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Chapter 3
Strong Structural Controllability
and Zero Forcing

Henk J. van Waarde, Nima Monshizadeh, Harry L. Trentelman
and M. Kanat Camlibel

Abstract In this chapter, we study controllability and output controllability of sys-
tems defined over graphs. Specifically, we consider a family of state-space systems,
where the statematrix of each system has a zero/non-zero structure that is determined
by a given directed graph. Within this setup, we investigate under which conditions
all systems in this family are controllable, a property referred to as strong structural
controllability. Moreover, we are interested in conditions for strong structural out-
put controllability. We will show that the graph-theoretic concept of zero forcing
is instrumental in these problems. In particular, as our first contribution, we prove
necessary and sufficient conditions for strong structural controllability in terms of
so-called zero forcing sets. Second, we show that zero forcing sets can also be used
to state both a necessary and a sufficient condition for strong structural output con-
trollability. In addition to these main results, we include interesting results on the
controllability of subfamilies of systems and on the problem of leader selection.

3.1 Introduction

Structural controllability has been an active research area ever since its introduction
in the early seventies of the previous century by Lin in [9]. Originally, the concept
of structural controllability was introduced in order to deal with uncertainty in the

H. J. van Waarde · H. L. Trentelman · M. K. Camlibel (B)
Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, 9700 AK Groningen, The Netherlands
e-mail: m.k.camlibel@rug.nl

H. J. van Waarde
e-mail: h.j.vanwaarde@rug.nl

H. L. Trentelman
e-mail: h.l.trentelman@rug.nl

N. Monshizadeh
Engineering and Technology Institute Groningen, University of Groningen,
9700 AK Groningen, The Netherlands
e-mail: n.monshizadeh@rug.nl

© Springer Nature Switzerland AG 2020
E. Zattoni et al. (eds.), Structural Methods in the Study of Complex
Systems, Lecture Notes in Control and Information Sciences 482,
https://doi.org/10.1007/978-3-030-18572-5_3

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18572-5_3&domain=pdf
mailto:m.k.camlibel@rug.nl
mailto:h.j.vanwaarde@rug.nl
mailto:h.l.trentelman@rug.nl
mailto:n.monshizadeh@rug.nl
https://doi.org/10.1007/978-3-030-18572-5_3


92 H. J. van Waarde et al.

state and input matrix representing a given linear input-state system. Instead of being
known exactly, some of the entries in these matrices are assumed to be unknown,
while the remaining entries are equal to zero. The unknown entries can take arbitrary
(zero or non-zero) values. The system is then called weakly structurally controllable
if there exists a choice of values for the unknown entries such that the corresponding
numerical realization is a controllable pair in the classical sense of Kalman. In the
context of structural controllability, the system matrices are no longer matrices with
real entries, but are pattern matrices, i.e., matrices with some entries equal to zero,
and the remaining ones free. With the given pattern matrices defining the system, or
rather, the system structure, Lin [9] associated a directed graph, and subsequently
established conditions for weak structural controllability in terms of topological
properties of this graph. Later on, this work was extended to the multi-input case in
[6, 14]. In all of the above references, the pattern matrices consist of entries equal to
zero and entries whose values are unknown. These unknown entries are allowed to
be either zero or non-zero. If we require the non-zero entries to take non-zero values
only, then we can also ask the question: under what conditions are all numerical
realizations controllable in the sense of Kalman. In this case, we call the system
defined by the pattern matrices strongly structurally controllable. This notion was
introduced in [10].

The last decade has witnessed a revival of research related to structural controlla-
bility. For amajor part, this has been caused by the outburst of research on networks of
systems, also referred to as multi-agent systems. The interaction between the agents
in such a network is usually represented by a directed graph, where the vertices are
identified with the agents, and the arcs correspond to the communication between
these agents. In the context of controllability of networks, two types of vertices are
distinguished: those that are influenced by inputs from outside the network, called
leaders, and those that are influenced only by their neighbours, called followers.
Controllability of such leader–follower networks deals with the issue whether it is
possible to steer the states of all vertices in the network to any desired state by apply-
ing inputs to the leaders. Clearly, the interaction between the agents is represented
by the network graph, including the weights of the arcs.

If one ignores the exact values of the arc weights, and instead focusses on the
graph topology only, one arrives at the issue of structural controllability of such
leader–follower network: it is called strongly structurally controllable if, roughly
speaking, for all (non-zero) values of the arc weights the corresponding numerical
realization of the network is controllable. It should be noted that a special role is
played by the diagonal entries of the state matrix, which are allowed to take arbitrary
(zero or non-zero) values, depending on whether or not the graph contains self-
loops. The system is called weakly structurally controllable if there exists a choice
of arcweights such that the corresponding network is controllable. The inputmatrix is
determinedby the choice of leader vertices. Thus,with a givennetworkgraph, awhole
family of linear input-state systems is associated, and strong structural controllability
deals with the question whether all members of this family are controllable in the
classical sense. Weak structural controllability requires that at least one member of
the family is controllable. Like in the classical literature on structural controllability,
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conditions for strong and weak structural controllability of networks are formulated
in terms of properties of the underlying network graph, see, e.g., [3–5, 12, 15].
A topological condition for weak structural controllability of networks in terms of
maximum matchings was established in [5]. Strong structural controllability was
characterized in terms of constrained matchings in [4]. In [12, 15], necessary and
sufficient conditions for strong structural controllability were given in terms of zero
forcing sets.

More recently, research on the topic of strong structural controllability has been
extended to strong output controllability, also called strong targeted controllability.
Here, in addition to the subset of leader vertices, a subset of target vertices is given.
Then, targeted controllability deals with the question whether the states of the target
vertices can be steered to arbitrary desired states by applying appropriate inputs to
the leader vertices. For a given network graph with leader set and target set, we have
a family of input-state-output systems, and the network is called strongly targeted
controllable if all members of this family are output controllable, see [16]. Also for
strong targeted controllability, graph topological conditions have been obtained. In
particular, in [17], such conditions were obtained for the subfamily of all input-state-
output systems with distance-information preserving state matrices.

