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Input–Output Performance of Linear–Quadratic
Saddle-Point Algorithms With Application to
Distributed Resource Allocation Problems

John W. Simpson-Porco , Member, IEEE, Bala Kameshwar Poolla , Student Member, IEEE,
Nima Monshizadeh , and Florian Dörfler , Member, IEEE

Abstract—Saddle-point or primal-dual methods have
recently attracted renewed interest as a systematic
technique to design distributed algorithms, which solve
convex optimization problems. When implemented online
for streaming data or as dynamic feedback controllers,
these algorithms become subject to disturbances and
noise; convergence rates provide incomplete performance
information, and quantifying input–output performance
becomes more important. We analyze the input–output
performance of the continuous-time saddle-point method
applied to linearly constrained quadratic programs, provid-
ing explicit expressions for the saddle-point H2 norm under
a relevant input–output configuration. We then proceed to
derive analogous results for regularized and augmented
versions of the saddle-point algorithm. We observe some
rather peculiar effects—a modest amount of regularization
significantly improves the transient performance, while
augmentation does not necessarily offer improvement. We
then propose a distributed dual version of the algorithm,
which overcomes some of the performance limitations
imposed by augmentation. Finally, we apply our results to
a resource allocation problem to compare the input–output
performance of various centralized and distributed saddle-
point implementations and show that distributed algorithms
may perform as well as their centralized counterparts.

Index Terms—Distributed algorithms, input-output per-
formance, primal-dual dynamics, resource allocation,
saddle-point methods, system norms.

Manuscript received October 23, 2018; revised April 22, 2019; ac-
cepted June 22, 2019. Date of publication July 9, 2019; date of current
version April 23, 2020. The work of J. W. Simpson-Porco was supported
in part by the Natural Sciences and Engineering Research Council un-
der Discovery Grant RGPIN-2017-04008. The work of B. K. Poolla and
F. Dörfler was supported in part by ETH start-up funds and in part by
the Schweizerischer Nationalfonds Assistant Professor Energy Grant
#160573. Recommended by Associate Editor K. Cai. (Corresponding
author: John W. Simpson-Porco.)

J. W. Simpson-Porco is with the Department of Electrical and Com-
puter Engineering, University of Waterloo, ON N2L 3G1, Canada (e-mail:,
jwsimpson@uwaterloo.ca).

B. K. Poolla and F. Dörfler are with the Automatic Control Laboratory,
Swiss Federal Institute of Technology Zürich, 8092 Zürich, Switzerland
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I. INTRODUCTION

SADDLE-POINT methods are a class of continuous-time
gradient-based algorithms for solving constrained convex

optimization problems. Introduced in the early 1950s [1], [2],
these algorithms are designed to seek the saddle points of the op-
timization problem’s Lagrangian function. These saddle points
are in one-to-one correspondence with the solutions of the first-
order optimality (Karush–Kuhn–Tucker, KKT) conditions, and
the algorithm, therefore, drives its internal state toward the
global optimizer of the convex program; see [3]–[5] for con-
vergence results.

Recently, these algorithms have attracted renewed attention,
e.g., in the context of machine learning [6], in the control liter-
ature for solving distributed convex optimization problems [7],
where agents cooperate through a communication network to
solve an optimization problem with minimal or no centralized
coordination. Applications of distributed optimization include
utility maximization [3], congestion management in commu-
nication networks [8], and control in power systems [9]–[14].
While most standard optimization algorithms require central-
ized information to compute the optimizer, saddle-point algo-
rithms often yield distributed strategies, in which agents perform
state updates using only locally measured information and com-
munication with some subset of other agents. We refer the reader
to [4] and [15]–[20] for control-theoretic interpretations of these
algorithms.

Rather than solving the optimization problem offline, it is de-
sirable to run these distributed algorithms online as controllers,
in feedback with system and/or disturbance measurements, to
provide references so that the optimizer can be tracked in real
time as operating conditions change. Such algorithms offer
promise for online optimization, especially in scenarios with
streaming data. However, when saddle-point methods are im-
plemented online as controllers, they become subject to distur-
bances arising from fluctuating parameters and noise (the pre-
cise nature of these disturbances being application dependent).
The standard method for assessing optimization algorithms—
namely, convergence rate analysis—is also insufficient to cap-
ture the performance of the algorithm. Indeed, an algorithm with
a fast convergence rate would be inappropriate for control appli-
cations if it responded poorly to disturbances during transients,
or if it greatly amplifies measurement noise in a steady state.

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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The appropriate tool for measuring dynamic algorithm per-
formance is instead the system norm, as commonly used in feed-
back system analysis to capture system response to exogenous
disturbances. Recent work in this direction includes input-to-
state-stability results [21], [22], finite L2-gain analysis [23],
and the robust control framework proposed in [24] and [25].
The purpose of this paper is to continue this line of investiga-
tion. In particular, the case of saddle-point algorithms, applied
to optimization problems with quadratic objective functions and
linear equality constraints, leads to a very tractable instance of
this analysis problem, where many basic questions can be asked
and accurately answered. Following are the relevant questions.

1) How do saddle-point algorithms amplify disturbances,
which may enter the objective function and/or equality
constraints?

2) How does performance in the presence of disturbances
change when the initial optimization problem is reformu-
lated (e.g., dual or distributed formulations)?

3) How do standard modifications to optimization algo-
rithms, such as regularization and Lagrangian augmenta-
tion, affect these results?

Contributions: The three main contributions of this paper are
as follows.1 First, in Section III, we consider the effect of dis-
turbances on the saddle-point dynamics arising from linearly
constrained convex quadratic optimization problems. We quan-
tify the input–output performance of the method via the H2
system norm and—for a relevant input-output configuration—
derive an explicit expression for the norm as a function of the
algorithm parameters. In Theorem 3.1, we find that the squared
H2 norm scales linearly with the number of disturbances to both
the primal and dual variable dynamics.

Second, we study two common modifications to the La-
grangian optimization paradigm: regularization and augmen-
tation. We show that regularization strictly improves the
transient H2 performance of saddle-point algorithms (see
Theorem 3.2). However, this improvement in performance is
not usually monotone in the regularization parameter, and the
system norm may achieve its global minimum at some finite reg-
ularization parameter value. For augmented Lagrangian saddle-
point methods, we derive an explicit expression for the H2 norm
(see Theorem 3.4); the results show that augmentation may ei-
ther improve or deteriorate the H2 performance. For cases when
standard augmentation deteriorates performance, we propose an
augmented dual distributed saddle-point (ADD-SP) algorithm,
which strictly improves performance (see Section IV-B).

Third and finally, in Section V, we apply our results to
resource allocation problems, comparing and contrasting the
input–output performance of the different algorithms we have
considered. The results show that distributed implementations
can perform equally well as centralized implementations, but

1A preliminary version of these results with application to power system
control appeared in the conference article [26]. In contrast to the conference
article, this paper reports the proofs of Theorems 3.1 and 3.4, studies the effect
of regularization (see Theorem 3.2), studies both centralized and distributed dual
saddle-point approaches (see Proposition 4.1 and Corollary 4.2), and studies the
application of these results to resource allocation problems (see Section V).

that significant performance differences can appear between the
algorithms once augmentation is considered.

Taken together, these results provide fairly complete answers
to questions 1–3 outlined in the introduction, for the class of
problems considered. A similar study in an H∞ or L2-gain
framework requires a significantly different analysis and is out-
side the scope of this paper; see Section VI for open directions.
As background, in Section II, we review saddle-point algorithms
for the relevant class of optimization problems and then recall
the basic facts about the H2 norm as a measure of input-output
system performance.

