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Next-generation broadband wireless standards, e.g. IEEE 802.16e and Third Gen-

eration Partnership Project – Long Term Evolution (3GPP-LTE), use Orthogonal

Frequency Division Multiple Access (OFDMA) as the preferred physical layer mul-

tiple access scheme, esp. for the downlink. Due to the limited resources available at

the base station, e.g. bandwidth and power, intelligent allocation of these resources

to the users is crucial for delivering the best possible quality of service (QoS) to the

consumer with the least cost.

The problem of allocating time slots, subcarriers, rates, and power to the dif-

ferent users in an OFDMA system has been an area of active research in recent years.

Previous research efforts in OFDMA resource allocation have typically focused on

vii



maximizing instantaneous performance, i.e. the allocation decisions are performed

for the current time instant subject to the current resource constraints, which is

unable to fully utilize the time-varying nature of the wireless channel to improve

the communication performance of the system. This dissertation focuses instead on

maximizing time-averaged rates, allowing us to exploit the temporal dimension to

improve performance.

Furthermore, due to the difficult combinatorial nature of the problem, many

researchers in the past have focused on developing sub-optimal heuristic algorithms.

This dissertation proposes a unified algorithmic framework based on dual optimiza-

tion techniques that have complexities that are linear in the number of subcarriers

and users, and that achieve negligible optimality gaps in standards-based numeri-

cal simulations. Adaptive algorithms based on stochastic approximation techniques

are also proposed, which are shown to achieve similar performance with even much

lower complexity.

Finally, it was assumed in previous work that perfect channel state informa-

tion (CSI) is available at the transmitter, which is quite unrealistic due to inevitable

channel estimation errors and feedback delay. This dissertation develops algorithms

assuming that only imperfect CSI is available, such that allocation decisions are

made while explicitly considering the error statistics of the CSI.
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Chapter 1

Introduction

Nikola Tesla wrote about his wireless system in 1900 [4]

“I have no doubt that it will prove very efficient in enlightening the masses,

particularly in still uncivilized countries and less accessible regions, and that

it will add materially to general safety, comfort and convenience, and mainte-

nance of peaceful relations.”

Fast forward to 2007, we can only marvel at the accuracy of his prediction. Today,

developing countries in the Asia-Pacific are the fastest growing adopters of cellu-

lar wireless technology. According to market research from Frost and Sullivan, the

Asia-Pacific cellular subscriber base reached 819.5 million at the end of 2006, and is

forecast to reach 1.68 billion by the end of 2012, resulting in a compounded annual

growth rate of 10.8% [5]. Furthermore, the most recent research in wireless com-

munications are trending towards systems that benefit public-safety, environmental

health, and military applications [6]. It is without a doubt that wireless communi-

cations has indeed contributed significantly to the safety, comfort, and convenience

in almost every aspect of modern society. In this dissertation, I focus on one of the

most significant wireless technologies that impact our lives today: wireless voice and

data communications.

1



We begin this introduction chapter by briefly outlining the evolution of wire-

less voice and data communication systems in Sec. 1.1. We discuss various multiple

access schemes that have been proposed in the past, and observe that the multiple

access scheme that achieves high data rates while being resilient to the harsh wire-

less fading environment is orthogonal frequency division multiple access (OFDMA).

This scheme is thus the preferred method for sharing the wireless spectrum for next-

generation wireless systems, and is introduced in Sec. 1.2. Due to the ever-increasing

demand for reliable voice and data communications, the efficient allocation of re-

sources to the users in an OFDMA system is a crucial problem to solve. This is

a very difficult problem whose efficient solution has eluded researchers in the past,

and is the primary focus of this dissertation. The summary of my dissertation is

provided in Sec. 1.3, where I present the thesis statement, summarize the contri-

butions, and discuss the overall organization. We then end this chapter in Sec. 1.4

with a listing of the most commonly used acronyms in this dissertation for easy

reference.

1.1 Next-generation Wireless Communication Systems

As of Dec. 2006, the worldwide cellular telephony subscriber base has reached 2.69

billion customers [7], roughly 41% of the world population of 6.53 billion. This is

projected to increase to 4.3 billion by 2011, roughly 62% of the projected world

population at that time of 6.92 billion [8]. On the other hand, the popularity

of the Internet is also growing tremendously, with 1.1 billion worldwide users as

of March 2007, approximately a 200% growth since 2000 [9]. Given these trends

in our ever more connected world, it is conceivable why wireless communications

is moving from providing simple voice service to delivering heterogenous business

and consumer data-centric applications. In fact, global revenues from mobile data

services exceeded $100 billion in 2005, and is projected to reach $166 billion by 2010

2



Table 1.1: Wireless data applications and their required data rates [1]
Application Data rate

Microbrowsing (Wireless Access Protocol (WAP)) 8− 32 kbps
Multimedia Messaging 8− 64 kbps

Audio and Video Streaming 32− 384 kbps
Video Telephony 64− 384 kbps

General Purpose Web Browsing 32 kbps- > 1 Mbps
Enterprise Applications (e.g. database access) 32 kbps- > 1 Mbps

based on current growth trends [1].

It is not surprising then that current and future mobile devices are also

evolving into highly integrated multi-functional business and entertainment gad-

gets, combining wireless Internet and email portal, electronic organizer, still and

video camera, MP3 audio player, portable gaming console, etc., into a single device.

Subscribers are expecting access to information, communication, and entertainment

anytime and anywhere. The services envisioned for this growing market require

increased data rates, wider coverage, and improved link reliability of the wireless

network (see Table 1.1 for example applications and their typical data rate require-

ments). Thus, efficient use of the scarce resources, e.g. spectrum, power, and time,

are of paramount importance.

Next-generation wireless standards, e.g. Third-generation partnership project-

long term evolution (3GPP-LTE) and IEEE 802.16e, are poised to meet this future

demand for wireless services. Using state-of-the-art wireless communications tech-

nologies, these two standards are expected to deliver peak data rates of up to 100

Megabits per second (Mbps) to users traveling at vehicular speeds. These two emerg-

ing wireless communication standards evolved from different technological camps:

3GPP-LTE from the voice-centric cellular network architecture, and IEEE 802.16e

from the data-centric broadband access network architecture (e.g. digital subscriber

lines and cable Internet). Interestingly, both actually share some striking similari-

ties in their technological choices, particularly in their choice of physical layer trans-
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Figure 1.1: Cellular wireless communication system with hexagonal cells. Different
shading patterns of the cells indicate different sets of frequency allocations.

mission schemes. The following two subsections shall discuss these two emerging

standards, where we briefly outline their technological evolution.

1.1.1 Evolution of Cellular Standards to 3GPP-LTE

In the late 1960s, Bell laboratories first developed the concept of cellular wireless

communications [10], wherein spectrum within a geographical region can be reused

by breaking the region into a tessellation of hexagonal “cells.” Each cell is assigned a

set of frequencies, and, due to the physical phenomenon of radio strength attenuation

with increasing distance, these frequencies can be reused either by the adjacent cells,

or in the second tier of cells, and so on. Fig. 1.1 shows an example cellular wireless

communication system where adjacent cells do not occupy the same set of frequency

channels. This cellular concept, coupled by the developments in reliable solid state

radio frequency (RF) hardware, ushered in the modern wireless communications era.

First Generation (1G)

In the 1980s, the first generation of cellular networks (1G) were deployed in Japan,

the United States, and Europe [11]. These 1G networks used analog frequency
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Figure 1.2: Frequency division multiple access (FDMA) with frequency division
duplexing (FDD).

modulation (FM), where each subscriber making a call was assigned a separate

downlink and uplink FM channel. This method of spectrum sharing, wherein the

users and the transmission direction are assigned disjoint partitions in frequency, is

called frequency division multiple access (FDMA) with frequency-division duplexing

(FDD). In FDMA and FDD, it is important to separate the channels sufficiently

such that inter-channel interference can be mitigated using practical filters. Fig. 1.2

shows a typical FDMA with FDD setup, where users are assigned an uplink and

downlink frequency channel, e.g. fu
m and fd

m for the entire duration of the connection.

Second Generation (2G)

As the number of subscribers grew, it was clear that analog technology could not

use the spectrum efficiently enough to sustain the growth in popularity of cellular

telephone service. Thus, in the early 1990s, second generation (2G) cellular networks

that use digital modulation were developed. The most widely used 2G standard in
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Figure 1.3: Time division multiple access (TDMA) with frequency division duplex-
ing (FDD).

the world today, with approximately 2 billion subscribers, is the Global System

for Mobile Communications (GSM). GSM similarly uses separate sets of uplink and

downlink frequencies (FDD), but users share the spectrum using separate time slots.

This method of spectrum sharing is called time-division multiple access (TDMA),

and is shown in Fig. 1.3 with FDD. GSM was also designed to support low rate

data services of up to 9.6 kbps.

Third Generation (3G)

In the late 1990s, fueled by the surge in popularity of the Internet, consumer demand

for wireless data services has likewise increased. Thus, third generation (3G) cellular

standards were designed to support the following minimum data rates in the various

mobility environments:

1. Vehicular: 144 kbps

2. Pedestrian: 384 kbps

3. Indoor Office: 2 Mbps

4. Satellite: 9.6 kbps
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Figure 1.4: Code division multiple access (CDMA) with frequency division duplexing
(FDD).

The most popular 3G standards, i.e. Universal Mobile Telecommunications System

(UMTS) which evolved from GSM, and cdma2000 which evolved from the IS-95 2G

standard, are both based on FDD with code division multiple access (CDMA) tech-

nology. CDMA allows different users to transmit at the same time and frequency,

but using different “codes.” Fig. 1.4 shows a diagram of CDMA where there are

separate uplink and downlink frequencies (FDD), and users are separately assigned

different codes, but use the same time and frequency blocks. These codes, when

designed to be orthogonal, i.e. “non-interfering”, can then effectively separate the

users from each other, allowing simultaneous links to be maintained with minimal

interference [10].

Fourth generation and beyond (3GPP-LTE)

3GPP-LTE is a new wireless standard currently under development by the 3GPP

(http://www.3gpp.org), with a planned initial deployment in 2009. LTE is envi-

sioned as the fourth generation cellular standard, and is aligned with existing third-

generation deployments, e.g. UMTS. 3GPP-LTE uses orthogonal frequency division
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multiple access (OFDMA) for the downlink (base station to subscriber), and single-

carrier frequency division multiple access (SC-FDMA) on the uplink (subscriber to

base station). OFDMA and SC-FDMA are the state-of-the-art in multiple access

technologies, wherein users are assigned separate “subchannels” that effectively di-

vide up the wideband spectrum into a multitude of narrowband spectrum chunks.

OFDMA is based on the modulation method called orthogonal frequency division

multiplexing (OFDM), which similarly uses a multitude of narrowband subcarriers

that are orthogonal with each other and carry lower data rate streams, which sum

up to a high data rate transmission. We discuss OFDMA and OFDMA in more de-

tail in Sec. 1.2. Details on SC-FDMA can be found in [12], and resource allocation

for SC-FDMA have been studied in [13].

Fig. 1.5 shows OFDMA using either TDD or FDD, where a wideband channel

is divided up into narrowband subchannels that are orthogonal to each other, such

that users can be assigned a mutually exclusive subset of these subchannels without

interfering with each other. Both OFDMA and SC-FDMA allow for intelligent

scheduling and resource allocation so as to most efficiently use the existing wireless

spectrum. The standard assumes a full Internet protocol (IP) network architecture,

where the standard voice service is delivered via voice-over-IP (VOIP). 3GPP-LTE

is expected to provide:

1. Downlink peak data rates up to 100 Mbps

2. Uplink peak data rates up to 50 Mbps

3. Support for both frequency division duplexing (FDD) and time-division du-

plexing (TDD)

4. Scalable bandwidths of 1.25, 2.5, 5, 10, 15 and 20 MHz
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Figure 1.5: Orthogonal frequency division multiple access (OFDMA) with either
TDD or FDD.

1.1.2 Evolution of Broadband Access Standards to IEEE 802.16e

Wired Broadband Access

The late 1980s and early 1990s saw a meteoric rise in popularity of the Internet,

fueled primarily by the fledgling personal computer, ethernet technology, and the

“killer” application called email. As services and applications over the Internet be-

came more ubiquitous, services that allow business and home consumers to access

the high-speed Internet likewise flourished. The dominant technologies for broad-

band access today are digital subscriber lines and cable modems. Digital subscriber

lines, particularly asymmetric digital subscriber lines (ADSL), use discrete multi-

tone (DMT), a multicarrier modulation technique similar to OFDM, to deliver up to

8 Mbps downstream (from network to user) data rates to consumers over telephone

lines. Cable modems, on the other hand, use single-carrier 16/64-QAM modulated

over a single channel (6 MHz bandwidth), achieving up to 40 Mbps per cable chan-

nel.
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IEEE 802.16-2001

Although capable of reaching customers in developed urban areas with already ex-

isting wired telephone and cable infrastructure, the wired broadband access tech-

nologies are unable to reach a lot of suburban and rural customers in a cost-effective

manner, particularly those in developing countries. This is because wired infrastruc-

ture is typically difficult and expensive to deploy, particularly in areas with rough

terrain, e.g. hilly areas [14].

In 2002, the IEEE 802.16-2001 [15] standard was published to provide a com-

mon air interface for fixed broadband wireless access systems between 10-66 GHz.

The physical layer of IEEE 802.16-2001 uses single-carrier 4, 16, and 64 quadrature

amplitude modulation (QAM) and TDMA, and a choice between FDD and TDD.

Although spectra is abundant in the 10-66 GHz range of carrier frequencies, the

short wavelengths introduce significant deployment challenges, which include strict

antenna alignment specifications due to required line-of-sight propagation, and sig-

nificant attenuations brought about by atmospheric disturbances like rain and snow

[14].

IEEE 802.16-2004

In 2004, the IEEE 802.16-2004 [16] standard was published to provide a common air

interface for non-line-of-sight (NLOS) operation of fixed broadband wireless access

systems between 2-11 GHz. This standard is intended for NLOS residential appli-

cations, where line-of-sight operation is typically impractical due to natural (e.g.

trees and hills) and man-made (e.g. buildings and bridges) obstructions between

the base station to lower rooftop antennas. Three physical layer mechanisms are

proposed in the standard: single-carrier, 256-subcarrier OFDM using TDMA, and

2048-subcarrier OFDMA options. Both TDD and FDD options are available in this

standard, and peak data rates of up to 23 Mbps in the downlink are possible.
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Table 1.2: IEEE 802.16e OFDMA Scalability Parameters [2]
System Bandwidth Sampling Frequency FFT Size

1.25 MHz 1.429 MHz 128
2.5 MHz 2.857 MHz 256
5 MHz 5.714 MHz 512
10 MHz 11.429 MHz 1024
20 MHz 22.857 MHz 2048

IEEE 802.16e-2005

In 2005, the IEEE 802.16e-2005 [17] standard was published, which extends the

IEEE 802.16-2004 standard for combined fixed and mobile broadband wireless ac-

cess. Focusing primarily on mobility enhancements to IEEE 802.16-2004, this stan-

dard similarly supports the three physical layer mechanisms as above. The primary

difference is that the OFDMA physical layer in IEEE 802.16e supports varying

numbers of subcarriers that scale with the various supported bandwidths, thereby

keeping the subcarrier spacing fixed [2] (see Table 1.2). Both TDD and FDD modes

are also available in IEEE 802.16e, and peak data rates of 46 Mbps in the downlink

and 23 Mbps for the uplink with the 2048-subcarrier, 20 MHz OFDMA physical

layer option.

1.2 Orthogonal Frequency Division Multiple Access

In the previous section, we saw that next-generation wireless standards have em-

braced OFDMA as the multiple access scheme of choice. In this section, we shall

explore the basics of OFDM and OFDMA, and the important problem of resource

allocation in OFDMA.
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Figure 1.6: OFDM baseband spectrum, showing the broadband channel subdivided
into a multitude of narrowband subchannels.

1.2.1 Overview of OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation

technique that has been chosen as the modulation scheme for several current and

next generation broadband communication systems, e.g. IEEE 802.11a/g wireless

local area networks [18], IEEE 802.16-2004/802.16e-2005 wireless metropolitan area

networks [16][17], 3GPP-LTE [19], ADSL [20], and power line communications [21].

OFDM is popular especially in broadband wireless communication systems primarily

due to its resistance to multipath fading, and its ability to deliver high data rates

with reasonable computational complexity. OFDM divides a broadband channel

into multiple parallel narrowband subchannels, wherein each subchannel carries low

data rate stream, which sums up to a high data rate transmission. A typical OFDM

baseband spectrum is shown in Fig. 1.6.

The block diagrams for an uncoded OFDM transmitter and receiver operat-

ing over an ideal wireless channel are shown in Figs. 1.7-1.8. The bits are initially

mapped by a bank of quadrature amplitude modulation (QAM) encoders into com-
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Figure 1.7: OFDM transmitter block diagram [3]

Figure 1.8: OFDM receiver block diagram [3]

plex symbols, which are then fed into an inverse fast fourier transform (IFFT) to

ensure the orthogonality of the subchannels. The output is then converted from par-

allel to serial and modulated onto a carrier to be transmitted over the air through the

wireless channel. At the receiver, the reverse operations are performed. In practi-

cal wireless channels, channel estimation and equalization is necessary to effectively

decode the transmitted information.

1.2.2 Overview of OFDMA

In some earlier multi-user wireless systems that used OFDM as the modulation

scheme, e.g. IEEE 802.11a/g and IEEE 802.16-2004 OFDM-PHY, a single user

is assigned all of the subcarriers at any given instance, and classical TDMA and

FDMA is employed to support multiple users. The major setback to this static
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Figure 1.9: OFDMA resource allocation for M users. Each user is assumed to
have statistically independent channel gains, and are allocated a different set of
subcarriers by the base station.

multiple access scheme is that multiuser diversity is not exploited; i.e. , the fact

that the different users that see the wireless channel differently is not being utilized.

This led to the development of OFDMA, which allows multiple users to transmit

simultaneously on the different subcarriers per OFDM symbol. Since the probability

that all users experience a deep fade in a particular subcarrier is typically quite

low, intelligent allocation mechanisms can be used to assure that subcarriers are

assigned to the users who see “good” channels on them. Fig. 1.9 shows this idea

for an OFDMA system with M users that experience different channel gains. This

allows the base station, assuming it knows the channel gain information, to allocate

resources intelligently in order to maximize some performance metric.

The block diagram for the downlink of a typical OFDMA system is shown

in Fig. 1.10. At the base station transmitter, the bits for each of the different M

users bm are allocated to the K subcarriers, and each subcarrier k (1 ≤ k ≤ K)

of user m (1 ≤ m ≤ M) is assigned a power pm(k). It is assumed that subcarriers

are not shared by different users. Each of the user’s bits are then modulated into

K L-level QAM symbols Xk, which are subsequently combined using the IFFT into

an OFDMA symbol x. This is then transmitted through a time-varying, frequency-
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Figure 1.10: K-subcarrier OFDMA system block diagram for M users. Each user
is allocated a different set of subcarriers by the base station.

selective channel, with each user experiencing an independent channel. The subcar-

rier allocation is made known to all the users periodically through a control channel;

hence, each user needs only to decode the bits on its assigned subcarriers. Note that

it is important for the channel state information (CSI) of the users to be known

at the transmitter, so that the transmitter can adapt to the time-varying channel

conditions, and attempt to use the available resources in the most efficient way.

Resource Allocation in OFDMA

Due to the limited availability of resources at the base station, e.g. bandwidth and

power, intelligent allocation of these resources to the users is crucial for delivering

the best possible quality of service to the consumer with the least cost. This is espe-

cially important with the high data rates envisioned for the next generation wireless

standards that utilize OFDMA. The problem of allocating time slots, subcarriers,

rates, and power to the different users in an OFDMA system has therefore been an

area of active research. Previous research efforts in OFDMA resource allocation in

the physical layer have typically focused on the following:

1. Formulation: Maximizing instantaneous performance Previous research have

typically assumed that the allocation decisions are performed only for the
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current time instant subject to the current resource constraints, and thus

have focused only on maximizing the instantaneous performance. Although

this reduces the problem into a deterministic optimization problem (which are

typically simpler to solve than stochastic optimization problems), the time-

varying nature of the wireless channel is not exploited in order to improve the

data rate performance of the system.

2. Solution: Developing heuristic sub-optimal algorithms

A well-known approach in previous research to achieve near-optimal perfor-

mance was to relax the exclusive subchannel assignment constraints and solve a

large constrained convex optimization problem. Unfortunately, this approach

is still too complex for cost-effective real-time implementation. Thus, the fo-

cus of previous research has been on developing sub-optimal greedy heuristic

algorithms with quadratic complexity and no performance guarantees.

3. Assumption: Assuming perfect channel state information (CSI) available

In terms of channel knowledge assumption, previous research typically as-

sumed that the transmitter knows the CSI perfectly at the time the allocation

decisions need to be performed. Unfortunately, this assumption is quite unre-

alistic due to inevitable channel estimation errors and channel feedback delay.

This dissertation attempts to overcome the aforementioned shortcomings,

and is summarized in the subsequent section.

1.3 Dissertation Summary

1.3.1 Thesis Statement

In this dissertation, I defend the following thesis statement
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OFDMA resource allocation problems for instantaneous or ergodic rate alloca-

tion, continuous or discrete rate maximization, with perfect or partial channel

state information assumptions can be solved using dual optimization techniques

with linear complexity while achieving negligible optimality gaps in simulations

based on realistic parameters.

The primary tool that I use to defend this statement is mathematical analysis and

optimization theory, supported by practical examples, numerical computations, and

Monte-Carlo simulations of OFDMA systems based on the 3GPP-LTE standard.

1.3.2 Summary of Contributions

The following is summary of the contributions of this dissertation:

1. Formulation: Maximizing ergodic rates

I formulate OFDMA resource allocation problems that maximize the ergodic

rates instead of instantaneous rates. This allows us to exploit temporal diver-

sity, in addition to frequency and multi-user diversity. It also turns out that

the computational complexity is even lower compared to instantaneous perfor-

mance maximization in practically relevant scenarios when using the proposed

algorithms.

2. Solution: Developing algorithms based on dual optimization techniques

I develop a unified algorithmic framework based on dual optimization tech-

niques that is widely applicable to various OFDMA resource allocation prob-

lem formulations, e.g. maximizing weighted-sum or proportionally constrained

ergodic or instantaneous rates, considering continuous or discrete rates, assum-

ing perfect or partial CSI, and assuming perfect or no CDI. It turns out that

for most practically relevant formulations, the computational complexity can

be shown to be linear in the number of subcarriers and users, i.e. O(MK)
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for an M -user, K-subcarrier OFDMA system. Numerical results using 3GPP-

LTE OFDMA parameters show that the solutions are within 99.9999% of

the optimal solution. I also develop adaptive algorithms based on stochas-

tic approximation principles that guarantees convergence with probability one

(w.p.1) while significantly decreasing the complexity.