In the present paper, wewill give an introduction to the concept of zero forcing and
its application to strong structural controllability and strong targeted controllability.
The outline of the paper is as follows. In Sect. 3.2, we will introduce preliminaries
on the so-called colour change rule, and introduce the concept of zero forcing set.
In Sect. 3.3, we introduce the notions of qualitative class associated with a given
graph, and give a definition of strong structural controllability. We study the strong
structurally reachable subspace associated with a given qualitative class and leader
set. This leads to a necessary and sufficient condition for strong structural controlla-
bility. Subsequently, we discuss subclasses of the given qualitative class and give a
definition of the notion of sufficient richness. Finally, in this section, we address the
issue of leader selection, which is concerned with determining the minimal number
of leaders required for strong structural controllability. It is shown that this number
is equal to the zero forcing number of the graph. Our final section, Sect. 3.4, deals
with strong targeted controllability. We define this concept starting from classical
output controllability for linear input-state-output systems. Then, we give sufficient
conditions for strong targeted controllability. Also, we strengthen these conditions
by restricting ourselves to the important subclass of distance-information preserving
state matrices. Finally, the paper closes with conclusions in Sect. 3.5.

3.2 Zero Forcing

In this section, we review the notion of zero forcing. Let G = (V, E) be a simple
directed graph with vertex (or node) set V and edge set E ⊆ V × V . We say that
v ∈ V is an out-neighbour of vertex u ∈ V if (u, v) ∈ E . Now suppose that the
vertices in V are coloured either black or white. The colour change rule is defined in
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the following way. If u ∈ V is a black vertex and exactly one out-neighbour v ∈ V
of u is white, then change the colour of v to black [8]. When the colour change rule
is applied to node u to change the colour of v, we say u forces v, which we denote
by u → v.

Suppose that we have a colouring ofG, that is, a setC ⊆ V of only black vertices,
and a set V \ C consisting of only white vertices. Then the derived set D(C) is the set
of black vertices obtained by applying the colour change rule until no more changes
are possible [8]. It can be shown that for a given graph G and set C , the derived
set D(C) is unique [1]. However, note that the order in which forces occur in the
colouring process is in general not unique.

The set C is called a zero forcing set of G if D(C) = V . Let |C | denote the
cardinality ofC . Then, the zero forcing number Z(G) of the graphG is the minimum
of |C | over all zero forcing setsC of G. Moreover, a zero forcing setC ⊆ V is called
a minimum zero forcing set if |C | equals Z(G).

3.3 Zero Forcing and Structural Controllability

A linear time-invariant input/state system of the form

ẋ(t) = Ax(t) + Bu(t)

is controllable if and only if the well-known Kalman rank condition holds:

[
B AB · · · An−1B

]
is of full row rank.

In this chapter, we are interested in structural controllability properties that depend
on the (zero) structure of the matrices A and B, rather than their numerical values.

To bemore specific, letG = (V, E) be a simple directed graphwith vertex setV =
{1, 2, . . . , n} and edge set E ⊆ V × V . Define the qualitative class of G, denoted
by Q(G), as

Q(G) := {X ∈ R
n×n | for i �= j, Xi j �= 0 ⇐⇒ ( j, i) ∈ E}. (3.1)

For V ′ = {v1, v2, . . . , vk} ⊆ V , let P(V ; V ′) denote the n × k matrix whose i j-th
entry is given by

Pi j =
{
1 if i = v j
0 otherwise.

(3.2)

Consider the family of linear time-invariant systems

ẋ(t) = Xx(t) +Uu(t), (3.3)
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where x ∈ R
n is the state, u ∈ R

m is the input, X ∈ Q(G), andU = P(V ; VL)where
VL ⊆ V is the so-called leader set.

Examples of systems of the form (3.3) are encountered in [7] where X is the
adjacency matrix, in [2] the normalized matrix, and in [11] the (in-degree or out-
degree) Laplacian.

We call the system (3.3) strongly structurally controllable if the pair (X,U ) is
controllable for all X ∈ Q(G). In that case, wewrite (Q(G); VL) is controllable. The
term “strong” is used to distinguish with the case of “weak structural controllability”
which amounts to the existence of a controllable pair (X,U ) with X ∈ Q(G).

3.3.1 Strong Structural Controllability

In this subsection, we aim at a topological characterization of strong structural con-
trollability and investigate how the graph structure can determine the controllability
of (Q(G); VL), given a leader set VL . A related problem is minimal leader selec-
tion, where the goal is to choose a leader set VL with minimum cardinality such that
(Q(G); VL) is controllable. We will see that both strong structural controllability
and minimal leader selections problems are intimately related to the colour change
rule and zero forcing sets discussed in Sect. 3.2.

Throughout this chapter, we denote the image (range) of the matrix P(V ; VL) by
VL , and the image of P(V ; D(VL)) by D(VL). The reachable subspace associated
with the pair (X,U ), denoted by 〈X | imU 〉, is defined as

〈X | imU 〉 = imU + X imU + · · · + Xn−1imU.

The subspace 〈X | imU 〉 is the smallest X -invariant subspace containing imU . It is
well known (see e.g., [16]) that (X,U ) is controllable if and only if 〈X | imU 〉 = R

n .
In the following lemma, we state that the reachable subspace is not affected by

the colour change rule.