Notation: The n × n identity matrix is In , 0 is a matrix of ze-
ros of appropriate dimension, while 1n (respectively, 0n ) are n-
vectors of all ones (respectively, zeros). If f : Rn → R is differ-
entiable, then ∂f

∂x : Rn → Rn is its gradient. For A ∈ Rn×n , A�

is its transpose and Tr(A) =
∑n

i=1 Aii is its trace. If S ∈ Rr×n

has full row rank, then SS† = Ir , where S† = S�(SS�)−1 is the
Moore–Penrose pseudoinverse of S. For a positive-semidefinite
matrix Q � 0, Q

1
2 is its square root. The symbol ⊗ denotes

the Kronecker product. Given elements {ai}n
i=1 (scalars, vec-

tors, or matrices), col(a1 , . . . , an ) = (a�
1 , . . . , a�

n )� denotes the
vertically concatenation of the elements (assuming compatible
dimensions), and blkdiag(a1 , a2 , . . . , an ) is a block matrix with
the elements {ai} on the diagonals.

Graphs and graph matrices: A graph is a pair G = (V, Eu),
where V is the set of vertices (nodes) and Eu is the set of undi-
rected edges (unordered pairs of nodes). The set of neighbors of
node i ∈ V is denoted by N (i). If a label e ∈ {1, . . . , |Eu |} and
an arbitrary orientation are assigned to each edge, we can define
a corresponding directed edge set E ⊂ V × V with elements
e ∼ (i, j) ∈ E . The node-edge incidence matrix E ∈ R|V|×|E| is
defined componentwise as Eke = 1 if node k is the source node
of edge e and as Eke = −1 if node k is the sink node of edge
e, with all other elements being zero. If the graph is connected,
then ker(E�) = Im(1|V|). A graph is a tree (or acyclic) if it
contains no cycles, and in this case, ker(E) = {0|E|}.

II. SADDLE-POINT METHODS AND H2 PERFORMANCE

A. Review of the Saddle-Point Method

We consider the constrained quadratic optimization problem

minimize
x∈Rn x

J(x) :=
1
2
x�Qx + x�c

subject to Sx = Wbb

(1)

where x ∈ Rnx , Q = Q� 
 0 is positive definite, c ∈ Rnx

and b ∈ Rnb are parameter vectors, and S ∈ Rnr ×nx and Wb ∈
Rnr ×nb with nr < nx . We make the blanket assumption that
S and Wb have full row rank, which simply means that the
constraints Sx = Wbb are not redundant. While the right-hand
side Wbb of the constraints is apparently overparameterized,
this formulation is natural when considering particular prob-
lem instances. In the resource allocation problem of Section V,
Wb = [1 1 · · · 1 ] and b is a vector of demands; the prod-
uct Wbb is simply the total demand.
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The problem (1) describes only a subclass of the optimization
problems to which saddle-point algorithms are applicable; more
generally, one can consider strictly convex costs and convex in-
equality constraints as well. We restrict our attention to (1), as
this case will allow linear time-invariant (LTI) system analysis
techniques to be applied, and represent a large enough class of
problems to yield some general insights. Intuitively, the perfor-
mance of the saddle-point algorithm on (1) should indicate a
“best” case performance for the general case, as the objective
J(x) is smooth and strongly convex, and (1) is free of hard
inequality constraints. See Section VI for further discussion.
Under these assumptions, the convex problem (1) has a finite
optimum, the equality constraints are strictly feasible, and (1)
may be equivalently studied through its Lagrange dual with a
zero duality gap [27]. The Lagrangian L : Rnx × Rnr → R of
(1) is

L(x, ν) =
1
2
x�Qx + c�x + ν�(Sx − Wbb) (2)

where ν ∈ Rnr is a vector of Lagrange multipliers. By strong
duality, the KKT conditions

∂L

∂x
(x, ν) = 0nx

⇐⇒ 0nx
= Qx + S�ν + c

∂L

∂ν
(x, ν) = 0nr

⇐⇒ 0nr
= Sx − Wbb

(3)

are necessary and sufficient for optimality. From these linear
equations, the unique global optimizer (x�, ν�) is

[
x�

ν�

]

=

[
−Q−1(S�ν� + c)

−(SQ−1S�)−1(Wbb + SQ−1c)

]

. (4)

While (4) is the exact solution to the optimization problem (1),
its evaluation requires centralized knowledge of the matrices
S,Q,Wb and the vectors c and b. If any of these parameters
change or evolve over time, the optimizer should be recom-
puted. In many multiagent system applications, the cost matrix
Q is diagonal or block-diagonal, and J(x) =

∑
i

qi

2 x2
i + cixi is,

therefore, a sum of local costs. Finally, the constraints encoded
in S are often sparse, mirroring the topology of an interaction
or communication network between agents. These factors mo-
tivate the solution of (1) in an online distributed fashion, where
agents in the network communicate and cooperate to calculate
the global optimizer.

A simple continuous-time algorithm to seek the optimizer is
the saddle-point or primal-dual method [3]–[5], [28], [29]

Txẋ = − ∂

∂x
L(x, ν) , Tν ν̇ = +

∂

∂ν
L(x, ν)

which here reduces to the affine dynamical system

Tx ẋ = −Qx − S�ν − c (5a)

Tν ν̇ = Sx − Wbb (5b)

where Tx , Tν 
 0 are positive-definite diagonal matrices of time
constants. By construction, the equilibrium points of (5) are
in one-to-one correspondence with the solutions of the KKT
conditions (3), and the system is internally exponentially stable
[5].

Lemma 2.1 (Global convergence to optimizer): The unique
equilibrium point (x�, ν�) given in (4) of the saddle-point dy-
namics (5) is globally exponentially stable, with exponential
convergence rate ∝ 1/τmax where τmax = max(maxi∈{1,...,n}
Tx,ii ,maxi∈{1,...,r} Tν,ii).

Proof of Lemma 2.1: The proof of lemma follows by using
the Lyapunov candidate V (x, ν) = 0.5(x − x�)�Tx(x − x�) +
0.5(ν − ν�)�Tν (ν − ν�) + ε(ν − ν�)�STx(x − x�) for ε >
0, i.e., consider the Lyapunov candidate

P =
1
2

[
Tx εTxS�

εSTx Tν

]

which is positive definite for sufficiently small ε. With A as the
system matrix in (5), we compute that

AT P + PA = −
[

Ξ εQS�/2

εSQ/2 εSS�

]

where Ξ = Q − ε
2 (TxS�T −1

ν S + S�T −1
ν STx). Since ε > 0

and S has full row rank, εSS� is positive definite. Moreover,
Ξ is positive definite if ε is sufficiently small. Standard Schur
complement results then yield that A�P + PA ≺ 0 if and only
if

SS� − ε

4
SQΞ−1QS� > 0

which holds for ε sufficiently small as limε→0 Ξ = Q.
As the convergence rate is dictated by the eigenvalues, it fol-

lows from a simple variant of [28, Th. 3.6] that the rate is ∝
minii(blkdiag(T −1

x , T −1
ν )) or ∝ 1/max(maxi∈{1,...,n} Tx,ii ,

maxi∈{1,...,r} Tν,ii). �
With stability settled, in what follows, we will focus exclu-

sively on quantifying transient input–output performance of (5)
in the presence of exogenous disturbances.