3. Assumption: Assuming that the available CSI is imperfect

I consider the scenario when the acquired CSI have errors due to the channel

estimation and prediction schemes commonly used. Thus, the allocation deci-

sions are made while explicitly considering the error statistics of the imperfect

CSI. It turns out that neglecting the errors in the CSI can result in significant

performance degradation.

1.3.3 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 presents a brief survey of previ-

ous work with their relative strengths and weaknesses. I also present the OFDMA

system model and the key assumptions considered in this dissertation.

Chapter 3 presents downlink OFDMA resource allocation algorithms as-

suming perfect CSI and perfect channel distribution information (CDI). I consider

both continuous (Shannon-capacity) and discrete (adaptive modulation and cod-

ing) ergodic weighted sum-rate maximization with average power constraints. I

show that solving this problem using dual optimization techniques involves a single-

dimensional line search procedure, wherein each function evaluation in the search

procedure involves a single one-dimensional numerical integration, which requires

only O(MK) complexity.

Chapter 4 relaxes the assumption of perfect CSI in Chapter 3 to partial CSI,

i.e. wherein only an estimate of the CSI is available. I still assume the knowledge of

the distribution information of the partial CSI, and consider the ergodic weighted-
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sum rate maximization for both continuous and discrete rate cases. I show that the

complexity in this case is still O(MK), but interestingly, due to the availability of

closed-form solutions to the expectation integrals, the discrete rate allocation case

turns out to be less complex than the continuous rate one.

Chapter 5 presents the OFDMA resource allocation algorithms for ergodic

rate maximization with proportional rate constraints. I detail the continuous rate

maximization with perfect CSI and CDI case, and show that this problem can be

solved by the weighted sum-rate formulation, with optimally chosen user weights.

Thus, the technique can be easily extended to the discrete rate and partial CSI

cases using the algorithms developed in Chapters 3-4. I also outline an adaptive

OFDMA resource allocation algorithm based on stochastic approximation methods

that simply requires MK operations per symbol without iterations and that do not

require knowledge of the channel distribution information (CDI). I then show that

the perfect CDI assumption required in Chapters 3-4 can also be relaxed and solved

using this framework.

Finally, Chapter 6 summarizes the contributions of this dissertation, and

outlines interesting avenues for future investigation, which include other OFDMA

resource allocation formulations, e.g. uplink OFDMA, non-real-time traffic, and out-

age capacity maximization; resource allocation for OFDMA with multiple transmit

and receive antennas (MIMO-OFDMA); multi-cell resource allocation considering

inter-cell interference; and multi-hop OFDMA extensions.

1.4 Nomenclature

3GPP-LTE : Third Generation Partnership Project

ADSL : Asymmetric Digital Subscriber Lines

AMC : Adaptive Modulation and Coding

AWGN : Additive White Gaussian Noise

19



BER : Bit Error Rate

CDI : Channel Distribution Information

CDMA : Code Division Multiple Access

CNR : Channel-to-noise Raio

CSI : Channel State Information

DFT : Discrete Fourier Transform

DMT : Discrete Multitone

FDD : Frequency Division Duplexing

FDMA : Frequency Division Multiple Access

FFT : Fast Fourier Transform

IEEE : Institute of Electrical and Electronics Engineers

IFFT : Inverse Fast Fourier Transform

IID : Independent and identically distributed

INID : Independent but not identically distributed

IP : Internet Protocol

LTE : Long Term Evolution

MAC : Media Access Control

Mbps : Megabits per second

MFI : Multilevel Fading Inversion

MIMO : Multiple-input Multiple-output

MWF : Multilevel waterfilling

NIID : Not independent but identically distributed

OFDM : Orthogonal Frequency Division Multiplexing

OFDMA : Orthogonal Frequency Division Multiple Access

PHY : Physical Layer

QAM : Quadrature Amplitude Modulation

QoS : Quality of Service
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SC-FDMA : Single Carrier - Frequency Division Multiple Access

SNR : Signal-to-noise Ratio

TDD : Time Division Duplexing

TDMA : Time Division Multiple Access

UMTS : Universal Mobile Telecommunications System

VoIP : Voice Over Internet Protocol

w.p.1 : With probability one

ZMCSCG : Zero-mean Circular-symmetric Complex Gaussian
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Chapter 2

Background

2.1 Introduction

In this chapter, we begin by reviewing the seminal and recent work in the field of

multi-user wireless communications in Sec. 2.2, with emphasis on physical layer

transmit optimization algorithms for OFDMA. This is followed by an exposition

of my proposed approach to the problem of OFDMA resource allocation in Sec.

2.3, and a description of the OFDMA system model and key assumptions used

throughout this dissertation in Sec. 2.4. Finally, we conclude this chapter in Sec.

2.5.

2.2 Review of Related Work

2.2.1 Scheduling in Wireless Networks

The idea of using channel information at the transmitter to improve the perfor-

mance of communication systems have been around since at least 1968 [22]. The

main concept is to utilize knowledge about the channel to adjust transmission pa-

rameters accordingly to maximize communications performance, which is known as
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adaptive modulation and coding. Adaptive modulation and coding in single-user

wireless communication systems have been studied extensively (see [23] [24] and the

references therein). The extension of the adaptive modulation concept to scheduling

in multi-user wireless networks have also been very well studied since the introduc-

tion of the concepts of multiuser diversity [25] and proportional fair scheduling [26].

In these seminal papers, the fading wireless channel was seen as a vehicle to improve

the overall system performance when multiple users are involved. The theoretical

underpinnings behind this concept, and the fundamental limits of these multiuser

channels are addressed by the field of multiuser information theory, which is the

topic of the next subsection.

2.2.2 Multiuser Information Theory

The focus of this dissertation is on the downlink transmission channel for OFDMA,

since this is typically where the increased performance is needed for mobile broad-

band wireless access applications. This is called a broadcast channel [27] in infor-

mation theory, which consists of a sender with a transmit power and bandwidth

budget that is sending independent information simultaneously to multiple users.

The capacity and optimal resource allocation for fading broadcast channels has been

quite well studied. In [28] and [29], the ergodic and outage capacity, and the opti-

mal resource allocation for a flat-fading broadcast channel was derived. In [30], the

capacity region for a frequency-selective broadcast channel with colored Gaussian

noise was derived. In [31], the capacity and optimal power allocation for a flat-fading

broadcast channel was derived subject to minimum rate constraints. It was shown

in the aforementioned publications that superposition coding, followed by successive

interference cancellation, is required in order to achieve the capacity of the chan-

nel. If we use OFDM transmission with infinitesimally small subcarrier widths to

approximate the superposition coding transmission over a frequency-selective chan-
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nel, some subcarriers would need to be shared among different users, which makes

decoding overly complex for practical implementations. Fortunately, the amount

of subcarrier sharing is minimal even in the capacity-achieving case [30]. Thus,

assigning only one user to each subcarrier could still achieve transmissions close

to capacity, and is essentially the downlink OFDMA transmission scheme. How-

ever, near capacity performance can be achieved only when optimal allocation of

subcarriers, rates, and power is performed.

2.2.3 Physical Layer (PHY) Transmit Optimization

The problem of assigning the subcarriers, rates, time slots, and power to the dif-

ferent users in an OFDMA system has been an area of active research over the

past several years. The research in this area can be broadly categorized into two:

margin-adaptive and rate-adaptive. Margin adaptation refers to minimizing the

transmit power subject to minimum quality of service (QoS) parameters for each

user, which could be a combination of data rate, bit error rates, delays, etc. Rate

adaptation refers to maximizing the data rates subject to various QoS and/or re-

source constraints.

Margin-adaptive Resource Allocation

In [32], the margin-adaptive resource allocation problem was investigated, in which

an iterative subcarrier and power allocation algorithm was proposed to minimize the

total transmit power given a set of fixed user data rates and bit error rate (BER)

requirements. They applied a constraint relaxation technique, which allowed the

binary integer parameter of subcarrier assignment to take on real values, which in

turn implies a time-sharing of each subcarrier among users. This converted the

problem into a convex minimization problem with a convex feasible region, and al-

lowed the use of iterative convex optimization algorithms to find the global minimum
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transmit power. The user with the biggest time-sharing factor on each subcarrier

is then assigned to that subcarrier, and a single-user OFDM bit-loading algorithm

(see e.g. [33]) is then run for each user. Although an iterative solution is required

in this algorithm, it is guaranteed to converge to a good solution. Unfortunately,

the algorithm requires a large number of iterations to converge, and is too complex

for cost-effective real-time implementation.

In [34], computationally inexpensive algorithms were proposed to solve the

margin-adaptive problem. They decoupled the problem into a bandwidth allocation

step, which determined the number of subcarriers to be assigned to each user; and

a subcarrier allocation step, which determined the actual subcarrier assignments

to each user. Greedy heuristics were developed for each of the two steps, and were

shown to give comparable performance to the constraint relaxation technique of [32]

with lower complexity.

In [35], an alternative integer programming (IP) formulation, and a linear

programming (LP) relaxation algorithm were proposed for the margin-adaptive

problem. It was shown that their methods outperform the constraint relaxation

method in [32] at a lower complexity, but the complexity performance was not justi-

fied rigorously. In [36], iterative refinement is used to come close to the IP solution

of [35].

Rate-adaptive Resource Allocation

In [37], the rate-adaptive problem was investigated, wherein the objective was to

maximize the total sum continuous rate over all users subject to power and BER

constraints. It was shown in [37] that in order to maximize the total capacity,

each subcarrier should be allocated to the user with the best gain on it, and the

power should be allocated using the water-filling algorithm across the subcarriers.

However, no fairness among the users was considered in [37]. Thus, the users that
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have the best channel conditions will be assigned all the resources, which leaves many

users without a chance to use the spectrum at all. The same authors extended the

problem formulation to consider ergodic rates in [38], i.e. the expected value of the

sum rate is maximized, which utilizes the temporal dimension when ergodicity of

the channel gains is assumed to improve the data rate performance. However, [38]

likewise suffers from the unfairness problem.

This problem was partially addressed in [39] and [40] by ensuring that each

user would be able to transmit at a minimum rate. The authors of [39] approached

it using two steps similar to [34], wherein the number of subcarriers and power is

initially assigned to each user using a greedy algorithm; followed by the subcarrier

assignment step using the Hungarian algorithm. In [40], the approach was a simple

greedy algorithm that assumes equal power allocation among subcarriers, and as-

signed the best subcarrier to each user until the rate requirements for all users are

achieved. The remaining subcarriers are then assigned to the users with the best

channel gains in them.

In [41], an alternative formulation that maximized the minimum user’s data

rate was solved by using subcarrier time-sharing methods as in [32]. This enforced a

notion of max-min fairness, and thus the starvation of some users in the method of

[37] can be avoided. A suboptimal greedy algorithm was also developed which was

shown to be close to the relaxed convex problem. This method, though, assumes

that all users have similar QoS requirements, which is not the case for practical

systems.

In [42], prioritization was enforced using a weighted rate-sum maximization,

and a subcarrier time-sharing convex relaxation similar to [32] was used to derive the

optimum subcarrier and power allocation. Several greedy algorithms were also pro-

posed to solve the problem with lower complexity. Different weights were assigned

to different users, and a higher weight for a user would imply a higher priority of
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getting resources. By varying the weights for each user’s rate, the boundary of the

rate-region can also be traced out. In the special case of the weights being identi-

cally unity, it would reduce to the problem addressed in [37]. The authors, however,

neglected to indicate how the weights are to be assigned in an actual system. More

recently, [43] and [44] have discovered a dual optimization framework to solve a

similar weighted-sum continuous rate maximization problem. Their work is similar

to the approach we advocate in this dissertation, and is one of the special cases that

our unified framework can solve (see Section 3.2.6). Note that our contribution in

Sec. 3.2.6 was developed independently of [43] and [44].

In [45], the sum data rate was maximized under a proportional rate constraint,

i.e. the rate of each user should adhere to a set of predetermined proportionality

constants. This is a concrete way of assigning priorities to the users, instead of sim-

ply assigning arbitrary weights as in [42]. This method is also very useful for service

level differentiation, which allows for flexible billing mechanisms for different classes

of users. However, the power allocation algorithm proposed in [45] involves solving

simultaneous non-linear equations, which requires computationally expensive itera-

tive operations and is thus not suitable for a cost-effective real-time implementation.

In cases there the signal-to-noise ratio is high, the algorithm in [45] is shown to re-

duce to a one-dimensional zero-finding routine, which is much less complex, but

may suffer from stability problems. In [46], the strict proportional rate constraints

are relaxed to hold approximately, which allowed the power allocation to be solved

in closed-form, significantly reducing the complexity, while improving the achieved

sum capacity.

Several other methods that use various heuristics have also been proposed.

Examples of these include subcarrier partitioning to reduce complexity [47], and

game-theoretic Nash bargaining solutions [48].
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2.2.4 PHY-MAC Cross-layer Optimization

All of the aforementioned approaches focused on the physical layer transmission

optimization for OFDMA. This section reviews several important papers on the

PHY-MAC cross-layer approach to OFDMA resource allocation, where longer-term

throughput optimality and queue state information is included in their optimization

goals.

In [49], resource allocation that optimizes total packet throughput subject

to the user’s outage probability constraint was proposed. Their algorithm assumes

a finite queue size for arrival packets, and dynamically allocates the resources every

time-slot based on the users’ average SNR, traffic patterns, and QoS requirements.

In [50], throughput maximization coupled with queue load balancing was proposed

for a simple ON/OFF channel model. Their approach reduced the allocation prob-

lem into a maximum weight matching of a bipartite graph, and was shown to sta-

bilize the queues in the OFDMA system, whereas using instantaneous optimization

approaches do not.

In [51], an opportunistic cumulative distribution function (CDF)-scheduling

based subcarrier allocation, and a proportionally-fair power allocation was proposed.

Their algorithm was shown to improve overall system capacity in terms of time-

average throughput. In [52], a similar opportunistic scheduling algorithm based

on [53] that exploits the time varying channel was proposed. In their work, a

constant power allocation is assumed, and each user is assigned a time-slot for

which it could transmit on the assigned subcarrier. Optimal scheduling policies for

three QoS/fairness constraints–temporal fairness, utilitarian fairness, and minimum-

performance guarantees, were derived to maximize the asymptotic best-case system

performance. More recently, in [54] [55], a cross-layer approach that bridges the

gap between the physical (PHY) layer and the media access control (MAC) layer

was investigated. It was shown that tradeoffs between efficiency and fairness can
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be realized by maximizing a concave utility function of the user’s data rate, instead

of maximizing the data rates themselves. Time diversity was also exploited in [55]

by maximizing the utility function of an exponentially weighted and time-windowed

average data rate of each user. Prepublished work by the same authors [56] extend

the utility based optimization to develop a max-delay-utility scheduling algorithm

that utilizes both channel and queue state information.

2.2.5 Comparison of Related Work

Table 2.1 presents a summary of the comparison among several relevant research

efforts in OFDMA physical layer transmit optimization. We compare the various

research publications in terms of how they formulated the problem, their proposed

solution to the problem, and the channel knowledge assumptions that they made.

The criteria we use is such that a “Yes” is more desirable in terms of achieving bet-

ter performance, requiring less computational complexity, or making more realistic

assumptions.

In terms of the problem formulation, only [38] considered ergodic rates, and

only [55] considered discrete rates. Under the proposed solutions, only [43] and [44]

can be considered practically optimal with linear complexity. In terms of channel

knowledge assumption, it should be noted that none of the surveyed papers consid-

ered imperfect CSI, and only [38] requires CDI since it is also the only work that

considers ergodic rate maximization.

2.3 A New Approach to OFDMA Resource Allocation

This dissertation primarily focuses on the physical layer transmit optimization in

OFDMA, and assumes that the upper MAC layer performs the other necessary

functions, including admission and congestion control, queue management, and user

prioritization. This dissertation can thus be seen as a complementary work to the
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Table 2.1: Related work comparison

Method
Criteria Formulation Solution Assumption

(1) (2) (3) (4) (5) (6) (7)
Max-min rate [41] No No No No No No Yes
Sum rate [37][38] Yes No No Yes No No No
Proportional rate [45][46] No No Yes No No No Yes
Max-utility [54][55] aNo Yes Yes No No No Yes
Weighted rate [43][44] No No Yes bYes cYes No Yes
a Considered some form of temporal diversity by maximizing an exponentially windowed run-

ning average of the rate
b Independently developed a similar instantaneous continuous rate maximization algorithm
c Only for instantaneous continuous rate case, but was not shown in their papers

Criteria

(1) Ergodic rates: The optimization problem is posed such that the expected value of
the rate is being maximized instead of instantaneous rate, which allows the temporal
dimension to be exploited when assuming ergodicity of channel gains.

(2) Discrete rates: The practical transmission scheme of only allowing a discrete set of
possible data rates is considered rather than just the theoretical continuous rate.

(3) User prioritization: The problem formulation allows setting varying priorities among
users to ensure fairness in the system.

(4) Practically optimal: The algorithm is shown in simulations using realistic parameters
to have negligible optimality gaps.

(5) Linear complexity: The algorithm can be performed with complexity that is just
linear in the number of users and subcarriers.

(6) Imperfect CSI: The algorithm assumes the more realistic scenario of the presence of
errors in the available channel state information.

(7) Does not require CDI: The algorithm does not assume knowledge of the probability
distribution function of the channel gains, which is difficult to obtain in practice.
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PHY-MAC cross-layer scheduling work, since it extracts further improvements to the

physical layer data rate performance in order to benefit the overall system through-

put performance.

We observe that in most of the aforementioned work in physical layer trans-

mit optimization, the formulation and algorithms only consider instantaneous per-

formance metrics. Thus, the temporal dimension is not being exploited when the

resource allocation is performed. Although the PHY-MAC cross-layer studies per-

formed in [51] and [55] considered time-averaged throughput performance, their

channel-based adaptations are based on the average channel-to-noise ratio (CNR),

and their approaches focused more on the effect of the past channel information

on fairness, rather than exploiting the temporal variations of the wireless channel

directly to improve the overall physical data rate performance. We formulate prob-

lems considering ergodic rates for both continuous (capacity-based) and discrete

(adaptive modulation and coding) rates assuming the availability of the distribu-

tion function of the CNR (this assumption is subsequently relaxed in Chapter 5).

This allows us to exploit the time dimension explicitly in the formulation, and utilize

all three degrees of freedom in our system, namely frequency, time, and multiuser

dimensions. Interestingly, when considering ergodic rates, we increase the complex-

ity only slightly during an initialization step, e.g. during frame preamble processing

in a frame-based transmission; but actually reduce the complexity when perform-

ing the actual resource allocation during data transmission versus instantaneous

optimization.

Furthermore, previous research efforts have assumed that algorithms to find

the optimal or near-optimal solution to the problem is too computationally com-

plex for real-time implementation. A popular approach to attain near-optimality

is constraint relaxation (see e.g. [32] [41] [42]). This approach performs a convex

reformulation of the problem by relaxing the binary integer constraints xm,k ∈ {0, 1}
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which indicate a subcarrier assignment of user m to subcarrier k; to interval con-

straints 0 ≤ xm,k ≤ 1, where xm,k is now a sharing factor. The solution to the

reformulated convex problem is then projected back to the original constraint space

by assigning each subcarrier to the user with the largest sharing factor. This ap-

proach is suboptimal, and more importantly, is also computationally prohibitive,

because it involves solving a large constrained convex optimization problem with

2MK variables with interval constraints and K + 1 linear inequality constraints,

requiring O((2MK)3) operations per iteration when using Newton-type projected

gradient methods [57]. Hence, the main focus of previous research have been on

developing heuristic approaches with typical complexities in the order of O(MK2)

(e.g. [34] [42]).

Our approach, on the other hand, is based on a Lagrangian relaxation of the

power constraints and (possibly) rate constraints, instead of the constraint relaxation

proposed previously. This relaxation retains the subcarrier assignment exclusivity

constraints, but “dualizes” the power/rate constraints and incorporate them into the

objective function, thereby allowing us to solve the dual problem instead. This dual

optimization framework is much less complex, with complexity order O(MK); and

achieves relative optimality gaps that are less than 10−4 (i.e. achieving 99.9999% of

the optimal solution) in simulations based on realistic parameters. We also provide

adaptive algorithms based on stochastic approximation methods that are shown to

converge to the dual optimal solutions w.p.1 with linear complexity without the need

for iterations. Note that the dual optimization approach is also studied in [43] [44]

[58], but their focus has been on instantaneous continuous rate optimization only.

2.4 System Model

In this section, we elaborate on the system model and assumptions considered in

this dissertation. Table 2.2 is a notation glossary of the most commonly used terms
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in this dissertation.

