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Evolutionary Game Dynamics for Crowd Behavior in Emergency
Evacuations

Diego Marti Mason1, Leonardo Stella2 and Dario Bauso3

Abstract— This paper studies the problem of a large group
of individuals that has to get to a safety exit in the context of
high-stress emergency evacuations. We model this problem as a
discrete-state continuous-time game, where the players update
their strategies to reach the exit within a defined time horizon,
whilst avoiding undesirable situations such as congestion and
being trampled. The proposed model builds on crowd dynamics
in a two-strategy game theoretic context, which we extend
to include aspects of crowd behavior originating in sociology
and psychology, and in the analogous studies performed in
immersive virtual environments. The main contribution of this
paper is threefold: i) we propose a novel game formulation of
the model in terms of the population distribution across three
strategies, and provide a link with prospect theory; ii) we study
the equilibria of the system and their stability via Lyapunov
stability theory of nonlinear systems; iii) we extend the model
to a multi-population setting, where each population represents
the group of players at a certain distance from the exit.

I. INTRODUCTION

Motivated by the study of crowd dynamics in emergency
evacuations, see [1], we consider a population of individuals
that have to choose the best strategy at any given time
in order to get to safety, whilst avoiding congestion at
bottlenecks such as corridors and doors. We reframe this
problem within the framework of game theory, where we
model each strategy through a payoff matrix. The dynamics
of a crowd share similarities with many other social and
biological systems, see [2] for an example of the impact
of a strongly opinionated minority on uninformed agents. A
good example of conflict-free consensus in decision-making
is constituted by eusocial insects such as honeybees, see [3]
and [4] for seminal works on the topic.

We consider a large population of players that have to
choose the best strategy in order to get to safety in an
emergency evacuation setting. We model the crowd dynamics
in a continuous-time dynamic game framework, where each
player controls their state using some optimality criteria. In
a first approximation, we assume that players are homoge-
neous, meaning that they behave in the same way in the
same situation. Additionally, we consider that each player’s
choices do not affect the evolution of the game, and are
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instead added to the mass, meaning that the players are
indistinguishable and the game is symmetric with respect
to permutation of players.

Highlights of contributions: The contribution of this paper
is threefold. First, we provide an evolutionary perspective
of the macroscopic dynamics that regulate crowd behavior.
We extend a common model in the literature for crowd
dynamics to include an extra state and another parameter: the
addition of the neutral is motivated by the context of opinion
dynamics where individuals are susceptible to one of the
other two antithetical options, namely patient and impatient;
the new parameter represents a gain for an orderly escape.
We define what we call the expected gain to formulate
the nonlinear discrete-state continuous-time macroscopic dy-
namics and study the evolution of the population distribution
across the three strategies. To study this model, we consider a
macroscopic parameter which averages across all agents the
expected time to escape. Second, we identify the equilibrium
points and carry out the stability analysis of the model via
Lyapunov stability theory of nonlinear systems. Third, we
extend the model to a multi-population setting, where we
capture the microscopic parameter of expected evacuation
time in each different population. In the multi-population
model, we assume that players are homogeneous with respect
to each population.

Related literature: Understanding crowd dynamics has an
important impact in evacuation management and in escape
training, e.g. for employees on a large variety of contexts.
Some recent studies use an immersive environment to study
this topic from an experimental viewpoint, see [1], whereas
a vast literature has investigated these dynamics from a
theoretical perspective, see [5] and plenty of references
therein. The first attempt to use a game theoretic approach
to model crowd behavior in an evacuation setting is due
to Lo et al., see [6] and plenty of references therein. A
common game model used in the literature includes two
possible strategies and a cost of congestion, denoted by c,
that weighs all the players choosing to be impatient and the
corresponding interactions with other impatient agents. This
game is also used to model a spatial scenario where players
interact with their neighbors by choosing one of the two
strategies, namely patient and impatient, see [7]. A cellular
automaton model is proposed in [8] to study the same spatial
game model. A particle-based approach to model pedestrians
and crowd behavior is also common in the literature, see [9].
A mean-field game theoretic approach is proposed in [10] to
study the evacuation dynamics in the scenario of a multi-
level building.
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This paper is organized as follows. In Section II, the
evolutionary model is introduced and the stability analysis is
carried out. In Section III, the model is extended to a multi-
population scenario. In Section IV, the numerical analysis is
presented. In Section V, conclusions are drawn and future
directions are discussed.

