15)

where V (r) is the periodic lattice potential. Then according to the theory presented
in Sec. 1.1, if the electron adiabatically moves from k1 to k2, which can be done by
simply applying an electric field, it will acquire a Berry phase. As a result, there
will also be a Berry curvature in the parameter space, which is just the momentum
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space in our case, given by

Ωn(k) = ∇k × 〈un(k)|i∇k|un(k)〉 . (1.16)

This Berry curvature acts like a magnetic field in the momentum space and will
drive the electron motion.

A rigorous derivation of the semiclassical dynamics of Bloch electrons was
found recently by Chang and Niu [6], and Sundaram and Niu [7]. The equations of
motion, in the presence of weak electric and magnetic fields, are given by

ṙ =
1
h̄

∂ε̃n(k)
∂k

− k̇ ×Ω(k) , (1.17a)

h̄k̇ = −eE − eṙ ×B . (1.17b)

Compared to the conventional equations of motion (1.14), there are two major
differences:

1. The electron acquires an extra velocity −k̇ × Ωn(k) that is proportional to
the Berry curvature.

2. In addition, the electron energy has a correction due to the orbital magnetic
moment of the wave packet, ε̃n(k) = εn(k)−mn(k) ·B, where

mn(k) = −i e
h̄
〈∇kun(k)| × [H(k)− εn(k)]|∇kun(k)〉 . (1.18)

The magnetic moment mn(k) originates from the self-rotation of the wave
packet.

Symmetry considerations show [7] that for single band, if the crystal has
both the time-reversal and inversion symmetry, then both Ωn(k) and mn(k) vanish.
However, if either symmetry is broken, then the Berry phase term will appear and
have a profound effect on transport as well equilibrium properties.

One of the applications of the Berry phase approach is the anomalous Hall
effect (AHE). In ferromagnet, a spontaneous Hall current can be induced by an
electric field in the absence of a magnetic field. The origin of the AHE has been a
controversial subject. Now it is agreed that the contributions to the AHE can be
classified into two categories, the Berry-phase induced intrinsic contribution and the
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scattering-dependent extrinsic contribution, including skew scattering [8] and side
jump [9]. We shall focus on the intrinsic contribution here. In the presence of an
electric field, the electron velocity is given by

ṙ =
1
h̄

∂εn(k)
∂k

+
e

h̄
E ×Ωn(k) . (1.19)

By summing over all occupied electron state, we obtain a Hall current that is inde-
pendent of scattering

jAH = −e
2

h̄
E ×

∑
n

∫
dk

(2π)3
fn(k)Ωn(k) , (1.20)

where fn(k) is the Fermi-Dirac distribution function. Numerical calculations in
ferromagnetic semiconductors [10], oxides [11], and transition metals [12] have shown
that this intrinsic contribution is the dominant contribution to the AHE in these
materials.

1.4 Outline of this Work

In this work we study the Berry phase correction to the electron density of states
and present a number of its applications. In Chap. 2 we show that the Berry
phase also has a fundamental effect on the electron phase space, and leads to a
modification of the phase-space density of states. This surprising result has a number
of applications, which we shall discuss in detail. We first derive in Chap. 3 an explicit
expression of the orbital magnetization (zero and finite temperature), where it is
shown that contributions to the orbital magnetization can be classified into a local
rotation of the electron and global center-of-mass motion. Based on this formula, we
develop a theory of the Berry-phase effect in anomalous transport in ferromagnets
driven by statistical forces such as the gradient of temperature or chemical potential,
which is presented in Chap. 4. In Chap. 5 we study the Berry phase effect on
magnetotransport, showing that a linear (in field) magnetoresistance is possible in
ferromagnets. Finally, in Chap. 6 we propose that in graphene with broken inversion
symmetry, a valley Hall effect exists and the finite valley polarization can be detected
by measuring the magnetization.
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Chapter 2

Berry Phase Correction to

Electron Density of States in

Solids

2.1 Introduction

Semiclassical dynamics of Bloch electrons in external fields has provided a powerful
theoretical framework to account for various properties of metals, semiconductors
and insulators [4]. In recent years, it has become increasingly clear that essential
modification of the semiclassical dynamics is necessary for a proper understanding
of a number of phenomena. It was known earlier that global geometric phase effects
[3, 13] on Bloch states are very important for insulators in our understanding of the
quantum Hall effect [14], quantized adiabatic pumps [15], and electric polarization
[16, 17]. It was shown [6, 7] later that geometric phase also modifies the local
dynamics of Bloch electrons and thus affects the transport properties of metals
and semiconductors. Recently these ideas have been successfully applied to the
anomalous Hall effect in ferromagnetic semiconductors and metals [10, 11, 12, 18],
as well as spin transport [19, 20].

In this chapter, we reveal a general property of the Berry phase modified
semiclassical dynamics which has been overlooked so far: the violation of Liou-

This chapter is adapted from D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204 (2005).
Copyright c© 2005 American Physical Society.
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ville’s theorem for the conservation of phase space volume. Liouville’s theorem was
originally established for standard classical Hamiltonian dynamics, and its impor-
tance cannot be over emphasized as it serves as a foundation for classical statis-
tical physics. The Berry phase makes, in general, the equations of motion non-
canonical [21, 22, 6, 7, 23], leading to a violation of Liouville’s theorem. Neverthe-
less, we are able to remedy the situation by modifying the density of states in phase
space.

This modified phase-space density of states enters naturally in the semiclas-
sical expression for the expectation value of physical quantities, and has profound
effects on equilibrium as well as transport properties. We demonstrate this with sev-
eral examples. First, we consider a Fermi sea of electrons in a weak magnetic field,
and show that the Fermi sea volume can be changed linearly by the field. Second,
we show how the Berry phase formula for the intrinsic anomalous Hall conductivity
may be derived from equilibrium thermodynamics using the Středa formula [24].
Third, we provide a general derivation of an orbital-magnetization formula which is
convenient for first-principles calculations.

In addition, we present an effective quantum mechanics for Bloch electrons
in solids by quantizing the semiclassical dynamics with the geometric phase. The
density of states enters in a nontrivial manner into the commutators of the phase
space coordinates, and relates directly to the minimal uncertainty volume in the
phase space.

2.2 Breakdown of the Liouville’s Theorem

To begin with, we write down the semiclassical equations of motion for a Bloch
electron in weak electric and magnetic fields [7]

ṙ =
1
h̄

∂εn(k)
∂k

− k̇ ×Ωn(k) , (2.1a)

h̄k̇ = −eE(r)− eṙ ×B(r) , (2.1b)

where Ωn(k) is the Berry curvature of electronic Bloch states defined by Ωn(k) =
i〈∇kun(k)| × |∇kun(k)〉 with |un(k)〉 being the periodic part of Bloch waves in the
nth band, εn(k) is the band energy with a correction due to the orbital magnetic
moment [see Eq. (2.10) and above]. For crystals with broken time-reversal symmetry
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(such as ferromagnetic materials) or spatial inversion symmetry (such as GaAs), the
Berry curvature Ωn(k) is nonzero.

To show the violation of Liouville’s theorem, we consider the time evolution
of a volume element ∆V = ∆r∆k in the phase space. The equation of motion
for ∆V is given by (1/∆V )d∆V/dt = ∇r · ṙ + ∇k · k̇ [25]. A straightforward but
somewhat tedious calculation (see Appendix A) shows that the right hand side is
equal to −d ln(1 + eB ·Ω/h̄)/dt, which is a total time derivative. Therefore we can
solve for the time evolution of the volume element and obtain

∆V = ∆V0/(1 + eB ·Ωn/h̄) . (2.2)

The fact that the Berry curvature is generally k dependent (and the magnetic field
can also depend on r) implies that the phase space volume element changes during
time evolution of the state variables (r,k).

Nevertheless, we have a remedy to this breakdown of Liouville’s theorem.
Equation (2.2) shows that the volume element is a local function of the state variables
(through the magnetic field and the Berry curvature) and has nothing to do with
the history of time evolution. We can thus introduce a modified density of states

Dn(r,k) = (2π)−d(1 + eB ·Ωn/h̄) , (2.3)

such that the number of states in the volume element, Dn(r,k)∆V , remains con-
stant in time, where d is the spatial dimensionality of the system. The prefactor
(2π)−d is obtained by demanding that the density of states Dn(r,k) reduces to the
conventional form when the Berry curvature vanishes. As will be shown later, this
density of states corresponds to the minimal quantum uncertainty volume of the
state variables. Therefore, it does serve as the semiclassical measure for the number
of quantum states per unit volume in the phase space. Based on this understanding,
we write the classical phase-space probability density as

ρn(r,k, t) = Dn(r,k)fn(r,k, t) , (2.4)

with fn(r,k, t) being the occupation number of the state labeled by (r,k). Proba-
bility conservation demands that ρn(r,k, t) satisfies the continuity equation in phase
space. On the other hand, our density of states satisfies dDn/dt = −(∇r · ṙ + ∇k ·

11



k̇)Dn. It then follows that the occupation number introduced above has the desired
property of being invariant along the trajectory, i.e., dfn/dt = 0 1.

We can thus write the real space density of a physical observable Ô in the
form [26]

Ō(R) =
∑

n

∫
dkDn(r,k)fn(r,k, t)〈Ôδ(r̂ −R)〉rkn (2.5)

where 〈· · · 〉rkn denotes the expectation value in the wave-packet state centered at
(r, k) with the band index n. In the spatially homogeneous case, it reduces to:

Ō =
∑

n

∫
dkDn(k)fn(k)On(k) , (2.6)

where On(k) is the expectation value of Ô in a Bloch state. For simpler notation,
we will drop the band index n and assume that the integral over k includes the sum
over n.

We now discuss the magnitude of the correction term eB ·Ω/h̄ to the density
of states in Eq. (2.3). The Berry curvature for several materials has been calculated
before using first-principles method [11, 12]. Over large regions of the Brillouin
zone, its magnitude is on the order of a2 with a being the lattice constant. Thus,
eB · Ω/h̄ ∼ eBa2/h̄ is the ratio of the magnetic flux through a unit cell to the
magnetic flux quantum, and can be 10−2 to 10−3 for a magnetic field of 1 tesla. In
the vicinity of some isolated points, the Berry curvature can be several orders of
magnitude higher, leading to bigger effects for measurement. In the following, we
will present a number of applications of our formula Eq. (2.6).

2.3 Examples

In our first example, we consider the quantity of electron density and show that
the Fermi sea volume can be changed linearly by a magnetic field when the Berry
curvature is non-zero. Assuming zero temperature and using Eq. (2.3), we have the

1In the presence of collision, the function satisfies the usual Boltzmann equation:

dfn

dt
≡

“ ∂

∂t
+ ṙ · ∇r + k̇ · ∇k

”
fn(k, r, t) =

“∂fn

∂t

”
coll

The right hand side denotes the collision contribution.
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electron density as

ne =
∫ µ dk

(2π)d

(
1 +

eB ·Ω
h̄

)
, (2.7)

where the upper limit means that the integral is over states with energies below the
chemical potential µ. Noting that the electron density is fixed by the background
charge density, we conclude that the Fermi volume must change with the magnetic
field. To first order, this change is given by

δVF = −
∫ µ0

dk
eB ·Ω
h̄

. (2.8)

We note that while Landau levels make the Fermi sea volume oscillate with the field,
the effect described above gives an overall shift on average. Such a shift has impor-
tant implications for Fermi-surface related behaviors such as transport properties.
For instance, in metals, it can induce a magnetoresistance linearly depending on
the magnetic field. On the other hand, in band insulators the k space is limited to
the Brillouin zone. Electrons must populate a higher band if (e/h̄)

∫
BZ dk B ·Ω is

negative. When this quantity is positive, holes must appear at the top of the valence
bands. Discontinuous behavior of physical properties in a magnetic field is therefore
expected for band insulators with non-zero integral of the Berry curvatures (Chern
numbers).

In our second example, we show a connection between our phase space density
of states to the intrinsic anomalous Hall effect, which is due to spin-orbit coupling
in the band structure of a ferromagnetic crystal. In the context of the quantum Hall
effect, Středa derived a formula relating the Hall conductivity to the field derivative
of the electron density at a fixed chemical potential [24], σxy = −e(∂ne/∂Bz)µ.
There is a simple justification of this relation by a thermodynamic argument by
considering the following adiabatic process in two dimensions. A time dependent
magnetic flux generates an electric field with an emf around the boundary of some
region; and the Hall current leads to a net flow of electrons across the boundary and
thus a change of electron density inside. This argument can be straightforwardly
applied to the case of anomalous Hall effect and to three dimensions. By taking the
derivative of the electron density (2.7) with respect to B = Bẑ at fixed chemical
potential, we find that

σxy = −e
2

h̄

∫ µ dk

(2π)d
Ωz . (2.9)
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This is an intrinsic effect because it is independent of scattering, and thus differs
from conventional skew scattering and side jump mechanisms [10, 11, 12, 18].

As a third example of application, we now derive a semiclassical formula for
orbital magnetization. In the semiclassical picture, a Bloch electron is modeled by
a wave packet in a Bloch band, which is found to rotate about its center of mass in
general, yielding an intrinsic magnetic moment given by m(k) = −i(e/2h̄)〈∇ku| ×
[Ĥ0(k) − ε0(k)]|∇ku〉, where Ĥ0 is the Hamiltonian 2. In the presence of a weak
magnetic field B, the electron band structure energy ε0(k) (which may already
include Zeeman energy from spin magnetization) acquires a correction term from
this intrinsic orbital moment [6, 7], ε(k) = ε0(k) −m(k) ·B. For an equilibrium
ensemble of electrons, the total orbital magnetization can be found from the total
energy, which is given by Eq. (2.6) as,

E =
∫ µ dk

(2π)d

(
1 +

eB ·Ω
h̄

)(
ε0(k)−m(k) ·B

)
. (2.10)

Taking the differential of E with respect to B, we obtain the magnetization at zero
magnetic field to be

M =
∫ µ0 dk

(2π)d

(
m(k) +

eΩ
h̄

[
µ0 − ε0(k)

])
(2.11)

=
e

2h̄

∫ µ0 dk

(2π)d
i
〈∂u
∂k

∣∣∣× [2µ0 − ε0(k)− Ĥ0]
∣∣∣∂u
∂k

〉
.