2.4.1 OFDMA Signal Model

We consider a single-cell OFDMA base station, where we ignore the effect of inter-

cell interference, which we assume to be either absent (sufficient cell separation

given the power budget) or simply modeled as additive white Gaussian noise which

increases the noise variance of the signal model. The OFDMA base station has

Kfft subcarriers with Lcp cyclic-prefix, wherein there are K used subcarriers and M

active users indexed by the set K = {1, . . . , k, . . . , K} and M = {1, . . . , m, . . . , M}
(typically K À M) respectively. We assume an average base station transmit power

of P̄ > 0, sampling frequency Fs, bandwidth B, and flat noise power spectral density

N0. The received signal vector for the mth user at the nth OFDM symbol assuming

perfect sample and symbol synchronization, and sufficient cyclic prefix length, is

given as

ym[n] = Γm[n]Hm[n]xm[n] + νm[n] (2.1)

where ym[n] and xm[n] are the K-length received and transmitted complex-valued

signal vectors; Γm[n] = diag
{√

pm,1[n], . . . ,
√

pm,K [n]
}

is the diagonal gain alloca-

tion matrix with pm,k[n] as the power allocated to user m in subcarrier k at time

n; νm[n] ∼ CN (0, σ2
νIK) with noise variance σ2

ν = N0B/K is the white zero-mean,

circular-symmetric, complex Gaussian (ZMCSCG) noise vector; and

Hm[n] = diag {hm,1[n], . . . , hm,K [n]} (2.2)

is the diagonal channel response matrix.
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Table 2.2: Notation Glossary
Notation Description

B Bandwidth
N0 Noise power spectral density
Fs Sampling frequency
Nt No. of time domain multipath taps
Lcp Length of cyclic prefix
Kfft Number of subcarriers
n OFDMA symbol index

hm,k[n] Frequency domain complex channel gain
gm,k[n] Time domain complex channel gain
K Set of used subcarrier indices
K Number of used subcarriers
k Subcarrier index
M Set of active users
M Number of active users
m User index
L Set of discrete rate level indices
L Number of discrete rate levels
l Rate level index
rl Rate for level l

ηl SNR upper boundary for rate level l

L Space of allowable rate vectors
lm,k Rate allocation for user m and subcarrier k

BERl Bit error rate for rate level l

BER Average BER constraint
P Space of allowable power vectors
P̄ Total power constraint

pm,k Power allocated to user m and subcarrier k

γm,k CNR of user m and subcarrier k

γ̂m,k Predicted CNR of user m and subcarrier k

γ0,m Cut-off CNR for user m in multi-level waterfilling
σ2

ν Ambient noise variance
σ̂2

m,k Prediction error variance for user m and subcarrier k

ρm,k Prediction error to ambient noise ratio
λ Geometric multiplier

wm User weights
̂ Superscript for estimated/predicted terms
∗ Superscript for optimal terms

d/d Superscript/subscript for discrete rate related terms
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2.4.2 Multiuser Statistical Fading Channel Model

The diagonal elements hm,k[n] of (2.2) are the complex-valued frequency-domain

wireless channel fading random processes for the mth user at the kth subcarrier,

given as the discrete-time Fourier transform of the Nt time-domain multipath taps

gm,i[n] with time-delay τi and subcarrier spacing ∆f = Fs/Kfft

hm,k[n] =
Nt∑

i=1

gm,i[n]e−j2πτik∆f . (2.3)

The time-domain multipath taps gm,i[n] are modeled as stationary and ergodic

discrete-time random processes with normalized temporal autocorrelation function

rm,i[∆] =
1

σ2
m,i

E{gm,i[n]g∗m,i[n + ∆]}, i = 1, . . . , Nt (2.4)

with tap power σ2
m,i, which we assume to be independent across the fading paths i

and across users m. Since gm,i[n] is stationary and ergodic, so is hm,k[n]. Hence, the

distribution of hm[n] is independent of n through stationarity, and we can replace

time averages with ensemble averages in the problem formulations through ergod-

icity. In the subsequent discussion, we shall drop the index n when the context is

clear for notational brevity.

Although the results in this dissertation are applicable to any stationary fad-

ing distribution, we shall prescribe a particular distribution for the fading channels

for illustration purposes. We assume that the time domain channel taps are indepen-

dent ZMCSCG random variables gm,i ∼ CN (0, σ2
m,i) with total power σ2

m =
Nt∑
i=1

σ2
m,i.

Then from (2.3), we have

hm ∼ CN (0K ,Rhm)

Rhm = WΣmWH
(2.5)

35



where W is the K ×Nt DFT matrix with entries [W]k,i = e−j2πτik∆f , k = −K/2−
1, . . . , K/2; i = 1, . . . , Nt and Σm = diag{σ2

m,1, . . . , σ
2
m,Nt

} is an Nt × Nt diagonal

matrix of the time-domain path power1. Since we also assume that the fading for

each user is independent, then the joint distribution of the stacked fading vector for

all users h = [hT
1 , . . . , hT

M ]T is likewise a ZMCSCG random vector with distribution

h ∼ CN (0KM ,Rh) where Rh is the KM ×KM block diagonal covariance matrix

with Rhm as the diagonal block elements.

We let γm = [γm,1, . . . , γm,k]T where γm,k = |hm,k|2/σ2
ν denote the instanta-

neous channel-to-noise ratio (CNR) with mean γ̄m,k = σ2
m/σ2

ν . Note that γm,k for

a particular subcarrier k and different users m are independent but not necessarily

identically distributed (INID) exponential random variables; and for a particular

user m and different subcarriers k are not independent but identically distributed

(NIID) exponential random variables.

2.4.3 Optimization Variables

Denote by p = [pT
1 , · · · ,pT

K ]T the length MK vector of power allocation values to be

determined, where pk = [p1,k, · · · , pM,k]T is the M -length vector of power allocation

values with pm,k as the assigned power for user m in a subcarrier k. Although

subcarrier, rate, and time slot allocation is required, in addition to determining the

power values, it can be seen that the power vector can essentially capture these

other resource assignments as well.

Subcarrier Allocation

The exclusive subcarrier allocation restriction in OFDMA can be captured by con-

straining the power vector as pk ∈ Pk ⊂ RM
+ , where the space of allowable power

1Following the convention in [17] and [19], we assume that the number of used subcarriers K is
odd by including the null subcarrier at index 0 as part of the used subcarriers.
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vectors is

Pk ≡ {pk ∈ RM
+ |pm,kpm′,k = 0;∀m 6= m′; m,m′ ∈M} (2.6)

For notational convenience, we let p ∈ P ≡ P1×· · ·×PK ⊂ RMK
+ denote the space

of allowable power vectors for all subcarriers.

Continuous Rate Allocation

The continuous rate or capacity for user m and subcarrier k is given as

Rm,k(pm,kγm,k) = log2(1 + pm,kγm,k) bps/Hz (2.7)

Thus, the power allocation value pm,k determines a unique rate allocation, and

pm,k = 0 also results in zero rate allocation, which of course also means that the

subcarrier k is not assigned to user m.

Discrete Rate Allocation

In the discrete rate allocation case, the data rate of the kth subcarrier for the mth

user can be given by the staircase function

Rd
m,k(pm,kγm,k) =





r0, η0 ≤ pm,kγm,k < η1

r1, η1 ≤ pm,kγm,k < η2

...,
...

rL−1, ηL−1 ≤ pm,kγm,k < ηL

(2.8)

where {ηl}l∈L, L = {0, . . . , L − 1}, are the SNR boundaries which define a par-

ticular code-rate and constellation pair combination that result in rl data bits per

transmission with a predefined target bit error rate (BER), and where rl ≥ 0,

rl+1 > rl, r0 = 0, η0 = 0, and ηL = ∞. Thus, similar to the continuous rate case,
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Figure 2.1: Example discrete-rate function for an uncoded system with BER=10−3.
Note that the SNR is plotted in linear and not dB scale.

the power allocation value pm,k determines a unique rate allocation for a particular

target BER, and pm,k = 0 also results in zero rate allocation. We assume a Grey-

coded square 2rl-QAM modulation scheme, where the BER without channel coding

in AWGN can be approximated to within 1-dB for rl ≥ 2 and BER ≤ 10−3 by

BER ≈ 0.2e

h−1.6pm,kγm,k

2rl−1

i
[24]. Fig. 2.1 shows an example of a discrete rate function

for rate levels rl = {0, 2, 4, 6} corresponding to no transmission, QPSK, 16-QAM,

and 64-QAM transmission, and SNR boundaries ηl ∈ {0, 9.93, 49.66, 208.45} with a

BER constraint of 10−3.

Time slot allocation

In the context of OFDMA, a time slot can be considered as a single OFDMA symbol

(or several OFDMA symbols), and time slot allocation in this case is more granular

than conventional TDMA time slot allocation since each OFDMA symbol may be

shared by more than a single user. Hence, time slot allocation fundamentally entails
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performing the OFDMA resource allocation algorithms across time for each OFDMA

symbol. In the previous work that considered instantaneous rate allocation only, the

OFDMA algorithms were simply re-run every symbol (or several symbols). In this

dissertation, we can capture the idea of “time slot allocation” by using the ergodicity

assumption, and determine power allocation functions that are parameterized by the

channel knowledge. For example, if we assume perfect channel knowledge, then our

optimization variable is essentially

p(·) ∈ P ≡ {
RMK

+ → RMK
+ : pm,k(·)pm′,k(·) = 0 w.p.1, ∀m′ 6= m

}
(2.9)

whose search space includes all RMK
+ -measurable functions with exclusive subcarrier

allocation restriction imposed w.p.1. In the case of the adaptive algorithms discussed

in Chapter 5, the power allocation is indexed by the time index n, i.e. p[n] and the

exclusive subcarrier allocation restriction is simply imposed as pm,k[n]pm′,k[n] =

0, ∀m′ 6= m,∀n.

2.4.4 PHY-MAC Interaction

The resource allocation problems considered in this dissertation include assigning

the power, subcarriers, rates, and time slots to the different users such that weighted-

sum rate (Chapters 3-4) or sum rate subject to proportional rate constraints (Chap-

ter 5) of the users are maximized. Although the focus of this dissertation is primarily

on the physical layer transmit optimization, it is important to discuss our assump-

tions on the cross-layer PHY-MAC interactions in order to see how one can apply

the results in PHY-MAC cross-layer optimization discussed in Sec. 2.2.4. Specifi-

cally, we assume that the upper MAC layer passes the following information to the

physical layer optimization routine:

• Set of active users M: The MAC layer performs the necessary admission and

congestion control to determine which are the active users at a particular time
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• Priority for the active users wm or φm for all m ∈ M: Depending on queue

back-logs and information on the average data rate for each user, the MAC

layer sets the appropriate user weights wm in the weighted-sum rate maximiza-

tion formulations, or the user proportionality values φm in the proportional

rate formulations.

There are numerous ways in which the MAC layer can determine these parameters,

but are beyond the intended scope of this dissertation. Admission and congestion

control to determine the active user set depending on the utility of the network and

availability of the resources are studied in [55] [59]. User prioritization by setting

the weights wm as the reciprocal of the user’s average rate so far has been shown

to approximate proportional fairness [55]. Another possibility is to set the weights

as a directly proportional function of the queue-back log of the user, which can be

shown to minimize the delay and ensure network stability [56].

2.5 Conclusion

In this chapter, we surveyed several important papers in OFDMA resource allo-

cation, and showed the relative strengths and weaknesses of each of these. We

then presented the general idea of our new approach to OFDMA resource allocation

based on dual optimization techniques. We also presented the system model and

key assumptions used in this dissertation.

Chapters 3-4 shall elaborate on the dual optimization framework for solving

the weighted-sum rate maximization problem in OFDMA with channel distribu-

tion information, where we assume perfect and partial channel state information,

respectively. Chapter 5 presents an extension of the framework to formulations that

have proportional rate constraints with or without channel distribution information.

Chapter 6 then concludes this dissertation.
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Chapter 3

Weighted-Sum Rate

Maximization with Perfect CSI

3.1 Introduction

In this chapter, I consider the weighted-sum rate maximization problem subject to a

single average power constraint by assuming the availability of perfect CSI and CDI.

This is most suitable to downlink OFDMA with best-effort traffic, wherein the user

weights can be used to enforce certain notions of fairness (e.g. proportional fairness

can be attained by setting the user weights as the reciprocal of the user’s average rate

so far [55]). I formulate the problem considering ergodic rates for both continuous

(capacity-based) and discrete (adaptive modulation and coding) rates. Note that a

similar ergodic formulation for continuous rate maximization has been considered

in [38], but they limited their study to the case of maximizing the unweighted sum

capacity, and they did not propose efficient algorithms to solve the problem. The

contents of this chapter are close to that of the papers [60] [61] [62].

This chapter is organized as follows. Section 3.2 focuses on the continuous

rate case, which is equivalent to a Shannon-capacity based formulation. The results
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of this section have more theoretical than practical value, and elaborates on the

details of the dual optimization approach to OFDMA resource allocation. Section

3.3 focuses on the discrete rate case, which is equivalent to a more practical adaptive

modulation and coding (AMC) scenario. Section 3.4 presents numerical results to

corroborate our analysis, and I conclude this chapter in Section 3.5.

3.2 Continuous Rate Maximization with Perfect CSI

and CDI

3.2.1 Problem Formulation

Since we assume perfect CSI, we consider the optimization variable p(·) in (2.9)

as a function of the realization of the fading CNR of all users γ = [γT
1 , . . . ,γT

M ]T .

We also assume that we have perfect channel distribution information (CDI), i.e.

we know the stationary pdf of γ, thereby allowing us to take the expectation. The

ergodic weighted sum capacity maximization problem is then

f∗ = max
p(·)∈P

Eγ

{ ∑

m∈M
wm

∑

k∈K
Rm,k (pm,kγm,k)

}

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

(3.1)

where Rm,k is given in (2.7) and P is given in (2.9).

Comments on the user weighted formulation

The user weights wm in (3.1) are positive constants such that
∑

m∈M
wm = 1. The-

oretically, varying these weights allows us to trace out the ergodic capacity region

[28]; algorithmically, varying the weights allows us to prioritize the different users

in the system and enforce certain notions of fairness. Note that the choice of wm is
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typically handed down to the physical layer from a higher layer, e.g. the MAC layer.

A possible choice is wm[n] = 1/Rm[n] where Rm[n] is the average rate for user m so

far at time n, which was shown to approximate proportional fairness [55].

A caveat for this ergodic weighted sum capacity formulation, however, is that

the wm terms need to be held constant for a time period that allows the ergodicity

property of the channels gains to kick in, which may hurt the fairness of the system.

Fortunately, in next generation OFDMA implementations (e.g. IEEE 802.16e [17]

and 3GPP-LTE [19]), the MAC layer hands down user-weights to the physical layer

on a per-frame (or longer) basis. This is because holding weights constant for a

period is beneficial from a system implementation complexity perspective, thereby

requiring less signaling and feedback overhead, while still enforcing fairness, albeit

on a larger timescale. Thus, depending on the frame length (which in IEEE 802.16e

can reach up to 20ms [17]) and the mobile speed, ergodicity can be assumed in a

lot of cases within the frame, and the ergodic weighted sum capacity formulation is

ideal in these scenarios. A comparison of the fairness in ergodic and instantaneous

rate formulations, and the effect of different wm terms on overall communication

performance of the system, however, is beyond the intended scope of this disserta-

tion.

Comments on the average power constraint

By enforcing the average power constraint in (3.1), we would like to keep a handle

on the average power at the base station transmitter, in order to conserve power and

more importantly, to prevent overheating. However, this constraint allows instan-

taneous power levels to exceed the average power when necessary. Since practical

power amplifiers have a limited linear region, then a peak power constraint is likewise

important. Although we do not include this constraint for simplicity of presentation,

it can be shown that algorithms similar to the ones proposed in this dissertation
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can be easily modified to impose this constraint (see [13] for an example of this

extension).

Problem Classification

The problem in (3.1) is part of a class of optimization problems called infinite dimen-

sional stochastic programs. The stochastic program in this case is further classified

as an adaptive or anticipative model [63, Sec. 1.4], i.e. we are allowed to make an

observation, the realization of γ, before making our decision on the power allocation

vector p(·). Thus, we actually allow a large class of solutions, i.e. RMK
+ -measurable

functions, subject to the exclusive subcarrier allocation constraint on each possible

realization of γ, which is defined in (2.9). Fortunately, familiar concepts in deter-

ministic optimization, e.g. duality, are founded on general geometrical concepts, and

are thus also applicable to this infinite dimensional space [64]. Thus, using vari-

ational calculus techniques [65], we can extend concepts familiar to deterministic

optimization like gradients, subgradients, and Lagrangian duality to this infinite

dimensional space.

3.2.2 Dual Optimization Framework

Note that the objective function in (3.1) is concave, but the constraint space P is

highly non-convex (it is in fact a discrete space), and is in general very difficult to

solve. Fortunately, (3.1) is separable across the subcarriers, and is tied together only

by the power constraint. In these problems, it is useful to approach the problem

using duality principles [58] [57]. Let us write the Lagrangian

L(p(·), λ) = Eγ

{ ∑

m∈M
wm

∑

k∈K
Rm,k (pm,kγm,k)

}
+ λ

(
P̄ − Eγ

{∑

k∈K

∑

m∈M
pm,k

})

(3.2)
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The dual problem is defined as

g∗ = min
λ≥0

Θ(λ) (3.3)

where the dual objective is given by

Θ(λ) = max
p(·)∈P

L(p(·), λ) (3.4a)

= λP̄ + max
p(·)∈P

∑

k∈K
Eγ

{ ∑

m∈M
(wmRm,k (pm,kγm,k)− λpm,k)

}
(3.4b)

= λP̄ +
∑

k∈K
max

pk(·)∈Pk

Eγ

{ ∑

m∈M
(wmRm,k (pm,kγm,k)− λpm,k)

}
(3.4c)

= λP̄ +
∑

k∈K
Eγ

{
max

pk(·)∈Pk

∑

m∈M
(wmRm,k (pm,kγm,k)− λpm,k)

}
(3.4d)

= λP̄ + KEγk

{
max
m∈M

[
max

pm,k≥0
(wmRm,k (pm,kγm,k)− λpm,k)

]}
(3.4e)

where (3.4a) is the dual objective; (3.4b) follows from the linearity of the expected

value; (3.4c) follows from the fact that the power variables are separable across the

subcarriers1; (3.4d) follows from the fact that the power variables are a function of

each realization of γ, thereby allowing us to interchange the order of maximization

and expected value; and (3.4e) follows from the exclusive subcarrier assignment

constraint and the fact that the channel gains are NIID across subcarriers. Note that

we have reduced the problem to a per-subcarrier optimization, and since K À M ,

we have significantly decreased the computational burden.

The innermost maximization between the square brackets in (3.4e) has a
1The separability is due to the fact that the exclusive subcarrier allocation constraint is enforced

on a per-subcarrier basis (see (2.6)), and that the average power constraint that ties the power
variables across subcarriers has been “dualized” into the Lagrangian objective function
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simple closed-form expression for the optimal power given as

p̃m,k(λ) =
[

1
γ0,m(λ)

− 1
γm,k

]+

(3.5)

where [x]+ = max(0, x) and γ0,m(λ) = λ ln 2
wm

, which is a simple “multi-level water-

filling” power allocation with cut-off CNR γ0,m(λ), below which we do not transmit

any power, and above which we transmit more power when the CNR γm,k is higher.

Using (3.5) in (3.4e), the dual problem in (3.3) can be written as

g∗ = min
λ≥0

[
λP̄ + KEγk

{gk(γk, λ)}] (3.6)

gk(γk, λ) = max
m∈M

{gm,k(γm,k, λ)} (3.7)

where (3.7) is a max function over the M per-subcarrier marginal dual functions

gm,k(γm,k, λ) = wmRm,k (p̃m,k(λ)γm,k)− λp̃m,k(λ)

=
(

wm

ln 2
ln

(
γm,k

γ0,m(λ)

)
− wm

ln 2
+

λ

γm,k

)
u(γm,k − γ0,m(λ))

(3.8)

and where

u(x) =





0, x < 0

1, x ≥ 0

is the unit (Heaviside) step function. Observe that the dual-optimal subcarrier

allocation policy is to assign the subcarrier to the user with the maximum marginal

dual, and we call this the “max-dual user selection.” Note also that (3.8) is non-

negative and is not differentiable at gm,k(γ0,m(λ), λ) = 0.

Fig. 3.1 shows an instantaneous snapshot of the multi-level waterfilling power

allocation for a 2-user, 76-subcarrier system with user weights w = [0.34, 0.66]. We

show the CNR values γm,k, the cut-off CNR γ0,m, and the multi-level waterfilling

power allocation shifted by the cut-off for illustration purposes p̃m,k + γ0,m. We see
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Figure 3.1: Multi-level waterfilling snapshot for a 2-user, 76-subcarrier system.

that no power is allocated to CNRs below the cut-off, and the higher CNRs get

higher power. Fig. 3.2 shows the resulting instantaneous marginal duals gm,k, and

the corresponding optimal power allocation p∗m,k for the current instance. We see

that the subcarrier is allocated to the user with higher marginal dual value.

3.2.3 Numerical Evaluation of the Expected Dual

Computing the expectation in (3.6) in a straightforward manner involves an M−
dimensional integral over the joint pdf of the M−length fading vector γk, which

is typically too complex to solve using direct numerical integration techniques (e.g.

Gaussian quadrature) except for small M , e.g. 2 or 3, since this requires O(NM )

computations where N is the number of function evaluations required for a one-

dimensional integral with the same accuracy [66]. However, if we can somehow

compute a closed-form expression for the pdf of (3.7), then we can reduce the ex-

pectation to just a one-dimensional integral that is solvable in O(MN). Since γm,k
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Figure 3.2: Per-user and per-subcarrier dual gm,k and the corresponding optimal
subcarrier and power allocation p∗m,k.

for different ms are INID, then (3.8) is likewise INID for different ms. Thus, (3.7) is

the largest order statistic of INID random variables gm,k(γm,k, λ) with pdf [67, Sec.

5.2]

fgk
(gk) =

∏

m∈M
Fgm,k

(gk)

( ∑

m∈M

fgm,k
(gk)

Fgm,k
(gk)

)
(3.9)

where Fgm,k
(gm,k) and fgm,k

(gm,k) are the cumulative distribution function (CDF)

and probability density function (PDF) of gm,k(γm,k, λ), respectively.

In order to derive these distribution functions given the distribution Fγm,k
(γm,k)

of γm,k, we need an expression for the inverse function of gm,k(γm,k, λ), which is given

as (see Appendix A)

γ̌m,k(gm,k) =
−γ0,m(λ)

W

(
−e

�
−gm,k

ln 2
wm

−1
�)u(gm,k) (3.10)
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where W (x) is the Lambert-W function, which is the solution to the transcendental

equation W (x)eW (x) = x. This function is ubiquitous in the physical sciences,

and efficient algorithms have been developed for its computation [68]. Note that

γ̌m,k(0) = γ0,m(λ) as expected.

Using this expression for the root, we can then derive the cdf of γm,k as [69]

Fgm,k
(gm,k) = Fγm,k

(γ̌m,k(gm,k))u(gm,k) (3.11)

The pdf is then given as the derivative of (3.11) with respect to gm,k

fgm,k
(gm,k) = Fγm,k

(γ0,m(λ)) δ(gm,k) + fγm,k
(γ̌m,k(gm,k))

γ̌2
m,k(gm,k)

γ̌m,k(gm,k)wm
ln 2 − λ

u(gm,k)

(3.12)

where δ(x) is the Dirac delta functional2. Finally, using (3.11) and (3.12) in (3.9)

and then in (3.6), our dual problem can now be written as

g∗ = min
λ≥0

[
λP̄ + K

∫ ∞

0
gkfgk

(gk)dgk

]
(3.13)

3.2.4 Optimal Subcarrier and Power Allocation

Using standard duality arguments (see e.g. [57, Prop. 5.1.2]), the dual objective

function in (3.13) can be shown to be convex in the single variable λ, and is therefore

unimodal [57, App C.3]. Thus, we can use derivative-free line search procedures,

e.g. Golden-section or Fibonacci search [66] to find the optimal λ∗. In our numerical

experiments using the fminbnd3 function in Matlab, we achieve convergence for

typical wireless scenarios within a tolerance of 10−4 in less than 10 iterations.