II. EVOLUTIONARY GAME DYNAMICS

Given a large population of players, we model the evolu-
tionary crowd dynamics where players have to choose within
a set of three pure strategies, namely patient, impatient and
neutral. Due to the structure of the game under consider-
ation, we will use the terms strategy, state and decision
interchangeably. We consider the frequency of each strategy
i ∈ I3, where I3 represents the set of states. We denote
the probability distribution at time index t > 0 with x(t) =
[x1, x2, x3]T ∈ S3, where S3 is the probability simplex in
R3. Parameter g represents a gain for an orderly escape, c is a
cost usually referred to as cost of congestion in the literature,
and ∆u(τ̃) is a fixed macroscopic parameter that models
the interactions between a patient agent and an impatient
agent. The notation for parameter ∆u(τ̃) is left the same
as in the literature to reflect the difference between the cost
for the two interacting players i and j in the corresponding
microscopic dynamics, cost that is indicated by u(Ti) and
u(Tj), respectively.

Let us now derive the payoff matrix corresponding to
the case where players cannot switch directly from strategy
patient to impatient. For simplicity, we include the payoffs
only for the row player. Let A = (aij) ∈ R3×3 be the payoff
matrix defined as follows:

A =

 g −∆u(τ̃) 0
∆u(τ̃) −c 0

0 0 0

 , (1)

where g and ∆u(τ̃) are strictly positive parameters and c is
nonnegative.

In the above game, the row player earns g and loses ∆u(τ̃)
for matching strategy 1, namely patient, and for playing
strategy 1 against a player whose strategy is impatient,
respectively. The row player incurs in a cost of c when
matching strategy 2, namely impatient, or earns ∆u(τ̃) if
playing strategy 2 against the column player’s strategy 1. In
random-matching, players that choose to stay neutral neither
gain nor lose anything. The neutral state accounts for those
players that are usually referred to as susceptible in opinion
dynamics, and the presence of this additional state is essential
to mimic those individuals who are undecided at the time of
the emergency. Let ρij be the transition rate from state i
to state j. To model the evolution of the frequency of each
strategy, we consider the following game dynamics which
are in accordance with innovative dynamics as in [11]:

ẋi =
∑
j

xjρji − xi
∑
j

ρij . (2)

Before we can present the macroscopic dynamics for the
problem originating in the context of emergency evacuations,

3

1 2
gx1

∆u(τ̃)x2

∆u(τ̃)x1

cx2

Fig. 1: The transition rates between each pair of states is
described by this Markov chain of system (4).

we introduce the following definition of expected gain given
x for our game dynamics. This constitutes the first contri-
bution of the paper, and takes inspiration from the model
developed in the context of swarm behavior, see [12].

Definition 1: (Expected gain) Let A be a payoff matrix.
The expected gain from strategy j to strategy i is defined as:

Eji(x) =

n∑
k=1

(aik − ajk)+xk, (3)

where (aik − ajk)+ denotes the positive part of aik − ajk.
The above definition models a player’s expected gain

by taking into account only the increase in payoff when
the player changes strategy. In a risk-seeking scenario,
Kahneman and Tversky’s prospect theory can be linked
to the above equation if we design a weighting function
that gives weight zero to the probability of unfavorable
events, see [13]. Furthermore, prospect theory can be used to
model behavioral dynamics that come from sociology such
as leadership or stress in evacuation contexts.

By assuming that each transition rate depends on the
expected gain defined above as ρij = Eij(x), we can now
calculate the transition rates as in the following: ρ31 = gx1,
ρ13 = ∆u(τ̃)x2, ρ32 = ∆u(τ̃)x1, ρ23 = cx2.

