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RATIONAL POINTS ON DEL PEZZO SURFACES OF DEGREE FOUR

VLADIMIR MITANKIN AND CECÍLIA SALGADO

Abstract. We study the distribution of the Brauer group and the frequency of the

Brauer–Manin obstruction to the Hasse principle and weak approximation in a family of

smooth del Pezzo surfaces of degree four over the rationals. We also study the geometry

and arithmetic of a genus one fibration with two reducible fibres for which a Brauer

element is vertical.
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1. Introduction

A del Pezzo surface of degree four X over Q is a smooth projective surface in P4 given

by the complete intersection of two quadrics defined over Q. Such surfaces have been the

object of study of several papers throughout the last half century. A proeminent reason for

that is the fact that they provide the simplest example of failure of the Hasse Principle for

surfaces. Indeed, the simplest class of surfaces, namely those with Kodaira dimension −∞,

is formed by rational and ruled surfaces. The arithmetic of the latter is determined by
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2 VLADIMIR MITANKIN AND CECÍLIA SALGADO

that of del Pezzo and conic bundle surfaces. Del Pezzo surfaces see their level of arithmetic

and geometric complexity increase inversely to its degree and those of degree at least 5

admiting a rational point are always Q-rational. Hence quartic del Pezzo surfaces form the

first class for which interesting arithmetic phenomena, as for instance failures of the Hasse

Principle, can occur. They are the object of study of this paper.

A conjecture of Colliot-Thélène and Sansuc [CTS80] predicts that all such failures are

explained by the Brauer–Manin obstruction. This is a cohomological obstruction developed

by Manin [Man74] which exploits the fact that for a smooth, geometrically irreducible

variety X over Q there is pairing between the set of adèles X(AQ) and the Brauer group

BrX = H2
ét(X,Gm) of X. Manin showed that the set X(Q) of rational points on X lies

inside the left kernel X(AQ)
BrX of this paring. A Brauer–Manin obstruction to the Hasse

principle is then present if X(AQ) 6= ∅ but X(AQ)
BrX = ∅. Such an obstruction may occur

only if BrX/BrQ is non-trivial.

Colliot-Thélène and Sansuc’s conjecture is established, for a general del Pezzo surface

of degree four, under Schinzel’s hypothesis and the finiteness of Tate–Shafarevich groups

of elliptic curves by Wittenberg [Wit07, Thm. 3.36.] when BrX = BrQ and by Várilly-

Alvarado and Viray [VAV14, Thm. 1.5.] when X is of BSD type. The latter corresponds

to the complete intersection in P4 of the following two quadrics

cx3x4 = x2
2 − εx2

0,

(x3 + x4)(ax3 + bx4) = x2
2 − εx2

1,

where a, b, c ∈ Q∗ and ε ∈ Q \ Q∗2 with (a − b)(a2 + b2 + c2 − ab − ac − bc) 6= 0 and

ab, ε(a2 + b2 + c2 − ab− ac− bc) /∈ Q∗2.

Quartic del Pezzo surfaces of BSD type with an adelic point always have BrX/BrQ ≃
Z/2Z . In this setting, Jahnel and Schindler [JS17] have shown that all counter-examples to

the Hasse principle form a Zariski dense set in the moduli scheme of all del Pezzo surfaces

of degree four.

In this paper we consider a different family of del Pezzo surfaces of degree four given as

follows. Let a = (a0, . . . , a4) ∈ Z5
prim. Then define Xa ⊂ P4

Q by the complete intersection

x0x1 − x2x3 = 0,

a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0.

(1.1)

We can assume that a0, . . . , a4 have no factor in common without any loss of generality,

otherwise divide the second equation through that factor. Such Xa are smooth if and only

if (a0a1 − a2a3)
∏4

i=0 ai 6= 0. Here we are interested in the family of all smooth quartic del
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Pezzo surfaces given by (1.1), that is

F = {Xa as in (1.1) : a ∈ Z5
prim and (a0a1 − a2a3)

4
∏

i=0

ai 6= 0}.

There are numerous reasons behind our choice of this family. Firstly, different from the

BSD type family, the Brauer group does witness a variation as a runs through Z5 which

makes interesting the problem of studying the frequency of each possible Brauer group.

Secondly, surfaces in F admit two distinct conic bundle structures, making their geometry

and hence their arithmetic considerably more tractable. Moreover, for such surfaces the

conjecture of Colliot-Thélène and Sansuc is known to hold unconditionally [CT90], [Sal86].

Finally, our surfaces can be thought of as an analogue of diagonal cubic surfaces as they

also satisfy the interesting equivalence of Q-rationality and trivial Brauer group. This is

shown in Lemma 8.3 which is parallel to [CTKS87, Lem. 1.1].

We order Xa ∈ F with respect to the naive height function |a| = max0≤i≤4 |ai|. Recall

that Xa(AQ) =
∏

p≤∞Xa(Qp). Our first result shows that a positive proportion of Xa ∈ F
have points everywhere locally.

Theorem 1.1. We have

lim
B→∞

# {Xa ∈ F : |a| ≤ B and Xa(AQ) 6= ∅}
B5

= σ∞
∏

p

σp > 0,

where σp, σ∞ are local densities whose values are given in Proposition 3.2.

A first natural step towards understanding the frequency of failures of the Hasse principle

for Xa ∈ F is to understand how often BrXa 6≃ BrQ. It is well-understood for quartic del

Pezzo surfaces that when non-trivial this quotient is either Z/2Z or (Z/2Z)2 [Man74]. For

any real B ≥ 1 let

N#A(B) = #{Xa ∈ F : |a| ≤ B,Xa(AQ) 6= ∅ and BrXa/BrQ ≃ A},

where A is ether the trivial group, Z/2Z or (Z/2Z)2.

Our next result shows that BrXa/BrQ is almost always of order two.
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Theorem 1.2. We have

B3 ≪ N1(B) ≪ B3(logB)4,

N2(B) ∼
(

σ∞
∏

p

σp

)

B5,

N4(B) =
60

π2
B3 +O(B5/2(logB)2),

as B goes to infinity.