In the upper line of the above expression, the first term is the contribution from the
intrinsic orbital moment of each Bloch electron, and the second term comes from
the explicit field dependence of the density of states and the resulting change in the
Fermi volume in Eq. (2.8). We expect this effect to be important in ferromagnetic
materials with strong spin-orbit coupling.

Gat and Avron obtained an equivalent result for the special case of Hofstadter
model [27]. Our derivation provides a more general formula that is applicable to
other systems. Following the discussions on band insulators in our first example,
there will be a discontinuity of the orbital magnetization if the integral of the Berry
curvature over the Brillouin zone, or the anomalous Hall conductivity, is non-zero

2There is a typo in Ref. [7]. The expression for orbital magnetic moment in Eq. (3.6) misses a
factor of −1/2. This term is equivalent to the Rammal-Wilkinson term as discussed in Ref. [23].
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and quantized. Depending on the direction of the field, the chemical potential µ0

in the above formula should be taken at the top of the valence bands or the bottom
of the conduction bands. The size of the discontinuity is given by the quantized
anomalous Hall conductivity times Eg/e, where Eg is the energy gap. For insula-
tors with zero Chern numbers, the orbital magnetization can be directly evaluated
from Wannier functions, with result consistent with our general formula [28]. Our
general formula can also be derived from a full quantum mechanical linear response
analysis [29].

2.4 General Form and Effective Quantum Mechanics

The central result of this paper, equation (2.3), can be extended to the more general
case when Berry curvature includes the components of

←→
Ω kr as well as

←→
Ω kk and

←→
Ω rr [7]. In this case, we introduce the Berry curvature in phase space,

←→
Ω =

(←→
Ω rr ←→

Ω rk

←→
Ω kr ←→

Ω kk

)
, (2.12)

where each block is a 3× 3 matrix;
←→
Ω rk = −(

←→
Ω kr)T . The phase space density of

states then reads,

D = (2π)−d

√
det(
←→
Ω −

←→
J ) . (2.13)

with
←→
J =

(
0
←→
I

−
←→
I 0

)
. In the special case of electromagnetic perturbations with

←→
Ω kk

ab = εabcΩc,
←→
Ω rr

ab = −(e/h̄)εabcBc and
←→
Ω kr = 0, it reduces to (2.3). On the

other hand, when either
←→
Ω kk or

←→
Ω rr vanishes, it has a simpler form

D = (2π)−d det(
←→
I −

←→
Ω rk) . (2.14)

This result has found application in the study of spin-force induced charge-Hall
effect [30].

Finally, we show how the density of states emerges naturally in the effective
quantum mechanics of Bloch electrons. Although our system is not canonical, it
can nevertheless be quantized following a standard procedure developed for non-
holonomic systems with second class constraints [31, 32]. First, one redefines the
Poisson bracket {f, g}∗ = (∂f/∂ξa)Mab(∂g/∂ξb), where ξa are the components of
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phase space coordinates ξ ≡ (r, k) and
←→
M = (

←→
Ω −

←→
J )−1. Our equations of

motion (2.1) can then be written as ξ̇a = {ξa, ε}∗, where the energy ε(ξ) plays the
role as the Hamiltonian function. Then, one promotes the Poisson brackets into
quantum commutators:

[ξ̂a, ξ̂b] = iMab , (2.15)

where ξ̂a is the quantum operator corresponding to the phase space coordinates. It
then follows that a phase space point acquires a minimal uncertainty volume given
by [33]

min
(∏

a

∆ξa
)

= 2−d
[
det(
←→
Ω −

←→
J )
]−1/2

. (2.16)

This can be understood as the phase space volume occupied by a single quantum
state, therefore Eq. (2.13), which is proportional to the reciprocal of this volume,
can naturally be regarded as the semiclassical expression for the number of quantum
states per unit volume in the phase space.

Equation (2.15) presents the effective quantum mechanics of Bloch electrons.
As a demonstration for the validity of the quantization scheme as well as the quan-
tum effect of the phase space density of states, we consider a simple toy model of
two dimensional electron system with a constant Berry curvature, subjected to a
uniform magnetic field. The commutators read,

[x̂, ŷ] = i
Ω

1 + (e/h̄)BΩ
, [k̂x, k̂y] = −i

(e/h̄)B
1 + (e/h̄)BΩ

,

[x̂, k̂x] = [ŷ, k̂y] = i
1

1 + (e/h̄)BΩ
. (2.17)

In the absence of the Berry curvature, we reduce the problem to a known case
with the familiar nontrivial commutator [k̂x, k̂y] = −i(e/h̄)B. In the absence of
the B field, we have the nontrivial commutator [x̂, ŷ] = iΩ discussed extensively
in the literature on non-commutative geometry. It is interesting to see that in
the presence of both fields, we do not just have a combination of these nontrivial
commutators. Instead, we have a nontrivial density of states which enters into all
of the commutators.

Assuming ε(k) = h̄2k2/2m, the system can be solved algebraically to yield
the energy spectrum and degeneracy. We found that the spectrum consists of a set
of Landau levels with the renormalized cyclotron frequency ωc = ω0

c/[1 + (e/h̄)BΩ],
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where ω0
c = eB/m is the usual cyclotron frequency [34]. At the same time, it is more

important to note that each Landau level still has the same degeneracy eB/h as in
the absence of the Berry curvature. It is known that this degeneracy is directly
related to the quantized Hall conductance e2/h for a filled Landau level 3. Had
the density of states not entered in the commutators, the Landau level degeneracy
would be modified, violating the topological requirement that the Hall conductance
for a filled Landau level is quantized.

Before closing, we note that the phase space density of states also enters
naturally in the alternative quantization scheme with Feynman path integral. The
S matrix is calculated by [31]

〈out|S|in〉 =
∫ ∏

t

[D(ξ)dξ] exp
[ i
h̄

∫
Ldt

]
. (2.18)

where L is the Lagrangian for our system [7],

L =
1
2
ξ̇aJabξ

b − ε(ξ) + ξ̇aAa(ξ) (2.19)

with Aa(ξ) ≡ i〈u(ξ)|∇αu(ξ)〉 being the phase space gauge potentials associated with
the Berry curvature field

←→
Ω .

2.5 Summary

In summary, we have found a Berry phase correction to the phase space density of
states for Bloch electrons. This correction emerges naturally in both semiclassical
and quantum mechanics of Bloch electrons, and has profound effects on the equilib-
rium and transport properties. Because of the fundamental change introduced by
this correction, it could have important implications on other aspects of condensed
matter physics, such as the Fermi liquid theory. For instance, in the presence of a
magnetic field, interaction between electrons can change the Fermi sea volume by
modifying the Berry curvature and thus the phase space density of states.

3The Hall conductance is given by σ = ne/B, where n is the electron density. The quantized
value is obtained if we substitute the degeneracy density for n.
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Chapter 3

Orbital magnetization of Bloch

electrons

3.1 Introduction

In solids, magnetism is either due to the orbital currents of the electrons, or to their
spins. While the latter has enjoyed a continuous and growing research attention
over decades, orbital magnetism remains a somewhat poorly understood subject.
Recently, this problem has attracted much attention [27, 35, 28].

In this chapter, we first generalize the zero-temperature formula for orbital
magnetization to finite temperatures. By studying a finite system, it is shown that
the magnetization consists of a orbital moment contribution and a free current
contribution. A thermodynamic derivation of the Hall effect and Nernst effect is
given based on the Streda formula. In the end, possible extension to the quantum
Hall insulators is discussed.

Our theory of orbital magnetization is built on recent development [6, 7, 35]
of the semiclassical dynamics of Bloch electrons that has been successfully applied
to the anomalous Hall effect (AHE) [10, 11, 12] and spin transport [19, 26] in mag-
netic materials and nanostructures. In the semiclassical approach, each electron
in a given band is described by a wave packet |W (r,k)〉 centered at (r,k) in the
phase space. It has been found [6, 7] that in addition to the spin magnetic mo-
ment, the wave packet also carries an intrinsic orbital magnetic moment m(k) that
is proportional to the expectation value of the angular momentum operator, i.e.,
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m(k) = −(e/2me)〈W |(r̂ − r)× p̂|W 〉, where −e and me is the electron charge and
mass, respectively. Interestingly, this magnetic moment m(k) is insensitive to the
precise shape and size of the wave packet or any external perturbation. Another rel-
evant and intriguing aspect of the Bloch electron dynamics is the non-commutativity
of the position and momentum operators due to the Berry phase effect, which leads
to a field-dependent density of states in the phase space [35]. Accordingly, the usual
conversion of a quantum-state summation to a k-space integral in the semiclassical
limit becomes ∑

k

→
∫

[dk](1 +
e

h̄
B ·Ω) , (3.1)

where [dk] is a shorthand for dk/(2π)d, B(r) is the magnetic field, and Ω(k) is the
Berry curvature of the Bloch states. The explicit expressions for Ω(k) and m(k)
will be given later.

3.2 General Formula

Armed with the semiclassical theory for Bloch electron dynamics, we now derive
the orbital magnetization at finite temperatures. For a system with a fixed chemical
potential, the magnetization is most easily obtained by M = −(∂G/∂B)µ,T , where
G(µ, T,B) is the grand canonical potential. Neglecting the Zeeman spin energy, we
have 1

G = − 1
β

∑
k

log(1 + e−β(εM−µ))

= − 1
β

∫
[dk](1 +

e

h̄
B ·Ω) log(1 + e−β(εM−µ)) ,

(3.2)

where the electron energy εM = ε(k) −m(k) ·B includes a correction due to the
orbital magnetic moment m(k). The conversion rule (3.1) with the Berry-phase
modified density of states is used to obtain the second line. It then follows that at
zero magnetic field,

M =
∫

[dk]fm +
1
β

∫
[dk]

e

h̄
Ω log(1 + e−β(ε−µ)) , (3.3)

1Here we assume the magnetic field is sufficiently weak so that the crystal momentum k is still
a good quantum number.
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where f(k) is the Fermi-Dirac distribution function. Since our derivation is carried
out for a system without boundaries, the orbital magnetization appears to be a bulk
property.

The first term in Eq. (3.3) is the expected contribution from the orbital
magnetic moment m(k) of each wave packet. In fact, the contribution of the spin
magnetic moment can easily be incorprated by including the Zeeman energy term
−g(e/me)S ·B in the grand canonical potential (3.2), where g is the Landé factor
and S is the spin. Then each wave packet will contribute a total magnetic moment of
m̃(k) = m(k)+ g(e/m)S to the magnetization. Since the orbital moment responds
to the magnetic field in the exact way as the spin moment does, the former is
indistinguishable from the latter in a measurement of the magnetization 2. This
also implies a k-dependent g factor.

3.3 Boudary Current Contribution

Now we turn to the second term in Eq. (3.3) with an odd-looking logarithm function
as the statistical weighing factor. It comes from the explicit field-dependence of the
density of states, and can be regarded as the boundary current contribution due to
the AHE. To see this, we consider a finite system of electrons in a two-dimensional
lattice with a confining potential V (r). We further assume that the potential V (r)
varies slowly at atomic length scale so that the wave packet description of the elec-
tron is still valid. In the bulk where V (r) vanishes identically, the electron energy is
just the bulk band-energy; near the boundary, it will be tilted up due to the increase
of V (r). Thus to a good approximation, we can write the electron energy as

ε̃(r,k) = ε(k) + V (r) . (3.4)

The energy spectrum in real space is sketched in Fig. 3.1. For a wave packet near the
boundary, it will feel a force ∇V (r) due to the presence of the confining potential.
Consequently, the electron acquires an anomalous velocity (1/h̄)∇V ×Ω [6, 7] whose

2Here our starting point is the Pauli equation, where the spin is regarded as an intrinsic property
of the electron. In fact, if one constructs a wave packet using the positive energy eigenstates of the
Dirac equation, it will possess an orbital magnetic moment whose magnitude is exactly the Bohr
magneton. Therefore in the Dirac description, the electron spin actually comes from the spinning
of the wave packet, which restores the literal meaning of “spin”. Details are presented in C.-P.
Chuu, M.-C. Chang, and Q. Niu (to be published).
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Figure 3.1: Electron energy ε̃ in a slowly varying confining potential V (r). In
addition to the self-rotation, wave packets near the boundary will also move along
the boundary due to the potential V . Level spacings between different bulk k-states
are exaggerated; they are continuous in the semiclassical limit. The insert shows
directions of the Berry curvature, the effective force, and the current carried by a
wave packet on the left boundary. Electron charge is −e (e < 0).
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direction is parallel with the boundary. Because electrons on opposite boundaries
have opposite velocities, they form a macroscopic circuit. The corresponding current
(of the dimension “current density × width” in 2D) is

I =
∫
dε′ f(ε′)

∫
[dk]Θ(ε′ − ε(k))

×
∫
dx

dV

dx

e

h̄
Ωz(k)δ(ε̃(r,k)− ε′) .