By taking into account the conservation of mass, namely
ẋ3 = −ẋ1 − ẋ2, we can now substitute the above transition
rates into the game dynamics in (2) to obtain the following
set of Kolmogorov equations, which describe the macro-
scopic dynamics of the crowd: ẋ1 = gx1x3 −∆u(τ̃)x1x2,

ẋ2 = ∆u(τ̃)x1x3 − cx2
2,

ẋ3 = −(∆u(τ̃) + g)x1x3 + (∆u(τ̃)x1 + cx2)x2.
(4)

By taking into account the conservation of mass, namely
ẋ3 = −ẋ1 − ẋ2, we formulate the corresponding bi-
dimensional system as follows:{

ẋ1 = gx1(1− x1 − x2)−∆u(τ̃)x1x2,
ẋ2 = ∆u(τ̃)x1(1− x1 − x2)− cx2

2.
(5)

The above system has an initial condition for the distribu-
tion, namely x(0) = x0. Figure 1 depicts the Markov chain
corresponding to system (4).

A. Equilibria and Stability Analysis

In this section, we carry out the stability analysis for the
three-state model proposed in the previous section, namely
system (4). First, we find all the equilibrium points of the
system and then we study the stability property of each
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equilibrium point via Lyapunov stability theory of nonlinear
systems.

Theorem 1: System (4) admits the following equilibrium
points x∗ = (x∗1, x

∗
2, x
∗
3):

• Case 1: When x1 = 1 and x2 = 0, x∗ = (1, 0, 0).
• Case 2: When x1 = 0 and x2 = 0, x∗ = (0, 0, 1).
• Case 3: In general, by substitution,

x∗ =
(
cg2

p ,
∆u(τ̃)2g

p , ∆u(τ̃)3

p

)
,

where p = ∆u(τ̃)3 + ∆u(τ̃)2g + cg2 for brevity.
Corollary 1: Let us consider x1(g − ∆u(τ̃))(1 − x1) =

x2(gx1 − cx2), by equating the two equations of the bi-
dimensional system (5) to zero. When x1 = c/gx2 and g =
∆u(τ̃), the equilibrium point in Case 3 reduces to:

x∗ =
( c

2g + c
,

g

2g + c
,

g

2g + c

)
.

Additionally, when all three parameters are equal, namely
g = c = ∆u(τ̃), the equilibrium point reduces to x∗ =
( 1

3 ,
1
3 ,

1
3 ), which represents the case where the population is

evenly distributed across the three states.
Corollary 2: When c → 0, the equilibrium point in

Case 3 reduces to x∗ = (0, 1
2 ,

1
2 ). When c → ∞, the

equilibrium point in Case 3 reduces to x∗ = (1, 0, 0), namely
the equilibrium point in Case 1.

We now present the next result, which establishes the
stability properties of the fixed points in Theorem 1.

Theorem 2: Given an initial condition x(0) = x0, the
fixed point x∗ = (1, 0, 0) is a saddle point, x∗ = (0, 0, 1)
is unstable, and the fixed point in Case 3 is asymptotically
stable. Additionally, when the first condition in Corollary 2
holds true, namely c → 0, the fixed point in Case 3 is
asymptotically stable.

Remark 1: The importance of the above result lies in the
fact that the consensus on option 1, namely patient, and on
option 3, namely neutral, are not stable equilibria. Therefore,
the only stable fixed point for the system is when players
choose different strategies according to the parameters g, c
and ∆u(τ̃). To add depth to the model, we recall that in
the microscopic formulation of the model ∆u(τ̃) represents
the perceived time to escape of each agent. In our model,
however, we approximate it with an average value for the
whole population.

III. MULTI-POPULATION MODEL

In this section, we want to capture the scenario where
players are no longer homogenous, namely react in different
ways: our approach is to study a multi-population formu-
lation of the model to account for different behaviors. Let
P (k) be the probability distribution of players in population
k, and let ηk = dk

dmax
be the parameter capturing the

distance from the exit, where dk is the distance for class
k and dmax is the value corresponding to the maximum
distance. We indicate with 〈d〉 the mean value of dk across
all populations. Let θi = 1

〈d〉
∑
k kP (k)xi,k, where xi,k is

the population described by distance dk using strategy i.

For each population k ∈ Z, the bi-dimensional model (5)
becomes:{

ẋ1,k = (1− x1,k − x2,k)gθ1 − x1,kηk∆u(τ̃)θ2,
ẋ2,k = (1− x1,k − x2,k)ηk∆u(τ̃)θ1 − x2,kcθ2.