As we saw in Theorem 1.2 there are infinitely many Xa with BrXa/BrQ of order

four. However, Remark 2.3 shows that such surfaces never give rise to a Brauer–Manin

obstruction and thus all failures of the Hasse principle in F arise when BrXa/BrQ = Z/2Z.

Our next result provides an upper bound for the number of such failures and shows that

they appear quite rarely in the family F .

Theorem 1.3. We have

#{Xa ∈ F : |a| ≤ B,Xa(AQ) 6= ∅ but Xa(Q) = ∅} ≪ B9/2,

as B goes to infinity.

Theorem 1.3 together with Theorem 1.1 give us a better understanding of how often

varieties in families have a rational point. This question has raised a significant interest

lately with studies by numerous authors [Bha14], [BBL16], [BB14] [Lou18], [LS16], [Ser90],

[Sof16]. An answer to it in complete generality seems out of reach with current techniques

which makes results as in Theorem 1.3 especially valuable.

We say that Xa satisfies weak approximation if the image of Xa(Q) in Xa(A) is dense.

The proof of Theorem 1.3 yields that most of the surfaces in F satisfy the Hasse principle

but yet fail weak approximation.

Theorem 1.4. We have

#{Xa ∈ F : |a| ≤ B,Xa satisfies weak approximation} ≪ B9/2,

as B goes to infinity.

It follows from Theorem 1.2 that the quantity in Theorem 1.4 is ≫ B3, since rational

surfaces satisfy weak approximation. We would like to point out there are general methods

for proving results as in Theorems 1.3 and 1.4 developed in [BBL16] and [Bri18]. However,

these methods would yield a bound of the shape O(B5/(logB)). While our idea closely
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resembles the one used in [BBL16] and [Bri18], the explicit description of the Brauer group

elements here allows us to get a power saving in the upper bounds obtained in Theorems 1.3

and 1.4. Thus Theorem 1.3 and 1.4 do not follow from the general tools.

Our second aim is to take advantage of the two conic bundle structures in the surfaces

studied in the first part to give a throughout description of a genus one fibration with two

reducible fibres for which a Brauer element is vertical. Such a fibration is known to exist

thanks to [VAV14]. More precisely, we show that the two reducible fibres are of type I4

and that the field of definition of the Mordell–Weil group of the associated elliptic surface

depends on the order of the Brauer group.

This paper is organised as follows. In Section 2 we describe explicitly the two conic

bundle structures on Xa and use them to compute BrXa/BrQ. Section 3 is dedicated

to the study of the local points and the local densities σp and σ∞. In Section 4 we prove

Theorem 1.1. Sections 5 and 6 are dedicated to the proof of Theorem 1.2. The proofs of

Theorems 1.3 and 1.4 are contained in Section 7. The final two sections are dedicated to

the second aim described in the previous paragraph. Section 8 is devoted to the arithmetic

of the lines on Xa, giving the tools to, in Section 9 describe a genus one fibration with

exactly two reducible fibres for which a Brauer element is vertical.

Notation. We fix once and for all d = a0a1 − a2a3. For a field k and a variety X over k

we use k(X) for the function field of X.

Acknowledgements. We would like to thank Tim Browning for many useful comments

and for his suggestion on how to improve the upper bound in Proposition 6.1. We also

thank Martin Bright, Dan Loughran, Yuri Manin and Bianca Viray for many useful dis-

cussions and advices. We thank Pieter Moree for a helpful comment on the analytic part

of the paper. We are grateful to the Max Planck Institute for Mathematics in Bonn and

the Federal University of Rio de Janeiro for their hospitality while working on this arti-

cle. Cecília Salgado was partially supported by FAPERJ grant E-26/203.205/2016, the

Serrapilheira Institute (grant Serra-1709-17759), Cnpq grant PQ2 310070/2017-1 and the

Capes-Humboldt program.

2. Description of the Brauer group

This section is dedicated to the study of BrXa/BrQ. We shall give a list of explicit

representatives in BrXa of the elements generating BrXa/BrQ which will later allow us

to obtain the upper bounds in Theorems 1.3 and 1.4. This is done via a classical approach

for computing the Brauer group of a conic bundle surface. We begin by first embedding
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Xa in the scroll F(1, 1, 0) following [Rei97, §2]. A short summary of this is contained in

[FLS18, §2]. Our method closely follows [LM20, §3].

Recall that Xa was given by (1.1). As explained in [Bro09, Ch. 2] if one of the quadrics

defining Xa is of the shape x0x1−x2x3 = 0, then there is a pair of morphisms π1 : Xa → P1

and π2 : Xa → P1 defined over Q each of which endows Xa with a different conic bundle

structure. This can be seen in the following way. The map

F(1, 1, 0) → P4,

(s, t; x, y, z) 7→ (sx : ty : tx : sy : z)

defines an isomorphism between Xa and

(a0s
2 + a2t

2)x2 + (a3s
2 + a1t

2)y2 + a4z
2 = 0 ⊂ F(1, 1, 0). (2.1)

One can view F(1, 1, 0) = P(OP1(1)⊕OP1(1)⊕OP1) as ((A2 \ 0)× (A3 \ 0))/G2
m, where the

action of G2
m on (A2 \ 0)× (A3 \ 0) is described by

(λ, µ) · (s, t; x, y, z) = (λs, λt;
µ

λ
x,

µ

λ
y, µz).

Then π1 : Xa → P1 is obtained by projecting to (s, t). It is now clear that each fibre of π1

is a conic and thus Xa is a conic bundle over the projective line.

Similarly, one obtains π2 : Xa → P1 via the map

F(1, 1, 0) → P4,

(s, t; x, y, z) 7→ (tx : sy : ty : sx : z).

It gives a second conic bundle structure on Xa as shown by the equation

Xa : (a0t
2 + a3s

2)x2 + (a1s
2 + a2t

2)y2 + a4z
2 = 0 ⊂ F(1, 1, 0). (2.2)

It follows from (2.1) that the conic associated to the generic fibre of π1 takes the shape

−a4(a0s
2 + a2t

2)x2 − a4(a3s
2 + a1t

2)y2 − z2 = 0. There is an associated to it quaternion

algebra Q in the Brauer group of the function field of P1 given by

Q = (−a4(a0(s/t)
2 + a2),−a4(a3(s/t)

2 + a1)). (2.3)

The quaternion algebra Q has a trivial residue at any closed point of P1 corresponding to

a non-singular fibre of π1. Its residues over the singular fibres of π1 are described in the

next lemma.