(3.5)

The first integral
∫
dε′ f(ε′) is the usual statistical average with the distribution

function; the second integral
∫

[dk]Θ(ε′− ε(k)) means that only states below energy
ε′ contribute to the current I at energy ε′; and the third integral

∫
dx δ(ε̃(r,k)− ε′)

places the requirement that the electron energy at the point x has to fall into the
interval [ε′, ε′ + dε′] (Fig. 3.1). The integral over dx is confined to the space where
V (r) varies appreciately. Now recall that if there is a current I flows in a closed
circuit with a sufficiently small area A, then the magnetic moment is given by I ·A.
Therefore the magnetization (magnetic moment per unit area) has the magnitude of
the current I. Since this boundary current corresponds to the macroscopic orbital
motion of the wave packet center that is free to drift around, we call this contribution
the “free current” contribution. Integrating Eq. (3.5) we obtain

Mc =
1
e

∫
dε f(ε)σAH

z (ε) , (3.6)

where σAH
z (ε) is

σAH
z (ε) =

e2

h̄

∫
[dk]Θ(ε− ε(k))Ωz(k) . (3.7)

This is the zero-temperature formula (with Fermi energy ε′) for the intrinsic anoma-
lous Hall conductivity that has been extensively studied recently [10, 11, 12]. In fact,
integrating the second integral of Eq. (3.3) by parts, we can eliminate the logarithm
function and obtain the same expression of Mc due to the boundary current. The
total magnetization thus is

Mz =
∫

[dk]f(k)mz(k) +
1
e

∫
dε f(ε)σAH

z (ε) . (3.8)

22



3.4 Thermodynamic Derivation of the Hall and Nernst

Coefficient

This situation vividly resembles the equivalence between the bulk picture [14] and
the edge picture [36] in the quantum Hall effect (QHE). The fact that Mc can be
understood either as a bulk contribution or a boundary contribution shows that it
is truly a topological property of the system. However, one should not confuse our
boundary current with the edge current discussed by Halperin in the QHE (therefore
in the paragraph the words “boundary” and “edge” mean different quantities). Their
difference is best viewed by considering an insulator with nonzero Berry curvature
but with a zero Chern number, as discussed by Thonhauser et al. [28]. The edge
current is due to the edge states existing in the energy gap above the Fermi energy.
The quantum Hall conductance of such a system is zero [14], meaning there is no net
edge current (we do not rule out the possibility of non-chiral edge states). On the
other hand, it does not prevent the existence of a boundary current below the Fermi
energy discussed above. Numerical analysis of the motion of Wannier functions
near the boundary also verifies this observation [28]. Actually, if the time-reversal
symmetry is present, ε(k) = ε(−k), Ω(k) = −Ω(−k), and m(k) = −m(−k);
both the moment and current contributions vanish. In fact, time-reversal symmetry
prohibits the existence of a nonzero magnetization. If the time-reversal symmetry is
broken, Mc in general is nonzero, leading to the appearance of a boundary current.

In the quantum Hall effect, the relation between the Hall current and the
magnetization is given in the elegant Středa formula [24], i.e., σxy = −e(∂n/∂B)µ,T =
−e(∂M/∂µ)B,T (the last step is by the Maxwell relation). However, if we apply this
equation directly to the AHE, it does not lead to the well-studied anomalous Hall
conductivity. A direct calculation shows that the total magnetization M in the
Středa formula should be replaced by only the free current contribution Mc, i.e.,

σxy = −e
(∂Mc

∂µ

)
T,B

= −
∫
dε
∂f

∂µ
σAH

z (ε) . (3.9)

This is consistent with our understanding that Mm comes from the localized motion
around the electron center thus does not appear in a transport measurement. Based
on this understanding, we postulate that the off-diagonal Peltier coefficient should

23



be given by [37]

αxy = T
(∂Mc

∂T

)
T,B

=
∫
dε
∂f

∂µ
(ε− µ)σAH

z (ε) , (3.10)

where jQ
x = αxyEy with jQ

x the heat current. This coefficient αxy can be measured
in the Nernst experiment [38].

The above result (3.10) can be justified by a simple thermodynamic argu-
ment. In two dimension, a changing magnetic field induces an electric field around
some area; the change of the entropy density S inside this area then corresponds to
the heat current flow. We immediately have αxy = T (∂S/∂t)/(∂B/∂t). Neglecting
the electron interaction and assuming the system is at the clean limit, we can take
the adiabatic limit and obtain αxy = T (∂S/∂B)µ,T . Note that the electron spin is
neglected because the Zeeman energy will change the chemical potential. However,
based on our understanding of the magnetization, the intrinsic orbital moment also
couples to the magnetic field directly, therefore has to be neglected as well. Write
the grand canonical potential as

dG = −SdT − ndµ−McdBo −MmdBz , (3.11)

where Bo is the part that enters into the Hamiltonian through mechanical moment
p+(e/h̄)A and only affect the orbital motion of the electron, and Bz couples to the
magnetic moment directly through some Zeeman-like energy term; Mm is the elec-
tron moment contribution. The thermodynamic process described above actually
corresponds to changing Bo while fixing Bz. Therefore αxy = T (∂Mc/∂T )T,Bo .

Now we write down the explicit expression for the Berry curvature Ω(k) and
the magnetic moment m(k). Both of them are properties of the band structure of
the crystal. They are evaluated directly using the single-electron Bloch states:

Ω(k) = i〈∇ku| × |∇ku〉 , (3.12)

m(k) = −i(e/2h̄)〈∇ku| × [Ĥ(k)− ε(k)]|∇ku〉 , (3.13)

where |u(k)〉 is the periodic part of the Bloch function, and Ĥ(k) and ε(k) are
the unperturbed Hamiltonian and band energy, respectively. They are nonzero
in the presence of broken time-reversal or spatial-inversion symmetry. These k-
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space expressions (3.12) and (3.13) can be readily implemented in first-principles
calculations.

So far we have discussed the orbital magnetization in the context of the
anomalous Hall effect. Our result can also be applied to electrons in a periodic
lattice with a quantizing magnetic field where the wave packet is constructed by
magnetic Bloch functions [6]. Similar results have been obtained in a recent paper
by Středa [39].
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Chapter 4

Berry Phase Effect in

Anomalous Thermoelectric

Transport

4.1 Introduction

The phenomena of transport fall into two categories: those due to a mechanical force,
such as the electric field on charges, and those driven by a statistical force, such as
the gradient of temperature or chemical potential. The mechanical force exists on
the microscopic level and can be described by a perturbation to the Hamiltonian
for the carriers, while the statistical force manifests on the macroscopic level and
makes sense only through the statistical distribution of the carriers. It has been
established [6, 7] that the Berry phase of Bloch states has a profound effect on
transport driven by a mechanical force. This is through the mechanism that the
group velocity of a Bloch electron acquires an anomalous term proportional to the
mechanical force, i.e.,

ṙ =
1
h̄

∂εn(k)
∂k

+
e

h̄
E ×Ωn(k) , (4.1)

where εn(k) is the band energy, −eE is the mechanical force due to the external
electric field, and Ωn(k) is the Berry curvature, the Berry phase per unit area in

This chapter is adapted from D. Xiao, Y. Yao, F. Zhong, and Q. Niu, Phys. Rev. Lett. 97, 026603
(2006). Copyright c© American Physical Society.
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k-space. Evaluation of the Hall current from the anomalous term reproduces the
Karplus-Luttinger formula [40] for the anomalous Hall conductivity. Calculations
based on the Berry phase effect have found much success in explaining anomalous
Hall effects (AHE) in ferromagnets of semiconductors [10], oxides [11] and transition
metals [12]. Recent experiments [41, 42] give further convincing evidence in support
of this theory.

A natural question is whether and how the Berry phase also manifests itself
in transport driven by a statistical force. On the one hand, the anomalous veloc-
ity vanishes in the absence of a mechanical force, eliminating the obvious cause for
a Berry phase effect in this case. On the other hand, this conclusion would in-
troduce a number of basic contradictions to the standard transport theory. First,
a chemical potential gradient would be distinct from the electrical force, violating
the basis for the Einstein relation for transport. Second, a temperature gradient
would not induce an intrinsic charge Hall current, violating the Mott relation [see
Eq. (4.10) below] between the AHE and the anomalous Nernst effect (ANE), where
a transverse current is produced by a temperature gradient in ferromagnets. Third,
as will be made clear below, it would be impossible to establish the Onsager re-
lation between cross transport coefficients connecting thermoelectric Hall currents
and forces. In addition, a recent experiment on the ANE in the spinel ferromagnet
CuCr2Se4−xBrx [38] found weak dependence on scattering, suggesting that there
should indeed be a Berry-phase induced intrinsic mechanism.

In this chapter, we solve the puzzle by showing how the Berry phase effect
manifests itself in thermoelectric transport driven by a statistical force. It turns
out that the local current of carriers acquires an extra term from the carrier mag-
netic moment in the presence of a non-uniform distribution which arises from the
gradient of temperature or chemical potential. However, the complete theory also
relies on a proper deduction of magnetization current [43], and requires a deeper
understanding of the orbital magnetization. It was found that there is a Berry-phase
correction to the magnetization [35, 28], and here we generalize it to the case of
finite temperatures which is needed for thermoelectric transport. This Berry phase
correction eventually enters into the transport current produced by the statistical
force, playing the counterpart as the anomalous velocity term due to a mechanical
force.

We have thus found perfect harmony between statistical and mechanical
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forces even in the presence of Berry phase effect. The basic transport relations of
Einstein, Mott, and Onsager continue to hold, which gives strong support for the
validity of our theory. Finally, we also provide a reality check on the Berry phase
effect in the ANE by calculating the intrinsic anomalous Nernst conductivity αxy

1

for CuCr2Se4−xBrx using first-principles method. The obtained doping dependence
curve agrees well with available experimental data [38]. Our calculation also predicts
a peak-valley structure between the data points, at a place where the anomalous
Hall conductivity has a sudden sign and magnitude change.

4.2 Local and transport currents.

In the conventional Boltzmann transport theory, one considers a statistical distri-
bution g(r,k) of carriers in the phase space of position and crystal momentum.
The distribution function satisfies the Boltzmann equation with a collision integral
whose form depends on the details of the collision process. The current density is
given by J = −e

∫
[dk] g(r,k)ṙ, where

∫
[dk] is a shorthand for

∫
dk/(2π)3, and a

summation over band index has been omitted for simple notation. In the absence
of a mechanical force, the electron velocity is simply ṙ = ∂ε(k)/h̄∂k. It is then
apparent that the anomalous velocity term due to the Berry phase drops out of the
expression for the current.

However, the above picture is näıve in that the carrier is treated as a struc-
tureless point particle. The quantum representation of the carrier is in fact a wave
packet, which has a finite spread in the phase space. The wave packet generally
rotates about its center position, as illustrated in Fig. 4.1, giving rise to an orbital
magnetic moment m(k) = −(e/2)〈W |(r̂−rc)× v̂|W 〉, where |W 〉 is the wave packet
and v̂ is the velocity operator [6, 7]. A careful coarse graining analysis [26] (see also
Appendix B) shows that the correct expression for the local current has an extra
term:

J = −e
∫

[dk] g(r,k)ṙ + ∇×
∫

[dk] f(r,k)m(k) , (4.2)

where the magnetic moment enters explicitly. In the extra term we have replaced
1In the presence of both an electric field and a temperature gradient, the transverse current is

given by jx = σxyEy + αxy(−∇yT ). It is thus natural to call αxy the Nernst conductivity as σxy

is conventionally called the Hall conductivity. Note however in Ref. [38] αxy was called the Peltier
term.
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wave packet
W ( r ; rc , kc)

rc

Figure 4.1: The wave packet description of a charge carrier whose center is (rc,kc).
A wave packet generally possesses two kinds of motion: the center of mass motion
and the self-rotation around its center. Both of them contribute to the local current
density as given in Eq. (4.2).

g(r,k) with the local equilibrium Fermi-Dirac distribution f(r,k) for a linear-order
calculation. When the temperature or chemical potential varies in space, the extra
term will be proportional to the gradient of these thermodynamic quantities and is
therefore non-negligible.

For transport studies, it is important to discount the contribution from the
magnetization current, a point which has attracted much discussion in the past.
It was argued that the magnetization current cannot be measured by conventional
transport experiments (For the most recent comprehensive work, see Ref. [43]).
Therefore, one introduces the concept of transport current, defined by

j = J −∇×M(r) , (4.3)

where M(r) is the magnetization density. This is entirely analogous to the classic
distinction between microscopic current and free current [44].

It is also important to realize that the magnetization density is not simply
a statistical sum of the carrier magnetic moments. It has been shown recently that
there is a Berry phase correction to the magnetization [35, 28]. The contribution
from the carrier magnetic moments to the local current will be subtracted out in
the transport current, but the Berry phase correction to the magnetization will give
rise to an extra term in the transport current. Earlier work concentrate on the zero
temperature magnetization, and we provide an extension to the finite temperature
case below. Using Eq. (4.6) for the magnetization, we find that the transport current
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is given by

j = −e
∫

[dk]g(r,k)ṙ −∇× 1
β

∫
[dk]

e

h̄
Ω(k) log(1 + e−β(ε−µ)) , (4.4)

where β = 1/kBT , and the Berry curvature is defined by Ω(k) = ∇k × 〈u|i∇k|u〉
with |u〉 being the periodic amplitude of the Bloch wave.

The above expression gives a complete account of the transport current in fer-
romagnets, and for crystals with nonzero Berry curvatures in general. The first term
is the usual expression for the charge current, which vanishes at local equilibrium
(assuming the absence of a mechanical force), i.e., g(r,k) = f(r,k). Nonequilibrium
correction to first order in the gradient of temperature or chemical potential yields
a result strongly depending on the relaxation process, and a transverse current can
result from skew scattering due to spin-orbit coupling [45]. The second term is
new, which results from the Berry phase correction to the magnetization. It is also
first order in the statistical force, but is independent of the relaxation time, and is
therefore an intrinsic property of the system.