B. System Performance in the H2 Norm

Consider the LTI system

ẋ = Ax + Bη

z = Cx
(6)

where η is the disturbance input signal and z is the performance
output. With x(0) = 0, we denote the linear operator from η
to z by G. If (6) is input–output stable, its H2 norm ‖G‖H2 is
defined as

‖G‖2
H2

:=
1
2π

∫ ∞

−∞
Tr(G(−jω)�G(jω)) dω

where G(jω) = C(jωI − A)−1B is the frequency response of
(6).

Another interpretation of ‖G‖2
H2

is as the steady-state vari-
ance of the output

‖G‖2
H2

= lim
t→∞

E[z�(t)z(t)] (7)

when each component of η(t) is stochastic white noise with
unit covariance (i.e., E[η(t) η(t′)�] = δ(t − t′)I). Therefore,
‖G‖H2 measures how much the output varies in the steady state
under stochastic disturbances.
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If the state matrix A is Hurwitz, then the H2 norm is finite
and can be computed as [30, Ch. 4]

‖G‖2
H2

= Tr(B�XB) (8)

where the observability Gramian X = X� � 0 is the unique
solution to the Lyapunov equation

A�X + XA + C�C = 0. (9)

If the pair (C,A) is observable, then X is positive definite.

III. H2 PERFORMANCE OF SADDLE-POINT METHODS

We now subject the saddle-point dynamics (5) to disturbances
in both the primal and dual equations. Specifically, we assume
that the vectors b and c are subject to disturbances ηb ∈ Rnb

and ηc ∈ Rnx and make the substitutions b �→ b + tbηb and
c �→ c + tcηc in the saddle-point dynamics (5). The scalar pa-
rameters tb , tc ≥ 0 parameterize the strength of the disturbances
and will help us keep track of which terms in the resulting
norm expressions arise from which disturbances. As an exam-
ple, when we study distributed resource allocation problems in
Section V, b will have the interpretation of a vector of demands
for some resource, and ηb will, therefore, model a fluctuation or
disturbance to this nominal demand.

After translating the nominal equilibrium point (4) of the
system (5) to the origin,2 we obtain the LTI system
[
Tx

˙̃x

Tν
˙̃ν

]

=

[
−Q −S�

S 0

][
x̃

ν̃

]

−
[

tcInx
0

0 tbWb

][
ηc

ηb

]

(10a)

z =
[
C1 0

]
[

x̃

ν̃

]

(10b)

where C1 ∈ Rnx ×nx is an output matrix.
As the system (10) is written in error coordinates, convergence

to the saddle-point optimizer (x�, ν�) from (4) is equivalent to
convergence of (x̃(t), ν̃(t)) to the origin. How should we mea-
sure this convergence? A natural way is to use the cost matrix
Q from the optimization problem (1) as a weighting matrix and
to study the performance output ‖z(t)‖2

2 = x̃(t)�Qx̃(t), which
is obtained by choosing C1 = Q

1
2 . For example, in the context

of the resource allocation problems in Section V, these weights
describe the relative importance of the various resources.

Theorem 3.1 (Saddle-point performance): Consider the inp
ut–output saddle-point dynamics (10) with Q = Q� 
 0 diag-
onal, and let C1 = Q

1
2 so that ‖z(t)‖2

2 = x̃�(t)Qx̃(t). Then, the
squared H2 norm of the saddle-point system (10) is

‖G‖2
H2

=
t2c
2

Tr(T −1
x ) +

t2b
2

Tr(W�
b T −1

ν Wb). (11)

Proof of Theorem 3.1: We will directly construct the unique
positive-definite observability Gramian; since the system is in-
ternally stable (see Lemma 2.1), this also indirectly establishes

2In the remainder of the section, we assume that we have made the change
of state variables x̃ = x − x� and ν̃ = ν − ν� , where x̃ and ν̃ are the error
coordinates and x� and ν� refer to the equilibria of the saddle-point dynamics.

observability [31, Exercise 4.8.1]. Assuming for the moment a
block-diagonal observability Gramian X = blkdiag(X1 ,X2),
the Lyapunov equation (9) yields the two equations

X1T −1
x Q + QT −1

x X1 − C2
1 = 0 (12a)

X2T −1
ν S − ST −1

x X1 = 0 (12b)

with the third independent equation trivially being 0 = 0. By
inspection, the solution to (12a) is diagonal and given by

X1 =
1
2
Tx Q−1C2

1 =
1
2
Tx

since Q is diagonal and C1 = Q
1
2 . Clearly, X1 is positive def-

inite and symmetric. Since S has full row rank, X2 can be
uniquely recovered from (12b) as

X2 = ST −1
x X1S

†Tν =
1
2
SS†Tν =

1
2
Tν .

It follows that X2 is positive definite, and therefore, X =
1
2 blkdiag(Tx , Tν ) is the unique positive-definite solution to (9).
Since X is block-diagonal, we find from (8) and (10) that

‖G‖2
H2

= t2c Tr(T −1
x X1T −1

x ) + t2b Tr(W�
b T −1

ν X2T −1
ν Wb)

from which the result follows. �
We make two key observations about the result (11). First,

(11) is independent of both the cost matrix Q and the con-
straint matrix S; neither matrix has any influence on the value
of the system norm. Second, the expression in (11) scales in-
versely with the time constants Tx and Tν , which indicates an
inherent tradeoff between convergence speed and input–output
performance. As a special case of Theorem 3.1, suppose that
Tx and Tν are multiples of the identity matrix, i.e., Tx = τxInx

and Tν = τν Inr
, and that Wb = Inr

, meaning there is one dis-
turbance for each constraint. Then, (11) reduces to

‖G‖2
H2

=
t2c

2τx
nx +

t2b
2τν

nr (13)

meaning that the squared H2 norm scales linearly in the num-
ber of disturbances to the primal dynamics and the number of
disturbances to the dual dynamics. While this scaling is quite
reasonable, the lack of tunable controller gains other than the
time constants means that convergence speed and input–output
performance are always conflicting objectives. Finally, we note
that (13) can be immediately reinterpreted as a design equation
for the time constants. That is, given a specified level γ > 0 of
desired H2 performance, one has ‖G‖H2 ≤ γ if

min{τx, τ ν } ≥ 1
γ2

(
t2c nx

2
+

t2b nr

2

)

.

A. Performance of Regularized Saddle-Point Methods

A common variation of the Lagrangian optimization frame-
work includes a quadratic penalty [32]–[34] on the dual variable
ν in the Lagrangian (2). The so-called regularized Lagrangian
assumes the form

Lreg (x, ν) =
1
2
x�Qx + c�x + ν�(Sx − Wbb) −

ε

2
‖ν‖2

2

(14)
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where ε > 0 is small. The regularization term adds concavity to
the Lagrangian and has been shown to increase the convergence
rate of optimization algorithms. However, this regularization
alters the equilibrium of the closed-loop system, which moves
from the value in (4) to the new value
[

x�
reg

ν�
reg

]

=

[
−Q−1(S�ν�

reg + c)

−(SQ−1S� + εInr
)−1(Wbb + SQ−1c)

]

. (15)

The penalty coefficient ε is chosen to strike a balance be-
tween the convergence rate improvement and the deviation
of (x�

reg , ν
�
reg ) from (x�, ν�). The Lagrangian (15) also ad-

mits a continuous-time saddle-point algorithm with regularized
saddle-point dynamics

Txẋ = −Qx − S�ν − c

Tν ν̇ = Sx − Wbb − εν.
(16)

Quite strikingly, we shall observe that a small regularization,
which has a minor effect on the equilibrium, achieves a tremen-
dous improvement in performance.