Lemma 3.1 ([13]) For any given X ∈ Q(G) and leader set VL ⊆ V , we have 〈X |
VL〉 = 〈X | D(VL)〉.
Proof First, we prove that 〈X | D(VL)〉 ⊆ 〈X | VL〉. This trivially holds in case
D(VL) = VL , and thus D(VL) = VL . Now, suppose that D(VL) �= VL , and vertex
v ∈ VL forces vertex w /∈ VL . Then, we claim that

imP(V ; VL ∪ {w}) ⊆ 〈X | VL〉, (3.4)

where P is given by (3.2). Clearly, the subspace inclusion (3.4) holds if and only if

〈X | VL〉⊥ ⊆ P(V ; VL ∪ {w})⊥. (3.5)
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Without loss of generality, assume that VL = {1, 2, . . . ,m}, v = m and w = m + 1.
Then, the matrix X can be partitioned as

X =

⎡

⎢⎢
⎣

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

⎤

⎥⎥
⎦ , (3.6)

where X11 ∈ R
(m−1)×(m−1), X22 ∈ R, X33 ∈ R, X44 ∈ R

(n−m−1)×(n−m−1), and the
rest of the matrices involved have compatible dimensions. Notice that the matrix
P(V ; VL ∪ {w}) now reads as

P(V ; VL ∪ {w}) =

⎡

⎢⎢
⎣

Im−1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥⎥
⎦ .

Let ξ ∈ R
n be a vector in 〈X | VL〉⊥. Clearly, we have ξ T Xk−1P(V ; VL) = 0 for

each k ∈ N. We write ξ = col(ξ1, ξ2, ξ3, ξ4) compatible with the partitioning of X .
Setting k = 1 yields the equality ξ T P(VL; V ) = 0, and hence ξ1 = 0 and ξ2 = 0. In
addition, by setting k = 2, we obtain the equality ξ T X P(VL; V ) = 0, which results
in

[
ξ T
3 ξ T

4

] [
X31 X32 X33

X41 X42 X43

]
= 0. (3.7)

Since v → w, the vertex v has exactly one out-neighbour in V \ VL , and thus we
have X32 �= 0 and X42 = 0. Therefore, noting (3.7), the scalar ξ3 must be equal
to zero. As ξ = col(0, 0, 0, ξ4) is orthogonal to the subspace P(V ; VL ∪ {w}), the
subspace inclusion (3.5) and consequently (3.4) holds. By repeating the argument
above, we conclude that imP(V ; D(VL)) = D(VL) ⊆ 〈X | VL〉, which results in
〈X | D(VL)〉 ⊆ 〈X | VL〉.

Now, to prove the statement of the lemma, it remains to show that 〈X | VL〉 ⊆
〈X | D(VL)〉. The latter holds since VL ⊆ D(VL), and the proof is complete.

Now that we have established the result of Lemma 3.1, an intriguing question is
to characterize the subspace containing all the states that can be reached by applying
appropriate input signals to the nodes in the leader set VL , independent of the particu-
lar choice of X ∈ Q(G). Geometrically, this subspace is given by

⋂
X∈Q(G)〈X | VL〉,

and provides a strong structural counterpart of the reachability subspace. Hence, we
will refer to it as the strongly structurally reachable subspace. Consistent with the
previous treatment, here we are after a topological characterization of this subspace.

From Lemma 3.1, we obtain that

⋂

X∈Q(G)

〈X | VL〉 =
⋂

X∈Q(G)

〈X | D(VL)〉. (3.8)
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The subspace on the left is the strongly structurally reachable subspace. Interestingly,
the one on the right simplifies to D(VL), as stated in the theorem below.

Theorem 3.1 ([13]) For any given leader set VL ⊆ V , we have

⋂

X∈Q(G)

〈X | VL〉 = D(VL). (3.9)

Proof Given equality (3.8), and noting that

D(VL) ⊆
⋂

X∈Q(G)

〈X | D(VL)〉,

it suffices to show that

⋂

X∈Q(G)

〈X | D(VL)〉 ⊆ D(VL). (3.10)

To this end, we define the set S as

S = {s ∈ R
n : si = 0 ⇔ i ∈ D(VL)}. (3.11)

Let s be a vector in S. Without loss of generality, let D(VL) = {1, 2, . . . , d}. Then,
s can be written as col(0d , s2) where each element of s2 ∈ R

n−d is non-zero. Let the
matrix X be partitioned accordingly as

X =
[
X11 X12

X21 X22

]
.

Clearly, we have
sT X = sT2

[
X21 X22

]
.

Note that X21 corresponds to the arcs fromavertex v ∈ D(VL) to a vertexw /∈ D(VL).
Hence, by the colour change rule, each column of X21 is either identically zero or
contains at least two non-zero elements. We choose these non-zero elements, if
any, such that sT2 X21 = 0. Since the diagonal elements of X22 are free parameters,
we conclude that, for any vector s ∈ S, there exists a matrix X ∈ Q(G) such that
sT X = 0. Therefore, we obtain that

s ∈ 〈X | D(VL)〉⊥

for some matrix X ∈ Q(G). Now, let ξ ∈ R
n be a vector in

⋂
X∈Q(G)〈X | D(VL)〉.

Hence, by definition, ξ ∈ 〈X | D(VL)〉 for all X ∈ Q(G). Therefore, we have sT ξ =
0 which yields sT2 ξ2 = 0, noting ξ = col(ξ1, ξ2). As this conclusion holds for any



98 H. J. van Waarde et al.

arbitrary choice of s ∈ S, we conclude that ξ2 = 0. Consequently, we obtain ξ ∈
D(VL), which results in (3.10), and completes the proof.

The most notable consequence of Theorem 3.1 is obtained by looking at the
scenario where D(VL) = V , which, by definition, is the case in which VL is a zero
forcing set. In this case, the result of Theorem 3.1 can be used to state necessary and
sufficient conditions for strong structural controllability, as stated below.

Theorem 3.2 ([12]) The system (3.3) is strongly structurally controllable, i.e.,
(Q(G); VL) is controllable, if and only if VL is a zero forcing set in G.