Once we determine λ∗, we plug it back into the optimal power allocation
2Note that Fgm,k (gm,k) is discontinuous at gm,k = 0 with Fgm,k (0−) = 0 and Fgm,k (0+) =

Fγm,k (γ0,m(λ)).
3fminbnd uses a combination of Golden-section search and parabolic interpolation.
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Figure 3.3: OFDMA resource allocation algorithm for ergodic weighted-sum contin-
uous rate maximization.

function and arrive at the following simple user assignment and power allocation for

each subcarrier k given as

m∗
k = arg max

m∈M
{wmRm,k (p̃m,k(λ∗)γm,k)− λ∗p̃m,k(λ∗)} (3.14)

p∗m,k = p̃m,k(λ∗)1(m = m∗
k) (3.15)

where 1(x) is the indicator function, which evaluates to 1 if x is true and 0 if false.

Fig. 3.3 presents a flow chart of the algorithm.

Note that it is possible that the dual optimal power allocation values do not

satisfy the total power constraint. Hence, our final power allocation values should

be multiplied by η = P̄ /Ptot(λ∗) where

P̂tot(λ∗) = Eγ

{ ∑

m∈M

∑

k∈K
p∗m,k

}
(3.16)

which we plug back into the objective in (3.1) to arrive at our computed primal
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optimal value

f̂∗ = Eγ

{ ∑

m∈M
wm

∑

k∈K
log2(1 + ηγm,kp

∗
m,k)

}
(3.17)

3.2.5 Complexity Analysis

Once we determine λ∗ by solving (3.13), we do not need to update it as long as

the statistics of the fading channel vector γ remain the same. Thus, the complexity

of resource allocation requires an initial O(INM) computations to determine λ∗,

where I is the number of iterations for the line search procedure to converge, and N

is the number of function evaluations to compute the dual objective integral. The

allocation in (3.14)-(3.15) needs O(MK) computations per symbol.

3.2.6 Instantaneous Weighted Sum Rate Maximization

Although we have focused on the ergodic rate maximization problem, our duality

framework can be simplified to solve the instantaneous rate maximization problem

given as

f∗inst = max
p∈P

∑

m∈M
wm

∑

k∈K
Rm,k (pm,kγm,k)

s.t.
∑

m∈M

∑

k∈K
pm,k ≤ P̄

(3.18)

and is essentially identical to the problem considered in [42], which was solved

using a convex relaxation of the above problem by relaxing the exclusive subcarrier

assignment constraint to one where subcarrier sharing is allowed through a sharing

factor.

We use the dual optimization approach, where the dual problem can be
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derived similarly as the ergodic case

g∗inst = min
λ≥0

[
λP̄ +

∑

k∈K
max
m∈M

{wmRm,k (p̃m,k(λ)γm,k)− λp̃m,k(λ)}
]

(3.19)

where p̃m,k(λ) is the same power allocation function given in (3.5). Note the sim-

ilarity to the ergodic case (c.f. (3.3)-(3.4e)), where the primary difference is that

the expected values are no longer present. Using a similar line search procedure, we

can find the optimal λ∗inst and end up with the same optimal subcarrier and power

allocation functions as in (3.14)-(3.15). One subtle, albeit important difference, is

that in instantaneous maximization, the optimal λ∗inst is dependent on each channel

realization γ, and thus needs to be computed every time the channel changes. This

is in contrast to the ergodic maximization case where the λ∗ depends on the dis-

tribution function of the channel fγ(γ), and thus needs to be computed only when

the statistics of the channel have changed. Thus, although the initialization for the

ergodic maximization is more complex, the per-symbol resource allocation complex-

ity ends up being lower than the instantaneous optimization case. Furthermore,

because the total power in each time instant is constrained to be less than or equal

to P̄ in the instantaneous case, there is no flexibility of allowing the total power

in each time instant to vary (while still maintaining the average power constraint

across time) unlike the ergodic maximization case. Fig. 3.4 presents a flow chart of

the OFDMA instantaneous weighted-sum continuous rate maximization algorithm.

Searching for λ∗inst

It is important to point out that [43] and [44] have independently come up with an

identical “multi-level waterfilling” power allocation with “max-dual user selection”.

However, they proposed to compute the optimal λ∗inst using a single-dimensional

subgradient search (see Sec. 5.2.2 for a description of the subgradient search).
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Figure 3.4: OFDMA resource allocation algorithm for instantaneous weighted-sum
continuous rate maximization.

Since the subgradient search is iterative in nature and cannot terminate in a fixed

number of iterations, its implementation is potentially difficult. In this section, we

propose an efficient method to find λ∗inst using line-search techniques which requires a

predictable number of iterations, and is thus suitable for hardware implementation.

In derivative-free line search techniques, e.g. Golden section or Fibonacci

search, once an interval is determined where the optimal solution definitely lies, i.e.

λ∗inst ∈ [λmin, λmax], termination is guaranteed in

I =




ln
(

ε
λmax−λmin

)

log(0.618)
+ 1




iterations, where ε is the desired tolerance [66]. The following proposition establishes

an easily computable interval over which we can search for λ∗inst.

Proposition 3.2.1 Suppose λ∗inst satisfies the total power constraint tightly, i.e.
∑
k∈K

p∗m∗
k,k = P̄ , then

λmin =
ln 2

K min
m

wm

(
P̄ +

∑

k∈K
max

m

1
γm,k

)
≤ λ∗inst ≤

K

P̄ ln 2
max
m∈M

wm = λmax (3.20)
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Proof See Appendix B.

Note that computing the lower bound requires O(MK) operations and the

upper bound requires O(M) operations, which do not change the overall complexity

order. One caveat in using the interval specified in (3.20) is that the assumption

of λ∗inst satisfying the total power constraint only holds approximately. However, as

long as K is large, the constraint holds tightly (see Sec. 3.2.8), and coupled by the

bounds being conservative, one should not worry about the λ∗inst not being bracketed

by these values.

3.2.7 Constant Power Allocation

It has been established in previous research that constant power allocation actually

performs as well as optimal water-filling, esp. in high SNR cases [24]. Under the

constant power allocation assumption, the power is set to P̄ /K, and the subcarrier

allocation is simplified to

m∗
k = arg max

m∈M

{
wmRm,k

(
P̄

K
γm,k

)}
(3.21)

3.2.8 Analysis of the Duality Gap

Tight Bound on the Relative Duality Gap

The following theorem provides a bound on the relative optimality gap which we

can compute in order to assess how far we are from the optimal value.

Theorem 3.2.2 Let f∗ > 0 and g∗ > 0 given in (3.1) and (3.13) be the optimal

values of the primal and dual problems respectively, and let f̂∗ > 0 given in (3.17)

be the computed feasible primal value. Then the relative duality (optimality) gap can

be bounded as

0 ≤ g∗ − f∗

f∗
≤ g∗ − f̂∗

f̂∗
(3.22)
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Proof The left inequality follows directly from the positivity of f∗ and the weak

duality theorem [57, Prop. 5.1.3. p. 495], which states that g∗ ≥ f∗. The right

inequality is because f̂∗ ≤ f∗, since f̂∗ is a feasible primal value and f∗ is the

optimal feasible primal value.

We focus on analyzing the absolute duality gap, since the analysis for the

relative gap is easily derived by dividing by any feasible solution to the primal

problem. Using the optimal λ∗ in (3.4e) and (3.17) and substituting it into the

numerator of (3.22), we have

g∗ − f̂∗ =
∑

k∈K
Eγk

{
wm∗

k
log2

(
1 + p̃m∗

k,k(λ∗)γm∗
k,k

)}
+ λ∗

(
P̄ − P̂tot(λ∗)

)

−
∑

k∈K
Eγk

{
wm∗

k
log2

(
1 + p̃m∗

k,k(λ∗)
P̄

P̂tot(λ∗)
γm∗

k,k

)}
(3.23)

≤
∑

k∈K
Eγk



wm∗

k
log2


 1 + p̃m∗

k,k(λ∗)γm∗
k,k

1 + p̃m∗
k,k(λ∗) P̄

P̂tot(λ∗)
γm∗

k,k






 + λ∗

(
P̄ − P̂tot(λ∗)

)

where m∗
k in this context is the “winning user” for each possible realization of γk. We

used the summation across k to encompass the case wherein γks are not identically

distributed. Notice that if Ptot(λ∗) = P̄ , i.e. if our dual optimal power satisfy the

power constraint tightly, the duality gap upper bound is zero, thus the dual optimal

and primal optimal solutions are equal and we have solved our problem exactly.

This gives us the following corollary:

Corollary 3.2.3 If ∃λ∗ > 0 a solution to (3.13) such that Ptot(λ∗) = P̄ , then the

duality gap is zero, i.e. f∗ = g∗, and solving the dual problem also solves the primal

problem.

Unfortunately, the existence of a λ∗ such that Ptot(λ∗) = P̄ cannot be guar-

anteed in general, since P̂tot(λ∗) is a (possibly) discontinuous function of λ, and the

discontinuity may actually happen at λ = λ∗ such that the total power does not
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meet the constraint tightly, i.e. P̂tot((λ∗)−) > P̄ > P̂tot((λ∗)+) (note that P̂tot(λ)

is a non-increasing function of λ). In fact, it has been shown that the disconti-

nuities actually happen at the most interesting places, i.e. at the possible optimal

solutions, and thus cannot be ignored [57]. Fig. 3.5 shows the dual objective Θ(λ)

(3.4e) and corresponding feasible primal value in f̂ (3.17) as a function of λ for a

2-user 4-subcarrier system with P̄ = 1, user weights w = [0.4, 0.6]. We assume an

instantaneous rate allocation in this figure for a particular channel realization (see

Sec. 3.2.6). Fig. 3.6 shows the same figure with magnification around λ∗. The

discontinuity of the primal value at near λ∗ is due to the switching of subcarrier

allocations at that point, and the non-differentiability of Θ(λ) at λ∗ is due to the

non-uniqueness of the solution to the dual problem. This happens when there exists

two users m,m′ such that their marginal duals for a particular subcarrier k are equal

at λ∗, i.e. gm,k(γm,k, λ
∗) = gm′,k(γm′,k, λ

∗); but the resulting power allocation are

unequal p̃m,k 6= p̃m′,k. Hence, this causes a jump discontinuity of the sum power

around the constraint P̄ . This phenomenon is illustrated in Fig. 3.7 for the same

experiment.

Fortunately, the height of the discontinuity (if it exists) is quite small, and

actually diminishes quickly as K increases, and thus the duality gap also diminishes

quickly. A heuristic explanation for this phenomenon lies in the fact that as more

and more subcarriers are available to sum to P̂tot(λ) (c.f. (3.16)), the smaller the

contribution of each particular term to the total power, and hence the height of a

possible discontinuity likewise becomes smaller. The quantitative behavior of the

duality gap bound as K increases has been shown in [43] for the instantaneous

continuous rate case with perfect CSI.
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General Bound on the Duality Gap

The effect of K and the number of constraints on the duality gap can also be

analyzed in a more general framework. An analytical bound for the duality gap of

separable integer programming problems has been derived in [70, Prop. 5.26] as

g∗ − f∗ ≤ (C + 1) max
k∈K

{ρk} (3.24)

where C is the number of dualized constraints, and ρk is a constant for each separable

term in the objective that characterizes “how far from convex” our problem is. For

our problem, C = 1 since we only have a total power constraint; and the constants
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can be bounded as [70, p. 372]

ρk ≤ max
pk∈Pk

∑

m∈M
wmEγm,k

{Rm,k (pm,kγm,k)}

− min
pk∈Pk

∑

m∈M
wmEγm,k

{Rm,k (pm,kγm,k)}
(3.25)

Since we cannot allocate more than the total power P̄ for any subcarrier, the first

term in (3.25) can be simplified to max
m∈M

wmEγm,k

{
Rm,k

(
P̄ γm,k

)}
. Also, we can

have zero power allocated to a subcarrier; thus, the second term is zero. Hence,

(3.25) simplifies to

ρk ≤ max
m∈M

wmEγm,k

{
Rm,k

(
P̄ γm,k

)}
(3.26)

Plugging (3.26) back into (3.24), we have

g∗ − f∗ ≤ 2 max
m∈M,k∈K

wmEγm,k

{
Rm,k

(
P̄ γm,k

)}
(3.27)

which can be interpreted as twice the maximum weighted conditional expected rate

over all users and subcarriers when all the power is allocated to it.

Although quite loose, the significance of this bound lies in two important

observations:

1. The absolute duality gap bound does not scale with K

If we include the bandwidth term B/K into the per-subcarrier rate4, it can

be seen that the duality gap diminishes as K →∞. A similar observation has

also been made in [58], using an argument based on the correlation of channel

gains for adjacent subcarriers. The diminishing of the bound in (3.24) only

relies on the problem structure in multicarrier transmission, which typically
4We excluded this term from the problem formulation for notational brevity, since it is just a

constant that does not affect the optimization problem.
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has a large number of subcarriers K (e.g. K > 128 [17] [19]) and a small

number of constraints (see the next item below). Thus, (3.24) generalizes

similar observations in [42] [58].

2. The absolute duality gap bound scales linearly with the number of dualized

constraints

This fact emphasizes the suitability of this framework to downlink OFDMA

and other multiuser multicarrier problems since the number of subcarriers are

typically chosen to be much larger than the number of users K À M , and the

number of constraints typically scales with the number of users (e.g. C = M

in uplink OFDMA and C = 2M in uplink OFDMA with rate constraints, but

C = 1 in downlink OFDMA). However, it is more difficult to achieve a certain

target duality gap in problems with more dualized constraints, and may thus

require more iterations to solve.

Hence, it is the ratio of separable terms to the number of constraints K/C,

the ease in which the dual objective is computed, and the existence of good heuris-

tics to map a dual optimal solution to a feasible primal solution that dictate the

suitability of the dual optimization framework to a particular problem. Fortunately,

multicarrier resource allocation problems often lie in these categories, and are thus

prime candidates for using the dual optimization framework.

Finally, by using (3.27) in the relative gap formula given by (3.22), and

noticing that

f∗ ≥ max
m∈M,k∈K

wmEγm,k

{
Rm,k

(
P̄ γm,k

)}

since max
m∈M,k∈K

wmEγm,k

{
Rm,k

(
P̄ γm,k

)}
is a feasible solution, we have the following

proposition that presents a general, albeit very loose, upper bound on the relative

duality gap.
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Proposition 3.2.4 The relative duality gap for (3.1) is bounded by

0 ≤ g∗ − f∗

f∗
≤ 2 (3.28)

3.3 Discrete Rate Maximization with Perfect CSI and

CDI

3.3.1 Problem Formulation

In this section, we derive resource allocation algorithms for the practically relevant

case of when only a discrete number of modulation and coding levels are available

(i.e. adaptive modulation and coding).

The average discrete weighted-sum rate maximization can be formulated as

f∗d = max
p∈P

Eγ

{ ∑

m∈M
wm

∑

k∈K
Rd

m,k(pm,kγm,k)

}

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

(3.29)

where Rd
m,k(pm,kγm,k) is the discrete rate function given in (2.8).

3.3.2 Dual Optimization Framework

Following a dual optimization framework that is similar to Section 3.2.2, we arrive

at the dual objective (c.f. (3.4e))

Θd(λ) = λP̄ + KEγ

{
max
m∈M

[
max

pm,k≥0

(
wmRd

m,k(pm,kγm,k)− λpm,k

)]}
(3.30)

The main difference of the inner maximization in this case with the continuous

rate case in (3.4e) is that Rd
m,k(pm,kγm,k) is a discontinuous function; hence, simple

differentiation to arrive at the optimal solution is not feasible. However, note that
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we can divide the feasible region for pm,k (i.e. the non-negative real line) into L

segments Rl
+ =

[
ηl

γm,k
,

ηl+1

γm,k

)
, l ∈ L ≡ {0, . . . , L − 1}. Since λ and pm,k are both

non-negative, we have

wmRd
m,k(pm,kγm,k)− λpm,k = wmrl − λpm,k

≤ wmrl − λ
ηl

γm,k
, ∀pm,k ∈ Rl

+

(3.31)

Thus, there are only L candidate power allocation functions

p̃d
m,k ∈

{
η0

γm,k
, . . . ,

ηL−1

γm,k

}
(3.32)

from which we need to choose the one that maximizes wmrl − λ ηl
γm,k

, i.e.

p̃d
m,k =

ηl∗m,k

γm,k
(3.33)

where

l∗m,k ∈ arg max
l∈L

(
wmrl − λ

ηl

γm,k

)
(3.34)

We call (3.33) a multi-level fading inversion (MFI) power allocation, since it is

simply the inverse of the fading CNR scaled by the different SNR transitions ηl.

This in turn also gives us the rate allocation R̃d
m,k = rl∗m,k

.

A straightforward computation of (3.34) would require O(L) complexity.

However, if we assume that the discrete rate function Rd(pm,kγm,k) is concave5, we

can reduce the complexity of finding the power allocation function by noticing that

(3.34) is equivalent to (see Appendix C for a derivation)

l∗m,k =
{

l ∈ L :
λ

wmγm,k
∈

[
rl+1 − rl

ηl+1 − ηl
,
rl − rl−1

ηl − ηl−1

)}
(3.35)

5Concavity for this discontinuous staircase function simply means that the slopes when “con-
necting the dots” of the edges of the staircase are non-increasing.
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Figure 3.8: Example of the slope searching procedure where l∗m,k = 2.

where with slight abuse of notation, we define (r0 − r−1)/(η0 − η−1) ≡ ∞. This

can be interpreted geometrically by treating λ
wmγm,k

as a slope value for which we

are looking for an interval of consecutive slope values for which it belongs (see [33]

for a similar interpretation for single-user discrete multitone systems). Since the set

of rates and SNR region boundaries rl and ηl are predefined in a communications

system, we can store the set of slopes into a lookup table, thereby reducing the

complexity of finding the optimal power to a single table lookup operation. Fig.

3.8 shows an example of the slope searching procedure for the discrete rate function

given in Fig. 2.1. In this example, λ/(wmγm,k) is the slope of the dashed line, and

has a value that is between the minimum and maximum slope values for rate level

l = 2. Therefore, l∗m,k = 2, and the rate allocation we choose is r∗m,k = 4 which is

16-QAM.
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Finally, we can write the discrete rate maximization dual problem as

g∗d = min
λ≥0

λP̄ + KEγk

{
gd
k(γk, λ)

}
(3.36)

gd
k(γk, λ) = max

m∈M

{
gd
m,k(γm,k, λ)

}
(3.37)

where (3.37) is a max function over the M per-subcarrier dual functions given as

gd
m,k(γm,k, λ) = max

l∈L

{
wmrl − λ

ηl

γm,k

}
(3.38)

Note that despite the negative term in (3.38), gd
m,k(γm,k, λ) is always non-negative.

This is because both r0 and η0 are equal to zero; hence, the lowest possible value

for the objective is zero.

3.3.3 Numerical Evaluation of the Expected Dual

Similar to the continuous rate case (cf. 3.2.3), we require an M -dimensional integral

to compute the expectation in (3.36) in a straightforward manner. Thus, we proceed

similarly as the continuous rate case to derive a closed-form expression for the pdf

of gd
k in (3.37) and reduce the computation to just a single integral. The key to the

derivation is to derive the CDF and PDF of (3.38), and use the same formula used

in the continuous rate case for the maximum order statistic given in (3.9). Making

the same assumption that the discrete rate function Rd
m,k (2.8) is concave, the CDF

and PDF are given as (see Appendix D for a derivation)

Fgd
m,k

(gd
m,k) = u(gd

m,k)Fγm,k
(s1) +

∑

l∈L\0

[
Fγm,k

(
min

(
hl(gd

m,k), sl+1

))
− Fγm,k

(sl)
]+

(3.39)
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Figure 3.9: CDF (3.39) of the discrete rate marginal dual function gd
m,k (3.38).

fgd
m,k

(gd
m,k) = δ(gd

m,k)Fγm,k
(s1)+

∑

l∈L\0
1

(
sl ≤ hl(gd

m,k) ≤ sl+1

)
fγm,k

(
hl(gd

m,k)
) h2

l (g
d
m,k)

ληl

(3.40)

where hl(gd
m,k) = ληl

[wmrl−gd
m,k]+

, sl = λ(ηl−ηl−1)
wm(rl−rl−1) . Figs. 3.9-3.10 shows an example of

the cdf and pdf for wm = 1, λ = 1, γ̄ = 20 dB, and discrete rate function given in

Fig. 2.1. We also plot the L individual terms that sum to the functions, thereby

giving better insight into how these functions are derived. We also superimposed

empirical curves generated using Monte-Carlo generation for verification.

Finally, by using (3.39)-(3.40) in (3.9) and then in (3.36), the dual problem

can be written as

g∗d = min
λ≥0

[
λP̄ + K

∫ ∞

0
gd
kfgd

k
(gd

k)dgd
k

]
(3.41)
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Figure 3.10: PDF (3.40) of the discrete rate marginal dual function gd
m,k (3.38).

3.3.4 Optimal Discrete Rate, Subcarrier, and Power Allocation

The optimum solution to (3.41) denoted by λ∗ can be found using similar line search

techniques. The optimal subcarrier, rate, and power allocation is then determined

using λ∗ as

m∗
k = arg max

m∈M
wmrl∗m,k

− λ∗
ηl∗m,k

γm,k
(3.42)

R∗
m,k = rl∗m,k

1(m = m∗
k) (3.43)

p∗m,k =
ηl∗m,k

γm,k
1(m = m∗

k) (3.44)

where l∗m,k is given by (3.35) with λ = λ∗. An upper bound on the relative duality

gap of this algorithm can be derived similarly to Section 3.2.8. The complexity

analysis is also similar to Sec. 3.2.5, except for the additionalO(L) factor to compute

the dual objective in (3.41), giving an initialization complexity of O(INML); and

the additional O(log(L)) for the table lookup operation in (3.35), thereby giving a

resource allocation complexity of O(MK log(L)). Fig. 3.11 presents a flow chart
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Figure 3.11: OFDMA resource allocation algorithm for ergodic weighted-sum dis-
crete rate maximization.

of the OFDMA ergodic weighted-sum discrete rate maximization algorithm. See

Table 3.4 for a comparison between continuous and discrete rate resource allocation

algorithms in terms of initialization and per-symbol complexity.

The instantaneous discrete rate maximization algorithm can also be derived

by solving for the optimal instantaneous geometric multiplier λ∗inst using (3.36) with-

out the expectation and using the actual CNR vector γ. The allocation rules are

also given by (3.14)-(3.15) using the multiplier λ∗inst. A further simplification is to

assume constant power allocation, where the user selection is

m∗
k = arg max

m∈M
wmRd

m,k

(
P̄

K
γm,k

)
(3.45)

3.4 Numerical Results

We consider an OFDMA system based on a 3GPP-LTE downlink [19] with parame-

ters given in Table 3.1. We simulate the frequency-selective Rayleigh fading channel

using the ITU-Vehicular A channel model [71]. For each user’s channel realization

hm in (2.3), we generate a complex Gaussian random vector with Nt independent
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Table 3.1: Simulation Parameters
Parameter Value

Subcarriers (Kfft) 128
Used Subcarriers (K) 76

Bandwidth (B) 1.25 MHz
Sampling Freq. (Fs) 1.92 MHz

Cylic Prefix Length (Lcp) 6 samples
Average Power Constraint (P̄ ) 1

entries and variance according to the power delay profile.