Lemma 2.1. The following holds.

(i) The map π1 : Xa → P1 has 4 singular geometric fibres.
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(ii) The bad fibres lie over the zero locus of

∆(s, t) = (a0s
2 + a2t

2)(a3s
2 + a1t

2).

(iii) Assume that −a0a2,−a1a3 /∈ Q∗2. Let T ′, T ′′ be the closed points corresponding

the zero locus of a0s
2 + a2t

2 and a3s
2 + a1t

2, respectively. They have residue fields

Q(T ′) = Q(
√−a0a2) and Q(T ′′) = Q(

√−a1a3). The fibres over T ′, T ′′ have the

following residues:

ResT ′(Q) = −a0a4d ∈ Q(T ′)∗/Q(T ′)∗2,

ResT ′′(Q) = −a1a4d ∈ Q(T ′′)∗/Q(T ′′)∗2.

Proof. Follows immediately from the explicit equation (2.1) and a simple calculation. �

We continue with the structure of BrXa/BrQ given in the next proposition.

Proposition 2.2. Let (∗) denote the condition that −a0a4d /∈ Q(
√−a0a2)

∗2, −a1a4d /∈
Q(

√−a1a3)
∗2 and that one of −a0a2, −a1a3 or a0a1 is not in Q∗2. Then we have

BrXa/BrQ =















(Z/2Z)2 if a0a1, a2a3,−a0a2 ∈ Q∗2 and − a0a4d 6∈ Q∗2,

Z/2Z if (∗),
{id} if − a0a4d ∈ Q(

√−a0a2)
∗2 or − a1a4d ∈ Q(

√−a1a3)
∗2.

Proof. Let T = s/t be the variable on the base P1 of the conic bundle π1 : Xa → P1.

Let T ′, T ′′ be the closed points of P1 corresponding to the zero loci of a0s
2 + a2t

2 and

a3s
2 + a1t

2, respectively. Recall that Q ∈ BrQ(T ) given in (2.3) is the quaternion algebra

corresponding to the generic fibre of π1. Let α ∈ BrXa. Then the image of α in the Brauer

group BrQ(Xa) of the function field of Xa is the pull-back π∗
1A of some A ∈ BrQ(T ) by

[CTSD94, Thm. 2.2.1]. This is illustrated in the following commutative diagram

0 BrQ BrQ(T )
⊕

H1(Q[T ]/(P (T )),Q/Z)

0 BrXa BrQ(Xa)
⊕

H1(Q(Y ),Q/Z),

π∗

1
π∗

1
(2.4)

where the top sum is taken over all irreducible polynomials P (T ) ∈ Q[T ] and the bottom

sum is taken over all integral subvarieties Y of Xa of codimension 1.

Assume first that −a0a4d ∈ Q(
√−a0a2)

∗2. By Lemma 2.1 Q has a trivial residue at T ′.

Moreover, [CTSD94, Thm. 2.2.1] and Remark 2.2.3 after it imply that the residue ResT ′(A)

of A at T ′ is trivial and that ResT ′′(A) is either trivial or equal to ResT ′′(Q). In both cases
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[CTSD94, Thm. 2.2.1] implies that BrXa/BrQ is trivial. Similarly, BrXa/BrQ is trivial

if −a1a4d ∈ Q(
√−a1a3)

∗2.

Assume now that −a0a4d /∈ Q(
√−a0a2)

∗2 and that −a1a4d /∈ Q(
√−a1a3)

∗2. If −a0a2,

−a1a3 are not squares of Q∗, then T ′ and T ′′ are both degree two points. By [CTSD94,

Thm. 2.2.1] there are only two possibilities for α. Let α1 = π∗
1A1 and α2 = π∗

1A2 realise

them, that is

• ResT ′(A1) = −a0a4d and ResT ′′(A1) = 1,

• ResT ′(A2) = 1 and ResT ′′(A2) = −a1a4d.

By Faddeev’s reciprocity law which is the top line of (2.4) we have A1 + A2 = Q modulo

elements of BrQ. Thus by [CTSD94, Thm. 2.2.1] we have BrXa/BrQ ≃ Z/2Z generated

by α1. A similar analysis shows the claim in the remaining cases covered by (∗).
Assume now that a0a1, a2a3,−a0a2 ∈ Q∗2 and −a0a4d 6∈ Q∗2. Then T ′ = {T ′

1, T
′
2} and

T ′′ = {T ′′
1 , T

′′
2 } consist of two degree one points and Q has a non-trivial residue equal

to −a0a4d at each of these degree one points. By [CTSD94, Thm. 2.2.1] there are six

possibilities αi = π∗
1Ai for α which we list below.

• ResT ′

1
(A1) = ResT ′

2
(A1) = −a0a4d and ResT ′′

1
(A1) = ResT ′′

2
(A1) = 1,

• ResT ′′

1
(A2) = ResT ′′

2
(A2) = −a0a4d and ResT ′

1
(A2) = ResT ′

2
(A2) = 1,

• ResT ′

1
(A3) = ResT ′′

1
(A3) = −a0a4d and ResT ′

2
(A3) = ResT ′′

2
(A3) = 1,

• ResT ′

2
(A4) = ResT ′′

2
(A4) = −a0a4d and ResT ′

1
(A4) = ResT ′′

1
(A4) = 1,

• ResT ′

1
(A5) = ResT ′′

2
(A5) = −a0a4d and ResT ′′

1
(A5) = ResT ′

2
(A5) = 1,

• ResT ′

2
(A6) = ResT ′′

1
(A6) = −a0a4d and ResT ′

1
(A6) = ResT ′′

2
(A6) = 1.

Again on the level of residues and by Faddeev’s reciprocity law we conclude that neither

of the αi is trivial in BrXa/BrQ and that we have the relations

A1 + A2 = A3 + A4 = A5 + A6 = Q mod BrQ,

A1 + A3 = A6 mod BrQ.