Proof Suppose that (Q(G); VL) is controllable. This means that 〈X | VL〉 = R
n for

all X ∈ Q(G). Therefore,
⋂

X∈Q(G)〈X | VL〉 = R
n . By Theorem 3.1, D(VL) = R

n .
We conclude that VL is a zero forcing set. Conversely, suppose that VL is a zero
forcing set. Hence,

⋂
X∈Q(G)〈X | VL〉 = R

n by Theorem 3.1. We conclude that 〈X |
VL〉 = R

n for all X ∈ Q(G), that is, (Q(G); VL) is controllable.

3.3.2 Leader Selection

Next, we discuss theminimal leader selection problem. In the context of strong struc-
tural controllability this amounts to selecting a leader set with minimum cardinality
such that (3.3) is strongly structurally controllable. To make this more precise, we
define �min(Q(G)) as follows:

�min(Q(G)) = min
VL⊆V (G)

{|VL | : (Q(G); VL) is controllable}. (3.12)

An immediate consequence of Theorem 3.2 is

�min(Q(G)) = Z(G).

The equality above relates the minimal leader selection problem for strong structural
controllability of networks to minimal zero forcing sets and the zero forcing number
in graph theory [8]. While finding a minimal zero forcing set in general is a difficult
combinatorial problem, such sets can be efficiently computed for several types of
graphs including path, cycle, acyclic graphs and complete graphs [12].

3.3.3 Qualitative Subclasses

So far,wehave investigated controllability of systemsgivenby (3.3),where thematrix
X belongs to the family of matrices given by Q(G) in (3.1). In many examples, the
state matrix may havemore structure than the one captured by Q(G). For instance, in
the case that the graph G = (V, E) is symmetric (i.e., (i, j) ∈ E ⇐⇒ ( j, i) ∈ E)



3 Strong Structural Controllability and Zero Forcing 99

one might be interested in the class of symmetric state matrices only. This gives rise
to a subclass of Q(G), namely

Qsym(G) = {X ∈ Q(G) | X = XT }. (3.13)

Given a leader setVL ⊆ V and a subclass ofQs(G) ⊆ Q(G),we say that (Qs(G); VL)

is controllable if (X,U ) is controllable for all X ∈ Qs(G) and U = P(V ; VL).
Obviously, (Qs(G); VL) is controllable if (Q(G); VL) is controllable. The natural

question arises here is whether the converse result holds for certain subclasses of
Q(G). This motivates the following definition.

Definition 3.1 A subclass Qs(G) ⊆ Q(G) is called sufficiently rich if for any VL ⊆
V such that (Qs(G); VL) is controllable we have that (Q(G); VL) is controllable as
well.

A useful sufficient algebraic condition for a subclass Qs(G) to be sufficiently rich
is provided next.

Lemma 3.2 ([12]) Let Qs(G) ⊆ Q(G). Then, Qs(G) is sufficiently rich if the fol-
lowing implication holds:

z ∈ R
n, zT X = 0 for some X ∈ Q(G) =⇒ ∃ Xs ∈ Qs(G) such that zT Xs = 0.

Notably, for any symmetric graph G, the algebraic condition in Lemma 3.2 holds
for the subclass Qsym(G) (see Proposition IV.9 of [12]). This implies that Qsym(G) is
a sufficiently rich subclass of Q(G). Hence, Theorem 3.2 can be used to characterize
controllability of (Qsym(G); VL). Specifically, (Qsym(G); VL) is controllable if and
only if VL is a zero forcing set.

Another important subclass of matrices is the class of so-called distance-informa-
tion preservingmatrices. To define this class of matrices, we need some terminology
first. We define the distance d(u, v) between two vertices u, v ∈ V as the length of
the shortest path from u to v. If there does not exist a path from vertex u to v, the
distance d(u, v) is defined as infinite. Moreover, the distance from a vertex to itself is
equal to zero. For a non-empty subset S ⊆ V and a vertex j ∈ V , the distance from
S to j is defined as

d(S, j) := min
i∈S d(i, j). (3.14)

With this in mind, we state the following definition.

Definition 3.2 Consider a directed graphG = (V, E). Amatrix X ∈ Q(G) is called
distance-information preserving if for any two distinct vertices i, j ∈ V we have that
d( j, i) = k implies (Xk)i j �= 0.

Although the distance-information preserving property does not hold for all matri-
ces X ∈ Q(G), it does hold for the adjacency and Laplacian matrices. Because these
matrices are often used to describe network dynamics, distance-information pre-
serving matrices form an important subclass of Q(G). We will denote the subclass
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of distance-information preserving matrices by Qd(G). It turns out the Qd(G) is
sufficiently rich, as asserted in the following lemma.

Lemma 3.3 ([17]) The subclass Qd(G) ⊆ Q(G) is sufficiently rich.

3.4 Targeted Controllability

In case (3.3) fails to be structurally controllable, it is worthwhile to investigate
whether it is “partially” controllable. To elaborate, let G = (V, E) be a simple
directed graph where V = {1, 2, . . . , n} is the vertex set and E ⊆ V × V is the
edge set. Consider the following linear time-invariant input/state/output system:

ẋ(t) = Xx(t) +Uu(t) (3.15a)

y(t) = Hx(t), (3.15b)

where x ∈ R
n is the state, u ∈ R

m is the input and y ∈ R
p is the output. Here,

X ∈ Q(G),U = P(V ; VL) for some given leader set VL ⊆ V , and H = PT (V ; VT )

for some given VT ⊆ V called the target set.
In what follows we will investigate the structural output controllability problem

for systems of the form (3.15). We therefore first review output controllability for
linear systems.

3.4.1 Output Controllability

Consider the system

ẋ(t) = Ax(t) + Bu(t) (3.16)

y(t) = Cx(t) (3.17)

with x ∈ R
n , u ∈ R

m and y ∈ R
p. Denote the output trajectory corresponding to

the initial state x0 and input u by yu(t, x0). The system (3.16) is then called output
controllable if for any x0 ∈ R

n and y1 ∈ R
p there exists an input u and a T > 0 such

that yu(T, x0) = y1.We sometimes say that the triple (A, B,C) is output controllable
meaning that the system (3.16) is output controllable.