As we did with the standard saddle-point dynamics, we can
shift the equilibrium point (x�

reg , ν
�
reg ) of (16) to the origin and

introduce disturbances to the parameters b and c, leading to the
input–output model
[
Tx

˙̃x

Tν
˙̃ν

]

=

[
−Q −S�

S −εInr

][
x̃

ν̃

]

−
[

tcInx
0

0 tbWb

][
ηc

ηb

]

z =
[
Q

1
2 0

]
[

x̃

ν̃

] (17)

where we consider the time constant matrices Tx and Tν and
disturbances ηb and ηc , as in (10).

Theorem 3.2 (Regularized saddle-point performance): Con-
sider the input–output regularized saddle-point dynamics (17)
denoted by Greg with Q = Q� 
 0 a diagonal matrix. Then, the
squaredH2 norm ‖Greg‖2

H2
of the system (17) is upper-bounded

by (11) with strict inequality.
Proof of Theorem 3.2: We rewrite (17) in the standard state-

space form Greg := (Areg , B,C, 0), where
[

˙̃x
˙̃ν

]

=

[
−Tx

−1Q −Tx
−1S�

Tν
−1S −Tν

−1εInr

]

︸ ︷︷ ︸
A r e g

[
x̃

ν̃

]

−
[
T −1

x tc 0

0 Tν
−1Wbtb

]

︸ ︷︷ ︸
B

[
ηc

ηb

]

, z =
[
Q

1
2 0

]

︸ ︷︷ ︸
C

[
x̃

ν̃

]

.

�
One may verify that Areg is Hurwitz, and that Greg is ob-

servable. Consider the observability Gramian from (12), i.e.,
X = 1

2 blkdiag(Tx , Tν ). An easy computation shows that

X Areg + A�
regX + C�C =

[
0 0

0 −εInr

]

� 0. (18)

We conclude that X is a generalized observability Gramian
for the regularized system Greg . If Xε is the true observability
Gramian for Greg , then Xε �= X and Xε � X [31, Ch. 4.7], and
we conclude that

‖Greg‖2
H2

= Tr(B�XεB) ≤ Tr(B�XB) = ‖G‖2
H2

. (19)

It remains only to show that the above inequality holds strictly.
Proceeding by contradiction, assume that Tr(B�XεB) =
Tr(B�XB), which implies that Tr(B�(X − Xε)B) = 0.
Since X − Xε � 0, we may write X − Xε = F�F for some
matrix F and

0 = Tr(B�(X − Xε)B) = Tr(B�F�FB).

Since B has full row rank, this implies that F must be zero, and
thus, X = Xε , which is a contradiction.

Corollary 3.3 (Regularized saddle-point performance with
one constraint): Consider the case with one constraint (nr = 1)
and one constraint disturbance (nb = 1) with uniform prob-
lem parameters Q = qInx

, Tx = τxInx
, Tν = τν Inr

for scalars
q, τx , τ ν > 0 and Wb = 1. Then, we have

‖G‖2
H2

− ‖Greg‖2
H2

= αεt
2
c + γεt

2
b (20)

where s = ‖S‖2 and

αε =
εs2

2(εq + s2)(ετx + qτν )

γε =
ε(τxqε + q2τν + τxs2)

2τν (εq + s2)(ετx + qτv )
.

Proof of Corollary 3.3: Let Δ := X − Xε , where X =
1
2 blkdiag(Tx , Tν ) is the observability Gramian of (10) with

C1 = Q
1
2 , and Xε is the observability Gramian of Greg . As

noted in the proof of Theorem 3.2, X � Xε , and thus, the ma-
trix Δ is positive semidefinite. Clearly, Δ satisfies

A�
reg (X − Δ) + (X − Δ)Areg + C�C = 0.

By (18), this reduces to

A�
regΔ + AregΔ +

[
0 0

0 εInr

]

= 0. (21)

Then, it is easy to see that

‖Greg‖2
H2

= ‖G‖2
H2

− ‖Gε‖2
H2

(22)

where ‖G‖2
H2

is as in (11), and Gε(s) := Cε(sI − Areg )−1B

with Cε = [ 0 εInr ]. Therefore, the improvement in the H2
norm performance is equal to the squared H2 norm of the ax-
illary system given by Gε . Next, we calculate the H2 norm of
Gε , which requires computing the observability Gramian from
(21). Consider the matrix

Δ =

[
αS�S βS�

βS γ

]

(23)
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Fig. 1. System norm of regularized dynamics as a function of ε, for S = [0.82 0.90 0.13 0.91 0.63], τ x = τ ν = tc = 1, and Q = qI5 . (a) q = 3 and
tb = 3. (b) q = 0.05 and tb = 1.

where α, β, and γ are constant and positive. A straightforward
calculation shows that by choosing

⎡

⎢
⎣

α

β

γ

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

s2

τx

ε

τν
+

q

τx
− 1

τν

q

τx
− 1

τν
0

0
τν s2

τxε
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

⎡

⎢
⎢
⎣

0

0
τv

2

⎤

⎥
⎥
⎦ (24)

the matrix Δ is a solution to the Lyapunov equation (21). Given
the fact that Areg is Hurwitz, this solution is unique, and the
matrix Δ = Δ is the observability Gramian of the system given
by Gε . The proof is completed by calculating the inverse in (24),
using (8), and noting Tr(S�S) = s2 . �

Corollary 3.3 quantifies the performance improvement re-
sulting from the regularization in the special case of a single
constraint and uniform parameters. For sufficiently large ε, this

improvement is approximated by t2
b

2τ ν
, which coincides with the

second term in the right-hand side of (13). This means that, as
expected, the constraints do not contribute to the H2 norm in
case the penalty term in the regularized Lagrangian (14) tends to
infinity. On the other hand, for ε → 0+ , theH2 norm of the regu-
larized dynamics (17) clearly converges to the H2 norm of (10).
In general, the improvement in the input–output performance
obtained due to regularization is not a monotonic function of
the regularization parameter ε. To illustrate this, Fig. 1 plots the
right-hand side of (20) as a function of ε. It is noteworthy that for
both the plots, even a modest ε improves the performance. De-
pending on the specific values of the parameters, the maximum
performance gain may be achieved as ε → ∞ [see Fig. 1(a)] or
at a finite value of ε [see Fig. 1(b)].

B. Performance of Augmented Saddle-Point Methods

Another option for improving the H2 performance of saddle-
point methods is to return to the Lagrangian function (2) and

instead consider the augmented Lagrangian [35]

Laug(x, ν) � L(x, ν) +
ρ

2
‖Sx − Wbb‖2

2 (25)

where we have incorporated the squared constraint Sx − Wbb =
0nr

into the Lagrangian with a gain ρ ≥ 0. One way to interpret
this is that the term ρ

2 ‖Sx − Wbb‖2
2 adds additional convexity

to the Lagrangian in the x variable.
It follows that (x, ν) is a saddle point of Laug(x, ν) if and

only if it is a saddle point of L(x, ν), and hence, the optimizer is
unchanged. Applying the saddle-point method to the augmented
Lagrangian Laug(x, ν), we obtain the augmented saddle-point
dynamics

Txẋ = −(Q + ρS�S)x − S�ν − c + ρS�Wbb

Tν ν̇ = Sx − Wbb.
(26)

One may verify that as before, the unique stable equilibrium
point of (26) is given by (4). We again consider disturbances
ηb and ηc and make the substitution b �→ b + tbηb and c �→
c + tcηc . After translating the equilibrium point to the origin,
we obtain the multiple-input multiple-output system

[
Tx

˙̃x

Tν
˙̃ν

]

=

[
−(Q + ρS�S) −S�

S 0

][
x̃

ν̃

]

−
[

tcInx
−ρtbS

�Wb

0 tbWb

][
ηc

ηb

]

,

z =
[
Q

1
2 0

]
[

x̃

ν̃

]

.