Thus BrXa/BrQ ≃ (Z/2Z)2 is generated by α1, α3. This completes the proof. �

Remark 2.3. Note that in the case when −a0a2 ∈ Q∗2 there is an obvious rational point

(s, t; x, y, z) = (1 :
√

−a0/a2; 1 : 0 : 0) on Xa. Thus there is no Brauer–Manin obstruction

to the existence of rational points on Xa if BrXa/BrQ is of order four.

2.1. Generators. In order to study the Brauer–Manin obstruction to the Hasse principle

or to weak approximation we can assume that Xa has non-trivial Brauer group, that is
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−a1a4d /∈ Q(
√−a1a3)

∗2,−a0a4d /∈ Q(
√−a0a2)

∗2. Moreover, by Theorem 1.2 the num-

ber of surfaces with Brauer group of order four is negligible compared to the bounds in

Theorems 1.3 and 1.4 and thus we can further assume that BrXa/BrQ ≃ Z/2Z.

We continue with an explicit description of a generator of BrXa/BrQ. Let A ∈ BrQ(P1)

be given by

A = (a0(s/t)
2 + a2,−a0a4d).

It is clear that the image α = π∗
1A ∈ BrQ(Xa) of A is unramified along each irreducible

divisor of Xa except possibly on D = {a0(s/t)2 + a2 = 0} ⊂ Xa. Along D one has

−a0a4d = (a0a4z/ty)
2.

Thus ResQ(D) α = −a0a4d ∈ Q(D)∗/Q(D)∗2 is trivial which implies that α is unramified

on D. Alternatively, one can check that Q(D) = Q(
√−a0a2,

√
−a0a4d)(T ) where −a0a4d

is clearly a square. Since Xa is smooth we can apply Grothendieck’s purity theorem

(the bottom line of (2.4)) to conclude that α lies inside the image of BrXa → BrQ(Xa).

Moreover, it follows by Proposition 2.2 that BrXa/BrQ ≃ Z/2Z and that α is a non-trivial

element there.

3. Local points

3.1. Local solubility. In this subsection we are concerned with the existence of local

points on Xa given in (1.1). To do so we first define an equivalence relation on Z5
≥0 in the

spirit of [BBL16, §2]. We say that

(α0, α1, α2, α3, α4) ∼ (β0, β1, β2, β3, β4)

if and only if at least one of the following holds.

• (α0, α1, α2, α3, α4) = (β1, β0, β2, β3, β4),

• (α0, α1, α2, α3, α4) = (β2, β3, β0, β1, β4),

• (α0, α1, α2, α3) = (β0, β1, β2, β3, ) and α4 ≡ β4 mod 2.

• There are k, ℓ,m, n ∈ Z satisfying k + ℓ = m+ n such that

(α0, α1, α2, α3, α4) = (β0 + 2k, β1 + 2ℓ, β2 + 2m, β3 + 2n, β4).

• There is some k ∈ Z such that

(α0, α1, α2, α3, α4) = (β0 + k, β1 + k, β2 + k, β3 + k, β4 + k).
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The above equivalence relation has the property that for each field K containing Q and

each a, a′ ∈ Z5
≥0 with

(vp(a0), vp(a1), vp(a2), vp(a3), vp(a4)) ∼ (vp(a
′
0), vp(a

′
1), vp(a

′
2), vp(a

′
3), vp(a

′
4))

we have Xa(K) 6= ∅ if and only if Xa
′(K) 6= ∅. We will make great use of this fact. Unlike

in [BBL16, §2] in our setting when we quotient Z5
≥0 by the equivalence relation ∼ we do

not get a finite list of representatives. Thus we require a more involved approach in order

to understand the local solubility of Xa. For convenience, if p is an odd prime let
[

a

p

]

=

(

a/pvp(a)

p

)

,

where the second entry is the Legendre symbol. We shall give necessary and sufficient

conditions for the existence of local points on Xa in the next proposition.

Proposition 3.1. Let p 6= 2 be a place of Q. Then we have Xa(Qp) = ∅ if and only if one

of the following holds.

(i) p = ∞ and all ai have the same sign,

(ii) p = 3, and the following hold

• val3(a0) ≡ val3(a1) ≡ val3(a2) ≡ val3(a3) 6≡ val3(a4) mod 2,

• val3(a0a1) = val3(a2a3),

•
[−a0a2

3

]

=
[−a0a3

3

]

=
[−a1a2

3

]

=
[−a1a3

3

]

= −1.

(iii) p is an odd prime, (i, j) is either (0, 1) or (2, 3), we have {ℓ,m} = {0, 1, 2, 3}\{i, j}
and the following hold

• vp(ai) ≡ vp(aj) ≡ vp(a4) mod 2,

• vp(aℓ) ≡ vp(am) 6≡ vp(ai) mod 2,

• vp(aiaj) = vp(aℓam) and
[

−aia4
p

]

=
[

−aja4
p

]

= −1 or

vp(aiaj) > vp(aℓam) and
[

−aia4
p

]

=
[

−aja4
p

]

=
[

−aℓam
p

]

= −1.

(iv) p is an odd prime, (i, j, k) is one of (0, 1, 2), (0, 1, 3), (2, 3, 0) or (2, 3, 1) as an

ordered triple, {ℓ} = {0, 1, 2, 3} \ {i, j, k} and the following hold

• vp(ai) ≡ vp(aj) ≡ vp(ak) mod 2,

• vp(aℓ) ≡ vp(a4) 6≡ vp(ai) mod 2,

• vp(aiaj) > vp(akaℓ),

•
[

−aiak
p

]

=
[

−ajak
p

]

=
[

−aℓa4
p

]

= −1.

Proof. One easily verifies that if p = ∞, then X(R) 6= ∅ if and only if two of the ai have

different signs since this is equivalent to the bottom quadratic from in (1.1) being indefinite.
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Let p be an odd prime now. It is clear that at least three of the ai have the same parity

of their p-adic valuations. Let α = (vp(a0), vp(a1), vp(a2), vp(a3), vp(a4)). We distinguish

between the following cases.