It is well known (see, e.g., [16, Exc. 3.22]) that (A, B,C) is output controllable
if and only if

rank
[
CB CAB · · · CAn−1B

] = p.

In turn, this is equivalent to the condition

C〈A | imB〉 = R
p.
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If C has full row rank, the condition above is equivalent to

kerC + 〈A | imB〉 = R
n.

Finally, by taking orthogonal complements, the latter holds if and only if

imCT ∩ 〈A | imB〉⊥ = {0}.

3.4.2 Problem Formulation

Let G = (V, E) be a simple directed graph. Also, let VL ⊆ V be a leader set and let
VT ⊆ V be a target set.We say that the system (3.15) is strongly targeted controllable
with respect to Q′ ⊆ Q(G) if the system (3.15) is output controllable for all X ∈ Q′.
For brevity, we will say (Q′; VL; VT ) is targeted controllable meaning that (3.15) is
strongly targeted controllable with respect to Q′ ⊆ Q(G).

The following proposition translates the output controllability results mentioned
in Sect. 3.4.1 to targeted controllability.

Proposition 3.1 The following statements are equivalent:

(a) (Q′; VL; VT ) is targeted controllable.
(b) rank

[
HU HXU HX2U · · · HXn−1U

] = p for all X ∈ Q′.
(c) H 〈X | VL〉 = R

p for all X ∈ Q′.
(d) VT ∩ 〈X | VL〉⊥ = {0} for all X ∈ Q′.
(e) ker H + 〈X | VL〉 = R

n for all X ∈ Q′.

The main goal of this section is to use Proposition 3.1 to establish conditions for
targeted controllability of (Q′; VL; VT ) in terms of zero forcing sets. We will first
focus on the case that Q′ = Q(G) in Sect. 3.4.3. Subsequently, we discuss the case
that Q′ = Qd(G) in Sect. 3.4.4.

3.4.3 Targeted Controllability for Q(G)

In this section, we discuss conditions for targeted controllability with respect to the
entire qualitative class. That is, we let Q′ = Q(G) and investigate under which con-
ditions (Q(G); VL; VT ) is targeted controllable. We start with a sufficient condition
from [13].

Theorem 3.3 Let G = (V, E) be a directed graph with leader set VL ⊆ V and
target set VT ⊆ V . Then (Q(G); VL; VT ) is targeted controllable if VT ⊆ D(VL).
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Proof Assume that VT ⊆ D(VL), and thus VT ⊆ D(VL). By Theorem 3.1, this is
equivalent to

VT ⊆
⋂

X∈Q(G)

〈X | VL〉. (3.18)

Therefore, it is easy to observe that

VT ∩ 〈X | VL〉⊥ = {0} (3.19)

for all X ∈ Q(G), which results in targeted controllability of (Q(G); VL; VT ) by
Proposition 3.1(d).

Theorem 3.3 provides a sufficient condition for targeted controllability. In parti-
cular, targeted controllability is guaranteed provided that the target nodes belong to
the derived set of VL .

As an example, consider the graph depicted in Fig. 3.1, and let VL = {1, 2}. It is
easy to observe that the derived set of VL is obtained as D(VL) = {1, 2, 3, 4}. By
Theorem 3.3, we have that (Q(G); VL; VT ) is targeted controllable for any

VT ⊆ {1, 2, 3, 4}. (3.20)

However, this is not necessary as one can show that (Q(G); VL; VT ) is also targeted
controllable with

VT = {1, 2, 3, 4, 5, 6, 7}. (3.21)

Next, we show that the sufficient condition provided by Theorem 3.3 can be
sharpened by extending the derived set of VL . To this end, we define the subgraph
G ′ = (V, E ′), where E ′ is defined as

E ′ := {(i, j) | i ∈ D(VL) and j ∈ VT }. (3.22)
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Fig. 3.1 The graph G = (V, E)
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We define D′(VL) as the derived set of D(VL) in the subgraph G ′. The following
theorem extends the result of Theorem3.3. In particular, it states that (Q(G); VL ; VT )

is targeted controllable if VT ⊆ D′(VL).

Theorem 3.4 Let G = (V, E) be a directed graph with leader set VL ⊆ V and
target set VT ⊆ V . Then (Q(G); VL; VT ) is targeted controllable if VT ⊆ D′(VL).

Proof Assume that VT ⊆ D′(VL). If D′(VL) = D(VL) the claim follows imme-
diately from Theorem 3.3. It remains to be shown that the theorem holds if
VE := D′(VL) \ D(VL) �= ∅. In this case, we write

VT ⊆ D ′(VL) = D(VL) ⊕ VE , (3.23)

where D ′(VL) = imP(V ; D′(VL)), VE = imP(V ; VE ) and ⊕ denotes direct sum.
Without loss of generality, assume that

D(VL) = {1, 2, . . . , d}

and
VE = {d + 1, d + 2, . . . , d + e}.

Note that VE ⊆ VT and therefore the nodes in V can be relabeled such that

VT = {d − t, d − t + 1, . . . , d, d + 1, . . . , d + e}

for some t < d. Consider the fourth statement in Proposition 3.1. Let X ∈ Q(G) and
ξ be a vector in the subspace VT ∩ 〈X | VL〉⊥. Hence, ξ ∈ VT ∩ 〈X | D(VL)〉⊥ by
Lemma 3.1. We write ξ ∈ R

n as ξ = col(ξ1, ξ2, ξ3, ξ4) by partitioning the vertices
into the subsets D(VL) \ VT , D(VL) ∩ VT , VE , and V \ D′(VL), respectively. Now,
compatible with ξ , let the matrix X be partitioned as

X =

⎡

⎢⎢
⎣

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

⎤

⎥⎥
⎦ . (3.24)