(27)

The additional term −ρS�S in the dynamics (27) compli-
cates the solution of the Lyapunov equation, and we require
additional assumptions to obtain an explicit formula. We con-
sider the parametrically uniform case, where Q = qInx

, Tx =
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τxInx
, andTν = τν Inr

for scalars q, τx , τ ν > 0. The next result
appeared in [26] without proof.

Theorem 3.4 (Augmented saddle-point performance with
uniform parameters): Consider the input–output augmented
saddle-point dynamics (27), denoted by Gaug under the
above assumptions, with performance output ‖z(t)‖2

2 = x̃�(t)
Qx̃(t) = q‖x̃(t)‖2

2 . Then, the squared H2 norm of the aug-
mented saddle-point system (27) for identically weighted dis-
turbances Wb = Inr

is

‖Gaug‖2
H2

=
t2c

2τx
(nx − nr ) +

(
t2b

2τν
+

t2c
2τx

) nr∑

i=1

q

q + ρσ2
i

+
t2b

2τx

nr∑

i=1

qρ2σ2
i

q + ρσ2
i

(28)

where σi is the ith nonzero singular value of S.
Proof of Theorem 3.4: Under the given assumptions, the sys-

tem (27) simplifies to

[
˙̃x
˙̃ν

]

=

⎡

⎢
⎣

− 1
τx

(qInx
+ ρS�S) − 1

τx
S�

1
τν

S 0

⎤

⎥
⎦

[
x̃

ν̃

]

−

⎡

⎢
⎣

tc
τx

Inx
− tbρ

τx
S�Wb

0
tb
τ ν

Wb

⎤

⎥
⎦

[
ηc

ηb

]

, z =
[
q

1
2 Inx

0
]
[

x̃

ν̃

]

.

Let S = UΣV � be the singular value decomposition of S,
where U ∈ Rnr ×nr and V ∈ Rnx ×nx are both orthogonal ma-
trices, Σ = [Σ 0nr ×(nx −nr ) ], and Σ ∈ Rnr ×nr is the diagonal
matrix of nonzero singular values. Consider now the invertible
change of variables x̂ = V �x̃, ν̂ = U�ν̃. In these new coordi-
nates, the dynamics become

[
˙̂x
˙̂ν

]

=

⎡

⎢
⎣
− 1

τx
(qInx

+ ρΣ�Σ) − 1
τx

Σ�

1
τν

Σ 0

⎤

⎥
⎦

[
x̂

ν̂

]

−

⎡

⎢
⎣

tc
τx

V � − tbρ

τx
V �S�Wb

0
tb
τ ν

U�Wb

⎤

⎥
⎦

[
ηc

ηb

]

, y =
[
q

1
2 V 0

]
[

x̂

ν̂

]

.

We now show the observability of the pair (C,A); note
that this is equivalent to observability of (C�C,A). First note
that ker(C�C) is spanned by [ 0�

nx
ν� ]�. Now, suppose that

[ 0�
nx

ν� ]� is an eigenvector of A with eigenvalue λ:

⎡

⎢
⎣
− 1

τx
(qInx

+ ρΣ�Σ) − 1
τx

Σ�

1
τν

Σ 0

⎤

⎥
⎦

[
0nx

ν

]

= λ

[
0nx

ν

]

.

Since by stability Re(λ) < 0, the above relation only holds
for ν = 0nr

, which shows observability by the eigenvector
test. Assuming a block-diagonal observability Gramian X =
blkdiag(X1 ,X2), the Lyapunov equation (9) yields the two

independent equations

X1
1
τx

(qInx
+ ρΣ�Σ) +

1
τx

(qInx
+ ρΣ�Σ)X1 =qInx

(29a)

X2
1
τν

Σ − Σ
1
τx

X1 = 0 (29b)

where we have used the fact that V �V = Inx
. Noting that

Σ�Σ = blkdiag(Σ, 0(nx −nr )×(nx −nr )), we find by inspection
that the solution to (29a) is diagonal and given by

X1 ii =
1
2

q

q + ρσ2
i

τ x , i ∈ {1, . . . , nr}

X1 ii =
1
2
τx , i ∈ {nr + 1, . . . , nx}.

Observe that X1 is positive definite and symmetric. The matrix
equation (29b) admits a solution X2 if and only if ker(Σ) ⊆
ker(ΣX1), which holds in this case since X1 is diagonal. The
lower block X2 can be uniquely recovered from (29b) as

X2 = τ−1
x (ΣX1Σ�)(ΣΣ�)−1τν .

A straightforward calculation shows that this is equivalent to the
component formula

X2 ii =
1
2

q

q + ρσ2
i

τ ν , i ∈ {1, . . . , nr}.

It follows that X2 is diagonal and positive definite, and therefore,
X = blkdiag(X1 ,X2) is the unique positive-definite solution.
A calculation using (8) now shows that

‖Gaug‖2
H2

=
t2c
τ 2

x

Tr
(
V X1V

�)+
t2b
τ 2

ν

Tr
(
W�

b UX2U
�Wb

)

+
t2b ρ

2

τ 2
x

Tr
(
W�

b SV X1V
�S�Wb

)
.

For the special case of one disturbance per constraint, i.e., Wb =
Inr

, the result (28) follows by applying the cyclic property of
the trace operation. �

Under the assumed restrictions on parameters, Theorem 3.4
generalizes Theorem 3.1, since, when ρ = 0, the expression (28)
reduces to (13). Consider now the dependence of the expression
(28) on the augmentation gain ρ. First, in the case when tb = 0
(meaning the vector b is not subject to disturbances), then as
ρ → ∞, the expression (28) reduces to only the first term: in
this case, augmentation unambiguously improves input–output
performance. In particular, note that a more favorable scaling
than in (11) is achieved when nr is comparable to nx ; see
the resource allocation problem in Section V.3 On the other
hand, if tb �= 0, then as ρ becomes large, the second term in the
expression vanishes, while the third term grows without bound.
Therefore, a large augmentation gain will lead to poor input–
output performance. This behavior is explained by examining
(26): the vector b enters the primal dynamics multiplied by ρ,
and hence, any noise in b is amplified as ρ grows. To remedy this

3As an observation, we note that even when S� is a sparse matrix, S�S
typically will not be, and hence, the augmented dynamics (26) may not be
immediately implementable as a distributed algorithm. A notable exception is
when S is the transposed incidence matrix of a sparse graph, which gives S�S
as the corresponding sparse graph Laplacian; this will occur in Section V.
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deficiency in the augmented approach, the next section exploits
a dual formulation of the optimization problem (1).

IV. DUAL AND DISTRIBUTED DUAL METHODS FOR IMPROVED

SADDLE-POINT ALGORITHM PERFORMANCE

This section develops an approach to overcome the perfor-
mance issues of augmented Lagrangian methods observed in
Theorem 3.4 when disturbances enter the constraints. To focus
on these problematic disturbances, in this section, we ignore pos-
sible disturbances to the vector c and set tc = 0. Section IV-A
contains a quick examination of dual ascent, before proceeding
to a distributed dual formulation in Section IV-B.

A. Centralized Dual Ascent

To begin, we return to the Lagrangian (2) of the optimization
problem (1) and compute

x�(ν) = argmin
x∈Rn

L(x, ν) = −Q−1(c + S�ν).