(a) If vp(a0) ≡ vp(a2) ≡ vp(a4) mod 2 we set x1 = x3 = 0. It thus suffices to show that

the diagonal projective conic a0x
2
0 + a2x

2
2 + a4x

2
4 = 0 has a p-adic point. In view of

∼ since vp(a0), vp(a2), vp(a4) have the same parity we can assume that p ∤ a0a2a4.

Such conics are known to have a smooth Fp-point which is easily verified for example

by fixing x4 ∈ F∗
p and then counting the number of possible values that a0x

2
0 and

a2x
2
2 + a4x

2
4 can take. Moreover, a smooth Fp-point on the conic lifts to a Zp-point

on Xa with x1 = x3 = 0 by Hensel’s lemma. Indeed, the Jacobian matrix of Xa is

J(x) =

(

x1 x0 −x3 −x2 0

2a0x0 2a1x1 2a2x2 2a3x3 2a4x4

)

.

The above argument shows that either the minor J1,2 or the minor J3,4 has a

determinant a unit in Fp when evaluated at x. The same analysis applies if a0, a3, a4

or a1, a2, a4 or a1, a3, a4 have the same parity of their p-adic valuations.

(b) If vp(a0) ≡ vp(a1) ≡ vp(a4) mod 2 we can assume that vp(a2) ≡ vp(a3) 6≡ vp(a0) mod

2, otherwise we fall into (a). If p ∤ (a0, a1, a4) we can apply a similar argument to

the one in (a) by solving a0x
2
0 + a1x

2
1 + a4x

2
4 ≡ 0 mod p first and then taking x2, x3

such that x2x3 ≡ x0x1 mod p. Thus Xa(Qp) 6= ∅. Moreover, if vp(a0a1) < vp(a2a3),

then α ∼ (0, 0, 2k + 1, 1, 0) for some k ≥ 0 and hence Xa(Qp) 6= ∅.
Assume that vp(a0a1) ≥ vp(a2a3). Recall (2.1). Our investigation continues with

an analysis of the following system

a0(sx)
2 + a1(ty)

2 + a4z
2 = 0,

a2(tx)
2 + a3(sy)

2 = 0.

We have Xa(Qp) 6= ∅ if
[

−a0a4
p

]

= 1 by setting t = y = 0. Similarly, Xa(Qp) 6= ∅ if
[

−a1a4
p

]

= 1.

If vp(a0a1) = vp(a2a3), then α ∼ (2, 0, 1, 1, 0) and hence one can conclude that

Xa(Qp) = ∅ if
[

−a0a4
p

]

=
[

−a1a4
p

]

= −1 by looking at the p-adic valuation of possible

solutions to the system above.

On the other hand, if vp(a0a1) > vp(a2a3), then α ∼ (2m, 2, 1, 1, 2) for some

m > 0 and hence Xa(Qp) 6= ∅ if
[

−a2a3
p

]

= 1 since this condition implies the

existence of a smooth Fp-point on Xa mod p.
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We assume from now on that vp(a0a1) > vp(a2a3) and
[−a0a4

p

]

=

[−a1a4
p

]

=

[−a2a3
p

]

= −1.

We claim that Xa(Qp) = ∅. If there was a point in Xa(Qp), then by looking

at the possible p-adic valuations of its coordinates we see that at least one of
[

−a0a4
p

]

,
[

−a1a4
p

]

or
[

−a2a3
p

]

has to be trivial, a contradiction! We treat the case

vp(a2) ≡ vp(a3) ≡ vp(a4) mod 2 in a similar way.

(c) If vp(a0) ≡ vp(a1) ≡ vp(a2) 6≡ vp(a3) ≡ vp(a4) mod 2, then the analysis is very

similar to the one in (b) modulo the fact that there is no symmetry in a3 and a4.

Here (2.1) transforms into

a0(sx)
2 + a1(ty)

2 + a2(tx)
2 = 0,

a3(sy)
2 + a4z

2 = 0.

Once again we begin by observing that Xa(Qp) 6= ∅ unless
[−a0a2

p

]

=

[−a1a2
p

]

=

[−a3a4
p

]

= −1,

which we assume from now on. It is clear that α ∼ (2m, 0, 0, 2ℓ + 1, 1) for some

m, ℓ ≥ 0. If 2m < 2ℓ + 1, then we reduce once more to finding a p-adic point on

the conic a0u
2 + a1v

2 + a2w
2 = 0 and thus Xa(Qp) 6= ∅. On the other hand, if

2m > 2ℓ+ 1, then as in (b) we see that Xa(Qp) = ∅. An identical analysis applies

in the remaining cases of (v).

(d) If vp(a0) ≡ vp(a1) ≡ vp(a2) ≡ vp(a3) 6≡ vp(a4) mod 2, then via the above relation

we can assume that α = (2m, 0, 0, 0, 1) for some m > 0 if vp(a0a1) > vp(a2a3).

Once again by (2.1) we need to analyse

a0(sx)
2 + a1(ty)

2 + a2(tx)
2 + a3(sy)

2 = 0. (3.1)

It thus suffices to show that a1u
2+a2v

2+a3w
2 = 0 has a p-adic point. As explained

in (a) this is always the case. A similar argument applies when vp(a0a1) < vp(a2a3).

Assume now that vp(a0a1) = vp(a2a3) and thus we have α ∼ (0, 0, 0, 0, 1). In

view of (3.1) there is a smooth Fp-point on Xa if −aiaj mod p ∈ F∗2
p for some

(i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)}. On the other hand, if the reduction of all of the

above −aiaj mod p is a non-square in Fp, then any Fp-point must satisfy tx 6= 0.

The change of variables s/t = X, y/x = Y reduces the problem to showing the

existence of an Fp-point on Y 2 = −(a0X
2+a2)/(a3X

2+a1). In fact, our assumptions
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imply that any Fp-point on it must be smooth if it exists. Clearly, the existence

of such an Fp-point is equivalent to the existence of an Fp-point on the genus one

curve

C : Y 2 = −(a0X
2 + a2)(a3X

2 + a1).