By (3.23) we have ξ ∈ D ′(VL). This implies that ξ4 = 0. Moreover, we have

ξ T Xk−1P(V ; D(VL) = 0 (3.25)

for each k ∈ N. The equality ξ T P(V ; D(VL)) = 0 yields ξ1 = ξ2 = 0. Then, from
ξ T X P(V ; D(VL)) = 0, we obtain that

ξ T
3

[
X31 X32

] = 0. (3.26)
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Note that X21, X22, X31 and X32 correspond to the arcs from the vertices in the
derived set to those in the target set VT . Therefore, the matrix

X ′ =

⎡

⎢⎢
⎣

0 0 0 0
X21 X22 0 0
X31 X32 0 0
0 0 0 0

⎤

⎥⎥
⎦

belongs to the qualitative class Q(G ′). By Lemma 3.1, we have

D ′(VL) ⊆ 〈X ′ | D(VL)〉. (3.27)

It is not difficult to see that the subspace in the right-hand side of (3.27) is computed
as

〈X ′ | D(VL)〉 = im

⎡

⎢⎢
⎣

I 0 0 0
0 I 0 0
0 0 X31 X32

0 0 0 0

⎤

⎥⎥
⎦ .

Hence, (3.27) yields

D ′(VL) = im

⎡

⎢
⎢
⎣

I 0 0
0 I 0
0 0 I
0 0 0

⎤

⎥
⎥
⎦ ⊆ im

⎡

⎢
⎢
⎣

I 0 0 0
0 I 0 0
0 0 X31 X32

0 0 0 0

⎤

⎥
⎥
⎦ .

This implies that
[
X31 X32

]
is full row rank. Consequently, (3.26) results in ξ3 = 0,

that is, ξ = 0. We conclude that (Q(G); VL; VT ) is targeted controllability by the
fourth statement of Proposition 3.1.

As an example, consider the graph in Fig. 3.1 with VL = {1, 2}. Recall that the
derived set of VL is given by D(VL) = {1, 2, 3, 4}. Suppose that VT is given by

VT = {1, 2, 3, 4, 5, 6}. (3.28)

Then, Fig. 3.2 shows the subgraph G ′ = (V, E ′) with E ′ given by (3.22). It is
straightforward to show that the derived set of D(VL) in G ′ is equal to D′(VL) =
{1, 2, 3, 4, 5, 6}. Therefore, noting that VT = D′(VL), we conclude that (Q(G); VL;
VT ) is targeted controllable by Theorem 3.4. Observe that Theorem 3.4 extends The-
orem 3.3. Indeed, the condition VT ⊆ D(VL) has been replaced by a less conservative
condition VT ⊆ D′(VL). However, the sufficient condition provided by Theorem 3.4
is not necessary. Indeed, as previously mentioned, (Q(G); VL; VT ) is targeted con-
trollable for VT given in (3.21). However, note that node 7 is not contained in the set
D′(VL). Consequently, the conditions of Theorem 3.4 are not satisfied in this case.
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Fig. 3.2 The subgraph G ′ = (V, E ′)

3.4.4 Targeted Controllability for Qd(G)

In the previous section, we have established sufficient conditions for targeted con-
trollability in the case that state matrices are contained in the qualitative class Q(G).
We saw that it is possible to assess targeted controllability even if target nodes are
not contained in D(VL) (but are incident to nodes in D(VL)). However, it turns out to
be difficult to assess targeted controllability if target nodes have distance larger than
1 with respect to D(VL). In this section, we restrict the state matrices to be distance-
information preserving. We will show that for the class Qd(G) it is possible to assess
targeted controllability even if the distance from D(VL) to nodes in VT is arbitrary.

Before we start, we introduce some terminology that will become useful in the
rest of this section. A directed graph G = (V, E) is called bipartite if there exist
disjoint sets of vertices V− and V+ such that V = V− ∪ V+ and (u, v) ∈ E only
if u ∈ V− and v ∈ V+. We denote such a bipartite graph by G = (V−, V+, E), to
indicate the partition of the vertex set. Suppose that the vertex sets V− and V+ are
given by

V− = {r1, r2, ..., rs}
V+ = {q1, q2, ..., qt }. (3.29)

Then, the pattern class P(G) of the bipartite graph G is defined as

P(G) = {M ∈ R
t×s | Mi j �= 0 ⇐⇒ (r j , qi ) ∈ E}. (3.30)

Note that the cardinalities of V− and V+ can differ; hence, the matrices in the pattern
classP(G) are not necessarily square.

With these definitions in place, we continue our discussion on targeted con-
trollability. Consider any directed graph G = (V, E) with leader set VL ⊆ V and
target set VT ⊆ V . We assume that all target nodes have finite distance with respect
to VL . This assumption is necessary, as it can be easily shown that (Qd(G); VL; VT )

is not targeted controllable if a target node v ∈ VT cannot be reached from any leader.
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Let VS ⊆ V \ D(VL) be a subset.We partition the set VS according to the distance
of its nodes with respect to D(VL), that is,

VS = V1 ∪ V2 ∪ · · · ∪ Vd , (3.31)

where for each i = 1, 2, ..., d and j ∈ VS wehave j ∈ Vi if andonly ifd(D(VL), j) =
i .With each of the setsV1, V2, ..., Vd weassociate a bipartite graphGi = (D(VL), Vi ,

Ei ), where for j ∈ D(VL) and k ∈ Vi we have ( j, k) ∈ Ei if and only if d( j, k) = i
in the network graph G.

Example 3.1 We consider the network graph G = (V, E) as depicted in Fig. 3.3.
The set of leaders is VL = {1, 2}, which implies that D(VL) = {1, 2, 3}, see Fig. 3.4.