3.4.1 Continuous Rate Allocation

In Fig. 3.12, we compare the capacity regions for the continuous rate allocation

case with 2 users using 10, 000 channel realizations and varying w1 between 0 and

1, and setting w2 = 1 − w1. We see that ergodic rates maximization has better

performance than the instantaneous rate and constant power allocation cases due

to its ability to exploit the temporal dimension6. The gain is also more pronounced

for lower SNRs and more disparate user weights, which is analogous to previous

studies in adaptive modulation, e.g. [38] [24], which concluded that the exploitation

of the additional temporal dimension through the ergodic formulation is most useful

when other degrees of freedom have been significantly curtailed.

In Fig. 3.13, we show the resulting average power allocation for ergodic rate

maximization (computed via numerical integration) to each of the two users as the

weights are being varied. We can see that the sum of both user powers is equal to

unity almost exactly, thus satisfying the power constraint tightly. Thus, we expect

the relative duality gap to be almost zero. In this case, our average relative duality

gap is 2.0491× 10−6.

Fig. 3.14 shows the sum capacity as the number of users, M , is increased. We
6This is accomplished through knowledge of the fading distribution, and flexibility in allocating

the total power per symbol as long as the average power constraint is fulfilled.
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Figure 3.12: Two-user capacity region for ergodic and instantaneous continuous rate
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ran 500 frames with 1000 symbols per frame, where we draw a random realization

of the normalized user weights wm and hold it constant for each frame. We see the

effect of multiuser diversity in that the capacity is actually increasing as the number

of users increase. The gain of ergodic rates over the other methods diminish as we

increase M , which is consistent with [38].

In Table 3.2, we present other relevant metrics for the continuous rate max-

imization algorithms. For the ergodic rate maximization, the first main column

indicates the average number of function evaluations required to numerically com-

pute the integration of (3.13) with a tolerance of 10−6, and the second main column

indicates the average number of Golden-section search iterations to solve for λ∗ in

the dual problem (3.6) with a tolerance of 10−4. Note that this computation is per-

formed only once during initialization and does not need to be performed while the

pdf of the channel fading remains constant. The second column for instantaneous

rate maximization is the average number of iterations for each channel realization.

The third column for both cases is the relative duality gap upper bound computed
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Table 3.2: Relevant Performance Measures for the Continuous Rate Resource Allo-
cation Algorithms

Measure SNR Ergodic Instantaneous

aNo. of Fun. Eval. (N)
5 dB 47.912 −

10 dB 50.091 −
15 dB 53.732 −

bNo. of Iterations (I)
5 dB 8.091 8.344

10 dB 7.727 8.333
15 dB 7.936 8.539

cRelative Gap (×10−6)
5 dB 7.936 0.025

10 dB 5.462 0.023
15 dB 5.444 0.016

a Average no. of function evaluations for numerical integration in (3.13)
b No. of line search iterations to solve the dual problem in (3.13) or (3.19)
c Relative duality/optimality gap given in (3.22)

by (3.22). Note that the duality gaps are negligible, and thus both algorithms can be

considered optimal. Since the constant power allocation does not involve iterations,

it is not included in Table 3.2.

3.4.2 Discrete Rate Allocation

Fig. 3.15 shows the results of the discrete rate resource allocation using the discrete

rate function given in Sec. 2.4.3. Note that channel coding is not present in this

case for simplicity, but since the framework merely needs the SNR thresholds and

rate values, the results apply to the coded case as long as the discrete rate function

is concave.

Note that the general trends are similar to the continuous rate case, except

that the advantage for ergodic rates is much more pronounced, and a large loss

is incurred by the constant power allocation case. This is due to the big loss of

freedom in the rate allocation (limited to just 4 rates in contrast to an infinite

number of rates in the continuous rate case), which when coupled with constant

power allocation results in a huge loss in performance.
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Figure 3.15: Two-User Capacity Region for ergodic and instantaneous discrete rate
maximization.

Fig. 3.16 shows the sum rates as the number of users is increased for the

three different methods using a similar simulation setup as in the continuous rates

case. We see similar trends as in the continuous rates case, but also with more

pronounced gains for the ergodic rates case.

Table 3.3 shows the average number of iterations and the relative optimality

gaps for the discrete rate allocation algorithms. Note that the number of func-

tion evaluations are higher, due primarily to the discontinuities in the cdf and pdf

functions (see Figs. 3.9-3.10).
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Table 3.3: Relevant Performance Measures for the Discrete Rate Resource Allocation
Algorithms

Measure SNR Ergodic Instantaneous
aNo. of Fun. Eval. (N) 5 dB 62.09 −

10 dB 91.55 −
15 dB 133.02 −

bNo. of Iterations (I) 5 dB 9.818 17.241
10 dB 10.550 17.200
15 dB 9.909 17.304

cRelative Gap (×10−4) 5 dB 0.871 3.602
10 dB 0.951 1.038
15 dB 0.532 0.340

a Average no. of function evaluations for numerical integration in (3.41)
b Average no. of line search iterations to solve the dual problem in (3.41)
c Average relative duality/optimality gap given in (3.22) but for the discrete

rate case
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Table 3.4: Comparison of the proposed ergodic and instantaneous rate resource
allocation algorithms with constant power allocation algorithm assuming perfect
CSI and CDI.

Algorithm Initialization Per-symbol Data Rel. Gap
Complexity Complexity Rates Order

Cont. Rates, Ergodic O(INM) O(MK) High 10−6

Cont. Rates, Inst. − O(IMK) High 10−8

Cont. Rates, Const. Pow. − O(MK) High −
Disc. Rates, Ergodic O(INML) O(MK log(L)) Med. 10−5

Disc. Rates, Inst. − O(IMK log(L)) Med. 10−4

Disc. Rates, Const. Pow. − O(MK log(L)) Low −
M -no. of users, K-no. of subcarriers, L-No. of discrete rates,
N -no. of function evaluations for integration, I-no. of line search iterations.

3.4.3 Complexity Comparison

Table 3.4 shows the complexity order of the different resource allocation algorithms7.

If we use the average numbers given in Tables 3.2 and 3.3, the ergodic rate algorithms

are less complex than the instantaneous rate algorithms per symbol on average, as

long as the rate of change of the channel fading statistics (roughly at the rate of

change of slow fading, e.g. Log-normal shadowing) is much lower than the rate of

change of the actual channel realizations (roughly at the rate of fast fading, e.g.

Rayleigh fading), such that the initialization is performed less often. One caveat,

however, is that the ergodic rate algorithms require information on the channel fad-

ing distribution function, which need an additional level of complexity and feedback

overhead. Furthermore, the peak-to-average power ratio of the power allocation in

the ergodic rates case is typically higher than for instantaneous rates, and even more

so for constant power allocation.
7Note that the complexity analyzed here is purely from the resource allocation perspective, and

does not include actual transmission and decoding complexity. In order to achieve the ergodic
(Shannon) capacity (continuous rates case), random coding with infinite block lengths are required
[28], and is impractical from an implementation perspective.
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3.5 Conclusion

In this chapter, I derived the optimal resource allocation algorithms for continuous

and discrete ergodic weighted-sum rate maximization in OFDMA systems assuming

perfect CSI and CDI. The algorithms are based on a dual optimization framework

with per-symbol complexity of O(MK) per iteration, and are shown to achieve

relative optimality gaps of less than 10−4 using 3GPP-LTE OFDMA simulation pa-

rameters. It is also shown that ergodic rate maximization is actually less complex

per symbol than instantaneous rate maximization, and thus presents an attrac-

tive communication performance vs. complexity tradeoff. The most gain in ergodic

maximization occur at low SNRs and for discrete rate cases, primarily because of

decreased degrees of freedom in these scenarios.

The following are the main contributions of this chapter:

• Optimal resource allocation in continuous rate case: Established that the op-

timal subcarrier and power allocation in ergodic and instantaneous weighted-

sum continuous rate maximization is multi-level waterfilling with max-dual

user selection, and the resource allocation procedure is parameterized by a

single geometric multiplier.

• Optimal resource allocation in discrete rate case: Established that the optimal

subcarrier, rate, and power allocation in ergodic and instantaneous weighted-

sum discrete rate maximization is multi-level fading inversion with max-dual

rate and user selection, and the resource allocation procedure is likewise pa-

rameterized by a single geometric multiplier.

• Linear complexity algorithms for resource allocation:Derived efficient linear

complexity algorithms for finding the optimal geometric multipliers for both

continuous and discrete rates which entail a simple line search and a single

integral for each function evaluation of the line search.
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• Duality gap analysis: Analyzed the duality gap for the continuous rates case,

and established easily verifiable conditions for the existence or non-existence

of a duality gap.
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Chapter 4

Weighted-Sum Rate

Maximization with Partial CSI

4.1 Introduction

In the previous chapter, we studied OFDMA resource allocation algorithms assum-

ing perfect CSI and CDI. This is actually a common underlying assumption among

most previous research in OFDMA resource allocation (see Sec. 2.2). This assump-

tion is quite unrealistic due to channel estimation errors, and more importantly,

channel feedback delay. In this chapter, we focus on the weighted-sum rate maxi-

mization where only imperfect (partial) CSI is available, but where the CDI of the

partial CSI is still known. The contents of this chapter are close to that of the

papers [72] [73] [74].

The effect of imperfect CSI for rate maximization in wireless systems has

been quite well studied for single-user wireless systems. In [75], adaptive trellis-

coded modulation schemes using a single outdated channel estimate for single-carrier

systems in flat-fading channels were proposed. In [76], uncoded adaptive modula-

tion schemes using predicted CSI were developed, also for single-carrier flat-fading
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channels. In [77] [78], the effect of channel estimation errors and channel feedback

delay on adaptive modulation for OFDM systems in time and frequency selective

channels was studied. It was concluded that the detrimental effect of outdated chan-

nel information is significant, and that using OFDM channel prediction [77] [79] [80]

[81] [82] [83] or using multiple channel estimates [78] is a viable way of overcom-

ing this delay. In [84], power allocation methods for ergodic and outage capacity

maximization in OFDM were studied assuming that the partial CSI distribution

information is available. Adaptive modulation in single-user single-carrier Multiple-

Input, Multiple-Output (MIMO) systems [85] [86] and MIMO-OFDM systems [87]

assuming imperfect or predicted CSI have also been investigated. However, no work

to the best of the authors’s knowledge has considered the multiuser OFDM case.

In the previous chapter it was shown that by using a dual optimization

approach, the perfect CSI problem can be solved with just O(MK) complexity

per symbol for an OFDMA system with M active users and K used subcarriers.

Using a similar dual optimization approach, we relax the assumption of perfect

CSI in this chapter, and formulate and solve the problem assuming the availability

of imperfect CSI. We use the statistics of this imperfect CSI to perform resource

allocation for both continuous rate (capacity based) and discrete rate (adaptive

modulation and coding based) maximization cases. We considered minimum mean

square error (MMSE) OFDM channel prediction in this chapter, but the framework

can be easily extended to other estimation/prediction approaches as well. We show

that by using the dual optimization framework, we can solve the imperfect CSI

problem with relative optimality gaps of less than 10−5 for continuous rates and less

than 10−3 for discrete rates in cases of practical interest.

This chapter is organized as follows. Section 4.2 discusses the partial CSI

model used in this chapter. Section 4.3 discusses the optimal resource allocation

algorithms for the continuous rate case (ergodic (Shannon) capacity) assuming par-
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tial CSI. Section 4.4 considers the more practically relevant case of allocation for

discrete rates (adaptive modulation and coding). Section 4.5 presents several nu-

merical examples based on a 3GPP-LTE downlink OFDMA system, and Section 4.6

concludes this chapter.

4.2 Partial Channel State Information Model

Suppose we wish to perform resource allocation for the mth user with actual fading

channel vector hm at symbol index n, but only P symbols of delayed and noisy

estimates of the channel Dt apart are available, which we denote as

h̃m[n− pDt] = hm[n− pDt] + em[n− pDt], p = 1, . . . , P (4.1)

where em[n− pDt] ∼ CN (0K , σ2
eIK) is the spectrally and temporally white estima-

tion error random vector with estimation error variance σ2
e which is uncorrelated

with hm[n−pDt]. This can effectively model a least-squares estimate of the channel

using pilot tones with power σ2
t , resulting in σ2

e = σ2
ν/σ2

t . Stacking these into a

PK-length vector, which we denote as

h̃m =
[
h̃T

m[n−Dt], h̃T
m[n− 2Dt], . . . , h̃T

m[n− PDt]
]T

,

results in a ZMCSCG random vector with PK × PK block Hermitian-Toeplitz

covariance matrix

Σehm
=




WRm[0]WH + σ2
eI WHRH

m[Dt]W · · · WHRH
m[(P − 1)Dt]W

WRm[Dt]WH WRm[0]WH + σ2
eI · · · WHRH

m[(P − 2)Dt]W
...

...
. . .

...

WRm[(P − 1)Dt]WH WRm[(P − 2)Dt]WH · · · WRm[0]WH + σ2
eI




(4.2)
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where Rm is the Hermitian-symmetric and Toeplitz P ×P temporal autocorrelation

matrix with entries [Rm]i,j = rm[(i − j)Dt]. The conditional distribution of the

desired channel is then

hm|h̃m ∼ CN
(
ĥm, Σ̂m

)
(4.3)

where

ĥm = Σ
hm
ehm

Σ−1ehm

h̃m (4.4)

is the conditional mean estimator, which is also the MMSE predictor for the channel

[69];

Σ̂m = Σhm −Σ
hm
ehm

Σ−1ehm

ΣH
hm
ehm

(4.5)

is the conditional covariance, and is also the covariance matrix for the ZMCSCG

prediction error vector we denote as êm, i.e.

ê ∼ CN (0K , Σ̂m) (4.6)

and

Σ
hm
ehm

= W [Rm[Dt], . . . ,Rm[PDt]]WH (4.7)

is the K × PK cross-covariance matrix. Interestingly, the probability density func-

tion (pdf) of hm given the MMSE estimate ĥm is identical to hm|h̃m, i.e.

hm|ĥm ∼ CN
(
ĥm, Σ̂m

)
(4.8)

If we assume identical normalized temporal autocorrelation functions across multi-

path taps, then we can simplify (4.5) to

Σ̂m = Σhm −
(
rT
m ⊗Σhm

) (
Rm ⊗Σhm + σ2

eIPK

)−1 (
rT
m ⊗Σhm

)H
(4.9)

where rT
m = [rm[Dt], . . . , rm[PDt]] and ⊗ is the Kronecker product.
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Note that ĥm is also ZMCSCG with covariance Σĥm
= Σhm − Σ̂m, i.e.

ĥm ∼ CN
(
0K ,Σhm − Σ̂m

)
(4.10)

Therefore, assuming MMSE channel prediction, we can write the perfect CSI vector

as the sum of the predicted channel ĥm and the prediction error êm which are

uncorrelated with each other

hm = ĥm + êm (4.11)

We shall use this equation to generate both the partial CSI and perfect CSI in the

results section (Section 4.5).

In ergodic capacity maximization with imperfect CSI, we require the marginal

distribution for each subcarrier. The marginal fading distribution on subcarrier k

conditioned on the estimated channels is a non-zero mean complex Gaussian random

variable given as hm,k|ĥm,k ∼ CN (ĥm,k, σ̂
2
m,k) where ĥm,k is the kth element in ĥm

and σ̂2
m,k is the kth diagonal element in Σ̂m, which is essentially the prediction

error variance for that subcarrier. Thus, the channel-to-noise ratio (CNR) γm,k =

|hm,k|2/σ2
ν conditioned on γ̂m,k = |ĥm,k|2/σ2

ν is in turn a non-central Chi-squared

(NCχ2) distributed random variable with two degrees of freedom with pdf

fγm,k
(γm,k|γ̂m,k) =

1
ρm,k

e
− γ̂m,k+γm,k

ρm,k I0

(
2

ρm,k

√
γ̂m,kγm,k

)
(4.12)

where I0 is the zeroth-order modified Bessel function of the first kind, and ρm,k =

σ̂2
m,k/σ2

ν is the ratio of the prediction error variance to the ambient noise variance

[88, Eq. 2-1-118].

81



4.3 Continuous Rate Maximization with Partial CSI

and CDI

4.3.1 Problem Formulation

We assume that we have knowledge of the imperfect CNR vector γ̂ = [γ̂T
1 , . . . , γ̂T

K ]T ,

γ̂k = [γ̂1,k, . . . , γ̂M,k]T ; corresponding to an estimate of the actual CNR realization

γ = [γT
1 , . . . ,γT

K ]T , where γk = [γ1,k, . . . , γM,k]T . Further assuming that the con-

ditional distribution of γm,k|γ̂m,k is known, the weighted sum rate maximization

problem for downlink OFDMA assuming partial CSI is then

f∗ = max
p∈P

∑

m∈M
wm

∑

k∈K
Eγm,k

{Rm,k (pm,kγm,k)| γ̂m,k}

s.t.
∑

m∈M

∑

k∈K
pm,k ≤ P̄

(4.13)

where Rm,k is given in (2.7), and wm are the user weights.

Problem Classification

The problem given by (4.13), which is similar to the perfect CSI case in (3.1), is

a stochastic mixed-integer programming problem. However, the main difference in

this case is that we have replaced the expectation with a conditional expectation

given the partial CSI. The optimization variable p in this case is a function of the

estimated CNR γ̂. The main difference in this problem with that of the perfect CSI

case in (3.1) is that we no longer need a parametric analysis of the optimal solution

as a function of the observation γ̂ (which is an infinite-dimensional problem, see

Sec. 3.2.1), since the average power constraint reduces to a deterministic constraint

when given γ̂. Thus, we need to solve (4.13) for each realization of γ̂ by searching

for p ∈ P , where P is defined by (2.6), which is a finite-dimensional problem.

82



4.3.2 Dual Optimization Framework

The dual problem for (4.13) is defined as

g∗ = min
λ≥0

Θ(λ) (4.14)

Θ(λ) = max
p∈P

∑

m∈M
wm

∑

k∈K
Eγm,k

{Rm,k (pm,kγm,k)| γ̂m,k}+ λ

(
P̄ −

∑

k∈K

∑

m∈M
pm,k

)

= λP̄ +
∑

k∈K
max

pk∈Pk

∑

m∈M
(wmEγm,k

{Rm,k (pm,kγm,k)| γ̂m,k} − λpm,k) (4.15a)

= λP̄ +
∑

k∈K
max
m∈M

max
pm,k≥0

(wmEγm,k
{Rm,k (pm,kγm,k)| γ̂m,k} − λpm,k) (4.15b)

where (4.15a) follows from the separability of the variables across subcarriers, and

(4.15b) from the exclusive subcarrier assignment constraint. The main difference

of (4.15b) with the perfect CSI dual in (3.4e) is that we can no longer assume

that the marginal CNR conditional distribution across different subcarriers k is

identical, since both the estimated CNR and the error variance may be different

across subcarriers for a single user.

We denote the optimal power allocation function for the innermost per-user

and per-subcarrier problem in (4.15b) as p̃m,k(λ), which can be found using the

necessary condition for a constrained optimal solution, and is given as

p̃m,k(λ) =





pm,k : Eγm,k

{
γm,k

1+pm,kγm,k

∣∣∣ γ̂m,k

}
= γ0,m ,Eγm,k

{γm,k|γ̂m,k} ≥ γ0,m

0 ,Eγm,k
{γm,k|γ̂m,k} < γ0,m

(4.16)

where γ0,m = λ ln 2
wm

. This can be interpreted as a multi-level water-filling with cut-off

CNR γ0,m similar to the perfect CSI case given in (3.5), except that the cut-off is now

based on the conditional mean of the CNR given its estimate, instead of the actual

CNR. Using the pdf in (4.12), the conditional mean is simply Eγm,k
{γm,k| γ̂m,k} =

γ̂m,k + ρm,k. Note that when we have perfect CSI, i.e. ρm,k = 0, (4.16) actually
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reduces to the multi-level waterfilling equation for perfect CSI in (4.30). Unlike

(3.5), there is no closed form solution to (4.16), but it can be solved using numerical

integration of the expectation, and a zero-finding procedure like bisection method

[66] to find the power allocation.

Plugging (4.16) into (4.15b) and then in (4.14), we have

g∗ = min
λ≥0

λP̄ +
∑

k∈K
max
m∈M

(
wmEγm,k

{Rm,k (p̃m,k(λ)γm,k)| γ̂m,k} − λp̃m,k(λ)
)

(4.17)

Using standard duality arguments (see e.g. [57, Prop. 5.1.2]), the objective in (4.17)

can be shown to be convex in the single variable λ, but is actually not continuously

differentiable due to the presence of the max function. Hence, powerful derivative-

based minimization methods such as Newton’s method cannot be used. Fortunately,

similar to the perfect CSI case of Chapter 3, we can use derivative-free single-

dimensional line search methods that only need function evaluations, e.g. Golden-

section or Fibonacci search [66], to find the optimum multiplier λ∗.

4.3.3 Power Allocation Function Approximation

Although tractable, solving (4.17) is still highly computationally intensive, since for

each candidate λ in the line search iterations, we need to compute MK power allo-

cation values (4.16), each of which requires a zero-finding routine where a function

value evaluation involves numerical integration to compute the expectation. Al-

though both the line search and the zero-finding routines typically converge within

very few iterations (< 10 in our experiments), the numerical integration procedure

requires a lot more iterations (> 50), and hence is the primary computational bot-

tleneck. We shall overcome this problem using a closed-form approximation to the

expectation in the power allocation function (4.16).

The Gamma distribution is known to approximate the body of the Chi-

squared pdf quite well [11, p. 55]. Although the Gamma distribution approximation
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is poor for the tail of the Chi-squared pdf, it does not affect us very much, since

we use the pdf to take the expectation, and thus the small values of the tails do

not affect the approximation too adversely (the approximation is shown in Fig.

4.1). Thus, it is possible to use a Gamma distribution to approximate the NCχ2

distribution of γm,k|γ̂m,k (4.12)

fγm,k
(γm,k|γ̂m,k) ≈ βα

Γ(α)
γα−1

m,k e−βγm,k (4.18)

where α = (κm,k + 1)2/(2κm,k + 1) is the Gamma pdf shape parameter with κm,k =
γ̂m,k

ρm,k
as the specular to diffuse power ratio, equivalent to the K−factor in a Ricean

pdf; and β = α/(γ̂m,k + ρm,k) is the Gamma pdf rate parameter.