The Hasse–Weil bound implies that #C(Fp) ≥ p+1−2
√
p. This quantity is clearly

positive if p ≥ 5. On the other hand, if p = 3, then the condition −aiaj mod p a

non-square in Fp for each (i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)} says that a0 ≡ a1 ≡
a2 ≡ a3 mod 3. One easily checks that in this case Xa(Q3) = ∅. This completes

the proof.

�

3.2. Local densities. We continue with the study of the proportion of everywhere locally

soluble Xa ∈ F . For each place p of Q let Xa,p = Xa ×Q Qp and define

Ωp =
{

a ∈ Z5
p : p ∤ a, Xa,p smooth and Xa,p(Qp) 6= ∅

}

,

Ω∞ =
{

a ∈ [−1, 1]5 : Xa,∞ smooth and Xa,∞(R) 6= ∅
}

.

Let µp be the normalised Haar measure on Z5
p such that µp

(

Z5
p

)

= 1 and let µ∞ be the

Lebesgue measure on R5. The local densities σp corresponding to Xa are then defined by

σp = µp (Ωp) , σ∞ =
µ∞(Ω∞)

µ∞({a ∈ [−1, 1]5 : Xa,∞ smooth}) .

We shall estimate σp in the next proposition. For technical reasons we avoid the calcu-

lation of σ2 here. However, it is easy to see that σ2 > 0, for example by calculating the

proportion of a ∈ Z5
2 such that ai are all units in Z2 and a1 ≡ −a4 mod 8.

Proposition 3.2. We have σ∞ = 15/16 and for each odd prime p the following holds.

σp =







63693071
66355200

if p = 3,

1− 1
2p2

+ 9
4p3

+O
(

1
p4

)

if p > 3.

Proof. One clearly has

µ∞({a ∈ [−1, 1]5 : (a0a1 − a2a3)
∏4

i=0 ai = 0})
µ∞([−1, 1]5)

= 0,

since each of the conditions ai = 0 or a0a1 − a2a3 = 0 defines a proper subspace of R5.

Thus

σ∞ =
µ∞(Ω∞)

µ∞([−1, 1]5)
.
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On the other hand, by Lemma 3.1(i) we have Xa,∞(R) = ∅ if and only if all ai have the

same sign. Thus

σ∞ = 1− µ∞({a ∈ [−1, 1]5 : all ai have the same sign})
µ∞([−1, 1]5)

= 1− 1

24
=

15

16
,

as claimed.

Assume now that p is an odd prime. Once again we have

µp({a ∈ Z5
p : (a0a1 − a2a3)

4
∏

i=0

ai = 0}) = 0,

which allows us to safely ignore this condition from now on. The conditions on local

solubility for Xa,p in this case are given in Lemma 3.1(iv), (v) and in (iii) if p = 3. We

continue with calculating the proportion of surfaces Xa,p with a ∈ Z5
p satisfying each of

these conditions.

We begin with (iii). Firstly, we partition the set S(iii) = S
(iii)
1 ∪ S

(iii)
1 of all a ∈ Zp satis-

fying Lemma 3.1(iii) into two disjoint subsets. Here S
(iii)
1 is the subset of S(iii) consisting

of those a with vp(a4) odd and S
(iii)
2 is its complement in S(iii). To compute the measure

of S
(iii)
1 let

vp(a0) = 2k, vp(a1) = 2ℓ, vp(a2) = 2m,

vp(a3) = 2n, vp(a4) = 2r + 1.

It is clear that under the above parametrisation the condition p ∤ a is equivalent to the

minimum of k, ℓ,m, n being 0. We have
[−a0a2

3

]

=
[−a0a3

3

]

=
[−a1a2

3

]

=
[−a1a3

3

]

= −1 with

probability 1/8. The proportion of a ∈ Zp with vp(a) = t is p−t(1− 1/p). Thus we have

µp(S
(iii)
1 ) =

1

8

(

1− 1

p

)5
∑

r≥0

1

p2r+1







∑

k,ℓ,m,n≥0
k+ℓ=m+n

1

p2k+2ℓ+2m+2n
−

∑

k,ℓ,m,n>0
k+ℓ=m+n

1

p2k+2ℓ+2m+2n







=
(p− 1)2(p4 + 1)2

8p4(p+ 1)3(p2 + 1)2
.

To study S
(iii)
2 let

vp(a0) = 2k + 1, vp(a1) = 2ℓ+ 1, vp(a2) = 2m+ 1,

vp(a3) = 2n+ 1, vp(a4) = 2r.
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Note that in this case the condition p ∤ a is equivalent to r = 0. Then

µp(S
(iii)
2 ) =

1

8

(

1− 1

p

)5
∑

k,ℓ,m,n≥0
k+ℓ=m+n

1

p2k+2ℓ+2m+2n+4
=

(p− 1)2(p4 + 1)

8p(p+ 1)3(p2 + 1)3
.

Thus we find that

µp(S
(iii)) = µp(S

(iii)
1 ) + µp(S

(iii)
2 ) =

(p− 1)2(p2 − p+ 1)(p4 + 1)(p4 + p3 + p2 + p+ 1)

8p4(p+ 1)3(p2 + 1)3
.

We continue with the contribution from Lemma 3.1(iv). Let S(iv) denote the correspond-

ing set. Recall that in Lemma 3.1(iv) we can have (i, j) either (0, 1) or (2, 3). We first

partition S(iv) = S
(iv)
(0,1)∪

(iv)
(2,3), where in S

(iv)
(0,1) we have taken (i, j) = (0, 1) and in S

(iv)
(2,3) we

have taken (i, j) = (2, 3). The sets S
(iv)
(0,1) and S

(iv)
(2,3) are clearly disjoint. One easily verifies

that µp(S
(iv)
(0,1)) = µp(S

(iv)
(2,3)).