It follows quickly that the dual function Φ(ν) is given by

Φ(ν) = min
x∈Rn

L(x, ν)

= −1
2
ν�SQ−1S�ν − ν�(SQ−1c + Wbb) −

1
2
c�Q−1c.

(30)
With the primal variable eliminated, a possible approach is to
simply maximize the dual function Φ(ν) via gradient ascent.
Introducing disturbance inputs b �→ b + tbηb and performance
outputs similar to before, and shifting the unique equilibrium
point to the origin, one quickly obtains the input–output dual
ascent dynamics

Tν
˙̃ν = −SQ−1S�ν̃ − tbWbηb

z = −Q− 1
2 S�ν̃

(31)

where Tν 
 0. The performance of (31) is characterized by the
following result.

Proposition 4.1 (Dual ascent performance): The H2 norm
of the input–output dual ascent dynamics (31) is given by

‖G‖2
H2

=
t2b
2

Tr(W�
b T −1

ν Wb).

Proof of Proposition 4.1: The Lyapunov equation (9) for this
problem takes the form

−XT −1
ν SQ−1S� − SQ−1S�T −1

ν X + SQ−1S� = 0

from which we find the unique solution X = 1
2 Tν 
 0. With

B = [ tbT −1
ν Wb ], the result follows by applying (8). �

Comparing the result of Proposition 4.1 to the unaugmented
saddle-point result of Theorem 3.1, we observe that the terms
proportional to t2b are identical. Therefore, when considering al-
gorithm performance with disturbances entering the constraints,
the primal-dual and pure dual-ascent algorithms achieve identi-
cal performance.

B. Distributed Dual Augmented Lagrangian Method

Building off the dual function (30), we now derive a modified
augmented Lagrangian algorithm, which can overcome the per-
formance issues posed by disturbances affecting the vector b.
The particulars of the derivation below are tailored toward dis-
tributed solutions, which will be discussed further in Section V
in the context of distributed resource allocation. With this ap-
plication in mind, we will focus on the case, where nb = nx ,
so that the ith component of the disturbance b can be uniquely
associated with the ith primal variable xi ; this assumption can
be relaxed in the derivation below as long as one uniquely as-
signs components of b and the associated columns of Wb to a
particular agent. We partition each of the following matrices
according to their columns:

S =
[
s1 s2 · · · snx

]
,Wb =

[
w1 w2 · · · wnx

]
.

With this partitioning, one may quickly see that for Q =
diag(q1 , . . . , qnx

), the dual function (30) may be written as

Φ(ν) =
nx∑

i=1

[

− 1
2qi

ν�sis
�
i ν − ν�

(
ci

qi
si + wibi

)

− c2
i

2qi

]

︸ ︷︷ ︸
:=Φ̃ i (ν )

.

The dual function appears to separate into a sum, except for
the common multiplier ν. To complete the separation, for each
i ∈ {1, . . . , nx}, we introduce a local copy νi ∈ Rnr of the vec-
tor of Lagrange multipliers ν ∈ Rnr and require that νi = νj

for all i, j ∈ {1, . . . , nx}. To enforce these so-called agreement
constraints, let E ∈ Rnx ×|E| be the oriented node-edge inci-
dence matrix [36, Ch. 8] of a weakly connected acyclic4 graph
G = ({1, . . . , nx}, E), where E is the set of oriented edges. The
dual problem maximizeν∈Rn r Φ(ν) is then equivalent to the
constrained problem5

minimize
ν∈R(n x n r )

Jdual(ν) := −
nx∑

i=1

Φ̃i(νi)

subject to (E� ⊗ Inr
)ν = 0(|E|nr )

(32)

where ν = col(ν1 , ν2 , . . . , νnx ) ∈ R(nx nr ) is a column vector.
Since the graph is acyclic, E� has full row rank and, therefore,
satisfies our assumption concerning the constraint matrix (see
Section II). The key observation now is that the parameters b
do not enter into the equality constraints of the optimization
problem (32); this permits the full application of augmented
Lagrangian techniques for improving the H2 performance of
the saddle-point algorithm. Building the augmented Lagrangian

4The acyclic assumption implies that rank(E�) = |E|, in line with our as-
sumption from Section II-A that the constraint matrix has full row rank. This
assumption can be relaxed at the expense of more complex stability/performance
proofs.

5Another equivalent formulation can be obtained by using the Laplacian
matrix EE� = L = L� ∈ Rn x ×n x of the graph, and using instead the con-
straint (L ⊗ In r )ν = 0(n x n r ) . This formulation is sometimes preferable for
multiagent implementations, the analysis of which requires only small modifi-
cations from the present analysis. We focus instead on formulations involving
the incidence matrix.
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(25) for the problem (32), we have

Laug
dual = −

nx∑

i=1

Φ̃i(νi) + μ�(E� ⊗ Inr
)ν +

ρ

2
ν�(L ⊗ Inr

)ν

where μ = col(μ1 , μ2 , . . . , μ|E|) ∈ R(|E|nr ) is a stacked vector
of Lagrange multipliers μ� ∈ Rnr for � ∈ {1, . . . , |E|}, and L =
L� = EE� ∈ Rnx ×nx is the Laplacian matrix of the undirected
graph Gu , obtained by ignoring the orientation of the edges in
G; we let N (i) denote the neighbors of vertex i in the graph
Gu . Applying the saddle-point method, the dynamics may be
written block-componentwise as

τν ν̇i = − sis
�
i

qi
νi −

(
ci

qi
si + wibi

)

−
∑

j :(i,j )∈E
μij +

∑

j :(j,i)∈E
μji

− ρ
∑

j∈N (i)

(νi − νj ) , i ∈ {1, . . . , nx}

τμ μ̇ij = νi − νj , (i, j) ∈ E .

(33)

The algorithm (33) is distributed, in that the ith update equation
requires only the local parameters si, wi, bi , ci , and qi along
with communicated state variables νj and μij , which come from
adjacent nodes and edges in the graph G. We refer to this dynam-
ical system as the ADD-SP dynamics. Following (31), we equip
this system with disturbance inputs and performance outputs

bi �→bi + tbηi , zi = −q
− 1

2
i s�i ν̃i , i ∈ {1, . . . , nx}. (34)

While a closed-form expression for the H2 norm of this system
is difficult to compute, we can state the following comparative
result.

Corollary 4.2 (ADD-SP performance): Consider the ADD-
SP dynamics (33), denoted by GADD , with disturbance inputs
η(t) and performance output z(t) as in (34), under the assump-
tions in Theorem 3.4. Then, the squared H2 norm of the system
(33), (34) satisfies the upper bound

‖GADD‖2
H2

≤ t2b
2τν

Tr(W�
b Wb) (35)

where Wb = blkdiag(w1 , w2 , . . . , wnx
) ∈ R(nx nr )×nx . More-

over, (35) is satisfied with equality if and only if ρ = 0.
Proof of Corollary 4.2: To begin, we note that

nx∑

i=1

Φ̃i(νi) = −1
2
ν�SQ−1S�ν − ν�SQ−1c − ν�Wbb

where S = blkdiag(s1 , s2 , . . . , snx
) ∈ R(nx nr )×nx . In vector

notation after shifting the equilibrium to the origin, the system
(33), (34) can be written as

τν
˙̃ν =−SQ−1S�ν̃ − tbWbηb − (E ⊗ Inr

)μ̃ − ρ(L ⊗ Inr
)ν̃

τμ
˙̃μ = (E� ⊗ Inr

)ν̃

z = −Q− 1
2 S�ν̃

where η = col(η1 , . . . , ηnx
) ∈ Rnx . In state space, this trans-

lates to
[

˙̃ν
˙̃μ

]