4.3 Orbital magnetization at finite temperatures

The orbital magnetization of Bloch electrons has been an outstanding problem in
solid state physics. Recently, different approaches [35, 28] have been used to derive
a formula at zero temperature, where Berry phase is found to play an important
role. In order to study thermoelectric transport, we need to generalize it to finite
temperatures. Our derivation is made easy by using the field-dependent density
of states introduced in Ref. [35], where it was shown that in the weak-field limit,
a quantum-state summation

∑
kO(k) of some physical quantity O(k) should be

converted to a k-space integral according to
∫

[dk](1 + eB ·Ω/h̄)O(k).
The equilibrium magnetization density can be obtained from the grand canon-

ical potential, which, within first order in the magnetic field, may be written as

F = − 1
β

∑
k

log(1 + e−β(εM−µ))

= − 1
β

∫
[dk](1 +

e

h̄
B ·Ω) log(1 + e−β(εM−µ)) ,

(4.5)
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where the electron energy εM = ε(k) −m(k) ·B includes a correction due to the
orbital magnetic moment m(k). The magnetization is then the field derivative at
fixed temperature and chemical potential, M = −(∂F/∂B)µ,T , with the result

M(r) =
∫

[dk] f(r,k)m(k) +
1
β

∫
[dk]

e

h̄
Ω(k) log(1 + e−β(ε−µ)) . (4.6)

For generality, we have included a position dependence to cover the situation of local
equilibrium with a position dependent temperature and chemical potential.

We have thus derived a general expression for the equilibrium orbital mag-
netization density, valid at zero magnetic field but at arbitrary temperatures. The
first term is just a statistical sum of the orbital magnetic moments of the carri-
ers originating from self-rotation of the carrier wavepackets. It has been derived
in Ref. [6, 7] with the expression m(k) = −i(e/2h̄)〈∇ku| × [Ĥ(k) − ε(k)]|∇ku〉,
where Ĥ(k) is the crystal Hamiltonian acting on |u〉. It has the same symmetry
properties as the Berry curvature. The second term of Eq. (4.6) is the Berry phase
correction to the orbital magnetization. It is of topological nature, arising from a
bulk consideration on the one hand as in the above derivation, and being connected
to a boundary current circulation on the other. Interestingly, it is this second term
that eventually enters the transport current.

4.4 Anomalous thermoelectric transport.

With the aid of Eq. (4.4) it is straightforward to calculate various thermoelectric re-
sponse to statistical forces. For example, a chemical potential gradient will produce,
through the second term, a Hall current given by −∇µ×(e/h̄)

∫
[dk]f(k)Ω(k). This

is the same as the Berry-phase induced anomalous Hall current in response to an
electric field if one substitutes ∇µ/e for the field. It is gratifying to see that the
Einstein relation continues to hold in the presence of the Berry phase effect.

In the presence of a temperature gradient, an intrinsic Hall current also
results from the second term of Eq. (4.4),

jin = −∇T

T
× e

h̄

∫
[dk]Ω[(ε− µ)f + kBT log(1 + e−β(ε−µ))] . (4.7)

One can then extract an anomalous Nernst conductivity αxy defined by jx =
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αxy(−∇yT ). On a different route, we can also obtain the same result by invok-
ing a fictitious gravitational field [46], establishing the Einstein relation between
this mechanical force and the temperature gradient.

Interestingly, by integration by parts, αxy can be written into the following
more suggestive form

αxy = −1
e

∫
dε
∂f

∂µ
σxy(ε)

ε− µ
T

, (4.8)

where σxy(ε) is the intrinsic anomalous Hall conductivity at zero temperature with
Fermi energy ε, given by

σxy(ε) = −e
2

h̄

∫
[dk] Θ(ε− εk)Ωz(k) . (4.9)

At low temperatures, the above relation reduces to

αxy =
π2

3
k2

BT

e
σ′xy(εF ) . (4.10)

Such relations between the electrical and thermoelectric conductivities are known
as Mott relations. They were proved for non-magnetic materials without or with a
magnetic field [47, 48]. Our result extends the validity of this relation to ferromag-
nets and other systems with a Berry curvature, and justifies the usage of Eq. (4.10)
in Ref. [38].

The reciprocal of the ANE is the generation of a transverse heat current by
an electric field. The Onsager relation dictates that the Berry phase should also
affect the latter. To show this explicitly, we consider the energy current carried by a
wave packet 〈W |(Ĥ ˆ̇r + ˆ̇rĤ)/2|W 〉 = εṙ−E×m(k), where the second term is from
the field correction to the local Hamiltonian. Assuming a uniform temperature and
chemical potential 2, we obtain the local energy current to first order in the electric
field:

JE =
∫

[dk] g(k)εṙ −E ×
∫

[dk] f(k)m(k) , (4.11)

where the electron velocity ṙ is given by Eq. (4.1). However, the energy current
2It corresponds to the so-called “rapid case” in Ref. [46] where the perturbation is periodic

in time with a frequency that is large compared to the hydrodynamic relaxation rates set by the
system size but small compared to the microscopic relaxation time.
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also has a magnetization part from an “energy” magnetization [43]. In the present
case, it is given by −E ×M , which is nothing but the material-dependent part of
the Poynting vector E×H describing the energy flow (with H = B/µ0−M) [44].
Since this energy flow exists in an equilibrium state, it does not correspond to a
transport current thus must be subtracted from JE to yield the transport energy
current jE = JE + E ×M . Based on our expression (4.6) for the magnetization
density, we finally find the Berry phase correction to the heat current (defined by
jQ ≡ jE − µj):

jQ
in = E × e

h̄

∫
[dk]Ω[(ε− µ)f + kBT log(1 + e−β(ε−µ))] , (4.12)

while the usual expression for the heat current is
∫

[dk] g(k)(ε−µ)v, where v is the
usual group velocity determined by the band energy. In this case, the Berry phase
correction comes from both the anomalous velocity and the orbital magnetization.
Comparison with Eq. (4.7) shows that the Onsager relation is indeed satisfied, pro-
viding a strong evidence for the validity of our theory.

4.5 Comparison with experiment.

The intrinsic anomalous Nernst conductivity αxy only depends on the band structure
and Berry curvature, so it can be evaluated for crystals based on first principles
methods. Here we report our result for CuCr2Se4−xBrx and compare with the
experiment [38]. The band structure and Berry curvature are calculated following
the procedures in Ref. [12], using the generalized gradient approximation for the
exchange-correlation potential. Such calculations are very extensive, and, to reduce
the work load, we assume that doping affects the Fermi energy but not the band
structure, which is justified for the present compounds [49].

The calculated αxy is plotted in Fig. 4.2 as a function of doping x together
with the experimental data from Ref. [38]. The comparison is quantitatively good,
except for the data point at x = 0.25. This is however a rather special point, because
it was reported [38] that, for unknown reasons, αxy is not really proportional to T for
x = 0.25. At low temperatures, a proportional relation is expected from the Mott
relation, which is followed strictly by all the data points at other doping densities.

We also note that while our theory predicts a pronounced peak-valley struc-
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Figure 4.2: The intrinsic anomalous Nernst conductivity αxy (divide by the temper-
ature T ) of CuCr2Se4−xBrx as a function of the Br content x. The calculated curve
is compared with experimental results • extracted from Ref. [38].
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ture around x = 0.3, the available experimental data at present is too sparse to
confirm or disprove it. The oscillatory behavior results from the complicated band
structure of this material, and occurs when the Fermi energy (which depends on
doping) goes through a region of spin-orbit induced energy gap. Detailed expla-
nation based on the numerical calculations will be presented elsewhere [49]. An
indirect experimental evidence for this peak is that it occurs at a place where the
anomalous Hall conductivity has a sudden change of sign and magnitude around
x = 0.3 according to Ref. [41]. Such a correlation is expected from the Mott rela-
tion (4.10) and the fact that the Fermi energy changes approximately linearly with
the doping density [49]. Nevertheless, more direct experimental results are clearly
needed for a careful comparison with our theory.
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Chapter 5

Reciprocal Spin-Hall Effect:

Charge Transport Under the

Influence of a Nonuniform

Perturbation

5.1 Introduction

Recently, great research interests have been devoted to the spin-Hall effect in doped
semiconductors [19, 20], where the spin-orbit interaction can give rise to an intrinsic
spin current perpendicular to the applied electric field. Despite strong experimen-
tal evidence [50, 51], a clear understanding of this effect is far from complete. For
instance, there is no definite relation between bulk spin current and boundary spin
accumulation, making it difficult to extract the spin-Hall conductivity from experi-
mental data. Moreover, using the conventional definition of spin current, one is led
to the dubious conclusion that even in simple band insulators (i.e., bands with zero
Chern numbers) the spin-Hall conductivity can be nonzero [52, 53, 54].

To overcome the above difficulties, we recently proposed a proper definition
of spin current [55], which, unlike the conventional one, allows us to establish the
Onsager reciprocal relation of the charge and spin currents and their corresponding
forces. This result puts recent electrical measurements [56, 57, 58] of the spin-Hall
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effect on a firm ground, i.e, one can first detect the charge Hall current induced by a
spin force, then deduce the corresponding spin-Hall conductivity from the Onsager
relation. In practice, the spin force can be realized by the gradient of a Zeeman
field or a spin-dependent chemical potential. On the other hand, while the properly
defined spin current vanishes in insulators with localized orbitals as desired [55],
what happens in band insulators still remains an open question. It is thus timely
and interesting to investigate the reciprocal spin-Hall effect in detail.

Apart from its practical value, study of the reciprocal spin-Hall effect is also
posing a new challenge to the present theory of charge transport. It has been found
that the electron motion can be driven by a momentum-space Berry curvature,
giving rise to a transverse anomalous velocity in the presence of an electric field [7].
In insulators, this velocity term leads to the celebrated TKNN formula for the
quantum Hall effect [14], while in metals and semiconductors, it gives an intrinsic
contribution to the anomalous Hall current [10, 11, 12]. However, these theories
are concerned about charge transport under a uniform perturbation (the electric
field can be written as the time derivative of a uniform vector potential). In the
general scenario where the system is perturbed by a nonuniform field, there are other
Berry curvatures defined in the mixed position-momentum space that also affects
the electron motion [7]. Their effect on the transport properties of solids is yet to
be explored.

In this chapter we develop a semiclassical theory for charge transport under
the influence of a nonuniform perturbation. We consider only the intrinsic mech-
anism, where the Hall current is driven by the Berry phase in the Bloch bands,
and depends only on the equilibrium part of the carrier distribution function. We
show that for systems perturbed by a nonuniform field, it is necessary to include
the Berry curvature in the mixed position-momentum space. It turns out that this
Berry curvature affects the charge transport through two different ways. In addition
to appearing in the equations of motion, it also modifies the phase-space density of
states [35], which leads to a nontrivial change in the local chemical potential as
explained below. Finally, the complete theory also needs a proper deduction of
the magnetization current, whose connection to the Berry-phase effect is revealed
recently [59].

After deriving the general formalism, we then apply our theory to the recip-
rocal spin-Hall effect. We first demonstrate the formulation by verifying the Onsager
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relation for the Rashba model. After that, we focus on insulators. In a single-band
insulator our result reduces to the familiar expression for the quantum Hall effect,
i.e., the current is given by a product of the Chern number and the chemical po-
tential difference between opposite boundaries in appropriate units. We thus reach
the conclusion that the reciprocal spin-Hall conductivity σcs

yx vanishes if the Chern
number is zero. Furthermore, σcs

yx is quantized only when the spin sz is a good quan-
tum number. In a two-band insulator with time-reversal symmetry, we show that
the value of σcs

yx depends on the boundary condition. For smooth boundaries σcs
yx

vanishes identically, while for sharp boundaries σcs
yx is determined by the expectation

value of sz in the edge states. We also discuss the relation between our theory and
a recently proposed Streda-like formula for the spin-Hall conductivity [60].

5.2 General Formalism

We start by considering a two-dimensional electron gas under the influence of a
nonuniform external field h(r) coupled to some operator Q. Generalizations to
three dimensions shall be straightforward. The Hamiltonian takes the general form

H = H0(k) + h(r)Q , (5.1)

where H0(k) is the unperturbed Hamiltonian. To access transport properties, we
adopt the formalism of semiclassical wave-packet dynamics [7], which is a powerful
tool for studying the influence of slowly varying perturbations on the dynamics of
Bloch electrons. Consider a wave packet |W (rc,kc)〉 sharply centered at (rc,kc).
Due to its narrow distribution in real space, it is sufficient to construct the wave
packet using the eigenstates |u(h(rc),k)〉 of Hc, where Hc = H0(k) + h(rc)Q is the
local Hamiltonian felt by this wave packet. As it moves in the phase space, the
wave packet |W (rc,kc)〉 will acquire a Berry phase that depends on both rc and
kc. According to Ref. [7], the Berry phase also modifies the local dynamics of Bloch
electrons. Assume the force term F = ∇h(r) is along the x-axis. To first order in F
we have h̄k̇x = −F∂hε and h̄k̇y = 0 with ε(k, r) being the electron energy obtained
from Hc. The orbital motion of the wave-packet center is given by (the subscript c
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is dropped)

h̄ẋ = (1− FΩkxh)∂kxε+ F∂kxδε , (5.2a)

h̄ẏ = ∂kyε+ F∂kyδε− FΩkxky∂hε− FΩkyh∂kxε , (5.2b)

where Ωαβ is the Berry curvature defined by Ωαβ = −2 Im〈∂αu|∂βu〉, and Fδε is
the gradient correction to the electron energy with δε = − Im〈∂hu|(ε −Hc)|∂kxu〉.
Since we are interested in a linear order calculation in F , we have used the identity
∂x = F∂h to write Ωkx = FΩkh. Here the Berry curvature Ωαβ has the meaning of
the Berry phase per unit area in the α-β plane. One can see that in addition to the
familiar k-space Berry curvature Ωkxky [10, 11, 12], Ωkxh and Ωkyh also enter into
the equations of motion (5.2).