Using this pdf, we can use [89, Section 3.383.10] to arrive at the following

closed form approximation to the integral

Eγm,k

{
γm,k

1 + pm,kγm,k

∣∣∣∣ γ̂m,k

}
≈ βα

Γ(α)

∫ ∞

0

γα
m,k

1 + pm,kγm,k
e−βγm,kdγm,k

=
α

pm,k

(
β

pm,k

)α

e
β

pm,k Γ
(
−α,

β

pm,k

) (4.19)

where Γ(a, x) is the incomplete Gamma function [89, Section 8.350]. Using (4.19)

in (4.16) to solve for pm,k, we are able to closely approximate the power alloca-

tion function p̃m,k. We plot the power allocation function using the Gamma pdf

approximation and the actual Chi-squared pdf in Fig. 4.1 with γ0 = 1 for various

ρm,k = σ̂2
m,k/σ2

ν . Note that the approximation error is negligible, with a normalized

mean-squared error of 5× 10−5 and maximum error of 2.7× 10−4, while the compu-

tation of the approximation is almost 300× faster than direct numerical integration

using very crude computational time measurements in Matlab 7.2 (tic-toc).
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Figure 4.1: Power allocation as a function of estimated CNR (γ̂) with γ0 = 1
for various ρm,k = σ̂2

m,k/σ2
ν , where ’−’ is the optimal power allocation, ’×’ the

approximation, and ’−−’ the waterfilling solution for perfect CSI (ρm,k = −∞ dB).

4.3.4 Optimal Subcarrier and Power Allocation

The optimal multiplier λ∗ determines the optimal cutoff SNR γ∗0,m = λ∗ ln 2
wm

, which

in turn determines (4.16) to arrive at the optimal user selection and power allocation

per subcarrier k:

m∗
k = arg max

m∈M
Eγm,k

{wmRm,k (p̃m,k(λ∗)γm,k)| γ̂m,k} − λ∗p̃m,k(λ∗) (4.20)

p∗m,k = p̃m,k(λ∗)1(m = m∗
k) (4.21)

Fig. 4.2 presents a flow chart of the OFDMA weighted-sum continuous rate maxi-

mization algorithm with partial CSI.

Note that, similar to the perfect CSI case, it is possible that the candidate

power allocation values do not satisfy the total power constraint, since this constraint
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Figure 4.2: OFDMA resource allocation algorithm for weighted-sum continuous rate
maximization with partial CSI.

is not enforced explicitly. We use a similar heuristic of scaling the final power

allocation values by P̄ /P̂tot(λ∗) where

P̂tot(λ∗) =
∑

k∈K
p̃m∗

k,k(λ∗) (4.22)

is the total power. Using (4.22) in (4.13), we arrive at our computed feasible primal

optimal value

f̂∗ =
∑

k∈K
wm∗

k
Eγm∗

k
,k

{
log2

(
1 +

P̄

P̂tot(λ∗)
p̃m∗

k,k(λ∗)γm∗
k,k

)∣∣∣∣∣ γ̂m∗
k,k

}
(4.23)

4.3.5 Complexity Analysis

In analyzing the complexity, note that in each search iteration for λ in (4.17), we

need to compute MK candidate power allocation functions given by (4.16) and

(4.19). Each power allocation value calculation requires a zero-finding routine, e.g.

bisection or Newton search [66], which we assume requires Ip function evaluations

to converge. After determining the power allocation value, we then use it in the

ergodic capacity integral in (4.17), which we assume requires Ic function evaluations
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to compute. Finally, assuming that we require Iλ line search iterations to solve for

the optimum λ, the overall complexity is O(IλMK(Ip +Ic)). Ignoring the constants

Iλ, Ip, and Ic, the complexity is just O(MK).

4.4 Discrete Rate Maximization with Partial CSI and

CDI

Consider the discrete rate function given in (2.8) using a slightly different convention

in terms of the cut-off SNR indices for notational convenience in the subsequent

development

Rd
m,k(pm,kγm,k) =





0, pm,kγm,k < η0

r1, η0 ≤ pm,kγm,k < η1

...
...

rL, ηL−1 ≤ pm,kγm,k < ηL ≡ ∞

(4.24)

where {rl}l∈L, L = {1, . . . , L} are the L available discrete information rates in

increasing order, and {ηl}L−1
l=0 are the SNR boundaries chosen in such a way that

the information rate rl is supportable subject to an instantaneous BER constraint.

In the perfect CSI case of Sec. 3.3, the candidate power allocation function

that satisfies the BER constraint for each possible rate rl is simply multi-level fading

inversion (MFI), i.e. p
(l)
m,k = ηl/γm,k. This allows us to do away with explicitly

imposing the BER constraint, since all that we require are the SNR rate region

boundaries ηl which can be computed offline. However, with imperfect CSI, the

average rate is given as

R̄m,k =
∑

l∈L
rlP (ηl−1 ≤ pm,kγm,k < ηl|γ̂m,k) (4.25)
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Since we do not have the perfect CSI information γm,k, simply performing MFI on

the imperfect CSI γ̂m,k does not guarantee satisfaction of the BER constraint, and is

illustrated in the results section (Section 4.5). This necessitates a different approach

for fulfilling the BER constraint.

4.4.1 Closed-form average BER function

With the imperfect CSI assumption, we require a BER function that can be ex-

pressed in terms of the SNR pm,kγm,k for a given rl in order to enforce the average

BER constraint. Suppose that we have this BER function for a given rate rl denoted

as BERl(pm,kγm,k), which could be derived using theoretical analysis or curve fitting

from empirical data, the average BER constraint can be written as

Eγm,k
{BERl(pm,kγm,k)|γ̂m,k} = BER (4.26)

Solving for pm,k in (4.26) for each l ∈ L, we have L power allocation functions to

choose from.

In order to simplify our development, we derive a closed-form expression for

(4.26) assuming the fading distributions derived in Section 4.2, and a representative

BER prototype function that has been empirically shown to fit a lot of practical

scenarios (see e.g. [24]). This prototype BER function is given by

BERl(pm,kγm,k) = ale
−blpm,kγm,k (4.27)

where al and bl are constants that are searched to fit the actual BER function

for each rl. For example, if we assume a Grey-coded square 2rl-QAM modulation

scheme in AWGN, the BER function can be approximated to within 1-dB for rl ≥ 2

and BER ≤ 10−3 with al = 0.2 and bl = 1.6/(2rl − 1) [24]. Using (4.27) in (4.26)

89



with the pdf in (4.12), we have

Eγm,k
{BERl(pm,kγm,k)|γ̂m,k} = ã

(l)
m,k

∫ ∞

0
e
−x
�
b̃
(l)
m,kpm,k+1

�
I0

(
2
√

κm,kx
)
dx (4.28)

where x = γm,k

ρm,k
, ã

(l)
m,k = ale

(−κm,k), b̃
(l)
m,k = blρm,k, and κm,k = γ̂m,k

ρm,k
.

Note that (4.28) can be interpreted as the Laplace transform of I0(2
√

κm,kx)

with parameter s = b̃
(l)
m,kpm,k + 1, which is given in [90, Eq. 29.3.81]. Hence, (4.28)

can be written as

Eγm,k
{BERl(pm,kγm,k)|γ̂m,k} =

ã
(l)
m,k

b̃
(l)
m,kpm,k + 1

e

κm,k

b̃
(l)
m,k

pm,k+1 (4.29)

4.4.2 Closed-form power allocation function

Equating (4.29) with the target BER, we arrive at the closed form expression for

the candidate power allocation function given the estimated CNR γ̂m,k and data

rate rl (see Appendix E for derivation)

p̃
(l)
m,k =

1

b̃
(l)
m,k


 κm,k

W
(
BERκm,k/ã

(l)
m,k

) − 1


 (4.30)

where W (x) is the Lambert-W function (see (3.10) for the Lambert-W function used

in a different context.). It is important to emphasize that (4.30) gives us the power

allocation value that fulfills the average BER constraint when rl is chosen as the

rate given imperfect CSI γ̂m,k. Fig. 4.3 shows the power allocation as a function

of the estimated CNR γ̂m,k for uncoded 4−QAM and 64−QAM for various ρm,k.

We also plot the power allocation function when treating the γ̂m,k as perfect, i.e.

p
(l)
m,k = ηl/γ̂m,k called multi-level fading inversion on imperfect CSI (Imperfect CSI-

MFI). We can see that as ρm,k decreases (prediction accuracy increases), the power

allocation function approaches that of Imperfect CSI-MFI. On the other hand, a
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Figure 4.3: Discrete rate power allocation as a function of estimated CNR (γ̂) with
γ0 = 1 for various ρm,k.

higher ρm,k requires higher power in order to ensure the average BER requirement

is met, esp. for low γ̂m,k. Note also that the power allocation functions approach

the Imperfect CSI-MFI value as γ̂m,k becomes large, despite the value of ρm,k.

4.4.3 Closed-form average rate function

Using (4.30) in (4.25), the average rate given that rl is chosen as the transmission

rate can be written as

R̄m,k(rl) =
∑

i∈L
riP

(
ηi−1 ≤ p̃

(l)
m,kγm,k < ηi|γ̂m,k

)

=
∑

i∈L
riP


 ηi−1

p̃
(l)
m,k

≤ γm,k <
ηi

p̃
(l)
m,k

∣∣∣∣∣∣
γ̂m,k




=
∑

i∈L
ri


Fγm,k


 ηi

p̃
(l)
m,k

∣∣∣∣∣∣
γ̂m,k


− Fγm,k


 ηi−1

p̃
(l)
m,k

∣∣∣∣∣∣
γ̂m,k







(4.31)
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From [88, Eq. 2.1-124], we have the following closed-form expression for the cumu-

lative distribution function (cdf) of a non-central Chi-squared random variable

Fγm,k
(x| γ̂m,k) = 1−Q

(√
2γ̂m,k

ρm,k
,

√
2x

ρm,k

)
(4.32)

where Q(a, b) is the Marcum-Q function [88, Eq. 2.1-122]. Using (4.32) in (4.31),

we have a closed-form expression for the average rate for user m and subcarrier k

given a choice of transmission rate rl.

4.4.4 Problem Formulation

Considering the above development, we can think of our decision variables in this

case as a vector of rate allocation indices l = [lT1 , . . . , lTK ]T where lTk = [l1,k, . . . , lM,k]T

and lm,k ∈ {0, 1, . . . , L}. The exclusive subcarrier assignment restriction can be

written as lk ∈ Lk, where

Lk = {lm,k ∈ {0, 1, . . . , L}|lm,klm′,k = 0;∀m 6= m′; m,m′ ∈M} (4.33)

For notational convenience, we let l ∈ L = L1 × · · · × LK denote the space of

allowable rate allocation indices for all subcarriers. Note that a decision of lm,k =

0 means that neither rate nor power is transmitted on subcarrier k by user m.

Thus, we can define R̄m,k(r0) ≡ 0 and p̃
(0)
m,k ≡ 0. The discrete weighted sum rate

maximization problem with partial CSI is then formulated as

f∗d = max
l∈L

∑

m∈M
wm

∑

k∈K
R̄m,k(rlm,k

)

s.t.
∑

m∈M

∑

k∈K
p̃
(lm,k)
m,k ≤ P̄

(4.34)

where the power allocation function is given by (4.30) and the average rate by (4.31).
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4.4.5 Dual Optimization Framework

Following a similar development as in Section 4.3, the dual problem can be written

as

g∗d = min
λ≥0

λP̄ +
∑

k∈K
max
m∈M

max
l∈L∪{0}

(
R̄m,k(rl)− λp̃

(l)
m,k

)
(4.35)

where we can once again use a univariate line-search method such as Golden-section

search to compute for the optimum multiplier λ∗d. Note that neither (4.30) nor (4.31)

depend on λ. Hence, we can pre-compute these quantities for all l ∈ L, m ∈M, and

k ∈ K before running the line search iterations. Using λ∗d, we arrive at the optimal

rate allocation indices

l∗m,k = arg max
l∈L

wmR̄m,k(rl)− λ∗dp̃
(l)
m,k (4.36)

which in turn give us the optimal subcarrier, rate, and power allocation:

m∗
k = arg max

m∈M
wmR̄m,k(rl∗m,k

)− λ∗dp̃
(l∗m,k)

m,k (4.37)

p∗m,k = p̃
(l∗m,k)

m,k 1(m = m∗
k) (4.38)

r∗m,k = rl∗m,k
1(m = m∗

k) (4.39)

Finally, similar to the perfect CSI continuous rate case in Section 3.2.8, the duality

gap can be computed as in (3.22) to characterize how far away the solution is from

the optimal. Fig. 4.4 presents a flow chart of the OFDMA weighted-sum discrete

rate maximization algorithm with partial CSI.

4.4.6 Complexity Analysis

Before running the line search iterations to compute for λ∗ in (4.35), we need to com-

pute MKL power allocation values (4.30) and average rate values (4.31) and store it
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Figure 4.4: OFDMA resource allocation algorithm for weighted-sum discrete rate
maximization with partial CSI.

Table 4.1: Comparison of the proposed continuous and discrete rate resource allo-
cation algorithms assuming partial CSI, with the suboptimal method of using the
perfect CSI algorithms on the imperfect CSI.

Algorithm Per-symbol Data Ave. BER Rel. Gap
Complexity Rate Order

Cont. Rate, Proposed O(MKIλ(Ip + Ic)) High − 10−6

Cont. Rate, MWF O(IλMK) High − −
Disc. Rate, Proposed O(MK(Iλ + L)) Med. 1.0× 10−3 10−4

Disc. Rate, MFI O(IλMK log L) Med. 1.8× 10−3 −
BER = 10−3, M -no. of users, K-no. of subcarriers, Iλ-no. of line search iterations for dual
problem, Ip-no. of zero-finding iterations for the power allocation function (4.16), Ic-no. of
function evaluations for numerical integration of the expected capacity (4.17),L-no. of discrete
rate levels (2.8)

in memory. This is followed by the search iterations which we assume to require Iλ,

wherein each iteration requires O(MK) operations (4.35). The overall complexity

order for the discrete rate resource allocation algorithm is thusO(MK(L+Iλ). Since

L and Iλ are just constants independent of M and K, the complexity is O(MK).
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Table 4.2: Simulation Parameters
Parameter Value Parameter Value

Subcarriers (Kfft) 64 Vehicular speed (V ) 120 kph
Used Subcarriers (K) 33 Doppler frequency (Fd) 289 Hz

Bandwidth (B) 1.25 MHz Prediction filter length (P ) 4
Sampling Freq. (Fs) 1.92 MHz Pilot spacing (Dt) 7
Carrier Freq. (Fc) 2.6 GHz CP Length (Lcp) 6 samples

4.5 Numerical Results

We present several numerical examples to substantiate our theoretical claims. Our

simulations are roughly based on a 3GPP-LTE downlink [19] system with parameters

given in Table 4.2. We simulate the frequency-selective Rayleigh fading channel

using the ITU-Vehicular A channel model [71]. We assume Clarke’s U-shaped power

spectrum [11] for each multipath tap, resulting in the temporal autocorrelation

function rm[∆] = J0(2π∆FdDt(Kfft+Lcp)/Fs) where J0(x) is the zeroth-order Bessel

function of the first kind [90, Ch. 9]. To simulate imperfect CSI, we generate IID

realizations of ĥm and its prediction error vector êm given in (4.11). This allows us

to also generate the “actual” channel hm for the perfect CSI cases using (4.11).

4.5.1 Continuous Rate Case

In Fig. 4.5, we show the two-user capacity region for continuous rate allocation

with imperfect CSI (Imperfect CSI-Optimal) with 5000 channel realizations per data

point. We also show the capacity region using optimal instantaneous rate resource

allocation assuming perfect CSI (Perfect CSI-Optimal), which is essentially multi-

level waterfilling (MWF) (see Sec. 3.2.6); and the capacity region when we simply

use MWF on the imperfect CSI (Imperfect CSI-MWF). Note that in all cases, rate

maximization with imperfect CSI through channel prediction performs quite close to

the case with perfect CSI. More important, Imperfect CSI-MWF performs similar

to Imperfect CSI-Optimal. This can be explained by noticing that the optimal
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Figure 4.5: Two-user capacity region for continuous rate optimal resource allocation
with imperfect CSI. We also show the capacity region for optimal allocation with
perfect CSI, and using multi-level waterfilling (MWF) on the imperfect CSI.

power allocation assuming imperfect CSI is almost equal to the waterfilling curve

(see Fig. 4.1) except for very low estimated CNR. However, due to the effect of

frequency and multiuser diversity, the subcarrier is typically assigned to the user

with the highest CNR; thus, the power allocation is quite often almost identical to

performing waterfilling on the imperfect CSI. A similar observation was also made

in [84], albeit for the single user scenario.

4.5.2 Discrete Rate Case

Fig. 4.6 shows the discrete rate region for the optimal resource allocation algorithm

assuming imperfect CSI (Imperfect CSI-Optimal). We also show the rate region

achieved by using optimal resource allocation for discrete rates with perfect CSI

(Perfect CSI-Optimal), which is essentially MFI (see Sec. 4.4.5), and by using MFI

on the imperfect CSI (Imperfect CSI-MFI). Observe that due to the imperfect CSI
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assumption, Imperfect CSI-Optimal loses approximately 8% of the sum capacity

when compared to Perfect CSI-Optimal. Observe also that Imperfect CSI-MFI re-

sults in a rate region that is quite close to the Perfect CSI-Optimal, and actually

results in higher raw rates than the Imperfect CSI-Optimal. However, if we consider

the average BER for each subcarrier shown in Fig. 4.7, Imperfect CSI-Optimal

actually meets the average BER constraint of 10−3 (within ±2%), but Imperfect

CSI-MFI results in average BER violations of between 30 − 180%. Interestingly,

the shape of the BER for Imperfect-CSI-Suboptimal closely resembles the shape of

the prediction error variance σ̂2
m,k, shown in Fig. 4.8. This is intuitively satisfying,

since a larger prediction error results in a larger mismatch between perfect and im-

perfect CSI, which is not taken into account by the Imperfect CSI-MFI algorithm.

Thus, Imperfect CSI-MFI is equally aggressive in rate and power allocation even

when the CSI prediction error is quite large. Our proposed Imperfect CSI-Optimal

algorithm, on the other hand, is actually more conservative in rate and power allo-

cation when the prediction MSE is large, thus allowing the average BER to be met.

In a practical communications system, this would mean the difference of whether

a packet is decoded successfully or not. Thus, using Imperfect CSI-MFI would re-

sult in unnecessary packet retransmissions and delays, and consequently decrease

the throughput significantly. An explicit characterization in terms of throughput,

however, is beyond the scope of this dissertation.

Table 4.3 shows the other relevant metrics of the optimal resource algorithms.

The first column shows the average number of line-search iterations it took to con-

verge to a tolerance of 10−4. The second column shows the resulting relative duality

gaps. We can see that the duality gaps are virtually zero, and thus both algorithms

can be considered practically optimal for this set of simulation parameters.
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Figure 4.6: Two-user capacity region for discrete rate optimal resource allocation
with imperfect CSI. We also show the capacity region for optimal allocation with
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Table 4.3: Relevant Performance Measures for the Proposed Resource Allocation
Algorithms

Metric aNo. of Iterations (Iλ) bRelative Gap (×10−4)
SNR 5 dB 10 dB 15 dB 5 dB 10 dB 15 dB
Continuous Rates 8.599 8.501 8.686 .0840 .0568 .0412
Discrete Rates 21.33 21.15 21.12 71.48 7.707 5.662
a Average no. of line search iterations to solve the dual problem in (4.17) or (4.35)
b Average relative duality/optimality gap given in (3.22) but for the partial CSI case
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4.5.3 Complexity Comparison

Table 4.1 summarizes the complexity analysis for both continuous and discrete rate

algorithms. Note that the ability to pre-compute the power and rate allocations, and

the existence of closed-form solutions for these in the discrete rate allocation case

in contrast to the continuous rate case makes discrete rate allocation less complex

than the continuous rate allocation. This is fortunate because the discrete rate case

is more practically relevant. Note that this is reverse of what we observed for the

perfect CSI case in Chapter 3.

4.6 Conclusion

We have derived optimal resource allocation algorithms for ergodic continuous and

discrete rate maximization in OFDMA downlinks assuming the availability of partial

CSI. Using a dual optimization approach, we derived algorithms with complexity

O(MK) per iteration and achieve relative duality gaps that are less than 10−5

for continuous rates and 10−3 for discrete rates in typical scenarios. Although the

solution framework of the imperfect CSI case is similar to the perfect CSI case in Ch.

3, the solution derivations, discussions, and complexity issues are quite different.

The important conclusions/contributions of this chapter are:

• Partial CSI assumption disallows averaging across temporal dimension: In the

perfect CSI case, we can assume that the power allocation vector is a func-

tion of the perfectly known channel gains. Hence, assuming ergodicity of the

channel gains, we are able to exploit the temporal dimension by imposing an

average power constraint and allowing the total power in each time instance to

vary, as long as the average power over time is met, giving us an additional de-

gree of freedom to exploit. Unfortunately, this is not possible in the imperfect

CSI case, because we only have information on the estimated channel gains,
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and it is difficult to assume ergodicity of the estimated channel information.

• Closed-form approximation for the power allocation function in continuous rate

case: In the perfect CSI case, the per-user per-subcarrier power allocation is

given neatly by the closed-form multi-level waterfilling solution (3.5). In the

imperfect CSI case considered in this chapter, there is no closed-form solution

for the power allocation function given in (4.16), thus, the approximate closed-

form power allocation function with negligible approximation error is crucial

to our development.

• Derivation of closed-form average BER, power allocation, and average rate

functions in the discrete rate case: Assuming perfect CSI, the power alloca-

tion function that fulfills the BER constraint for each discrete rate level is a

straightforward multilevel fading inversion, since the transitions in the stair-

case discrete rate function are where the BER is met with the least power for

each rate level (3.33). Consequently, the rate allocation is likewise straightfor-

ward to compute. In the imperfect CSI case, it is not as simple, since we only

have information on the estimated channel gain γ̂m,k and the quality of the

estimate ρm,k. Thus, it is crucial to the imperfect CSI case that the average

BER function (4.28), the power allocation function that fulfills the average

BER (4.30), and the average rate function resulting from an instantaneous

rate allocation decision (4.31) are derived. Surprisingly, we were able to ex-

press all of these as functions of γ̂m,k and ρm,k in closed-form, allowing us to

reformulate the problem into a deterministic integer program with a separable

objective function (4.34). This reformulation is novel, and it made the dual

optimization method feasible in our case.
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Chapter 5

Rate Maximization with

Proportional Rate Constraints

5.1 Introduction

In the previous two chapters, we did not impose any constraints on the data rate of

the users, and fairness is assumed to be imposed by the weights wm. In some cases,

imposing ratio constraints among the users’ rates is more useful [45] [91] [46] [92],

i.e.