In this example, we define the subset VS ⊆ V \ D(VL) as VS := {4, 5, 6, 7, 8}.
Note that VS can be partitioned according to the distance of its nodes with respect to
D(VL) as VS = V1 ∪ V2 ∪ V3, where V1 = {4, 5}, V2 = {6, 7} and V3 = {8}. Then,
the bipartite graphs G1, G2 and G3 are given in Figs. 3.5, 3.6 and 3.7, respectively.
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Fig. 3.3 Graph G with VL = {1, 2}
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Fig. 3.4 D(VL ) = {1, 2, 3}
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Fig. 3.5 Graph G1
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Fig. 3.6 Graph G2

The next result provides a sufficient graph-theoretic condition for targeted con-
trollability of (Qd(G); VL; VT ).

Theorem 3.5 Consider a directed graph G = (V, E) with leader set VL ⊆ V and
target set VT ⊆ V .Let VT \ D(VL)bepartitionedas in (3.31). Then (Qd(G); VL; VT )

is targeted controllable if D(VL) is a zero forcing set in Gi = (D(VL), Vi , Ei ) for
i = 1, 2, ..., d.

In the special case of a single leader, i.e., |VL | = 1, the condition of Theorem 3.5
can be simplified. In this case, (Qd(G); VL; VT ) is targeted controllable if no pair of
target nodes has the same distance with respect to the leader. This is formulated in
the following corollary.

Corollary 3.1 Consider a directed graph G = (V, E) with singleton leader set
VL = {v} ⊆ V and target set VT ⊆ V . Then (Qd(G); VL; VT ) is targeted control-
lable if d(v, i) �= d(v, j) for all distinct i, j ∈ VT .

Note that the condition of Corollary 3.1 is similar to the “k-walk theory” for (weak)
targeted controllability established in Theorem 2 of [5]. However, it is worth men-
tioning that k-walk theory [5]was only proven for directed tree networkswith a single
leader. On the other hand, Theorem 3.5 establishes a condition for strong targeted
controllability that is applicable to general directed networks with multiple leaders.

It is interesting to note that the conditions of Theorem 3.5 are the same as the
conditions of Theorem 3.4 in the case that all target nodes have a distance of at most
one from D(VL). However, the advantage of Theorem 3.5 lies in the fact that it can
be applied to target nodes that have arbitrary distance with respect to D(VL).

Example 3.2 Once again, consider the network graph depicted in Fig. 3.3, with
leader set VL = {1, 2} and assume the target set is given by VT = {1, 2, ..., 8}. The
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Fig. 3.7 Graph G3

goal of this example is to prove that (Qd(G); VL; VT ). Note that VS := VT \ D(VL) is
given by VS = {4, 5, 6, 7, 8}, which is partitioned as VS = V1 ∪ V2 ∪ V3, where V1 =
{4, 5}, V2 = {6, 7} and V3 = {8}. The graphs G1, G2 and G3 have been computed
in Example 3.1. Note that D(VL) = {1, 2, 3} is a zero forcing set in all three graphs
(see Figs. 3.5, 3.6 and 3.7). We conclude by Theorem 3.5 that (Qd(G); VL; VT ) is
targeted controllable.

Before proving Theorem 3.5, we need two auxiliary lemmas. The following lemma
states that (Xk)i j = 0 if the distance from j to i is greater than k.

Lemma 3.4 Consider a directed graph G = (V, E) and two distinct vertices i, j ∈
V .Moreover, let k beapositive integer and X ∈ Q(G). If d( j, i) > k then (Xk)i j = 0.

The proof of Lemma3.4 follows simply from induction on k, and is therefore omitted.
The next lemma gives conditions under which all matrices in the pattern classP(G)

of a bipartite graph G have full row rank.

Lemma 3.5 Let G = (V−, V+, E) be a bipartite graph and assume V− is a zero
forcing set in G. Then all matrices inP(G) have full row rank.

For the proof of Lemma 3.5, we refer to Lemma 7 of [17]. With these results in place,
we can now prove Theorem 3.5.

Proof of Theorem 3.5 Suppose that D(VL) is a zero forcing set in Gi = (D(VL), Vi ,

Ei ) for i = 1, 2, ..., d. We want to prove that (Qd(G); VL; VT ) is targeted con-
trollable. By Proposition 3.1(c) and Lemma 3.1, (Qd(G); VL; VT ) is targeted con-
trollable if and only if (Qd(G); D(VL); VT ) is targeted controllable. Therefore,
our goal is to prove that (Qd(G); D(VL); VT ) is targeted controllable. Relabel the
nodes in V such that D(VL) = {1, 2, ...,m}, and let the matrix U = P(V ; D(VL))

be given by U = (
I 0

)T
. Furthermore, we let VS := VT \ D(VL) be given by

{m + 1,m + 2, ..., p}, where the vertices are ordered in non-decreasing distance
with respect to D(VL). Partition VS according to the distance of its nodes with
respect to D(VL) as

VS = V1 ∪ V2 ∪ · · · ∪ Vd , (3.32)

where for i = 1, 2, ..., d and j ∈ VS we have j ∈ Vi if and only if d(D(VL), j) = i .
We define V̌i and V̂i to be the sets of vertices in VS that have distance less than i
(respectively, greater than i) from D(VL). More precisely,
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V̌i := V1 ∪ · · · ∪ Vi−1 for i = 2, . . . , d

V̂i := Vi+1 ∪ · · · ∪ Vd for i = 1, . . . , d − 1.
(3.33)

By convention V̌1 := ∅ and V̂d := ∅. In addition, we assume without loss of gener-
ality that the target set VT contains all nodes in the derived set D(VL). This implies
that the matrix H = P(V ; VT )T is of the form H = (

I 0
)
. Note that by the structure

of H and U , the matrix HXiU is simply the p × m upper left corner submatrix of
Xi . We now claim that HXiU can be written as

HXiU =
⎛

⎝
∗
Mi

0

⎞

⎠ , (3.34)

whereMi ∈ P(Gi ) is a |Vi | × mmatrix in the pattern class ofGi , the
(
m + |V̌i |

)
× m

matrix ∗ contains elements of less interest and 0 denotes a zero matrix of dimension
|V̂i | × m.