(6)

We use this model to investigate the impact of players’
distance from the exit, but likewise it can capture a variety
of different behavioral aspects such as anxiety or stress, to
mention a few. The role of parameter ηk is to influence the
players choosing diametrically opposed strategies, namely
patient and impatient, and thus it affects the macroscopic
parameter ∆u(τ̃).

A. Equilibria and Stability Analysis

To investigate the stability in the proposed multi-
population model, we study the mean-field response for a
given population by assuming that the distribution of the
remaining part of the population is fixed. First, we put
system (6) in matrix form as:

[
ẋ1,k

ẋ2,k

]
=

Ak(θ)︷ ︸︸ ︷[
−gθ1 − ηk∆u(τ̃)θ2 −gθ1

−ηk∆u(τ̃)θ1 −ηk∆u(τ̃)θ1 − cθ2

]
·
[
x1,k

x2,k

]
+

[
gθ1

ηk∆u(τ̃)θ1

]
︸ ︷︷ ︸

ck(θ)

,

(7)
where Ak(θ) indicates the system matrix, and for simplicity
we denote the dependence on both θ1 and θ2 through θ, and
ck(θ) is a vector of coefficients that do not depend on the
state. The above system can be rewritten in compact form as
in the following:[

ẋ1,k

ẋ2,k

]
= Ak(θ)

[
x1,k

x2,k

]
+ ck(θ).

We are now ready to establish the next result, assessing
the stability of the multi-population system (7).

Theorem 3: Given an initial state xi,k(0) for i = 1, 2
and all populations k, system (7) is locally asymptotically
stable. Furthermore, the eigenvalues of system (7) for the
minimum distance ηk = 0 and maximum distance ηk =

1 are:
(
−q+i

√
3cgθ1θ2
2 , −q−i

√
3cgθ1θ2
2

)
for ηk = 0 and(−∆u(τ̃)(θ1+θ2)−q+

√
∆ηk=1

2 ,
−∆u(τ̃)(θ1+θ2)−q−

√
∆ηk=1

2

)
for

ηk = 1, where q = gθ1 + cθ2 for brevity, and ∆ηk=1 =
∆u(τ̃)2(θ2

1 + θ2
2 − 3θ1θ2) + ∆u(τ̃(gθ1θ2 + gθ2

1 + cθ1θ2 −
3θ2

2)− 3cgθ1θ2.
Remark 2: The above result provides an interesting in-

sight on the impact of the distance on the players’ choice
to be patient or impatient. Specifically, when ∆ηk=1 < 0,
the eigenvalues shift towards the negative <(λ) and thus
the higher the distance, the faster the convergence. When
∆ηk=1 > 0, depending on its absolute value and on the
absolute value of the trace, the system can converge faster
as before or it can turn unstable due to the eigenvalues having
different sign.

Theorem 4: Given an initial state xi,k(0) for i = 1, 2
and all populations k, when cgθ1θ2 + ηk∆u(τ̃)gθ2

1 >
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η2
k∆u(τ̃)2θ2

1 and η2
k∆u(τ̃)2θ1θ2 + ηk∆u(τ̃)gθ2

1 > g2θ2
1 ,

system (7) admits the following fixed points: [x∗1,k, x
∗
2,k]T =

−A−1
k (θ)ck(θ).

IV. NUMERICAL ANALYSIS

In this section, we provide a numerical analysis to cor-
roborate the theoretical results. We provide two sets of
simulations. In the first set, we show the evolution of the
population distribution over time, In the second set, we
model the spatial dynamics for a finite number of agents,
namely n = 18, randomly distributed in a 3D environment.
Equilibria and Stability. In the first set, we present the
evolution of the population distribution over time. We set
the constant parameters to ∆u(τ̃) = g = 1 and we vary
parameter c as c = 1 in the first scenario, and c = 2 in the
second scenario.
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Fig. 2: Plot describing the population evolution over time of
system (4) for c = 1 (top) and c = 2 (bottom).