We begin by further partitioning S
(iv)
(0,1) = S

(iv)
1 ∪ S

(iv)
2 into two disjoint sets where S

(iv)
1

consists of those a ∈ Z5
p with vp(a4) odd. To find the measure of S

(iv)
1 we interpret the

condition p ∤ a as min{vp(a2), vp(a3)} = 0. A similar analysis as before now yields that

µp(S
(iv)
1 ) equals

(

1− 1

p

)5









1

2

∑

k,ℓ,m,r≥0
k+ℓ+1=m

1

p2k+2ℓ+2m+2r+3
+

1

4

∑

k,ℓ,r≥0
k+ℓ≥m>0

1

p2k+2ℓ+2m+2r+3
+

1

8

∑

k,ℓ,r≥0

1

p2k+2ℓ+2r+3









.

We conclude that

µp(S
(iv)
1 ) =

p3(p6 + 5p4 − p2 + 1)

8(p− 1)4(p+ 1)4(p2 + 1)2
.

Similarly, we have

µp(S
(iv)
2 ) =

1

4

(

1− 1

p

)5
∑

m,n≥0

1

p2m+2n+2







∑

k,ℓ,r≥0
k+ℓ=m+n+1

1

p2k+2ℓ+2r
−

∑

k,ℓ,r>0
k+ℓ=m+n+1

1

p2k+2ℓ+2r







+
1

8

(

1− 1

p

)5
∑

m,n≥0

1

p2m+2n+2







∑

k,ℓ,r≥0
k+ℓ>m+n+1

1

p2k+2ℓ+2r
−

∑

k,ℓ,r>0
k+ℓ>m+n+1

1

p2k+2ℓ+2r







=
(p− 1)2(4p4 + p2 − 2)

8p(p+ 1)3(p2 + 1)3
.
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Thus we obtain that the contribution from Lemma 3.1(iv) is

µp(S
(iv)) = 2(µp(S

(iv)
1 )+µp(S

(iv)
2 )) =

(p+ 1)(4p4 + p2 − 2)(p− 1)6 + p4(p8 + 6p6 + 4p4 + 1)

4p(p2 − 1)4(p2 + 1)3
.

Lastly, we deal with Lemma 3.1(v). With the convention as above we have S(v) =

S
(v)
(0,1,2) ∪S

(v)
(0,1,3) ∪S

(v)
(2,3,0) ∪S

(v)
(2,3,1). Each of this four disjoint sets has the same measure. We

proceed with S
(v)
(0,1,2). As before we have S

(v)
(0,1,2) = S

(v)
1 ∪ S

(v)
2 , where S

(iv)
1 consists of those

a ∈ Z5
p with vp(a4) odd. Then

µp(S
(v)
1 ) =

1

8

(

1− 1

p

)5
∑

n,r≥0

1

p2n+2r+2







∑

k,ℓ,m≥0
k+ℓ>m+n

1

p2k+2ℓ+2m
−

∑

k,ℓ,m>0
k+ℓ>m+n

1

p2k+2ℓ+2m






,

=
(p− 1)(2p4 + p2 + 2)

8p(p+ 1)4(p2 + 1)2
,

µp(S
(v)
2 ) =

1

8

(

1− 1

p

)5
∑

k,ℓ,m≥0

1

p2k+2ℓ+2m+3







∑

n,r≥0
k+ℓ≥m+n

1

p2n+2r
−

∑

n,r>0
k+ℓ≥m+n

1

p2n+2r







=
(p− 1)(p8 + 2p6 + 4p4 + 2p2 + 1)

8p(p+ 1)4(p2 + 1)3
.

Hence we get

µp(S
(v)) = 4(µp(S

(v)
1 ) + µp(S

(v)
2 )) =

(p− 1)(p8 + 4p6 + 7p4 + 5p2 + 3)

2p(p+ 1)4(p2 + 1)3
.

What is left is to take into account that

σp =







1− µp(S
(iii))− µp(S

(iv))− µp(S
(v)), if p = 3,

1− µp(S
(iv))− µp(S

(v), if p > 3.

Thus σ3 = 63693071/66355200 and if p > 3 we get

σp = −−4p15 + 6p13 − 9p12 + 44p11 − 74p10 + 129p9 − 173p8

4(p− 1)4p(p+ 1)4(p2 + 1)3

+
165p7 − 157p6 + 145p5 − 120p4 + 119p3 − 87p2 + 36p− 8

4(p− 1)4p(p+ 1)4(p2 + 1)3

= 1− 1

2p2
+

9

4p3
+O

(

1

p4

)

.

This completes the proof. �
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4. Proof of Theorem 1.1

We will now prove Theorem 1.1. It suffices to apply [BBL16, Thm. 1.3] to the morphism

f : F → P4 which projects each Xa to its coordinate vector a. In order to do so we need

that Xa(AQ) 6= ∅ and that the fibre of f above each codimension one point of P4 is split,

i.e., it contains a geometrically integral open subscheme. The former is assured by our

arrangements, while for the latter it is enough to check that the singular fibres of f are

split. The singular locus is determined by a0 · · · a4(a0a1 − a2a3) = 0. We do a case by case

analysis and deal with the following separately.

(i) a0 = 0,

(ii) a4 = 0,

(iii) a0a1 − a2a3 = 0.

Notice that ai = 0, for i = 1, 2, 3, is analogous to case (i) thanks to the symmetry in the

equations definig Xa.

For case (i) the fibre is defined via

x0x1 − x2x3 = 0,

a1x
2
1 + · · ·a4x2

4 = 0.

Consider the chart x1 = 1. In it, x0 is determined by x0 = x2x3 and thus the fibre is

birational to a smooth quadric surface in P3 which is clearly split. For cases (ii) and (iii),

we use the conic bundle representation. The fibres have equations given by:

(ii): (a0s
2 + a2t

2)x2 + (a3s
2 + a1t

2)y2 = 0,

(iii): (a0s
2 + a2t

2)(x2 + y2) + a4z
2 = 0.

Notice that both are irreducible. Indeed, otherwise the generic fibres of each conic bundle

would be reducible and hence singular. This is clearly not the case as both admit smooth

fibres. Thus all conditions of [BBL16, Thm. 1.3] are fulfilled and Theorem 1.1 follows from

it. We thank Dan Loughran for pointing out the above argument to us. �

5. Surfaces with Brauer group of order 4

This section is dedicated to the proof of the asymptotic formula for N4(B) appearing in

Theorem 1.2.