=

[
− 1

τ ν
SQ−1S� − 1

τ ν
ρ(L ⊗ Inr

) − 1
τ ν

(E ⊗ Inr
)

1
τ μ

(E� ⊗ Inr
) 0

]

︸ ︷︷ ︸
AA D D

×
[

ν̃

μ̃

]

−
[

tb

τ ν
Wb

0

]

︸ ︷︷ ︸
BA D D

ηb , z =
[
−Q− 1

2 S� 0
]

︸ ︷︷ ︸
CA D D

[
ν̃

μ̃

]

. (36)

As in our previous results, it can be verified that AADD is Hur-
witz, and that (AADD , CADD) is observable. Consider the ob-
servability Gramian candidate XADD = 1

2 blkdiag(τν I(nx nr ) ,
τμ I(|E|nr )). Straightforward algebra shows that

XADD AADD + A�
ADDXADD + QADD =

[
−ρ(L ⊗ Inr

) 0

0 0

]

� 0 (37)

where QADD = C�
ADD CADD . We conclude that XADD is a

generalized observability Gramian for the system GADD . Fur-
thermore, if Xt is the true observability Gramian for GADD ,
then as in Theorem 3.2, we have Xt � XADD and therefore

‖GADD‖2
H2

≤ Tr(B�
ADDXADDBADD) =

t2b
2τν

Tr(W�
b Wb).

(38)
When ρ = 0, XADD is the exact observability Gramian and

‖GADD‖2
H2

=
t2b

2τν
Tr(W�

b Wb). (39)

To complete the proof, it remains to show that (39) in fact
implies that ρ = 0. Suppose that (39) holds, and define Δ :=
XADD − Xt � 0. Then, following a similar argument as in the
proof of Theorem 3.2, one may show that ΔBADD = 0. From
(37) and the fact that Xt is the actual observability Gramian of
the system, we may subtract equations to obtain

ΔAADD + A�
ADDΔ =

[
−ρ(L ⊗ Inr

) 0

0 0

]

.

Now, by multiplying each side of the equality above from the
left by B�

ADD and from the right by BADD , we find that

0 = ρW�
b (L ⊗ Inr

)Wb

= ρW�
b (E ⊗ Inr

)(E� ⊗ Inr
)Wb = ρM�M

where M = (E� ⊗ Inr
)Wb . Since the graphG is connected and

Wb is square and of full rank, it always holds that M �= 0, and
therefore, we conclude that ρ = 0. �

The point of interest from Corollary 4.2 is that the bound
on the H2 performance is independent of ρ. In particular then,
as ρ becomes large, the norm does not grow without bound,
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which resolves the issue observed in the result of Theorem 3.4.
When applied to the resource allocation problem in Section V,
we will, in fact, be able to make the stronger statement that the
norm is a strictly decreasing function of ρ, and augmentation
can, therefore, be used successfully to improve saddle-point
algorithm performance.

V. APPLICATION TO RESOURCE ALLOCATION PROBLEMS

We now apply the results from the previous subsections to a
particular class of problems. As a special case of the problem
(1), consider the resource allocation problem

minimize
x∈Rn

n∑

i=1

1
2
qix

2
i + cixi

subject to
n∑

i=1

xi =
n∑

i=1

di

(40)

where qi > 0, ci ∈ R, and di ∈ R. Comparing (40) to (1),
we have Q = diag(q1 , . . . , qn ), S = 1�n , Wb = 1�n , and d :=
col(d1 , . . . , dn ) = b. The interpretation of (40) is that a resource
must be obtained from one of n suppliers in amount xi , subject
to a total demand satisfaction constraint. The objective function
of (40) can be interpreted as the sum of the utilities −cixi minus
the sum of the costs qix

2
i /2. In a multiagent context, each vari-

able xi is assigned to an agent, the parameters qi, ci , and di are
available locally to each agent, and the agents must collectively
solve the problem (40) through local exchange of information.
As a concrete example, in the context of power system frequency
control, the objective function models the cost of producing an
auxiliary power input xi ; see our preliminary work [26] for
additional details.

We will consider (40) along with several equivalent reformu-
lations and apply our results from the previous sections to assess
the input–output performance of the resulting saddle-point algo-
rithms. External disturbances ηd will be integrated into the algo-
rithms as di �→ di + ηi , where ηi models the disturbances in de-
mand di . For simplicity, all time-constant matrices are assumed
to be multiples of the identity matrix. To most clearly indicate
which algorithms require communication of which variables, in
this section, algorithms are not written in deviation coordinates
with respect to the optimizer. In all cases, the performance out-
put z is chosen such that ‖z(t)‖2

2 = (x(t) − x�)�Q(x(t) − x�),
where x� is the global primal optimizer. With this choice of per-
formance output, the transient performance of the algorithm is
measured using the same relative weightings as the steady-state
performance.

To begin, the augmented Lagrangian of (40) is given in vector
notation by

L(x, ν) =
1
2
x�Qx + c�x + ν1�n (x − d) +

ρ

2
‖1�n (x − d)‖2

2

(41)
where ν ∈ R. Applying the saddle-point method to the La-
grangian L(x, ν) and attaching the same disturbances η ∈ Rn

and performance outputs z ∈ Rn as before, we obtain the

centralized saddle-point dynamics

RAcent(ρ) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τxẋ = −Qx − c − ν1n − ρ1n1�n (x − d − η)

τν ν̇ = 1�n (x − d − η)

z = Q
1
2 (x − x�).

(42)
When ρ = 0, the algorithm (42) is of a gather-and-broadcast

type [37], where all states xi and disturbances di are collected
and processed by a central agent with state ν. When ρ > 0,
the additional term 1n1�n in the algorithm requires all-to-all
communication of the local imbalances xi − di .

We now consider a reformulation that results in a dis-
tributed optimization algorithm. LetG = ({1, . . . , n}, E) denote
a weakly connected acyclic graph over the agent set {1, . . . , n},
and let E ∈ Rn×|E| denote the oriented node-edge incidence ma-
trix of G. The constraint 1�n x = 1�n d in the resource allocation
problem (40) is equivalent to the existence6 of a vector δ ∈ R|E|

such that Eδ = x − d. The resource allocation problem (40)
can, therefore, be equivalently rewritten as

minimize
x∈Rn ,δ∈R|E|

n∑

i=1

1
2
qix

2
i + cixi

subject to Eδ = x − d

(43)

with associated augmented Lagrangian

L′(x, δ, ν) =
1
2
x�Qx + c�x + ν�(Eδ − x + d)

+
ρ

2
‖Eδ − x + d‖2

2

where ν ∈ Rn . This reformulation can be interpreted as a ver-
sion of (1) with an expanded primal variable (x, δ) and an
expanded dual variable ν = col(ν1 , . . . , νn ). By applying the
saddle-point method to the problem (43), we obtain the dis-
tributed saddle-point dynamics

RAdist(ρ) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τxẋ = −Qx − c + ρ(Eδ − x + d + η) + ν

τδ δ̇ = −E�ν − ρE�(Eδ − x + d + η)
τν ν̇ = Eδ − x + d + η

z = Q
1
2 (x − x�). (44)

When ρ = 0, the algorithm (44) is distributed with the topology
of the graphG, with states (xi, νi) associated with each node and
a state δi associated with each edge. When ρ > 0, the algorithm
contains the so-called edge Laplacian matrix E�E [38], which
under our acyclic assumption is positive definite.