Figure 2 shows how the population distribution evolves
over time across the three strategies, namely patient, im-
patient and neutral. In accordance with Theorem 2, the
population distribution converges towards the equilibrium
point, explicitly calculated as x∗ = ( 1

3 ,
1
3 ,

1
3 ), which is

asymptotically stable. In Fig. 2 (top), it can be observed that
players choosing strategy impatient decrease proportionally
to the cost of congestion c in favour of strategy neutral.
Thereafter, a number of these players proportional to g,
parameter that represents the gain of escaping in an orderly
manner, shifts to strategy patient. At the equilibrium, the
population is evenly distributed across the three strategies.
Given the same initial condition, we now set c = 2. The
new equilibrium point can be calculated as x∗ = ( 1

2 ,
1
4 ,

1
4 ).

To give a physical interpretation, one can look at the cost
of congestion c as a cost that each player has to pay
for choosing strategy impatient. As an example, consider a
room with many obstacles that can harm the people during
their rush to escape if they start to exhibit an impatient
behavior. As a result, when c increases, the number of players
choosing strategy impatient decreases. Therefore, players are

more willing to choose strategy patient, and we can see an
increased number at equilibrium. This scenario is depicted
in Fig. 2 (bottom).
Spatial Dynamics. In the second set of simulations, we use
the population distribution at an equilibrium as input of an
evacuation scenario where a finite number of agents have
to escape from a room. For this scenario, we generate the
environment and define the players’ dynamics through Unity,
one of the most widely renowned game engines, extensively
used in industry for a variety of uses, spanning from games to
virtual reality (VR) applications. The simulation environment
consists of a simple square room and a single exit. We
consider n = 18 agents, and each agent i moves on the
y-z plane towards the exit following these dynamics:{

ẏi = cy,i + σdB,
żi = cz,i,

(8)

where we use y in place of x to avoid confusion with the
distribution x from previous sections, cy,i and cy,i describe
the line passing between the agent’s initial position and the
exit, dB is the Brownian motion and σ is its strength.

We represent agents as capsules in the 3D environment,
with different colors, one for each strategy: we use green to
denote players choosing strategy patient, red for impatient
and black for neutral. The initial distribution of players
follow the equilibrium point in Theorem 2 when c = g =
∆u(τ̃) = 1. Players’ strategies influence the strength of the
noise as σ = 2 for patient and σ = 4 for impatient players,
respectively, and we assume that the speed is the same for all
players. We treat neutral players as susceptible, similarly to
the context of opinion dynamics, see [19], meaning that they
will mimic the behavior of the closest agents. We randomly
apply the noise at each time step with probability 0.5.

Figure 4 depicts the scenario described so far in the context
of an evacuation situation. We show four time instants: at
t = 0, agents are randomly placed at the back of the room
and they are assigned to one of the three strategies; at t = 4,
it can be observed that agents start to move towards the
door, and that neutral agents mimic the surrounding players’
behavior, e.g. look at the black trajectory on the right-hand
side. In the last two time steps, it can be seen that agents
move towards the door, at t = 6, and finally reach the exit,
at t = 8, respectively.

We now provide a physical interpretation that links the
spatial dynamics to the original formulation of the game,
see matrix (1). Due to the higher values of the noise for
strategy impatient, players choosing this strategy are more
likely to deviate from the line pointing at the exit. This
would cause them to hit other agents or obstacles (if any are
present). Therefore, the number of collisions would be much
higher for these agents than for agents choosing strategy
patient. This behavior can be interpreted in terms of the cost
of congestion in matrix (1) as in the following: consider
the number of impatient players increasing, the number of
potential collisions would increase as a result. This would
mean a higher probability for two players choosing this
strategy to play in random matching, in turn both losing c.
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This also explains why, at the equilibrium, the number of
impatient agents decreases when the cost of congestion c
increases.

(a) t = 0. (b) t = 4.

(c) t = 6. (d) t = 8.

Fig. 3: Spatial dynamics: at first, agents are randomly posi-
tioned at the back of the room (a), then they slowly move
towards the door (b) (c), until they approach the exit (d).