Next we discuss the Berry-phase effect on thermodynamic quantities. In a
recent work [35] it is shown that the electron density of states in the phase space
can be modified by a Berry phase term. In the case of a nonzero Ωkxx, the modified
density of states reads 1

D(r,k) = (1 + FΩkxh)/(2π)2 . (5.3)

Accordingly, the electron density is given by

n(r) =
∫

[dk](1 + FΩkxh)f(µ− ε) , (5.4)

where [dk] is a shorthand for dk/(2π)d, and f(µ−ε) is the Fermi-Dirac distribution
function that depends on local variables such as the chemical potential µ(r) and
temperature T (r). For simplicty we assume the isothermal condition always holds
and set the temperature to zero. The local chemical potential is thus determined

1Although the complete formulation of the Berry-phase modification to the electron density of
states is given in Ref. [35], here we provide an heuristic argument for self completeness. Consider
a one-dimensional system with a nonzero Ωkx. It is well-known that the area A of a closed orbit C
in the phase space is quantized according to A =

H
C kdx = 2π(n + 1

2
)− γB , where γB is the Berry

phase accumulated along the loop C. The Berry phase γB can be expressed as an area integral
γB =

R
A dAΩkx. Thus the phase-space area between two neighboring orbits is δA = 2π/(1+ Ω̄kx),

where Ω̄kx is the average of Ωkx over the annular area δA. Recall that δA has the meaning of
the phase-space volume occupied by a single quantum state, which is inversely proportional to the
density of states D(r, k) in the phase space. Because Ωkx explicitly depends on k and x, we find
that D(r, k) is no longer uniform and on average we have D̄(r, k) = (1 + Ω̄kx)/2π.

39



by the highest occupied energy level ε(kF , r).
In magnetic materials, a nonuniform h(r) will in general induce a nonuniform

magnetization M(r). As a result, a magnetization current appears in the bulk
and contributes to the local current density. The orbital magnetization is given
by [35, 28]

M(r) =
∫

[dk][m(k) +
e

h̄
(µ− ε)Ωk]Θ(µ− ε) , (5.5)

where m(k) is the intrinsic orbital moment of the wave packet, and (Ωk)α =
1
2εαβγΩkβkγ . Since we only need calculate the magnetization current linear in ∇h,
we can evaluate Eq. (5.5) for a uniform field h and then use ∇×M = ∇h×∂M/∂h.
The effect of the magnetization current has been discussed in the context of anoma-
lous Nernst effect in ferromagnets [59]. To calculate the transport current j, the
magnetization current should be subtracted from the local current, i.e., j = jlocal−
∇ ×M(r). During this procedure, the magnetic moment contribution is canceled
out, and only the second term in Eq. (5.5), the Berry-phase correction to orbital
magnetization, survives (details is present in Ref. [59]).

Finally, the transport current is given by (up to first-order of the perturba-
tion)

j = −e
∫
dkD(r,k)g(r,k)ṙ −∇× e

h̄

∫
[dk](µ− ε)ΩkΘ(µ− ε) , (5.6)

where g(r,k) is the distribution function. Compared to the usual Boltzmann theory,
this equation has two interesting aspects due to the Berry-phase effect. The first
term is from the Boltzmann theory. However, a position- and momentum-dependent
density of states D(r,k) is introduced to account for the nontrivial geometry of the
phase space [35]. The second term results from the subtraction of the magnetization
current. Equation (5.6) is the central result of our paper.

It is noteworthy that in the special case when [H0, Q] = 0, the local basis
|u(k)〉 will not depend on h hence Ωkxh and Ωkyh vanishes. The perturbation h(rc)Q
simply shifts the electron energy. An example for that is the electrical perturbation
with h(r) being the electric potential φ(r) and Q the electron charge −e. On the
contrary, in the reciprocal spin-Hall effect, h(r) has the meaning of a Zeeman field
and Q becomes the spin sz. Since H0 usually includes the spin-orbit interaction,
[H0, σz] 6= 0, the Berry curvature Ωkxh and Ωkyh will appear and play a role.
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5.3 Reciprocal Spin-Hall Effect

Now we apply our theory to the reciprocal spin-Hall effect. Inserting Eqs. (5.2) and
(5.3) into Eq. (5.6) yields

jy = − e
h̄
F

∫
[dk](Ωkxh∂kyε− Ωkyh∂kxε+ ∂hΩkxkyε

− ∂hΩkxkyµ− Ωkxky∂hµ+ ∂kyδε)Θ(µ− ε)

− e

h̄
F
(∫

[dk]Ωkxh

)
〈∂kyε〉εF , (5.7)

where 〈∂kyε〉εF is the average of ∂kyε on the Fermi surface, which vanishes in systems
with rotational symmetry around z-axis. For a linear-order calculation, the integral
can be evaluated at the limit h → 0 since jy is explicitly proportional to ∇h. It is
straightforward to show that for the Rashba modelHR(k) = k2/2m+α(k×σ)·ẑ, the
reciprocal spin-Hall conductivity is σcs

yx = −e/8π in the clean limit. A comparison
with Ref. [55] shows that the Onsager relation is satisfied, i.e., σcs

yx = −σsc
xy, where

σsc
xy is the spin-Hall conductivity. A linear-response study on the conserved spin

current in semiconductors can be found in Ref. [61].
In the following we turn our attention to the reciprocal spin-Hall effect in

insulators. In this situation, Eq. (5.7) can be greatly simplified, and physical mean-
ing of those Berry curvature terms become clear. By doing so we can also safely
ignore the impurity scattering in the bulk because there is no available phase space
for scattering events to occur. Before any in-depth discussion, we verify that the
longitudinal current jx =

∫
BZ dkD(r,k)ẋ vanishes. This is only true if we use the

modified density of states D(r,k) given in Eq. (5.3).
We first consider a single-band insulator. The last term in Eq. (5.7), the

Fermi surface contribution, vanishes.
∫
BZ[dk]∂kyε also vanishes. We assume that

varying h does not close the bulk energy gap. (Since h can be infinitesimal, this
condition is always satisfied.) By integration by parts the first three terms can be
written as

(∂kyΩhkx + ∂kxΩkyh + ∂hΩkxky)ε = 0 . (5.8)

The sum in the parentheses actually gives the monopole density in the parameter
space spanned by (h, kx, ky), which vanishes by our assumption. The remaining
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terms give a current of

jy =
e

h̄
F∂h(µ

∫
BZ

[dk]Ωkx,ky) =
e

h
CF∂hµ , (5.9)

where in the second step we used the fact that the Chern number C is unchanged
as long as the bulk energy gap remains open [62]. One should not confuse the Plank
constant h in the denominator with the Zeeman field derivative ∂h. We can see that
the reciprocal spin-Hall conductivity σcs

yx will be quantized in units of e/4π only if
sz is a good quantum number so that ∂hµ = ±h̄/2. Integrating jy in the x-direction
yields

Iy = − e
h
C(µL − µR) , (5.10)

where µL and µR are chemical potentials at opposite boundaries. This is the exact
formula for the Hall current as in the quantum Hall effect. Had we not included
the magnetization current, such an agreement cannot be obtained. It also gives the
desired property that for a single-band insulator with a zero Chern number, the
(reciprocal) spin-Hall conductivity vanishes. It is straightforward to verify that for
multi-band insulators with zero Chern number for each band, σcs

xy vanishes too.
Next we consider a two-band insulator with time-reversal symmetry so that

the total Chern number is zero. To be specific, the model we have in mind is the
Kane-Mele model on the honeycomb lattice [63, 64]. In the absence of the Rashba
spin-orbit interaction, sz is a good quantum number; the model reduces to two
independent copies of the Haldane model [65] with opposite signs of sz = ∓h̄/2 and
Chern numbers C↑,↓ = ±1. If the impurity scattering is spin-independent, there is
no channel for the two spin components to exchange particles. Thus for each of them
a chemical potential can be defined. The total reciprocal spin-Hall conductivity is
simply given by the sum of each copy,

σcs
yx = − e

2π
. (5.11)

This is consistent with the Onsager relation.
If we turn on the Rashba spin-orbit interaction, sz is no longer a good quan-

tum number, therefore the picture of two independent species of electrons becomes
questionable. The possibility of impurity scattering in the bulk is ruled out; we
only need focus on the boundary states. We first consider the smooth boundary
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condition with a slowly varying confining potential V (r) so that the semiclassical
picture still holds. Hence, each bulk state with energy ε(k) corresponds to a state
in the vicinity of the boundaries with energy ε(k)+V (r). The interchange between
electrons from the two different bands can happen through scattering on the bound-
ary. Thus a steady state measurement of the reciprocal spin-Hall effect will give
us a vanishing σcs

yx. On the other hand, under the sharp boundary condition we
can follow Kane and Mele’s argument [64], i.e., there is a pair of edge modes and
intra-pair scattering is forbidden due to time-reversal symmetry. Hence we can still
define two different chemical potentials for electrons from different edge modes. In
this case, the reciprocal spin-Hall conductivity is

σcs
yx =

e

h

∑
α

Cα∂hµα =
e

h

∑
α

Cα〈sz〉edge
α , (5.12)

where α is the band index. We see that the smooth and sharp boundary conditions
lead to entirely different results. This is in sharp contrast to the quantum Hall effect,
which is insensitive to the boundary condition because it is topologically protected.
We suspect that the quantum spin-Hall effect is not entirely determined by the
topological property of the system.

Finally we comment on a recently proposed Streda-like formula for the spin-
Hall conductivity σsc

xy [60], where it is shown that σsc
xy ∝ ∂Morbit/∂h. However, it is

clear from our derivation for the reciprocal spin-Hall current that ∂Morbit/∂h only
corresponds to the magnetization current; there is no obvious reason that other con-
tributions such as the first term in Eq. (5.6) will vanish. Then by Onsager relation,
the Streda formula for σsc

xy is only part of the story; there are other contributions
missing.
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Chapter 6

Berry Phase Effect on

Magnetotransport

6.1 Introduction

The problem of magnetoresistance in metals and semiconductors has a long history,
and a large amount of work has been devoted to this subject. According to con-
ventional theory [66], in a weak magnetic field the magnetoresistance of a crystal
behaves as

∆ρ
ρ0
∼ (ωcτ)2 , (ωcτ � 1) (6.1)

where ωc = eB/m∗ is the cyclotron frequency and τ is the relaxation time. The
effect of the magnetic field is to always increase the resistance. On the other hand,
in the strong field limit, the details of the collision processes are suppressed and
the details of the Fermi surface enhanced. Thus the magnetoresistance is largely
determined by the Fermi surface topology. It has three quite different behaviors:

∆ρ
ρ0
∼


saturation, non-equal densities of electrons and holes,

(ωcτ)2, equal densities of electrons and holes,

ωcτ, open Fermi surface.

(ωcτ � 1)

(6.2)
Recently Weitering’s group measured the magnetotransport properties of

Mn5Ge3. We show that the experiment was done at the low field limit. Consider
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the conductivity of a crystal σ = ne2τ/m∗, and the quantity ωcτ = eBτ/m∗. Here
we treat the electron effective mass and the cyclotron mass as the same. Combining
these two expressions together gives

ωcτ =
Bσ

ne
=

B

ρne
. (6.3)

From the data we find min ρxx = 15 × 10−8 Ω · m and minn = 5 × 1028 m−3.
Thus ωcτ ∼ 10−3B; even for the highest field 20 T in the experiment, ωcτ ∼ 0.02.
Contradicting to the conventional result (6.1), their data clearly shows a linear
magnetoresistance with a temperature-dependent slope that ranges from positive to
negative.

The conventional result is obtained in the framework of semiclassical trans-
port theory, which is built upon two basic ingredients: the equations of motion
describing the dynamics of each particle and the Boltzmann equation governing the
evolution of the distribution function. It has been shown [7] that one of the ingre-
dients, the equations of motion, has to be modified if the spatial-inversion or/and
time-reversal symmetry of the crystal is broken. Typical systems that need such
modifications include crystals with spin-orbit coupling; and Mn5Ge3 is one of them.
In view of this observation, we propose a novel mechanism for a possible linear
magnetoresistance in metals and semiconductors with broken symmetries.

The plan of this chapter is as following. We will first briefly review the
semiclassical dynamics of Bloch electrons. Then we derive the general solution of
the Boltzmann equation at low field limit. For demonstration we apply our formula
to two-dimensional systems with Rashba spin-orbit coupling. We will also discuss
the high field limit.

6.2 Semiclassical Dynamics

In this section we briefly review the theory for semiclassical dynamics of Bloch
electrons and its consequence on electron density of states in phase space. Within
the semiclassical approach, each electron in a given band is described by a wave
packet narrowly localized around (r,k) in phase space. It is shown [7] that the
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dynamics of the wave packet center satisfies the following equations of motion

ṙ =
1
h̄

∂εM
∂k
− k̇ ×Ω(k) , (6.4a)

h̄k̇ = −eE(r)− eṙ ×B(r) . (6.4b)

There are two major modifications to the conventional equations of motion widely
presented in standard textbooks (for example, see Ref. [4]):

1. The band structure energy needs a correction term that accounts for the orbital
magnetization of the wave packet, i.e., εM (k) ≡ ε0(k) −m(k) ·B. We shall
discuss the magnetic moment m(k) in detail later.

2. An extra term proportional to the Berry curvature Ω(k) of the Bloch state
appears in the velocity expression. The Berry curvature is defined by Ω(k) ≡
i〈∇ku(k)| × |∇ku(k)〉, where |u(k)〉 is the periodic part of the Bloch waves.

The magnetic moment m(k) and the Berry curvature Ω(k) vanish for crystals with
both spatial-inversion and time-reversal symmetry. But if the crystal lacks either of
these symmetries, a complete description of electron dynamics requires the use of
the modified equations of motion (6.4).

The explicit appearance of the Berry curvature term has profound effect on
the electron dynamics. In a recent work [35] we showed that in the presence of both
the magnetic field and the Berry curvature, the density of states in phase space is
no longer uniform. To account for this change, the expression for the density of a
physical observable Q̂ must use the properly defined density of states, i.e.,

〈Q〉 =
∫

[dk]D(k)f(r,k)Q(k) , (6.5)

where [dk] is a shorthand of dk/(2π)d and D(k) is the modified density of states

D(k) ≡ 1 +
e

h̄
B ·Ω . (6.6)

The introduction of a field-dependent density of states implies that the dis-
tribution function can be altered by a magnetic field. To see this, let us consider
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the electron density of a closed system in equilibrium

n =
∫

[dk]D(k)f(εM , µ) . (6.7)

Upon the application of a magnetic field, it is changed by

δn =
∫

[dk]
[ e
h̄
fB ·Ω +

∂f

∂ε
(δε− δµ)

]
. (6.8)

Since the electron density is fixed, we obtain∫
[dk]

∂f

∂ε
(δµ− δε) =

∫
[dk]

e

h̄
fB ·Ω . (6.9)

This result shows that the distribution function will adjust itself to an external
magnetic field. It still has the form of an equilibrium distribution but both the elec-
tron energy ε and the chemical potential µ has changed. This modified distribution
function then serves as the initial condition for the Boltzmann equation.