Our third formulation is the dual ascent algorithm (30).
Substitution of the appropriate matrices into (30) leads to the
centralized dual ascent dynamics

RAdual
cent :

{
τν ν̇ = −(1�n Q−11n )ν − 1�n (Q−1c + d + η)

z = Q
1
2 (x − x�) = −Q− 1

2 (c + ν1n ) − Q
1
2 x�

(45)

6This follows since ker(E�) = span(1n ), and hence, Im(E) is the sub-
space orthogonal to the vector 1n .
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TABLE I
COMPARISON OF SQUARED H2 NORM EXPRESSIONS

where ν ∈ R. Algorithm (45) is again centralized, with a sin-
gle central agent with state ν performing all computations and
broadcasting xi = −q−1

i (ci + ν) back to each agent. For our
fourth and final formulation, we apply the ADD-SP method
developed in Section IV-B. For the problem (40), one quickly
deduces that S = Wb = In , and the algorithm (33) reduces to

RAdual
dist (ρ) :

⎧
⎪⎪⎨

⎪⎪⎩

τν ν̇ =−Q−1ν − (d + η) − Q−1c − Eμ − ρLν

τμ μ̇ = E�ν

z = Q
1
2 (x − x�) = −Q− 1

2 (ν + c) − Q
1
2 x�

(46)
When ρ = 0, this algorithm is distributed with the graph G
associated with the incidence matrix E, with states νi associated
with nodes and states μij associated with edges. When ρ > 0,
the algorithm additionally contains the undirected Laplacian
matrix L = EE� of G and thus remains distributed.

For each of the four formulations above, we compute the H2
norm from the disturbance input η to the performance output
z. For RAcent(ρ),RAdual

cent , and RAdual
dist (ρ), this follows imme-

diately from Theorem 3.4, Proposition 4.1, and Corollary 4.2,
respectively. The algorithm RAdist(ρ) requires a modification
of the proof of Theorem 3.4, since the objective function is no
longer strongly convex in the primal variables (x, δ); we omit
the details.

The first column of Table I shows theH2 system norms for the
four formulations when ρ = 0, i.e., the unaugmented versions
of the various saddle-point algorithms. Despite substantial dif-
ferences between the algorithms in terms of information struc-
ture and number of states, all four have the same input–output
performance in the H2 norm. This implies that a distributed
implementation will perform no worse than a centralized
implementation.

While these four formulations all possess identical system
norms under the basic primal-dual algorithm, augmentation
differentiates these methods from one another, and substan-
tial differences between the algorithms begin to appear as ρ is
increased. The limiting results are tabulated in the second col-
umn of Table I. The input–output performance of the first two
formulations becomes arbitrarily bad as the augmentation gain ρ
increases, while the performance of the ADD-SP algorithm im-
proves substantially, becoming independent of the system size
in the limit ρ → ∞.

We illustrate the results in Table I via time-domain simu-
lations in Figs. 2 and 3 for the system in (43) with n = 2 and
an underlying line graph with E = [1 − 1]�. With unit variance
white noise as inputs, the unaugmented implementation in Fig. 2
for the four different algorithms results in identical steady-state
output variance, numerically computed as the squared H2 norm
in (7).

In Fig. 3, a sufficiently large augmentation factor ρ is in-
troduced to penalize the constraint violations. It is observed
that with the augmentation, the steady-state variance of the
outputs for the centralized and distributed implementations in
RAcent(ρ), RAdist(ρ) worsens, while that of the distributed
dual implementation from RAdual

dist (ρ) improves.
Fig. 4(a) illustrates how the choice of communication

graph topology influences the performance of the algorithm
RAdual

dist (ρ). We consider n = 4 agents and implement the al-
gorithm with line, ring, and complete communication graphs.
While Corollary 4.2 and the results of Table I hold only for
acyclic graphs, Fig. 4(a) shows that in all cases, the algorithm’s
performance improves as ρ increases. For a given value of ρ,
graphs with higher connectivity show a greater improvement.
This behavior is explained by noting that the algorithm (46) has
the same form as the augmented saddle-point dynamics (26),
and an analysis similar to that performed for Theorem 3.4 can,
in fact, be performed for (46). For uniform cost function param-
eters and an acyclic graph, this leads to the expression

‖GRAd u a l
d i s t (ρ)‖2

H2
=

1
2τν

(

1 +
n∑

i=2

q

q + ρλi

)

(47)

where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of the
Laplacian matrix. As graph connectivity increases, so does λ2 ,
and therefore, performance improves. From a design perspec-
tive, note that for a fixed time constant τν and a desired level
of performance γ ∈ (1/

√
2τν ,

√
n/

√
2τν ), examination of (47)

shows that a sufficient condition for ‖GRAd u a l
d i s t (ρ)‖H2 ≤ γ is that

ρ ≥ q

λ2

n − 2τν γ2

2τν γ2 − 1
.

In particular, this shows that the augmentation gain should be
chosen in inverse proportion to the algebraic connectivity λ2 of
the Laplacian matrix. A strongly connected graph will, there-
fore, require a lower augmentation gain than a weakly connected
graph to achieve a desired level of H2 performance. Achieving
an H2 norm lower than 1/

√
2τν requires an increase in τν .

Finally, Fig. 4(b) plots the system norm as a function of
ρ for the three augmented algorithms, for a test case with
n = 4 agents. The norm is not a monotonic function of the
augmentation factor ρ for the implementations in RAcent(ρ)
and RAdist(ρ), but is monotonic for RAdual

dist (ρ) applied to re-
source allocation problems, in agreement with the result for the
parametrically uniform case in (47).
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Fig. 2. Steady-state variance for the four different implementations for the unaugmented case, for parameters n = 2, Q = diag(4, 25), τx = τδ =
τν = τμ = 1, E = [1 − 1]�; the remaining parameters do not influence the results.

Fig. 3. Steady-state variance for the three different implementations for the augmented case, for parameters n = 2, ρ = 100, Q = diag(4, 25),
τx = τδ = τν = τμ = 1, and E = [1 − 1]�; the remaining parameters do not influence the results.

Fig. 4. Squared H2 norm as a function of ρ, for parameters n = 4, τx = τδ = τν = τμ = 1, and unweighted graphs. (a) RAdual
d ist (ρ) for Q =

diag(4, 25, 16, 49). (b) RAcent , RAdist , RAdual
d ist for Q = diag(4, 4, 4, 9) and line graph.
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VI. CONCLUSION

We have studied the input–output performance of continuous-
time saddle-point methods for solving linearly constrained con-
vex quadratic programs, providing an explicit formula for the
H2 norm under a relevant input–output configuration. We then
studied the effects of Lagrangian regularization and augmenta-
tion on this norm and derived a distributed dual version of the
augmented algorithm, which overcomes some of the limitations
of naive augmentation. We then applied the results to compare
several implementations of the saddle-point method to resource
allocation problems.

Open directions for future research include input–output
performance metrics for problems involving inequality con-
straints, for distributed implementations where communication
delays occur between agents, and for other classes of dis-
tributed optimization algorithms. An analogous study in an H∞
performance framework has not been completed. Another inter-
esting question is how to further improve the H2 performance
of saddle-point methods by designing auxiliary feedback con-
trollers; augmentation is but one approach. Finally, extending
these results beyond the case of quadratic cost functions with
linear constraints could be pursued via nonlinear and robust
control approaches, as in [21]–[25]; see [39] for recent work in
this direction, in the context of robust H2 analysis of gradient
methods.
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