R1 : . . . : RM = φ1 : . . . : φM (5.1)

where Rm is the rate of user m, and the φm terms are the given proportionality

constants which we can assume to satisfy
∑

m∈M
φm = 1. Sum rate maximization

subject to this proportional rates constraint allows a more definitive prioritization

among the users, which is quite useful for service class differentiation. Theoretically,

this formulation also traces out the boundary of the capacity region similar to the

weighted sum-rate maximization. The main difference is that it actually identifies

the points on the capacity region boundary that satisfy the rate proportionality
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constraints. Furthermore, the max-min rate formulation is a special case of this

formulation, i.e. when φ1 = . . . = φM .

The instantaneous sum-rate maximization with proportional rate constraints

have been studied previously in [45] [91] [46]. The main emphasis of these papers, in

terms of formulation, was on an instantaneous rate maximization with instantaneous

proportional rate constraints. Furthermore, the solution methods proposed were

suboptimal heuristics with complexity of O(MK log(K)) or higher.

In this chapter, I use a similar dual optimization framework to solve the er-

godic sum-rate maximization with proportional ergodic rate constraints. I show that

the proportional rate constraints can actually be imposed by a similar weighted-sum

rate dual, with the weights being the dual optimal geometric multipliers themselves

that enforce the proportional rate constraints. Thus, we can use the techniques in

Chapters 3-4 with the additional operation of determining the optimal weights. I em-

phasize the continuous rate, perfect CSI formulation in this chapter, but extensions

to the discrete rate and/or partial CSI assumptions are shown to be straightforward

extensions. I compared the performance of our algorithm with the previous algo-

rithm that gives the best performance [46], and show that exploiting the temporal

dimension using the ergodic formulation provides huge rate gains versus the previous

state-of-the-art.

One main disadvantage of considering ergodic rates is the assumption that

the channel distribution information (CDI) is perfectly known at the transmitter,

and thus the expected values of the rates can be computed. Although methods to

estimate the distribution function are available [93], they are typically more suitable

for off-line processing rather than the online algorithms that are needed in practical

wireless system implementations. Therefore, I also propose an adaptive algorithm

based on stochastic approximation methods [94] [95] that do not require knowledge of

the CDI, and is shown to converge to the optimal solution w.p.1, while requiring only

103



O(MK) complexity per-symbol without iterations, since the iterations are actually

done across time. Since the weighted-sum rate formulations in Chapters 3-4 are just

special cases of the proportional rates case, these formulations can also be solved

using this adaptive framework.

This chapter is organized as follows. Section 5.2 discusses the algorithm

assuming perfect CSI, perfect CDI, and continuous rates. Section 5.3 relaxes the

perfect CDI assumption and derives the adaptive algorithm that is shown to converge

to the optimal rates. Section 5.4 presents numerical results and we conclude the

chapter in Section 5.5.

.

5.2 Proportional Rate Maximization with Perfect CSI

and CDI

5.2.1 Problem Formulation

The ergodic rate maximization problem with proportional ergodic rate constraints

can be formulated as

max
p(γ)∈P

Eγ

{ ∑

m∈M

∑

k∈K
Rm,k(pm,kγm,k)

}

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

Eγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
≥ φmEγ

{ ∑

m∈M

∑

k∈K
Rm,k(pm,kγm,k)

}
, ∀m ∈M

(5.2)

where the φm terms are the proportionality constants for each user m such that
∑
m

φm = 1. The constants φm can be interpreted as the portion of the total ergodic

sum rate that should be allocated to each user m. We denote by φ = [φ1, . . . , φM ]T
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the vector of proportionality constants. By introducing a dummy optimization vari-

able R ≥ 0 that represents the ergodic sum rate, we can rewrite the problem as

max
R∈R+,p(γ)∈P

R

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

Eγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
≥ φmR,∀m ∈M

(5.3)

A similar reformulation as in (5.3) that uses a dummy variable is proposed in [41]

to solve for the max-min rate, and in [92] for instantaneous proportional rates.

5.2.2 Dual Optimization Framework

The Lagrangian of (5.3) is given by

L(R, p(γ), λ,µ) = R + λ

(
P̄ − Eγ

{∑

k∈K

∑

m∈M
pm,k

})

+
∑

m∈M
µm

(
Eγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
− φmR

) (5.4)

where µ = [µ1, . . . , µM ]T is the vector of geometric multipliers that are used to

enforce the proportionality constraints. The dual objective can then be written as

Θ(λ,µ) = max
R∈R+,p(γ)∈P

L(R, p(γ), λ, µ)

= λP̄ + max
R∈R+,p(γ)∈P

R
(
1− µT φ

)− λEγ

{∑

k∈K

∑

m∈M
pm,k

}

+
∑

m∈M
µmEγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
(5.5)
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Focusing on the first term in the maximization R
(
1− µT φ

)
, we observe that if

1−µT φ > 0, then the optimal solution would be R∗ = ∞, since R is a free variable.

This is clearly an infeasible solution for the ergodic sum rate. Furthermore, if

1− µT φ < 0, then the optimal solution would be R∗ = 0. In this case, the ergodic

sum rate is zero and is uninteresting from an optimization point of view. Thus, we

would like to constrain the multipliers to satisfy µT φ = 1, which allows us to remove

the dummy variable from consideration since R
(
1− µT φ

)
= 0. Thus, following the

development in (3.4a)-(3.4e), (5.5) can be simplified to

Θ(λ,µ) = λP̄ + KEγk

{
max
m∈M

(µmRm,k(p̃m,kγm,k)− λp̃m,k)
}

(5.6)

where p̃m,k = [µm/(λ ln 2)− 1/γm,k]
+. The main difference is that the “weights” in

this case are no longer pre-determined constants, but are effectively the multipliers

µm that enforce the proportional rate constraints. The dual problem can then be

written as

g∗ = min
λ≥0,µ∈U

Θ(λ,µ) (5.7)

where U =
{
µ ≥ 0

∣∣µT φ = 1
}
. Given a candidate feasible µ, we can proceed using

line search methods similar to Sec. 3.2.2 to solve for a candidate λ∗(µ) that enforces

the power constraint. Another possible method is to use subgradient search [57, Ch.

6.3.1], which is a generalization of gradient-based search methods to possibly non-

differentiable functions. From an initial guess λ0, the subgradient method generates

a sequence of dual feasible points according to the iteration

λi+1 =
[
λi − sigi

λ

]+ (5.8)
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where gi
λ denotes the subgradient of Θ(λ∗(µi),µi) with respect to λ, and si is a

positive scalar step-size. A similar subgradient method can be used to search for the

optimal µ∗ that enforces the proportional rate constraints, given by the iterations

µi+1 = ΠU
[
µi − sigi

µ

]
(5.9)

where gi
µ denotes the subgradient of Θ(λ∗(µi), µi) with respect to µ, and ΠU [·]

denotes projection onto the set U .

The subgradient method is particularly attractive for solving the dual prob-

lem, since the inequality constraint evaluated at the optimal power vector for a given

λ and µ is itself the subgradient [57], i.e.

gi
λ = P̄ − P̂ i

tot (5.10)

where

P̂ i
tot = Eγ

{ ∑

m∈M

∑

k∈K
p∗m,k(λ

i, µi
m)

}
(5.11)

is the average power given λi,µi; and

gi
µ = R̄i − φR̄i (5.12)

where R̄i =
[
R̄i

1, . . . , R̄
i
M

]
with

R̄i
m = Eγ

{∑

k∈K
Rm,k(p∗m,k(λ

i, µi
m)γm,k)

}
(5.13)

as the vector of ergodic rates per user for a given µi, and

R̄i =
∑

m∈M
R̄i

m (5.14)
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is the ergodic sum rate. The optimal power given the current λi and µi, p∗m,k(λ
i, µi

m),

is similarly derived as in (3.14)-(3.15) with wm replaced by µi
m. The projection

operation can be simply performed by clipping and rescaling the new iterate such

that it is non-negative and that it satisfies µT
i φ = 1. Hence, we can write (5.9) as

µi+1 =

[
µi − sigi

]+

φT [µi − sigi]+
(5.15)

where [x]+ implements max (xi, 0) for each element in the vector argument x. The

convergence properties of (5.15) for different step-size selection rules have already

been studied previously (see e.g. [57, Ch. 6.3.1]). In our numerical experiments, we

use the simple diminishing step-size rule

si =
β

i + α
(5.16)

where α and β are suitably chosen positive constants, which satisfies si → 0 (for

convergence) and
∞∑
i=0

si = ∞ (for allowing us to go “anywhere”).

We can interpret the multiplier vector µi as a vector of priorities for the

users, wherein we try to increase the priority of a user while it is still unable to get

its allocated “portion of the pie” φmRi. Upon convergence, we arrive at the optimal

µ∗ which is the vector of appropriate weights for each user such that the proportion-

ality constraints are met, and its corresponding λ∗ that enforces the average power

constraint.

5.2.3 Computation of the Per-user Ergodic Rate

Computing the optimal λ∗ for a given µ has already been discussed thoroughly in

Sec. 3.2.3, where all the development follows in a straightforward manner by simply

replacing the weights wm by µm. However, the computation of the subgradient

requires knowing the individual ergodic sum rates per user, which was not required
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in the weighted sum rate case in Chapter 3. In order to derive this, we revisit

the expectation integral used in computing the dual objective in (3.13), which we

rewrite here in its expanded form by using (3.9)

ḡk =
∫ ∞

0
gk


 ∑

m∈M
fgm,k

(gk)
∏

m′ 6=m

Fgm′,k(gk)


 dgk

=
∑

m∈M

∫ ∞

0
gkfgm,k

(gk)
∏

m′ 6=m

Fgm′,k(gk)dgk

(5.17)

where the second equality can be interpreted as the sum of the per-user expected

dual functions. By performing the following change of variables to revert back to

the CNR variables (see (3.8) and (3.10))

gk = gm,k(γm,k, λ)

γm,k = γ̌m,k(gk)
(5.18)

and using (3.11)-(3.12), we can rewrite (5.17) as

ḡk =
∑

m∈M

∫ ∞

γ0,m

gm,k(γm,k, λ)fγm,k
(γm,k)

∏

m′ 6=m

Fγm′,k(γ̌m′,k(gm,k(γm,k, λ)))dγm,k

(5.19)

Focusing on the pdf term fγm,k
(γm,k)

∏
m′ 6=m

Fγm′,k(γ̌m′,k(gm,k(γm,k, λ))), we can see

an intuitive interpretation. This term can be interpreted as the joint pdf of γm,k and

the event that “user m wins subcarrier k.” This is because the first term is the pdf of

CNR for user m at subcarrier k, and the product terms can be seen as the probabil-

ity that all other users m′ for subcarrier k have CNRs less than γ̌m′,k(gm,k(γm,k, λ)),

which is equal to the probability that the marginal dual functions of all other

users are less than that of user m, i.e. Pr
(
gm′,k(γm′,k, λ) ≤ gm,k(γm,k, λ),∀m′ 6= m

)
.
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Therefore, using this pdf, we can easily compute the per-user ergodic rate as

R̄m =
∑

k∈K

∫ ∞

γ0,m

log2

(
γm,k

γ0,m

)
fγm,k

(γm,k)
∏

m′ 6=m

Fγm′,k(γ̌m′,k(gm,k(γm,k, λ)))dγm,k

(5.20)

where we omitted the [·]+ operation since the integration is performed over γm,k >

γ0,m. If desired, the average power per-user can also be computed as

P̄m =
∑

k∈K

∫ ∞

γ0,m

(
1

γ0,m
− 1

γm,k

)
fγm,k

(γm,k)
∏

m′ 6=m

Fγm′,k(γ̌m′,k(gm,k(γm,k, λ)))dγm,k

(5.21)

5.2.4 Complexity Analysis

The complexity analysis proceeds similarly as in Sec. 3.2.5, with an additional

outer iteration of the subgradient search for µ∗. Furthermore, each outer iteration

requires the computation of M per-user ergodic rates, which when assuming NIID

channel gains across subcarriers and N function evaluations per integral with O(M)

operations, has O(NM2) complexity. Thus, letting Iµ denote the number of sub-

gradient search iterations to find µ∗ and Iλ the number of line-search iterations to

find λ∗, the overall initialization complexity is Iµ(IλO(NM) + O(NM2)), which

has order O(IµNM2). The per-symbol processing complexity is identical to that of

the weighted sum-rate case, which is O(MK), since we simply replace the weights

wm by µ∗m. Thus, considering proportional rates only increases the initialization

complexity, since we have to find the optimal multipliers µ∗.

5.2.5 Extension to Discrete Rates and/or Imperfect CSI

We have shown that considering proportional rates is essentially a weighted-sum

rate problem with the optimal weights given as the dual optimal multipliers µ∗.

110



Hence, using the same subgradient search technique, the extension to the discrete

rate case similar to Sec. 3.3 and the extension to assuming imperfect CSI similar to

Chap. 4 can be easily performed.

5.3 Adaptive Algorithms for Rate Maximization with-

out CDI

In the previous section (and in Chapters 3-4), we assumed the availability of the

channel distribution information (CDI) at the transmitter. Although there are meth-

ods that allow us to estimate this (e.g. goodness-of-fit tests followed by maximum

likelihood parameter estimation [93]), they are typically quite computationally in-

tensive, and are more suitable for offline processing. In our scenario, it is important

to be able to perform the resource allocation in real-time, hence online adaptive

algorithms are more desirable. In this section, we outline a framework based on

stochastic approximation to perform adaptive OFDMA resource allocation that al-

lows us to do without the CDI. Note that stochastic approximation methods have

been studied in the context of wireless network scheduling for TDMA in [59], and for

weighted-sum continuous rate maximization for a downlink OFDMA system [44].

5.3.1 Overview of Stochastic Approximation

Stochastic approximation methods (see e.g. [94]) have been studied extensively since

the first algorithms introduced by Robbins and Monro in the early 1950s [96]. The

fundamental principle behind these algorithms is a stochastic difference equation of

the form

θ[n + 1] = θ[n] + ε[n]Y [n] (5.22)

where θ[n] is some real parameter, Y [n] is some observation random variable, and

ε[n] > 0 is some small step size that may be diminishing to zero. Under some
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mild conditions, it can be shown that the iterates converge to some stationary point

lim
n→∞ θ[n + 1] = θ∗ w.p.1. In our resource allocation algorithms, we are interested

in finding recursions for the multipliers λ and µ which in the limit converge to

the optimal values that solve the dual problem. This is the goal of the subsequent

section.

5.3.2 Stochastic Approximation Solution to the Dual Problem

The purpose of this section is to derive suitable stochastic approximation recursions

that solve the dual problem given in (5.7) without knowledge of the pdf of γ. The

objective is to construct a sequence of approximants λ[n] and µ[n], n = 0, 1, . . .

using statistic estimates of the subgradients gλ[n] in (5.10) and gµ[n] in (5.12).

The fundamental stochastic approximation iteration we employ is based on

the subgradient iterations given in (5.8) and (5.9), but performed across time, i.e.

λ[n + 1] = [λ[n]− βngλ[n]]+ε (5.23)

µ[n + 1] = ΠU [µ[n]− βngµ[n]] (5.24)

where [x]+ε = max(x, ε) for a small constant 0 < ε ¿ 1 and is used in (5.23) as

a modified projection operator to prevent λ from going to zero (which results in

infinite power), and βn is a real-valued step-size chosen to satisfy

∞∑

n=0

βn = ∞, βn ≥ 0, βn → 0 (5.25)

Furthermore, we employ an auxiliary filter to perform subgradient averaging

gλ[n + 1] = (1− αn)gλ[n] + αnĝλ[n]

= gλ[n] + αn(ĝλ[n]− gλ[n])
(5.26)
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gµ[n + 1] = (1− αn)gµ[n] + αnĝµ[n]

= gµ[n] + αn(ĝµ[n]− gµ[n])
(5.27)

with αn as a non-negative step-size chosen to satisfy

αn ≥ 0,
βn

αn
→ 0,

∞∑

n=0

(β2
n + α2

n) < ∞ (5.28)

and where ĝλ[n] and ĝµ[n] are approximations to the subgradient given the current

CNR realization γ[n] and the current estimates for the multipliers λ[n] and µ[n].

This method that employs averaging of the search directions are called averaged, ag-

gregated, or mixed stochastic gradient or quasigradient methods [63, Sec. 6.2.4] [97].

Note that the conditions on step sizes αn and βn are to ensure w.p.1 convergence,

which will be discussed in Sec. 5.3.3. A possible choice is given by

βn =
b1

b2 + n
(5.29)

αn =
a1

a2 + n0.4
(5.30)

with real constants a1 > 0, a2 ≥ 0, b1 > 0, and b2 ≥ 0.

A suitable approximation to the subgradient would be to replace the expec-

tations with the instantaneous (sample) subgradient, which can be computed via

a single iteration of the “multi-level waterfilling” with “max-dual user selection”

(3.14)-(3.15) procedure. We repeat this operation here for convenience:

p̃m,k[n] =
[

µm[n]
λ[n] ln 2

− 1
γm,k[n]

]+

(5.31)

m∗
k[n] = arg max

m∈M
{µm[n]Rm,k (p̃m,k[n]γm,k[n])− λ[n]p̃m,k[n]} (5.32)

p∗m,k[n] =





p̃m,k[n], m = m∗
k[n]

0, otherwise
(5.33)
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where we use γm,k[n] to denote the channel gain for user m and subcarrier k at

time n. Observe that in the process of our stochastic subgradient iterations, we also

generate the resource allocation procedure for time n given by (5.31)-(5.33).

The per-user instantaneous rate is then given as

Rm[n] =
∑

k∈K
Rm,k

(
p∗m,k[n]γm,k[n]

)
(5.34)

with instantaneous total power

P [n] =
∑

m∈M

∑

k∈K
p∗m,k[n] (5.35)

The subgradient approximations are then given as

ĝλ[n] = P̄ − P [n] (5.36)

ĝµ[n] = R[n]− φR[n] (5.37)

where R[n] = [R1[n], . . . , RM [n]]T and R[n] =
∑

m∈M
Rm[n]. Using (5.36)-(5.37) in

the subgradient averaging operations (5.26)-(5.27) completes our algorithm. Fig.

5.1 shows the block diagram for the proposed algorithm.

It is interesting to note that this stochastic approximation procedure can

similarly be applied to the simpler weighted sum-rate formulations in Ch. 3-4 by

using the update procedure on λ (5.23) and using the appropriate power, subcarrier,

and rate (if applicable) allocation procedures per iteration given the current λ[n].

5.3.3 Proof of Convergence

The convergence proof for this stochastic approximation procedure under various

assumptions is quite well studied [63] [94] [98]. We repeat one such convergence

theorem from [63, Sec. 6.2.4] as our basis.

114



Figure 5.1: Block diagram for adaptive OFDMA resource allocation for ergodic
sum-rate maximization with ergodic proportional rate constraints.

Theorem 5.3.1 Suppose we have to minimize a convex continuous function f(x)

such that x ∈ X ⊂ Rn, where X is a closed convex set such that the projection on

X can easily be calculated: ΠX [y] = arg min
[‖y − x‖2|x ∈ X ]

. Let X ∗ be the set

of optimal solutions. Consider the relations

x[n + 1] = ΠX [x[n]− βngx[n]] (5.38)

gx[n + 1] = (1− αn)gx[n] + αnĝx[n] (5.39)

Eγ[n] { ĝx[n]|x[0], gx[0], . . . ,x[n], gx[0]} = gx(x[n]) + e[n] (5.40)

where gx(x[n]) is a subgradient of f with respect to x evaluated at x[n] and e[n]

is some random variable that can be interpreted as the subgradient approximation

error, and βn and αn satisfy (5.25) and (5.28), respectively. If in addition, we
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assume ∞∑

n=0

E
{
βn|〈e[n],x∗ − x[n]〉|+ β2

n‖ĝx[n]‖2
}

< ∞ (5.41)

then x[n] → x∗ w.p.1.

The dual objective Θ(λ,µ) is convex and continuous, and λ ∈ R+ and µ ∈ U
are subspace constraints with simple projections, therefore, what is left to show is

that the subgradient approximations fulfill (5.40)-(5.41). Expanding the left-hand

side of (5.40) for the subgradient with respect to λ, we have

Eγ[n] { ĝλ[n]|λ[0],µ[0], . . .} = Eγ[n]

{
P̄ − P [n]|λ[n], µ[n]

}

= P̄ − Eγ {P [n]|λ[n], µ[n]}

= gλ(λ[n],µ[n])

(5.42)

where the second equality is due to the stationarity of γ[n], and the third equality

is due to (5.10)-(5.11). The subgradient with respect to µ likewise follows (see

(5.12)-(5.14)):

Eγ[n] { ĝµ[n]|λ[0], µ[0], . . .} = Eγ[n] {R[n]− φR[n]|λ[n], µ[n]}

= gµ(λ[n], µ[n])
(5.43)

The subgradient approximation errors are zero for both cases, and thus our method

belongs to a class of stochastic approximation algorithms called stochastic subgradi-

ent averaging methods. Finally, we need to show that (5.41) holds for both subgra-
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dient approximants. For the subgradient with respect to λ, we have

∞∑

n=0

E
{
β2

n|ĝλ[n]|2} =
∞∑

n=0

β2
nE

{
(P̄ − P [n])2

}

=
∞∑

n=0

β2
n

(
P̄ 2 − P̄E {P [n]}+ E

{
P [n]2

})

≤ P̄ 2
∞∑

n=0

β2
n +

∞∑

n=0

β2
nE

{
P [n]2

}

(5.44)

The first term is clearly bounded by our choice of step-size in (5.28), and

E
{
P [n]2

}
= E





( ∑

m∈M

∑

k∈K
p∗m,k[n]

)2




≤ (MK)2E

{(
max
m,k

p̃m,k[n]
)2

}

≤ (MK)2
(

max
m

µm[n]
ln 2λ[n]

)2

(5.45)

is also bounded since µm[n] ≤ Bµ < ∞, ∀n and we have λ[n] ≥ ε,∀n by our update

given in (5.23). Therefore, we have

∞∑

n=0

E
{
β2

n|ĝλ[n]|2} ≤ P̄ 2
∞∑

n=0

β2
n +

∞∑

n=0

β2
nE

{
P [n]2

}

≤ P̄ 2
∞∑

n=0

β2
n +

(
MK

Bµ

ε ln 2

)2 ∞∑

n=0

β2
n

< ∞

(5.46)

We can similarly bound the subgradient with respect to µ using a similar approach,

and is skipped in the interest of brevity. Therefore, we arrive at the following

proposition:

Proposition 5.3.2 Consider the dual problem (5.7). The iterations for λ and µ
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given in (5.23)-(5.24), with stochastic subgradient averaging given in (5.26)-(5.27),

and step-size criteria (5.25) and (5.28), converges w.p.1 to the unique optimal values

λ∗ and µ∗.