V. CONCLUSION

In this paper, we have formulated a discrete-state
continuous-time evolutionary game for a game model origi-
nating in the context of high-stress emergency evacuations.
To model this problem, we extended the most common game
formulation in the literature to include a gain when the
players choose the strategy patient. This accounts for the
situation where all the players would benefit from an orderly
escape. We have determined the equilibria of the system and
carried out the stability analysis for each equilibrium point.
Finally, we have studied a multi-population model and the
impact of the distance on the players’ interactions. Further
directions of research include: i) the study of crowd dynamics
in immersive virtual environments (XR), and ii) the closed
loop analysis of the system where micro-macro dynamics are
joined together in a single system.

APPENDIX

Proof of Theorem 1. To study the equilibrium points of the
system, we take into account the conservation of mass and
consider system (5). We impose the condition ẋ1 = ẋ2 = 0
and, after simple algebraic calculations, obtain the following:

x1(g −∆u(τ̃))(1− x1) + x2(cx2 − gx1) = 0.

The above equation admits the following solutions x1 =
1 and x2 = 0, and x1 = 0 and x2 = 0, which lead to
the equilibria that can be trivially calculated in Case 1 and
in Case 2, respectively. In Case 3, the calculation requires
more effort. The most important steps are detailed in the
following. First, we take the first equation in (5) and we
obtain x1x2(−∆u(τ̃)− g) + gx1(1− x1) = 0, and then we
solve for x2 as:

x2 = − gx1(1− x1)

x1(∆u(τ̃) + g)
= − g(1− x1)

(∆u(τ̃) + g)
.

Now, we substitute the calculated x2 in the second equa-
tion of (5) as:

0 = −cx2
2 + ∆u(τ̃)x1(1− x1 − x2)

= −c
(
− g(1−x1)

d+g

)2

+ ∆u(τ̃)x1

(
1− x1 −− g(1−x1)

d+g

)
.

Then, let us use ∆ := ∆u(τ̃) for the sake of brevity, and
let us expand the square in the above equation as:

0 = −c g
2x2

1−2g2x1+g2

∆2+2∆g+∆2 + ∆x1
−∆x1−g

∆+g + ∆x1

=
−g2cx2

1+2g2cx1−g2c−∆3x2
1−∆2gx2

1−∆2gx1+∆3x1+2∆2gx1

∆2+2∆g+∆2 .

Next, let us rearrange the equation in the standard second-
order form ax2 + bx+ c = 0:

−g2c−∆3−∆2g
∆2+2∆g+∆2 x2

1 + 2g2c+∆2g+∆3

∆2+2∆g+∆2 x1 − g2c
∆2+2∆g+∆2 = 0.

By solving the above second-order equation, we obtain the
following solutions: x1 = 1 and x1 = g2c

∆3+∆2g+g2c . The first
solution would lead to the same equilibrium point in Case 1,
so we take the second solution and substitute it in the first
equation of (5). After a long calculation, which we omit for
the sake of brevity, we have the following:

x2 = ∆2g
(∆3+∆2g+g2c) .

Having the solutions for the first two states, x1 and x2,
we can finally calculate the value of x3 at the equilibrium
for (4), by using the conservation of mass:

x3 = 1− x1 − x2 = ∆3

(∆3+∆2g+g2c) .

Therefore, the corresponding equilibrium point is the one
as in Case 3. This concludes our proof. �
Proof of Corollary 1. In Case 3, we consider the equilibrium
point ( cg x̄, x̄, x̄), where x̄ is the value to be calculated.
By applying the conservation of mass, we compute x̄ =
1/(2 + c

g ), and, by substituting x̄ in the previous equation,

we obtain the following: x∗ =
(

c

g
(

2+ c
g

) , 1
2+ c

g
, 1

2+ c
g

)
, which

corresponds, after simple algebra, to the equilibrium point
calculated in Case 3 when x1 = c/gx2 and g = ∆u(τ̃).
This concludes our proof. �
Proof of Theorem 2. To carry out the stability analysis, we
apply Lyapunov linearisation method about each equilibrium
point. First, we calculate the Jacobian matrix for system (5)
for a generic equilibrium point x∗ as in the following:

J(x∗) =
[
−∆u(τ̃)x∗

2 + g − 2gx∗
1 − gx

∗
2 −∆u(τ̃)x∗

2 − gx
∗
1

∆u(τ̃)− 2∆u(τ̃)x∗
1 −∆u(τ̃)x∗

2 −2cx∗
2 −∆u(τ̃)x∗

2

]
.