It is useful to write ṙ and k̇ as functions of r and k. A few steps of algebra
on equations (6.4) yields

D(k)ṙ = v + E ×Ω + (v ·Ω)B , (6.10a)

D(k)k̇ = −E − v ×B − (E ·B)Ω , (6.10b)

where v ≡ ∂εM/h̄∂k is the “normal” velocity of the electron. When writing down
the above equations, we use the units system where the electric and magnetic field
absorb a factor of e/h̄.

6.3 Uniform Magnetic Field

Semiclassical motion of a Bloch electron in a uniform magnetic field is important to
understand various magneto-effect in solids. In this case, the equations of motion
reduce to

D(k)ṙ = v + (v ·Ω)B , (6.11a)

D(k)k̇ = −v ×B . (6.11b)
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At first look it is very odd that there is an anomalous velocity term proportional to
B, which means there will be a current along the field direction. We show that after
averaging over the distribution function, this current is actually zero. The current
corresponding to the anomalous velocity is

jB = −eB
∫

[dk]fv ·Ω

= − e
h̄

B

∫
[dk]∇kF ·Ω

= − e
h̄

B
(∫

[dk]∇k(FΩ)−
∫

[dk]F∇k ·Ω
)
,

(6.12)

where F (ε) = −
∫∞
ε f(ε′)dε′ and f(ε) = ∂F/∂ε. The first term vanishes 1 and if

there is no magnetic monopole in k-space, the second term also vanishes. In above
calculation we did not consider the change of the Fermi surface. Since it always
comes in the form (∂f/∂/µ)δµ = −(∂f/∂/ε)δµ we can use the same technique to
prove that the corresponding current also vanishes.

We assume the field is along the z-axis. From the second equation of (6.11)
we can see that motion in k-space is confined in the xy-plane and is completely
determined once the energy ε and the z component of the wave vector kz is given.
Let us calculate the period of the cyclotron motion. The time for the wave vector
to move from k1 to k2 is

t2 − t1 =
∫ t2

t1

dt =
∫ k2

k1

dk
|k̇|

. (6.13)

From the equations of motion (6.11) we have

|k̇| = B|v⊥|
D(k)

=
B|(∂ε/∂k)⊥|
h̄D(k)|

. (6.14)

On the other hand, the quantity (∂ε/∂k)⊥ has a very nice geometric intepretation.
Let ∆k denotes the vector in the plane connecting points on neighboring orbits of
energy ε and ε+ ∆ε, respectively (Fig. 6.1). Then

1For any periodic function F (k) with the periodicity of a reciprocal Bravais lattice, the following
identity holds for integrals taken over a Brillouin zone, ∈BZ dk ∇kF (k) = 0. To see this, consider
I(k′) =

R
dk F (k + k′). Because F (k) is periodic in k, I(k′) should not depend on k′. Therefore,

∇k′I(k′) =
R

dk, ∇k′F (k + k′) =
R

dk∇kF (k + k′) = 0. Setting k′ = 0 gives the desired
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kx

ky

dk
Δk

ε(k)=ε+Δε
ε(k)=ε

Figure 6.1: The geometry of orbit dynamics. The magnetic field is along the z-axis.
The orbit is limited in the xy plane in k-space.
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∆ε = (∂ε/∂k) ·∆k = |(∂ε/∂/k)⊥|∆k . (6.15)

Thus

t2 − t1 =
h̄

B

∫ k2

k1

D(k)∆k dk
∆ε

. (6.16)

Introducing the 2D electron density for given ε and kz

n2(ε, kz) =
∫∫

kz ,ε(k)<ε

D(k) dkxdky

(2π)2
, (6.17)

the period of a cyclotron motion can be written as

T = (2π)2
h̄

B

∂n2(ε, kz)
∂ε

. (6.18)

6.4 High Field Limit

In this section we study the high field limit. We consider the configuration where the
electric and magnetic fields are perpendicular to each other, i.e., E = Ex̂, B = Bẑ

and E ·B = 0. In the absence of electric field, the motion of k satisfies

D(k)k̇ = −v ×B . (6.19)

Multiplying ×B on both sides gives

D(k)k̇ ×B = B2v⊥ . (6.20)

Since we have assumed E ⊥ B, then E ·v = E ·v⊥ = D(k)E ·(k̇×B)/B2. Inserting
this expression into the Boltzmann equation and integrating by parts yields

g = f +
h̄

B2

∂f

∂ε
(B ×E) ·

∫ t

−∞
dt′ e−(t−t′)/τ k̇

= f +
h̄

B2

∂f

∂ε
(B ×E) · (k − 〈k〉) ,

(6.21)

expression. It is also true if F (k) is a vector function.
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where 〈k〉 is the average over relaxation time,

〈k〉 =
1
τ

∫ t

−∞
dt′ e−(t−t′)/τk(t′) . (6.22)

In the hight field limit, ωcτ � 1, the electron can finish several turns between
two successive collisions. We can therefore set 〈k〉 = 0, assuming all orbits are closed.
Using (2.6), we write the total current as

j = −e
∫

[dk]D(k)g(k)ṙ

= −e
∫

[dk]
(
f +

h̄

B2

∂f

∂ε
(B ×E) · k

)(
v + E ×Ω + (v ·Ω)B

)
.

(6.23)

We then expand the product to linear order of E:

j = −e
∫

[dk]
(
fE ×Ω +

h̄

B2

∂f

∂ε
[(B ×E) · k][v + (v ·Ω)B]

)
. (6.24)

The first term is the anomalous Hall current [10],

jAH = −e
∫

[dk]fE ×Ω = −eE × σAH , with σAH ≡
∫

[dk]fΩ . (6.25)

The second term is the normal Hall current

jH = − e

B2

∫
[dk]

∂f

∂k
[k · (B ×E)]

= − e

B2

∫
[dk]

( ∂

∂k
[fk · (B ×E)]− f ∂

∂k
[k · (B ×E)]

)
= −eE ×B

B2
ñ, with ñ =

∫
[dk]f .

(6.26)

Note that k is not a periodic function so in general the first integral in the second
line does not vanish. However, for closed orbits, we can always choose the Brillouin
zone so that no orbits pass through the boundaries and either all states at the zone
boundary are occupied (hole-like) or all are unoccupied (electron-like), as shown in
Fig. 6.2. In this calculation we consider the electron-like band. For hole-like bands,
one only needs to replace the f with f − 1 then the same argument follows. The
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occupied
states

occupied
states

Electron
like

Hole
like

sign
change

Figure 6.2: Electron-like, hole-like and the critical orbits for the Hall effect. When
the orbit grows to exceeds the zone boundary, it is possible to observe a sign change
of the charge carrier.

third term is a current along the B field 2

jB = −e B

B2

∫
[dk](

∂f

∂k
·Ω)[k · (B ×E)]

= −e B

B2

∫
[dk]

( ∂

∂k
(fΩ[k · (B ×E)])− fΩ · ∂

∂k
[k · (B ×E)]

)
= −eB[(E ×B) · σAH ]

B2
= e

B[(E × σAH) ·B]
B2

.

(6.27)

Introducing the unit vector b = B/B, the total current is

j = jAH + jH + jB

= −e
(
E × σAH + E × b

ñ

B
− [(E × σAH) · b

)
= −e

(
(E × σAH)⊥ + E × b

ñ

B

)
.

(6.28)

Recalling that E ·B = 0, so (E × σ)⊥ = E × σzb = (E ×B)(B ·Ω)/B2. Thus

j = −eE ×B

B2

∫
[dk]f(k)(1 + B ·Ω) = −eE ×B

B2

∫
[dk]f(k)D(k) . (6.29)

2We assume there is no magnetic monopole in the k-space, i.e., ∇k ·Ω = 0.
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According to (2.6) the integral is the exact electron density. Therefore in the high
field limit we reach the following conclusion: the total current in crossed electric
and magnetic fields is the Hall current as calculated from free electron model

j = −eE ×B

B2
n , (6.30)

and has no dependence on the relaxation time τ . This result ensures that even in
the presence of anomalous Hall effect, the hight field Hall current gives the “real”
electron density.

In above calculation we ignored the change of Fermi surface. This should
not affect our final conclusion because by definition the electron density should be
the integral of the modified distribution function, which already includes the Fermi
surface change.

Let us now consider the hole-like band. The expression for jAH remains the
same. In the normal Hall current the charge carrier density should be calculated
using 1− f . The same goes to jB. We have

jhole
H = jH + e

E ×B

B2

∫
[dk] , (6.31)

jhole
B = jB − e

B

B2
(B ×E) ·

∫
[dk]Ω . (6.32)

Then we have for hole-like bands, the total current is given by

jhole = e
E ×B

B2

∫
[dk]D(k)[1− f(k)]− eE ×

∫
[dk]Ω . (6.33)

So for the hole-like band, there is an additonal term in the current expression pro-
portional to the Chern number (the second integral) of the band.

6.5 The Low Field Limit

We now exam the Boltzmann equation after the necessary modification to the equa-
tions of motion. The Boltzmann equation governs the evolution of the distribution
function, which describes the number of electrons in state (r,k). In the collision-
less case, since the total number of electrons along a trajectory in phase space is
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conserved, we can write down the continuity equation for f ,

df

dt
=
∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
= 0 . (6.34)

In the presence of collision, in which electrons are kicked in/out of the vicinity of
the trajectory, a collision integral needs to be added to the right side. For a system
in steady state and satisfying the isothermal condition (i.e., diffusion term absent),
the Boltzmann equation in the relaxation-time approximation is given by

k̇ · ∂f
∂k

= −f − f0

τ
, (6.35)

where τ is the characteristic relaxation time.
At the low field limit ωcτ � 1 the collision processes are important and

deserve a careful treatment. We show that even in the simple relaxation-time ap-
proximation, some correction is necessary. Because of its nature, the semiclassical
formalism cannot give information on the change of τ in a magnetic field. We con-
sider elastic impurity scattering, which is the dominant source of collision at low
temperatures. The collision term is given by [4]

∂f

∂t

∣∣∣
coll

= −
∫

[dk′]D(k′)Wkk′ [f(k)− f(k′)] , (6.36)

where Wkk′ is the transition probability from k′ to k state. Note that the density
of states explicitly enters into the expression. In the relaxation-time approximation
we make the assumption that a characteristic relaxation time exists so that

f − f0

τ
= D(k)

∫
[dk′]

D(k′)
D(k)

Wkk′ [f(k)− f(k′)] . (6.37)

Our hope is that the integral in the above equation becomes insensitive to the field.
Then we can write

τ =
τ0

D(k)
≈ τ0

(
1− e

h̄
B ·Ω

)
. (6.38)

More generally, we can always expand the relaxation time to first order of (e/h̄)B ·Ω,

τ = τ0 + τ1
e

h̄
B ·Ω , (6.39)
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where τ1 should be regarded as a fitting parameter within this theory.
Finding the solution of the Boltzmann equation at the low field limit ωcτ � 1

is relatively simple. Jones and Zener [66] proposed the following method to expand
the solution in power series of ωcτ . If we write f = f0 + g, the Boltzmann equation
becomes

(1−U)g = −h̄τ k̇ · v∂f0

∂ε
, (6.40)

with the differential operator U defined by

U ≡ −τ k̇ · ∂
∂k

. (6.41)

If U is small compared to unity (ωcτ � 1) and the inverse of (1−U) exists, we can
write solution of g formally in power series of U as

g = (1−U)−1
(
−h̄τ k̇ · v∂f0

∂ε

)
= (1 + U + U2 + · · · )

(
−h̄τ k̇ · v∂f0

∂ε

)
.

(6.42)

Conventional approach – It is intuitive to see how this expansion is done
using the conventional equations of motion [67]. Assuming the magnetic field is
along the z-axis, we find that

g =
(
1− eτ

h̄
(v ×B) · ∂

∂k

)−1(
eτE · v∂f0

∂ε

)
= eτ

∂f0

∂ε

∞∑
n=0

[eτB
h̄

(
vy

∂

∂kx
− vx

∂

∂ky

)]n
(Eβvβ) .

(6.43)

Consequently, the components of the conductivity tensor can be written in power
series of B,

σαβ(B) =
∞∑

n=0

σ
(n)
αβ (B) ,

σ
(n)
αβ (B) = −e2τ

∫
[dk]

∂f0

∂ε
vα

[eτB
h̄

(
vy

∂

∂kx
− vx

∂

∂ky

)]n
vβ . (6.44)
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We explicitly write down the conductivity tensor to first order in B:

σ
(0)
αβ = −e2τ

∫
[dk]

∂f0

∂ε
vαvβ , (6.45)

σ
(1)
αβ = −e2τ eτB

h̄

∫
[dk]

∂f0

∂ε
vα

(
vy

∂

∂kx
− vx

∂

∂ky

)
vβ . (6.46)

If the crystal has rotational symmetry around the z-axis, then both σ
(0)
xy and σ

(1)
xx

vanish. The conductivity tensor thus takes the form of

←→σ =

(
σ

(0)
xx + σ

(2)
xx σ

(1)
xy

−σ(1)
xy σ

(0)
xx + σ

(2)
xx

)
. (6.47)

To lowest power of B the magnetoresistance is given by

∆ρ
ρ0

= −σ
(0)
xx σ

(2)
xx + (σ(1)

xy )2

(σ(0)
xx )2

, (6.48)

which predicts a magnetoresistance quadratic in B.