We proceed as follows: first, we prove that the bottom submatrix of (3.34) contains
zeros only. Second, we prove that Mi ∈ P(Gi ). From this, we will conclude that
Eq. (3.34) holds.

Note that for k ∈ D(VL) and j ∈ V̂i , we have d(k, j) > i and by Lemma 3.4 it
follows that (Xi ) jk = 0. This means that the bottom |V̂i | × m submatrix of HXiU
is a zero matrix.

Subsequently, we want to prove that Mi , the middle block of (3.34), is an element
of the pattern class P(Gi ). Note that the j-th row of Mi corresponds to the element
l := m + |V̌i | + j ∈ Vi .

Suppose (Mi ) jk �= 0 for a k ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., |Vi |}. As Mi is a
submatrix of HXiU , this implies (HXiU )lk �= 0. Recall that HXiU is the p × m
upper left corner submatrix of Xi ; therefore, it holds that (Xi )lk �= 0. Note that for the
vertices k ∈ D(VL) and l ∈ Vi we have d(k, l) ≥ i by the partition of VS . However,
as (Xi )lk �= 0 it follows fromLemma 3.4 that d(k, l) = i . Therefore, by the definition
of Gi , there is an arc (k, l) ∈ Ei .

Conversely, suppose there is an arc (k, l) ∈ Ei for l ∈ Vi and k ∈ D(VL). This
implies d(k, l) = i in the network graph G. By the distance-information preserving
property of X , we consequently have (Xi )lk �= 0. We conclude that (Mi ) jk �= 0 and
hence Mi ∈ P(Gi ). This implies that Eq. (3.34) holds.

The previous discussion shows that we can write
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Fig. 3.8 Example showing that Theorem 3.5 not necessary

(
HU HXU HX2U · · · HXdU

) =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

I ∗ ∗ . . . ∗ ∗
0 M1 ∗ . . . ∗ ∗
0 0 M2

. . .
...

...

0 0 0
. . . ∗ ∗

...
...

...
. . . Md−1 ∗

0 0 0 . . . 0 Md

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (3.35)

where asterisks denote matrices of less interest. As D(VL) is a zero forcing set in Gi

for i = 1, 2, ..., d, thematricesM1, M2, ..., Md have full row rank byLemma 3.5.We
see that the matrix (3.35) has full row rank, and consequently (Qd(G); D(VL); VT )

is targeted controllable by Proposition 3.1. We conclude that (Qd(G); VL; VT ) is
targeted controllable, which proves the theorem.

Note that the condition given in Theorem 3.5 is sufficient, but not necessary.
Indeed, one can verify that the graph in Fig. 3.8 with leader set VL = {1} and target
set VT = {2, 3} is such that (Qd(G); VL; VT ) is targeted controllable. However, this
graph does not satisfy the conditions of Theorem 3.5.

In addition to the previously established sufficient condition for targeted control-
lability, we also give a necessary condition in terms of zero forcing sets.

Theorem 3.6 Let G = (V, E) be a directed graph with leader set VL ⊆ V and
target set VT ⊆ V . If (Qd(G); VL; VT ) is targeted controllable, then VL ∪ (V \ VT )

is a zero forcing set in G.

Proof Assume without loss of generality that VL ∩ VT = ∅. Hence, VL ∪ (V \
VT ) = V \ VT . We partition the vertex set V into the sets VL , V \ (VL ∪ VT ) and
VT . We label the vertices in V such that VL = {1, 2, . . . ,m} and VT = {n − p +
1, n − p + 2, . . . , n}. Accordingly, the input and output matrices U = P(V ; VL)

and H = PT (V ; VT ) satisfy
U = (

I 0 0
)T

, (3.36)

and
H = (

0 0 I
)
. (3.37)

Note that ker H = imR, where R := P(V ; (V \ VT )) is given by
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R =
(
I 0 0
0 I 0

)T

. (3.38)

By hypothesis, (Qd(G); VL; VT ) is targeted controllable. By Proposition 3.1(e), we
have

ker H + 〈
X | imU

〉 = R
n (3.39)

for all X ∈ Qd(G). Equivalently,

imR + 〈
X | imU

〉 = R
n. (3.40)

We therefore see that 〈
X | im (

U R
) 〉 = R

n. (3.41)

As imU ⊆ imR, Eq. (3.41) implies
〈
X | imR

〉 = R
n for all X ∈ Qd(G). In other

words, the pair (X, R) is controllable for all X ∈ Qd(G). Furthermore, by sufficient
richness of Qd(G), it follows that (X, R) is controllable for all X ∈ Q(G) (see
Lemma 3.3). We conclude from Theorem 3.2 that V \ VT is a zero forcing set.

3.5 Conclusions

In this chapter, we have studied controllability and output controllability of systems
defined over graphs. We have considered a family of state-space systems, where the
statematrix of each systemhas a zero/non-zero structure that is determined by a given
directed graph. In this context, we have investigated under which conditions all sys-
tems in the family are controllable, in other words, conditions under which the graph
is strongly structurally controllable. We have shown that the strongly structurally
reachable subspace can be obtained by a graph colouring rule called zero forcing.
This yields neat necessary and sufficient conditions for strong structural controlla-
bility in terms of zero forcing sets. In addition, we have investigated controllability
of certain subfamilies of systems via the notion of sufficient richness. For specific
graph structures, we have developed leader selection strategies to find input sets of
minimum cardinality that guarantee strong structural controllability. In addition, we
have discussed sufficient conditions for strong structural output controllability in
terms of zero forcing. We have shown that these results can be strengthened if we
restrict the class of state matrices to be distance-information preserving. In the latter
case, we have also shown that zero forcing sets can be used to establish a necessary
condition for output controllability. Finding necessary and sufficient graph-theoretic
conditions for strong structural output controllability is still an open problem that
can be considered for future work.
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