By linearising about each equilibrium point in Theorem 1,
we calculate the corresponding trace and determinant. In
Case 1, the trace is calculated as Tr(J(1, 0, 0)) = −g
and the determinant det(J(1, 0, 0)) = −∆u(τ̃)g; since the
trace is negative but the determinant is also negative, the
equilibrium (1,0,0) is a saddle point. When we linearise about
the equilibrium point in Case 2, we obtain Tr(J(0, 0, 1)) = g
and det(J(0, 0, 1)) = 0; in this case, the trace is positive
and the determinant is zero, so the equilibrium (0,0,1) is an
unstable fixed point. As for Case 3, let us use ∆ := ∆u(τ̃)
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for the sake of brevity, and let us calculate each entry of the
Jacobian matrix, denoted as J3, about the equilibrium point:

j11 = −∆3g−2cg2−∆2g2+∆3g+∆2g2+cg3

∆3+∆2g+g2c = − cg3

∆3+∆2g+g2c ,

j12 = − ∆(∆2g)
∆3+∆2g+g2c −

g(cg2)
∆3+∆2g+g2c = − ∆3g+cg3

∆3+∆2g+g2c ,

j21 = −∆4+∆3g+∆cg2−2∆cg2−∆3g
∆3+∆2g+g2c = ∆4−∆cg2

∆3+∆2g+g2c ,

j22 = − 2c(∆2g)
∆3+∆2g+g2c −

∆(∆2g)
∆3+∆2g+g2c = − 2∆2cg+∆3g

∆3+∆2g+g2c .

Therefore, the trace and the determinant of J3 are calcu-
lated as:

Tr(J3) = − cg
3+2∆2cg+∆3g
∆3+∆2g+g2c ,

det(J3) = 2∆2c2g4+∆3cg4+∆7g−∆c2g5

(∆3+∆2g+g2c)2 ,

where it is straightforward to note that the trace is neg-
ative. For the determinant to be positive, we verify that
2∆c2g3 +∆2cg3 +∆7 > c2g4 holds true for strictly positive
parameters, and therefore we have an asymptotically stable
point. A similar calculation can be done to prove that the
equilibrium point in Corollary 1 is still asymptotically stable.
By linearising about the reduced equilibrium point and
multiplying all the factors by 2g+c, the calculation simplifies
as Tr(J̄3) = −g2 − 3cg < 0 and det(J̄3) = cg3 + c2g2 >
0. Therefore, the equilibrium in Case 3 is asymptotically
stable. Finally, when we assume that the first condition in
Corollary 2 holds true, the above trace and determinant
become: Tr(J̄3) = −g2 < 0 and det(J̄3) = 0, which implies
that the corresponding fixed point is asymptotically stable.
This concludes our proof. �
Proof of Theorem 3. We calculate the trace and the determi-
nant of matrix Ak(θ). The trace is calculated as Tr(Ak(θ)) =
−ηk∆u(τ̃)(θ1 + θ2) − gθ1 − cθ2, which is negative def-
inite. The determinant is calculated as in the following:
det(Ak(θ)) = η2

k∆u(τ̃)θ1θ2 +ηk∆u(τ̃)cθ2
2 + cgθ1θ2, which

is positive definite. Therefore, since the trace is positive and
the determinant is negative, system (7) is locally asymp-
totically stable. We now compute ∆ = Tr(Ak(θ))2 −
4 det(Ak(θ)) = (−ηk∆u(τ̃)(θ1 + θ2) − gθ1 − cθ2)2 −
4(η2

k∆u(τ̃)θ1θ2 +ηk∆u(τ̃)cθ2
2 + cgθ1θ2) = η2

k∆u(τ̃)2(θ2
1 +

θ2
2−3θ1θ2)+ηk∆u(τ̃)(gθ1θ2+gθ2

1 +cθ1θ2−3θ2
2)−3cgθ1θ2.