However, in the presence of the Berry curvature, both σ
(1)
xx and σ

(0)
xy can be

nonzero. The former comes from the expansion of (e/h̄)B ·Ω and the latter is the
anomalous Hall conductivity. The conductivity tensor can be written

←→σ =

(
σ

(0)
xx + σ

(1)
xx σ

(0)
xy + σ

(1)
xy

−σ(0)
xy − σ(1)

xy σ
(0)
xx + σ

(1)
xx

)
. (6.49)

To first order in B the magnetoresistance is given by

∆ρ
ρ0

= − [(σ(0)
xx )2 − (σ(0)

xy )2]σ(1)
xx + 2σ(0)

xx σ
(0)
xy σ

(1)
xy

σ
(0)
xx [(σ(0)

xx )2 + (σ(0)
xy )2]

. (6.50)

In most cases we have σ(0)
xx � σ

(0)
xy . Using this condition we can simplify the above

equation:
∆ρ
ρ0

= −
[σ(1)

xx

σ
(0)
xx

+
2σ(0)

xy σ
(1)
xy

(σ(0)
xx )2

]
. (6.51)

The first term is due to the implicit inclusion of the Berry curvature. In the second
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term, σ(0)
xy is the anomalous Hall conductivity σAH and σ(1)

xy is the Hall conductivity
σH . Weitering’s data shows that

σAH

σxx
∼ σH

σxx
∼ 5% .

Obviously the second term cannot explain the 5% magnetoresistance observed in
the experiment. Thus the main contribution must come from the first term,

∆ρ
ρ0

= −σ
(1)
xx

σ
(0)
xx

, (6.52)

for which only the diagonal elements of the conductivity tensor need to be calculated.
(But if it turns out that this part is also too small then our theory ... It is too
desperate to even think about this possibility!)

Now we use equations (6.10) to solve the Boltzmann equation. We consider
the geometry of crossed electric and magnetic fields, E ⊥ B. The Jones and Zener
expansion (6.42) to first order in B reads

g =
(
1 +

eτ

h̄

v ×B

D(k)
· ∂
∂k

)(
eτ

E · v
D(k)

∂f0

∂ε

)
=
∂f0

∂ε

[
eτ

E · v
D(k)

+
eτ0
h̄

(v ×B) · ∂
∂k

(
eτ0E · v

)]
.

(6.53)

In the second term we have neglected all the D(k) dependence because it is already
linear in B. If the crystal has rotational symmetry around the z-axis, the second
term only contributes to the off-diagonal elements of the conductivity tensor, as
shown in equation (6.46) in the conventional approach part. The only interesting
part to us is

g = eτ
∂f0

∂ε

E · v
D(k)

. (6.54)

It follows that the diagonal element of the conductivity tensor is

σxx = −e2
∫

[dk]τ
∂f0

∂ε

v2
x

D(k)
. (6.55)

This is just the zeroth order expansion based on ωcτ . The linear magnetoresistance
comes from the (e/h̄)BΩ correction to this expression. Recalling that both the
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relaxation time τ and the “normal” velocity v have a field dependent part:

τ =
τ0

D(k)
,

vx =
1
h̄

∂(ε0 −mzB)
∂kx

= v(0)
x −

1
h̄

∂mz

∂kx
B ,

we expand expression (6.55) to first order of B,

σxx = −e2τ0
∫

[dk]
∂f0

∂ε

[
(v(0)

x )2 −B
(2eΩz

h̄
(v(0)

x )2 +
2
h̄

∂mz

∂kx
v(0)
x

)]
. (6.56)

In the following we shall just write vx for v(0)
x . So far we have not considered the

change of Fermi volume yet. The first term in the above equation can be written as

−e2τ0
∫

[dk]
∂f0

∂ε
v2
x = e2τ0

∫
[dk]f0(M)−1

xx , (6.57)

where M is the effect mass tensor defined by

(M)−1
αβ ≡

1
h̄2

∂2ε

∂kα∂kβ
. (6.58)

The change of the Fermi volume leads to a change of the conductivity

e2τ0

∫
[dk]

∂f0

∂ε
(δε− δµ)(M)−1

xx . (6.59)

If (M)−1 has spherical symmetry on the surface, we can use equation (6.9) to convert
this surface integral to a volume integral of the Berry curvature over the Fermi sea.
Finally, we sum over all the linear-in-B terms and find that the change in the
conductivity is

σ(1)
xx = e2τ0

∫
[dk]

∂f0

∂ε

[(2eΩz

h̄
v2
x +

2
h̄

∂mz

∂kx
vx

)
B + (δε− δµ)(M)−1

xx

]
(6.60)

= e2τ0B
[∫

[dk]
∂f0

∂ε

(2eΩz

h̄
v2
x +

2
h̄

∂mz

∂kx
vx

)
− e

h̄
〈(M)−1

xx 〉kF

∫
[dk]fΩz

]
. (6.61)

The zero-field conductivity takes the usual form

σ(0)
xx = −e2τ0

∫
[dk]

∂f0

∂ε
v2
x . (6.62)
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According to (6.52), the ratio −σ(1)
xx /σ

(0)
xx will then give us the Berry-phase induced

magnetoresistance.
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Chapter 7

Valley Hall Effect and

Electrically Induced

Magnetization in Graphene

7.1 Introduction

The extraordinary physical properties of graphene have offered great application
potential of carbon based electronic devices [68]. The band structure of graphene
has two degenerate valleys at the corners of the Brillouin zone, where the conduction
and valence bands conically touch each other. Since the intervalley scattering is
negligible in pure graphene samples, the valley degree of freedom can be exploited
in electronic devices in the same way spin is used in spintronics [69]. The central
question to valleytronics thus is how to generate and detect the valley polarization.
Here we predict that in graphene with broken inversion symmetry, a valley Hall
current can be induced by applying an electric field. As a result, a finite valley
polarization will accumulate on the boundary. Moreover, we show that this valley
polarization is always accompanied by a sizable magnetization. Our method provides
an effective way to electrically induce magnetization in graphene.

The recently observed quantum Hall effect in graphene [70, 71] and bilayer
graphene [72] has unambiguously demonstrated the existence of the Berry phase of
the electron wavefunction and its importance in the quantization of energy levels.
It has been shown [6, 7] that the Berry phase can also affect the electron dynamics
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through a vector field called the Berry curvature. The Berry phase accumulated by
an electron along a loop in the momentum space is equal to the flux of the Berry
curvature through the surface enclosed by this loop. In the presence of an electric
field, an electron will acquire a transverse velocity proportional to the Berry cur-
vature. In ferromagnetic materials, summing this velocity over occupied electronic
states leads to a large intrinsic contribution to the Hall current in the absence of a
magnetic field, known as the anomalous Hall effect [40, 10, 11]. However, such an
effect is absent in graphene due to time-reversal symmetry. In addition, graphene
also has inversion symmetry. The presence of both symmetries requires that the
Berry curvature vanishes everywhere except at those degenerate points called Dirac
points, where it becomes singular. To engineer a Berry phase effect, we explicitly
break the inversion symmetry of the lattice, which gives the Berry curvature a very
rich structure. Our proposed valley Hall effect is a direct manifestation of the Berry
curvature.

Figure 7.1 schematically shows the valley Hall effect in graphene. A direct
band gap opens at those Dirac points due to inversion symmetry breaking. Because
the two valleys, labeled by K1 and K2, are related by time-reversal symmetry,
their Berry curvatures have opposite signs. As a result, each valley will possess
an anomalous Hall effect but with their Hall currents in opposite directions. The
charge Hall currents from different valleys cancel each other exactly, resulting in
a pure valley Hall current in the bulk. It will lead to a finite valley polarization
with opposite signs on opposite boundaries. Furthermore, the appearance of a finite
valley polarization effectively breaks the local time-reversal symmetry. The resulting
magnetization, which is also related to the Berry curvature, is sufficiently large to
be detected by magnetic resonance force microscopy or SQUID.

7.2 Valley Hall Effect in Monolayer Graphene

We now demonstrate the valley Hall effect. For simplicity, we first consider single-
layer graphene and later extend our result to bilayer graphene. Graphene is a
single layer of carbon atoms packed into a honeycomb lattice composed of two
hexagonal sublattices. Its electronic properties can be well described by a standard
nearest-neighbor tight-binding model [73]. To realize the valley Hall effect, it is
necessary to break the inversion symmetry of the lattice. This can be done by
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Figure 7.1: Schematic diagram of the valley Hall effect in graphene with inversion
symmetry breaking. An energy gap (2∆) opens at the Dirac points. In the presence
of an electric field, electrons in different valleys will move towards opposite direc-
tions, giving rise to a pure valley Hall current. As a result, a finite valley polarization
appears on the boundary. The valley polarization can be detected by measuring the
magnetization along the boundary.
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including a staggered sublattice potential ±∆. The Hamiltonian takes the following
form [74, 65, 75, 64]

H = −t
∑
〈i,j〉

c†icj + ∆
∑

i

ξic
†
ici , (7.1)

where 〈i, j〉 denotes nearest-neighbor pairs, t is the hopping energy, and ξi = ±1 for
different sublattices. The electron spin degree of freedom is suppressed because of the
extremely small spin-orbit coupling in graphene [76, 77]. In practice, the staggered
sublattice potential can be induced by posing a strain on a graphene sheet so that
one sublattice will move away from the substrate and the other will move towards
the substrate. This possibility has been proposed to explain the spontaneous chiral
symmetry breaking under a strong magnetic field [78].

Figure 7.2 shows the Berry curvature Ω(k) of the conduction band, defined
as Ω(k) = ∇k × 〈u(k)|i∇k|u(k)〉, where |u(k)〉 is the periodic part of the Bloch
function [6, 7]. For two-dimensional systems Ω(k) = Ω(k)ẑ is always along the
ẑ-axis. The valence-band Berry curvature has opposite sign. The distribution of
Ω(k) has very sharp peaks around the corners of the Brillouin zone. Among these
six corners, only two of them are inequivalent; we choose K1,2 = (∓4π/3a)x̂, where
a = 2.46 Å is the lattice constant. Note that Berry curvatures at valley K1 and K2

have opposite sign due to time-reversal symmetry, i.e., Ω(k) = −Ω(−k). At K1,2 the
magnitude of Ω(k) reaches its maximum, Ω(K1,2) = ∓a2/2∆2

0, where ∆0 = 2∆/
√

3t
is a dimensionless parameter. As ∆0 approaches zero, Ω(k) becomes more and more
concentrated in the valleys. When ∆0 = 0, the conduction and valence bands touch
each other and Ω(k) vanishes everywhere except at K1,2 where it diverges. Despite
of this fact, the Berry phase accumulated by an electron during one circle around
the valley becomes exactly ±π when the gap closes. This Berry phase of π has been
observed in the quantum Hall effect in graphene [71, 70].

In the following we consider n-doped graphene. Generalization to p-doped
graphene is trivial due to electron-hole symmetry. To obtain analytical expressions,
we resort to the low-energy description of the electron dynamics near K1,2. The
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Figure 7.2: Berry curvature of the conduction band. The parameters used are
t = 2.82 eV and ∆ = 0.2 eV. Top panel: The overall view of the Berry curvature in
the Brillouin zone, indicated by dashed line. Bottom panel: Intersections of energy
bands (dashed line) and the Berry curvature (solid line) around the valleys K1 and
K2, along the line ky = 0. The Berry curvature is sharped centered at the bottom
of each valley.
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Hamiltonian is given by (hereafter we set the lattice constant a = 1)

H =

(
H1(q1) 0

0 H2(q2)

)
,

H1,2(q) = qyσy ∓ qxσx + ∆0σz ,

where σ is the Pauli matrix accounting for the sublattice index. The two diagonal
blocks H1,2(q1,2) describe electron dynamics around K1 and K2 with q1,2 measured
from K1,2, respectively. They are time-reversal copies of each other. The vanishing
off-diagonal block is a result of the negligible intervalley scattering. It allows us to
treat electrons at different valleys independently.

Let us first consider valley K1, whose Berry curvature has the following form

Ω1(q) =
∆0

2(∆2
0 + q2)3/2

. (7.2)

The intrinsic contribution [40, 10, 11] to the Hall conductivity is given by σint
H =

2(e2/h̄)
∑

q f(q)Ω(q), where f(q) is the Fermi-Dirac distribution function. In ad-
dition, there is a side jump contribution [79] from the Fermi surface that is also
independent of scattering, σsj

H = 2(e2/h̄)
∑

q(∂f/∂µ)Ω(q)(∂εq/∂q) · q. We have
included a factor of 2 from the spin degeneracy in the above expressions. The
scattering-independent Hall conductivity at valley K1 thus is

σH1 = σint
H + σsj

H

=
e2

h

[
1− ∆0√

∆2
0 + q2F

−
∆0q

2
F

(∆2
0 + q2F )3/2

]
.

(7.3)

As we discussed before, because of time-reversal symmetry, electrons at K2 will also
contribute the same amount of Hall current but in the opposite direction. The net
result is a pure valley Hall current in the bulk. Accordingly, at the boundary of the
sample a finite valley “polarization” is expected,∫

δnv dx = jτv = 2
σH1τv
e

E , (7.4)

where δnv is the population difference between the two valleys, x̂ is the normal
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direction of the boundary, and τv is the characteristic intervalley scattering time.
In the above we only considered the scattering-independent contribution to

σH , which is the dominate contribution when scattering is relatively strong. In prin-
ciple, the Hall conductivity σH also has other contributions such as skew scattering,
which becomes important in clean samples at low temperature [80]. It is noteworthy
that in order for the intrinsic contribution to survive, the energy gap 2∆ has to be
sufficiently large so that impurity scattering cannot mix the conduction and valence
bands. Nonetheless, the existence of the valley Hall effect is general consequence of
inversion symmetry breaking and does not depend on the underlying mechanism.