The convergence proof we presented here actually uses some restrictive as-

sumptions, including the ergodicity and stationarity of the CNRs. Furthermore, the

step-size ratio requirement of βn/αn → 0 causes a degradation of the local rate of

convergence (since the rate is determined by the slowest part of the algorithm) [98],

and the decreasing step-size requirements makes it more difficult to use the algo-

rithm as a tracking mechanism when encountering non-stationary CNR statistics

[94]. Fortunately, the most recent convergence results given in [94] actually allows

more relaxed assumptions, including the use of small constant step-sizes to improve

tracking capability. We thus use the constant step-size rules in the simulations.

5.3.4 Complexity Analysis

The complexity of this algorithm is significantly lower than our algorithm assuming

perfect CDI, since all that is needed is the multi-level waterfilling and max-dual

user selection with O(MK), followed by O(M) updates for the rates, power, and

multipliers. Hence, we do away completely with the initialization complexity, and

have allowed our “iterations” to be performed over time and on the fly. This holds

true also with the weighted-sum rate problems in Ch. 3-4.

5.3.5 Extension to Other Formulations

Although we developed in detail the adaptive algorithm for continuous sum-rate

maximization with proportional rate constraints, it is relatively straightforward to

extend the algorithm to the discrete rate and/or partial CSI proportional rate and

weighted-sum rate cases. The required changes are: (1) using the appropriate op-

timal resource allocation algorithms developed in Chapters 3-4 for computing the
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Figure 5.2: Two-user capacity region for ergodic sum-rate maximization with pro-
portional rate constraints.

approximate subgradients; (2) for the weighted-sum rate maximization cases, drop

the subgradient iterations for µ, and use the λ subgradient updates instead of the

line-search procedures to find λ∗. When using the adaptive algorithm in these prob-

lems, the complexity isO(MK) per OFDMA symbol without the need for iterations,

and are thus the lowest complexity algorithms available for asymptotically optimal

resource allocation for OFDMA systems.

5.4 Results and Discussion

We use the same simulation assumptions as in Sec. 4.5. Fig. 5.2 shows the M = 2

user capacity region with φ1 = 0.1 to φ1 = 0.9 in 0.1 increments and φ2 = 1 − φ1

for the following:

1. Analytical : Numerical evaluation of the per-user ergodic rate integral (5.20)

2. Empirical : Sample average of the per-user rates by using the pre-computed
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λ∗ and µ∗

3. Adaptive: Sample average of the per-user rates of the algorithm in Sec. 5.3.2

with constant step-size αn = βn = 0.005

4. Wong04 : Sample average of the per-user rates using the current state-of-the-

art algorithm for proportional rate OFDMA resource allocation [46]

Observe that in contrast to the weighted-sum rate capacity regions (Fig. 3.12), the

rate points for all the methods are neatly spaced along the boundary of the rate

region since we constrain R̄1/R̄2 = φ1/φ2, confirming that the algorithms indeed

enforce the proportional rate constraints. We also observe that methods 1-3 give

essentially identical results, confirming our analysis in the previous sections. On

the other hand, using a per-symbol algorithm [46], which is more complex than our

algorithms, has significantly poorer performance, because it is suboptimal to start

with, and that it is unable to exploit the temporal dimension.

Fig. 5.3 shows the evolution of the exponentially averaged user rates R̄m[n] =

(1− βn)R̄m[n− 1] + βnRm[n] and average power P̄ [n] = (1− βn)P̄ [n− 1] + βnP [n],

together with the multipliers λ[n] and µ[n] with initializations λ[0] = P̄ , gλ[0] = 0,

µ[0] = φ/(φT φ), and gµ[0] = 0 for an SNR of 15 dB and for proportionality

constants φ = [0.1, 0.9]T (the results are similar for other φ values). We can see

that the iterates converge to their offline-equivalent optimal values, which are shown

by the dotted lines.

5.5 Conclusion

In this chapter, I proposed optimal algorithms to maximize the ergodic sum rates

subject to proportional rate constraints. The important contributions of this chapter

are:
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using a perfect CDI assumption is shown in dotted lines.
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• Optimal continuous sum-rate maximization with proportional continuous rate

constraints assuming perfect CSI and CDI: We derived the optimal algorithm

for OFDMA resource allocation for ergodic sum-rate maximization subject

to ergodic rate proportionality constraints. It is shown that the proportional

rates can be enforced by a weighted-sum rate formulation using optimally

chosen weights, which are themselves the dual-optimal geometric multipliers.

Therefore, we can use similar algorithms developed in Chapter 3, in addition

to a subgradient search technique to determine the optimal weights.

• Extensions to proportional discrete rate cases and extension to assuming par-

tial CSI: Since the proportional rate constraints can be enforced using a

weighted-sum rate formulation, the extensions to discrete rates and/or par-

tial CSI cases can be performed using the techniques developed in Section 3.3

and Chapter 4.

• Adaptive resource allocation for proportional rate constraints assuming perfect

CSI but without CDI: We developed an adaptive algorithm that updates the

geometric multipliers over time using a subgradient search and stochastic sub-

gradient averaging. It is based on general stochastic approximation principles,

and is shown to converge to the optimal solution w.p.1.

• Adaptive resource allocation for weighted-sum rate formulations: The adaptive

algorithm developed is shown to be general enough to encompass all of the

previous formulations considered by using the subgradient iterations across

time for the geometric multiplier that enforces the average power constraint.

Thus, we have developed a truly adaptive resource allocation algorithm that

requires only linear complexity per symbol without iterations, and can be con-

sidered the algorithms with the lowest complexity while assuring asymptotic

optimality in OFDMA.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, I proposed a common framework for resource allocation in

M -user and K-subcarrier OFDMA systems with O(MK) complexity that achieve

negligible optimality gaps in simulations based on realistic parameters. The main

assumptions of the dissertation are:

1. Stationarity and ergodicity of channel gains

2. Statistical independence of channel gains across users

3. Absence of inter-cell interference

4. MAC layer provides the active user set and the user priorities in the form of

weights or proportionality constants

The framework is based on dual optimization techniques, and was shown to apply

to a wide variety of OFDMA resource allocation problem formulations, including:

1. Ergodic/instantaneous weighted-sum continuous/discrete rate maximization

with perfect CSI and CDI (Ch. 3)

123



2. Ergodic/instantaneous weighted-sum continuous/discrete rate maximization

with partial CSI and CDI (Ch. 4)

3. Sum-rate maximization with proportional rate constraints with or without

CDI (Ch. 5)

Table 6.1 repeats Table 2.1 in Sec. 2.2 which compares the related literature, but this

time together with the proposed algorithms in this dissertation. Observe that we

are able to improve on the state-of-the-art by considering formulations with ergodic

and discrete rates, by considering solutions that are of linear complexity yet achieve

negligible optimality gaps in simulation, and by considering partial CSI cases even

in the absence of CDI.

The primary reason dual methods work well in OFDMA problems is due

to the problem structure, i.e. there are typically a lot more subcarriers K than

users M . In most OFDMA/multicarrier resource allocation problems, the objective

function is separable across the K subcarriers, and the number of constraints are

in the order of the number of users M . This makes dual optimization techniques

an ideal approach to solving them, since the duality gap is typically quite small in

these types of problems, as shown in Sec. 3.2.8. Furthermore, we also saw that

the solution to the dual problem involves very simple closed-form power, subcarrier,

and rate allocation functions for both continuous and discrete rates, thus further

enhancing the attractiveness of using a dual approach.

Although the dual approach is very useful and widely applicable, there are

some useful problem formulations in OFDMA wherein the separability of the ob-

jective function across subcarriers do not hold, and thus limits the applicability of

the dual approach. An example of this is the maximization of the utility function of

the rates, wherein the utility function is something other than linear (see e.g. [55]).

Fortunately, using the stochastic approximation methods for adaptive resource allo-

cation, it has been shown in [55] that as long as the chosen step size is small, a first
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Table 6.1: Comparison of proposed algorithms with previous work

Method
Criteria Formulation Solution Assumption

(1) (2) (3) (4) (5) (6) (7)
Max-min rate[41] No No No No No No Yes
Sum rate [37][38] Yes No No Yes No No No
Proportional rate[45][46] No No Yes No No No Yes
Max-utility [54][55] aNo Yes Yes No No No Yes
Weighted rate[43][44] No No Yes bYes cYes No Yes
Perf. CSI, Cont. Rate (Sec. 3.2) Yes No Yes Yes Yes No No
Perf. CSI, Disc. Rate (Sec. 3.3) Yes Yes Yes Yes Yes No No
Imperf. CSI, Cont. Rate (Sec. 4.3) No No Yes Yes Yes Yes No
Imperf. CSI, Disc. Rate (Sec. 4.4) No Yes Yes Yes Yes Yes No
Adaptive, Imperf. CSI

Yes Yes Yes Yes Yes Yes Yes
Disc. Rate (Sec. 5.3)

a Considered some form of temporal diversity by maximizing an exponentially windowed running average
of the rate

b Independently developed a similar instantaneous continuous rate maximization algorithm
c Only for instantaneous continuous rate case, but was not shown in their papers

Criteria

(1) Ergodic rates: The optimization problem is posed such that the expected value of
the rate is being maximized instead of instantaneous rate, which allows the temporal
dimension to be exploited when assuming ergodicity of channel gains.

(2) Discrete rates: The practical transmission scheme of only allowing a discrete set of
possible data rates is considered rather than just the theoretical continuous rate.

(3) User prioritization: The problem formulation allows setting varying priorities among
users to ensure fairness in the system.

(4) Practically optimal: The algorithm is shown in simulations using realistic parameters
to have negligible optimality gaps.

(5) Linear complexity: The algorithm can be performed with complexity that is just
linear in the number of users and subcarriers.

(6) Imperfect CSI: The algorithm assumes the more realistic scenario of the presence of
errors in the available channel state information.

(7) Does not require CDI: The algorithm does not assume knowledge of the probability
distribution function of the channel gains, which is difficult to obtain in practice.
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order Taylor expansion of the utility function results in an equivalent weighted-sum

ergodic rate formulation, thus our proposed adaptive methods can also be used in

this context.

6.2 Future Work

In this chapter, we outline several interesting research directions that this disserta-

tion can be extended to.

6.2.1 Other Formulations

Uplink OFDMA

In uplink OFDMA, the single average power constraint is replaced with per-user

power constraints. In this case, the separability of the objective function across the

subcarriers is still possible. This is done by using a vector of geometric multipliers

λ = [λ1, . . . , λM ]T , where each multiplier enforces the per-user power constraint
∑
k∈K

pm,k ≤ P̄m, ∀m ∈M, resulting in the new dual objective

Θ(λ) =
∑

m∈M
λmP̄m +

∑

k∈K
max
m∈M

max
pm,k≥0

Eγm,k
{wmRm,k (pm,kγm,k)} − λmpm,k (6.1)

This is essentially identical to our downlink dual problems, and have the same dual

optimal solutions. The main difference is that we are now searching for a vector

of geometric multipliers, instead of just a single one, similar to the case in Ch. 5.

Thus, we can use the subgradient search technique developed in Sec. 5.2.2, and the

resulting asymptotic complexity is still O(MK) per iteration, although it will take

longer to attain convergence.
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Non-real-time traffic

In non-real-time traffic, e.g. file transfers, minimum rate constraints typically need

to be enforced [59]. Suppose we also wish to maximize a weighted-sum rate, and

assuming that appropriate admission control is performed such that the minimum

rates are feasible (i.e. it is within the capacity region), then a similar vector of

multipliers ρ = [ρ1, . . . , ρM ]T can be used to enforce the minimum rate constraints,

resulting in the dual objective

Θ(λ,ρ) = λP̄ +
∑

k∈K
max
m∈M

max
pm,k≥0

Eγm,k
{(wm + ρm)Rm,k (pm,kγm,k)} − λpm,k (6.2)

which is essentially in the form of the dual objective for our proportional rates case

(5.6), except for the fact that the equivalent “user-weight” is now wm + ρm. The

optimal ρ∗ can also be searched using the subgradient technique.

In these aforementioned formulations, continuous or discrete rates, perfect or

predicted CSI, perfect or no CDI cases are all readily available given our developed

algorithms in this dissertation. One caveat, though, is that the duality gaps in these

cases will be higher, since the gaps scale with the number of dualized constraints

as shown in Sec. 3.2.8. However, as long as K À M , the solutions should still be

near-optimal.

Power or BER Minimization

Although this dissertation focused on the capacity maximization problem, the de-

veloped framework is extendable to power/BER minimization. Since the average

power and average BER are similarly separable objectives across the subcarriers,

a similar dual optimization approach can be used to find the power, subcarrier,

and/or rate allocations. Note that the instantaneous minimum weighted-sum power

problem in OFDMA is solved using dual methods in [43].
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Non-homogenous traffic types and services

Another interesting venue of future investigation is when various traffic types and

services all compete for the limited amount of resources. In these scenarios, multiple

objectives need to be met, e.g. maximizing the throughput, minimizing the delay,

or minimizing the transmit power. Although Pareto optimality is the desirable

optimality criterion in multi-objective optimization, simplified formulations that

involve maximizing the sum of several utility functions have been shown to perform

well in practice for the TDMA/FDMA cases in [59]. The extension to the OFDMA

scenario will be an interesting avenue for further investigation.

Outage Capacity

This dissertation focused on the ergodic capacity maximization problem. In some

cases, we would like to maximize the outage capacity instead. These problems

involve probabilistic constraints instead of the ergodic constraints, and are typically

harder to solve. It is interesting to study if the dual optimization approach can still

be used in these types of problems.

6.2.2 MAC-PHY Cross-layer Scheduling

We have focused primarily on the physical layer transmit optimization problem, and

simply assumed that the upper MAC layer is responsible for performing admission

and congestion control (the number of active users M is given to us), and user

prioritization (by setting the user weights or proportionality constants). We have

provided the necessary tools in the physical layer for transmit optimization, but it

is interesting to see the overall performance at the network level for various traffic

types and services, and including the effect of finite queue lengths.
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6.2.3 MIMO-OFDMA

This dissertation has focused on OFDMA systems with single transmit and receive

antennas. Extending this to systems with multiple transmit and receive antennas,

i.e. MIMO-OFDMA [99], is certainly an interesting problem.

The algorithms proposed in this dissertation can be extended in straightfor-

ward manner when transmit beamforming with maximal ratio combining is used,

since all this changes is the pdf of the CNR per subcarrier. In the case of using “spa-

tial waterfilling”, however, requires a slight extension of the proposed algorithms.

In narrowband Nt-transmit and Nr-receive antenna MIMO transmission assuming

perfect CSI, it is well-known that the optimal transmit covariance matrix is the sum

of appropriately weighted outer products of the right singular vectors of the Nr×Nt

channel matrix [99], where the weights are found using spatial waterfilling across

the channel eigenmodes. In MIMO-OFDMA, we can model the frequency-selective

channel by a separate Nr×Nt channel matrix per subcarrier. By performing an sin-

gular value decomposition (SVD) per-subcarrier, we would then have min(Nr, Nt)

(assuming a full-rank channel matrix) “spatial gains” per subcarrier. Thus, instead

of the K CNR values in the SISO-OFDMA case, we have K min(Nr, Nt) CNR values,

and we can reuse the dual optimization methods developed for the SISO-OFDMA

case, since we can similarly use “multi-level waterfilling” power allocation across all

spatial gains of all subcarriers, and similarly assign the subcarrier to the user that

maximizes the marginal dual, which in this case is computed as the MIMO capacity

per-subcarrier. Using other MIMO transmission methods, e.g. space-time coding

and spatial multiplexing, can also be solved using the dual optimization framework,

as long as the objective function is separable across the subcarriers. Developing

efficient algorithms for these cases are interesting avenues for further research.
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6.2.4 Multi-cell OFDMA

In this dissertation, we focused on the single-cell allocation scenario, and ignored

the effect of inter-cell interference. In practical networks, inter-cell interference

significantly affect the performance, and thus should be properly controlled, avoided,

and/or canceled. Although centralized control may not be feasible from a practical

perspective, a theoretical study of the capacity region assuming that all resource

allocation across cells can be performed centrally is interesting. In this case, the dual

optimization framework is still applicable, however, the power allocation procedure

would involve a non-convex per-user and per-subcarrier non-linear program for the

continuous rate case, or exhaustive search of possible bit allocations in the discrete

rate case.

A more interesting research study would be in the semi-coordinated case,

wherein a small amount of information, e.g. the loading of the cell or the total inter-

ference power experienced by a neighboring cell, is exchanged across base stations.

In this case, we can use the algorithms proposed in this dissertation, with the ad-

dition of a “penalty” term that is a function of the information that is exchanged,

such that the marginal dual is decreased for problematic users, e.g. users that are in

the cell-edge. Game-theoretic algorithms and analysis and low complexity adaptive

algorithms using stochastic approximation can be effectively used in these problems.

6.2.5 Multi-hop OFDMA

An interesting method to increase the coverage of cellular networks is the concept of

multi-hop radio, wherein relay nodes are scattered around strategic areas in a cell,

and are used to improve the signal reliability of a subscriber node by “relaying” the

data to/from the base-station. In these multi-hop networks, an additional degree of

freedom, namely, link selection, is introduced as a means of improving the overall

system capacity. From a resource allocation perspective, this means that for each
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subcarrier, in addition to deciding which user can transmit, we also need to decide

which link to transmit over. There are also several important system design issues,

e.g. what type of frequency reuse method and what type of relaying to use, which

makes for interesting future investigations.
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Appendix A

Derivation of the inverse

function (3.10) of gm,k (3.8)

Since gm,k for γm,k ≥ γ0,m is monotonically increasing and non-negative, there exists

a unique inverse function. After some algebraic manipulation, we have

−γ0,m(λ)
γm,k

e

�
− γ0,m(λ)

γm,k

�
= −e

�
−gm,k

ln 2
wm

−1
�

(A.1)

Observe that this is in the form of the Lambert-W function W (x) [68], which is the

solution to W (x)e(W (x)) = x. Thus, we can write

W

(
−e

�
−gm,k

ln 2
wm

−1
�)

= −γ0,m(λ)
γm,k

(A.2)

which when solved for γm,k gives us (3.10).
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Appendix B

Proof of Prop. 3.2.1

From the assumption of constraint tightness, we have

P̄ =
∑

k∈K

[
wm∗

k

λ∗inst ln 2
− 1

γm∗
k,k

]+

≥
∑

k∈K
min

m

[
wm

λ∗inst ln 2
− 1

γm,k

]+

≥
∑

k∈K

(
min

m
wm

λ∗inst ln 2
−max

m

1
γm,k

)

= K
min

m
wm

λ∗inst ln 2
−

∑

k∈K
max

m

1
γm,k

λ∗inst ≥
ln 2

K min
m

wm

(
P̄ +

∑

k∈K
max

m

1
γm,k

)

(B.1)
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giving us the left inequality in (3.20). Also,

P̄ =
∑

k∈K

[
wm∗

k

λ∗inst ln 2
− 1

γm∗
k,k

]+

≤
∑

k∈K
max

m

[
wm

λ∗inst ln 2
− 1

γm,k

]+

≤ K

λ∗inst ln 2
max

m
wm

λ∗inst ≤
K

P̄ ln 2
max

m
wm

(B.2)

giving us the right inequality in (3.20).

134



Appendix C

Derivation of (3.35)

Observe that (4.36) implies

wmrl∗m,k
−

ληl∗m,k

γm,k
≥ wmrl − ληl

γm,k
, ∀l ∈ L \ l∗m,k (C.1)

which after some algebraic manipulation can also be written as

rl − rl∗m,k

ηl − ηl∗m,k

≤ λ

wmγm,k
<

rl∗m,k
− rl

ηl∗m,k
− ηl

, ∀l > l∗m,k, ∀l < l∗m,k

⇔ max
l>l∗m,k

rl − rl∗m,k

ηl − ηl∗m,k

≤ λ

wmγm,k
< min

l<l∗m,k

rl∗m,k
− rl

ηl∗m,k
− ηl

(C.2)

Since the slope ∆r/∆η is non-increasing for a concave function, we arrive at (3.35).
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Appendix D

Derivation of the cdf (3.39) and

pdf (3.40) of gd
m,k (3.38)

First, we use (3.35) to get

P (l∗m,k = l) = P

(
rl+1 − rl

ηl+1 − ηl
≤ λ

wmγm,k
<

rl − rl−1

ηl − ηl−1

)

= P (sl < γm,k ≤ sl+1)

(D.1)

where sl = λ(ηl−ηl−1)
wm(rl−rl−1) . Then, using the law of total probability [69], we have

Fgd
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(gd
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(
max
l′∈L

wmrl′ − λ
ηl′

γm,k
≤ gd

m,k

∣∣∣∣ l∗m,k = l

)

=
∑

l∈L
P (l∗m,k = l)P

(
wmrl − λ

ηl

γm,k
≤ gd

m,k

∣∣∣∣ sl < γm,k ≤ sl+1

)
(D.2)

Note that since λ ηl
γm,k

is non-negative, then if wmrl − gd
m,k is negative,

P

(
wmrl − λ

ηl

γm,k
≤ gd

m,k

)
= 1.
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Hence, we can write

P

(
wmrl − λ

ηl

γm,k
≤ gd

m,k
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γm,k ≤ ληl
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where we can safely define x
0 = ∞, ∀x > 0. However, for l = 0, we have rl = 0 and

ηl = 0, and P
(
wmrl − λ ηl

γm,k
≤ gd
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)
is always one since gd

m,k ≥ 0. We can now

write (D.2) as
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Finally, the pdf (3.40) is the derivative of (D.2) with respect to gd
m,k.
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Appendix E

Derivation of (4.30)

Equating (4.29) to BER and after some algebraic manipulation, we have

κm,k

b̃
(l)
m,kpm,k + 1

e

 
κm,k

b̃
(l)
m,k

pm,k+1

!
=

κm,k

ã
(l)
m,k

BER (E.1)

Observe that this is in the form of the Lambert-W function W (x) [68], which is the

solution to W (x)e(W (x)) = x. Thus, we can write

W


κm,k

ã
(l)
m,k

BER


 =

κm,k

b̃
(l)
m,kpm,k + 1

(E.2)

which when solved for pm,k gives us (4.30).
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