We can calculate the eigenvalues as λ1,2 = Tr±
√

∆
2 ; in the

case of ηk = 0, the eigenvalues are:

λ1,2 =
(−gθ1−cθ2+i

√
3cgθ1θ2

2 ,
−gθ1−cθ2−i

√
3cgθ1θ2

2

)
,

while in the case ηk = 1, we have:

λ1,2 =
−∆u(τ̃)(θ1+θ2)−gθ1−cθ2±

√
∆ηk=1

2 ,

where ∆ηk=1 = ∆u(τ̃)2(θ2
1 + θ2

2 − 3θ1θ2) + ∆u(τ̃(gθ1θ2 +
gθ2

1 + cθ1θ2 − 3θ2
2)− 3cgθ1θ2. This concludes our proof. �

Proof of Theorem 4. To prove that [x∗1,k, x
∗
2,k]T =

−A−1
k (θ)ck(θ) are the fixed points of system (7), we need

to prove that matrix Ak(θ) is invertible, i.e. det(Ak(θ)) 6= 0,
and that (−A−1

k (θ)ck(θ)) is element-wise positive. From
Theorem 3, we know that det(Ak(θ)) > 0, and therefore the
matrix is invertible. To prove the second part of the theorem,

we calculate the equilibria as in the following:[
x∗1,k
x∗2,k

]
= −A−1

k (θ)ck(θ)

= − adj(Ak(θ))
ηk(ηk∆u(τ̃)2θ1θ2+∆u(τ̃)cθ22)+cgθ1θ2

ck(θ)

= 1
det(Ak(θ))

[
cgθ1θ2 + ηk∆u(τ̃)gθ21 − η

2
k∆u(τ̃)2θ21

−g2θ21 + η2k∆u(τ̃)2θ1θ2 + ηk∆u(τ̃)gθ21

]
.

This concludes our proof. �
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[7] S. Heliövaara, H. Ehtamo, D. Helbing and T. Korhonen, “Patient
and impatient pedestrians in a spatial game for egress congestion”,
Physical Review E, vol. 87, no. 1, 2013. Available: 10.1103/phys-
reve.87.012802.

[8] A. von Schantz and H. Ehtamo, “Spatial game in cellular automaton
evacuation model”, Physical Review E, vol. 92, no. 5, 2015. Available:
10.1103/physreve.92.052805.

[9] D. Helbing and A. Johansson, “Pedestrian, Crowd and Evacuation Dy-
namics”, Encyclopedia Complexity Syst. Sci., vol. 16, pp. 6476?6495,
2016.

[10] B. Djehiche, A. Tcheukam and H. Tembine, “A Mean-Field Game
of Evacuation in Multilevel Building”, IEEE Transactions on Au-
tomatic Control, vol. 62, no. 10, pp. 5154-5169, 2017. Available:
10.1109/tac.2017.2679487.

[11] J. Hofbauer, “Deterministic Evolutionary game dynamics”, in Pro-
ceedings of Symposia in Applied Mathematics, Karl S. editor, vol. 69,
2011.

[12] L. Stella and D. Bauso, “Bio-Inspired Evolutionary Game Dynam-
ics in Symmetric and Asymmetric Models”, IEEE Control Systems
Letters, vol. 2, no. 3, pp. 405-410, 2018. Available: 10.1109/lc-
sys.2018.2838445.

[13] D. Kahneman and A. Tversky, “Prospect Theory: An Analysis of
Decision under Risk”, Econometrica, vol. 47, no. 2, pp. 263-291, 1979.
Available: 10.2307/1914185.

[14] R. Dawkins, The Selfish Gene. Oxford University Press, 1976.
[15] J. M. Smith and G. R. Price, “The Logic of Animal Conflict”, Nature,

vol. 246, no. 5427, pp. 15-18, 1973. Available: 10.1038/246015a0.
[16] M. O. Jackson, Social and Economic Networks. Princeton, N.J.:

Princeton University Press, 2011.
[17] A. Muthoo, M. Osborne and A. Rubinstein, “A Course in Game

Theory”, Economica, vol. 63, no. 249, p. 164, 1996. Available:
10.2307/2554642.

[18] L. Stella and D. Bauso, “Bio-inspired Evolutionary Dynam-
ics on Complex Networks under Uncertain Cross-inhibitory
Signals”, Automatica, vol. 100, pp. 61-66, 2019. Available:
10.1016/j.automatica.2018.11.005.
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