Next we show that a finite valley polarization is always accompanied by a
magnetization. In addition to the Berry curvature Ω(k), there is another character-
istic quantity of electrons at different valleys, namely, the orbital magnetic moment
m(k) defined as m(k) = −i(e/2h̄)〈∇ku| × [H(k)− εk]|∇ku〉z [6, 7]. This magnetic
moment originates from the self-rotation of the electron wave packet, and has the
property m(k) = −m(−k) in the presence of time-reversal symmetry. Intuitively,
a finite valley polarization means that one valley has more magnetic moments than
the other, which will give a net magnetization. This is indeed the case. Since the
electron spin degree of freedom is frozen, the magnetization comes purely from the
orbital part. At zero temperature the orbital magnetization is given by [35, 28]
M = 2

∑
k[m(k)+ (e/h̄)(µ− εk)Ω(k)], where µ is the chemical potential. Note that

there is an additional term from the Berry correction. For the conduction band
m(k) = (e/h̄)εkΩ(k), we thus have M = (e/h̄)µ

∑
k Ω(k). If µ1 6= µ2, the net

magnetization is given by

δM = 2
e

h̄
[µ1Ω1(µ1) + µ2Ω2(µ2)] ≈ 2

e

h̄
Ω1(µ)δµ , (7.5)

where Ωi(µ) is the sum of the Berry curvature over states below µ in valley Ki. We
have used the property that Ω(k) is highly concentrated around the valley bottom,
therefore Ω1(µ1) ≈ −Ω2(µ2) ≈ Ω1(µ) with µ the unperturbed chemical potential.
Hence the boundary magnetization is given by

Medge =
∫
M dx =

4
h̄

∂µ

∂n
Ω1(µ)σH1τvE . (7.6)
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7.3 Valley Hall Effect in Bilayer Graphene

So far we have demonstrated the valley Hall effect using a relatively simple model.
While the strain induced inversion symmetry breaking in graphene remains to be
seen, we propose that a more realistic system to observe the valley Hall effect is bi-
layer graphene. A recent study [81] using angle-resolved photoemission spectroscopy
shows that in bilayer graphene with staggered stacking, a gap can be opened in
the energy spectrum. This can be explained using the biased graphene bilayer
model [82, 83] where an out-of-plane electric field breaks the inversion symmetry of
the lattice. In this case, the energy gap is due to the difference in electrostatic po-
tentials in the two layers. The Berry curvature of bilayer graphene is similar to that
of the single-layer graphene, i.e., highly concentrated in each valley with different
sign. Therefore our previous arguments about the single-layer graphene also applies
here.

Figure 7.3 shows the predicted valley Hall effect in bilayer graphene. Our
calculation is done by numerically diagonalizing the biased graphene bilayer Hamil-
tonian [82, 83] with three parameters, namely, the intralayer hopping t, the interlayer
hopping t⊥, and the energy gap ∆. The parameter values are chosen so that the
band structure matches the experiment result [81]. Bilayer graphene has two pos-
itive energy bands (conduction) and two negative energy bands (valence). As we
can see, the Berry curvature Ω(k) and the magnetic moment m(k) of the lower con-
duction band are more prominent than those of the upper conduction band. The
temperature dependence of σH , M and Medge is not significant except in the range
where µ is near the band bottom. As the Fermi energy sweeps through this range, a
dip appears in σH and Medge because of the fine structures of the Berry curvature.
At low temperature, the sign change of the boundary magnetization (Fig. 7.3f) at
around µ = 0.15 eV provides a check of our theory. At high temperatures, these
features are smeared out.

Since the actual value of the intervalley scattering time τv is unknown, we
provide some crude estimations. The intravalley scattering time is about τ0 = 0.1
ps. We choose τv to be 102 ps. Then at the doping level that can be experimentally
accessed [81], indicated by an arrow in Fig. 7.3f, the boundary magnetization is
2× 103 µB/µm. The valley polarization will accumulate near the boundary within
the range of the valley diffusion length, which is vF

√
τ0τv/2 ∼ 10 µm. This gives us
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Figure 7.3: Valley Hall effect in bilayer graphene with inversion symmetry breaking.
The parameters used are t = 2.82 eV, ∆ = 0.2 eV, and t⊥ = 0.4 eV. Left column: (a)
Band structure, (b) Berry curvature, and (c) magnetic moment of the lower (black
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about 102 µB/µm2 on the boundary. This is a magnetic signal that can be detected
by magnetic resonance force microscopy or SQUID.

We emphasize that this method is not limited to the detection of the valley
Hall effect. For example, in the recently proposed valley filter experiment [78], a
finite valley polarization can be created by passing a current through a point contact
with zigzag edge. This valley polarization can be also detected by our method.
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Appendix A

Derivation of the Berry-Phase

Modified Density of states

A.1 Time Evolution of a Volume Element in Phase Space

In this section we derive the equation of motion for a phase space volume element.
Consider a dynamical system with coordinates ξ = (r,k), whose dynamics is gov-
erned by

ξ̇a = fa(ξ, t) . (A.1)

A volume element ∆V in phase space changes in time according to the equation

∆V (t) = J(t, t0)∆V (t0) , (A.2)

where J(t, t0), the Jacobian of the transformation, is defined by

J(t, t0) = det |M| , Mab =
∂ξa(t)
∂ξb(t0)

. (A.3)

Let us now assume that the system evolves for a short time interval ∆t = t − t0.
Then the coordinates of a point can be written as

ξa(t) = ξa(t0) + ξ̇a(t0)∆t . (A.4)
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To first order of ∆t we find that

J(t, t0) = det
∣∣∣I +

∂ξ̇a(t0)
∂ξb(t0)

∆t
∣∣∣ = 1 +

∂ξ̇a(t0)
∂ξa(t0)

∆t (A.5)

Inserting above equation into Eq. (A.2) yields

∆V (t0 + ∆t) =
(
1 +

∂ξ̇a(t0)
∂ξa(t0)

∆t
)
∆V (t0) , (A.6)

or

1 +
1

∆V (t0)
d∆V (t0)
dt0

∆t = 1 +
∂ξ̇a(t0)
∂ξa(t0)

∆t . (A.7)

Hence the time evolution of a volume element satisfies

1
∆V

d∆V
dt

= ∇r · ṙ + ∇k · k̇ . (A.8)

For a system whose dynamics is determined by Hamiltonian’s equations, i.e., ṙ =
∂H/∂k and k̇ = −∂H/∂r, it is obvious that the right hand side of the equation
vanishes and the volume is a constant. But for the Berry phase modified dynamics
this is generally not true, as shown below.

A.2 Liouville’s Theorem for the Berry Phase Modified

Dynamics

In this section we apply the general equation (A.8) to the Berry phase modified
electron dynamics to find out how a volume element evolves in phase space. For
simplicity of the notation, we set e/h̄ = 1; in other words, the electric and magnetic
field absorb a factor of e/h̄. The electron charge is taken to be −e. To begin with,
we write down the semiclassical equations of motion

ṙ = v(k)− k̇ ×Ω(k) , (A.9)

k̇ = −E(r)− ṙ ×B(r) , (A.10)

with v(k) ≡ ∂ε(k)/∂k. Here the energy ε(k) = ε0(k)−m ·B includes a correction
due to the magnetic moment of the electron, or the Wilkinson term. Inserting
Eq. (A.10) into Eq. (A.9) and using the vector identity (A×B)×C = (A ·C)B−
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(B ·C)A yields
ṙ = v + E ×Ω + (ṙ ·Ω)B − (B ·Ω)ṙ . (A.11)

It is easy to verify that ṙ ·Ω = v ·Ω by multiplying Ω· on both sides of Eq. (A.9).
Then the above equation becomes

D(r,k)ṙ = v + E ×Ω + (v ·Ω)B , (A.12)

where D(r,k) is defined by

D(r,k) ≡ 1 + B ·Ω . (A.13)

Similarly we have
D(r,k)k̇ = −E − v ×B − (E ·B)Ω . (A.14)

Now we apply ∇r· on Eq. (A.12). Keeping it in mind that ε0(k) and Ω(k) are
functions of only k, we have

∇rD · ṙ +D∇r · ṙ = ∇r · (E ×Ω) + (v ·Ω)(∇r ·B) . (A.15)

We have neglected a higher order term Tr(∇rB ·∇km). Introducing the scalar and
vector potential φ and A, we can write the electric and magnetic fields as

E = −∇rφ−
∂A

∂t
, B = −∇r ×A . (A.16)

Inserting these expression into Eq. (A.15) and exchanging the order of ∂/∂t and ∇r

leads to
D∇r · ṙ = −∂(B ·Ω)

∂t
−∇rD · ṙ = −∂D

∂t
−∇rD · ṙ . (A.17)

For Eq. (A.14), because the Berry curvature Ω(k) can be derived from the vector
potential A(k) = 〈u(k)|i∇k|u(k)〉, Ω = ∇k ×A, we can use the same method to
obtain

D∇k · k̇ = −∇kD · k̇ . (A.18)

Finally, adding Eq. (A.17) and Eq. (A.18) together gives

D(∇r · ṙ + ∇k · k̇) = −∂D
∂t
−∇rD · ṙ −∇kD · k̇ = −dD

dt
, (A.19)
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or
∇r · ṙ + ∇k · k̇ = − 1

D

dD

dt
= −d lnD

dt
= −d ln(1 + B ·Ω)

dt
. (A.20)

The more general result, e.g., Eq. (2.13) in Chap. 2, can be derived in the same way
if one notice that the Berry curvature is a differential two-form, derived from the
U(1)-gauge field defined over the Bloch basis.
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Appendix B

Gradient Expansion of Wave

Packet

We derive part of the total current that is due to the self-rotation of the wave packet,
i.e, the second term in Eq. (4.2). Details can be found in Ref. [6]. The wave packet
is constructed from Bloch wave functions of a single band,

|W 〉 =
∫
dk a(k)|ψn(k)〉 . (B.1)

The operator product needs to be anti-symmetrized to make it Hermitian. By
defining va = ṙa and ã(k) = eik·rca(k), we have

mab = Re〈W |(rb − rc
b)va|W 〉

= Re
∫
dk′
∫
dk a∗(k′)a(k)〈ψn(k′)|(rb − rc

b)va|ψn(k)〉

= Re
∫
dk′
∫
dk ã∗(k′)ã(k)〈un(k′)|ei(k−k′)·(r−rc)(rb − rc

b)ṽa|un(k)〉 ,

(B.2)

where ṽa is the velocity operator on the |un〉 basis,

ṽa = e−ik·rvae
ik·r =

∂H̃0

∂ka
, (B.3)
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with H̃0 defined in a similar way. Since

ṽa|un(k)〉 =
∑
n′

|un′(k)〉〈un′(k)|ṽa|un(k)〉 , (B.4)

〈un(k′)|ei(k−k′)·(r−rc)(rb − rc
b)|un′(k)〉 = iδnn′

∂

∂k′b
δ(k − k′)− iδ(k − k′)

〈∂un

∂k′b

∣∣∣un′

〉
,

(B.5)

we have (by inserting the complete set
∑

n′ |un′(k)〉〈un′(k)| = 1)

mab = Re
{
−i
∫
dk

∂ã∗(k)
∂kb

ã(k)〈un|ṽa|un〉 − i
∫
dk |ã(k)|2

〈∂un

∂kb

∣∣∣ṽa

∣∣∣un

〉}
. (B.6)

The integrand of the second term can be written as

Im
〈∂un

∂kb

∣∣∣∂H̃0

∂ka

∣∣∣un

〉
= Im

{ ∂

∂ka

〈∂un

∂kb

∣∣∣H̃0

∣∣∣un

〉
−
〈∂un

∂kb

∣∣∣H̃0

∣∣∣∂un

∂ka

〉}
= Im

{〈∂un

∂kb

∣∣∣∂un

∂ka

〉
εn +

〈∂un

∂kb

∣∣∣un

〉∂εn
∂ka
−
〈∂un

∂kb

∣∣∣H̃0

∣∣∣∂un

∂ka

〉}
= Im

{〈∂un

∂kb

∣∣∣(εn − H̃0)
∣∣∣∂un

∂ka

〉
+
〈∂un

∂kb

∣∣∣un

〉∂εn
∂ka

}
.

(B.7)

Therefore the magnetic moment is

mab = Im
{∫

dk
∂ã∗(k)
∂kb

ã(k)
∂εn
∂ka

+|ã(k)|2
〈∂un

∂kb

∣∣∣un

〉∂εn
∂ka

+|ã(k)|2
〈∂un

∂kb

∣∣∣(εn−H̃0)
∣∣∣∂un

∂ka

〉}
.

(B.8)
The first two terms cancel. Thus

mab = Im
〈∂un

∂kb

∣∣∣(εn − H̃0)
∣∣∣∂un

∂ka

〉
. (B.9)

If we define

mc =
1
2
εabcmab =

i

2

〈∂un

∂k

∣∣∣× (H̃0 − εn)
∣∣∣∂un

∂k

〉
c
, ⇔ mab = εabcmc , (B.10)

M̃ab = εabcM̃c = εabc

∫
dk

(2π)3
f(r,k)mc , (B.11)
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then
Ja = ∇bM̃ab = εabc∇bM̃c = ∇× M̃ . (B.12)

Finally, several remarks of the calculation are in order. In deriving Eq. (B.6)
we need calculate the derivative of a δ-function, this is done by integrating by parts,
i.e.,

i

∫
dk′
∫
dk ã∗(k′)ã(k)

∂

∂k′b
δ(k − k′)

= i

∫
dk′
∫
dk
{ ∂

∂k′b

[
ã∗(k′)ã(k)δ(k − k′)

]
− ∂ã∗(k′)

∂k′b
ã(k)δ(k − k′)

}
.

(B.13)

The first integral reduces to a surface term, hence vanishes. In Eq. (B.7) we did not
count the term below, since its imaginary part is zero:

〈 ∂2un

∂ka∂kb

∣∣∣un

〉
=
〈
un

∣∣∣ ∂2un

∂ka∂kb

〉
. (B.14)
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