Proposition 5.1. We have

N4(B) =
60

π2
B3 +O(B5/2(logB)2).
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Proof. Proposition 2.2 implies that the quotient BrXa/BrQ is of order 4 if and only if

a0a1, −a0a2, a2a3 are all rational squares and −a0a4d /∈ Q∗2. Moreover, if these conditions

are met, then (1 : 0 :
√

a0/a2 : 0 : 0) ∈ Xa(Q) and thus we need not worry about local

solubility. One easily verifies that a0, a1 need to have the same sign, and similarly for

a2, a3 while a0, a2 need to have different signs. Thus we can distinguish between four cases

depending on the sign of each ai, these are

(i) a0, a1, a4 > 0, a2, a3 < 0, (iii) a0, a1 > 0, a2, a3, a4 < 0,

(ii) a0, a1, a4 < 0, a2, a3 > 0, (iv) a0, a1 < 0, a2, a3, a4 > 0.

One checks that (i) and (ii) contribute to the same amount in N4(B) via the map a 7→ −a

and so do (iii) and (iv). On the other hand, (i) and (iv) have equal contribution in N4(B) as

seen by the map (a0, a1, a2, a3, a4) 7→ (a2, a3, a0, a1, a4). Thus if N
(i)
4 (B) is the contribution

in N4(B) coming from (i), we then clearly have

N4(B) = 4N
(i)
4 (B). (5.1)

We shall now treat N
(i)
4 (B). Firstly, we need to understand how often d = 0 under the

assumptions a0a1, −a0a2, a2a3 ∈ Q∗2. This is done in the next lemma.

Lemma 5.2. We have

#
{

(a0, . . . , a3) ∈ Z4 ∩ [−B,B]4 : a0a1,−a0a2, a2a3 ∈ Q∗2 and a0a1 = a2a3
}

≪ B(logB)3.

Proof. For a quadruple (a0, . . . , a3) ∈ Z4 the conditions a0a1,−a0a2, a2a3 ∈ Q∗2 imply that

a0, . . . , a3 must obey the following factorisation

a0 = mk2b20, a1 = mk2b21, a2 = −mℓ2b22, a3 = −mℓ2b23,

with (k, ℓ) = (b0, b1) = (b2, b3) = 1. It suffices to consider the case where k, ℓ,m, b0, b1, b2, b3

are all positive integers.

The condition a0a1 = a2a3 becomes now k2b0b1 = ℓ2b2b3 and since (k, ℓ) = 1 we must

have k2 | b2b3 and ℓ2 | b0b1. Write k = k2k3 and ℓ = ℓ0ℓ1 so that b0 = ℓ20c0, b1 = ℓ21c1,

b2 = k2
2c2 and b3 = k2

3c3. Thus c0c1 = c2c3. Writing c0 = r0s0 and c1 = r1s1 now gives

a0 = mk2
2k

2
3ℓ

4
0r

2
0s

2
0, a1 = mk2

2k
2
3ℓ

4
1r

2
1s

2
1, a2 = mℓ20ℓ

2
1k

4
2r

2
0r

2
1, a3 = mℓ20ℓ

2
1k

4
3s

2
0s

2
1,

with (k2k3, ℓ0ℓ1) = (ℓ0r0d0, ℓ1r1d1) = (k2r0r1, k3d0d1) = 1. Forgetting the coprimality

conditions and summing over r0, r1 first now proves the claim. This completes the proof.

�
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We continue with the study of N
(i)
4 (B). By definition it equals the following quantity

#{a ∈ Z5 : 0 < a0, a1,−a2,−a3, a4 ≤ B, a0a1,−a0a2, a2a3 ∈ Q∗2 and − a0a4d /∈ Q∗2}.

Let us first make the following change (a2, a3) 7→ (−a2,−a3) so that all of the coordinates

of a are positive integers. Thus

N
(i)
4 (B) =

∑

a0,...,a4≤B
a0a1,a0a2,a2a3∈Q∗2 and −a0a4d/∈Q∗2

1

=
∑

a0,...,a4≤B
a0a1,a0a2,a2a3∈Q∗2

1−
∑

a0,...,a4≤B
−a0a4d,a0a1,a0a2,a2a3∈Q∗2

1−
∑

a0,...,a4≤B
d=0,a0a1,a0a2,a2a3∈Q∗2

1.

Lemma 5.2 implies that the last sum is O(B2(logB)3), the extra exponent of B coming

from the additional sum over a4. We shall soon see that the second sum is also relatively

small and thus the main contribution comes from the first sum. To do so we first write

N
(i)
4 (B) = M4(B)









∑

a4≤B

1−
∑

a4≤B
−a0a4d∈Q∗2

1









+O(B2(logB)3), (5.2)

where

M4(B) =
∑

a0,...,a3≤B
a0a1,a0a2,a2a3∈Q∗2

1.

We continue with the two sums over a4 appearing above. Clearly,
∑

a4≤B

1 = B +O(1). (5.3)

On the other hand, writing a4 = tu2
4 and −a0d = wu2

5 in the second sum with t, w square-

free shows that the the condition −a0a4d ∈ Q∗2 is fulfilled only if t = w. Hence one

obtains
∑

a4≤B
−a0a4d∈Q∗2

1 ≪
∑

u4≤
√
B

∑

t≤B/u2

4

t=w

1 ≪ B1/2. (5.4)

We now proceed with M4(B). As in Lemma 5.2 the conditions a0a1, a0a2, a2a3 ∈ Q∗2

are detected by the factorisation

a0 = mk2b20, a1 = mk2b21, a2 = mℓ2b22, a3 = mℓ2b23,
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with (k, ℓ) = (b0, b1) = (b2, b3) = 1. Thus

M4(B) =
∑

m≤B

∑

k,ℓ≤
√

B/m

(k,ℓ)=1

∑

b0,b1≤
√

B/mk2

(b0,b1)=1

∑

b2,b3≤
√

B/mℓ2

(b2,b3)=1

1. (5.5)

To continue we need an asymptotic formulae for the inner sums over b0, b1 and b2, b2. A

standard computation in analytic number theory using the fact that the condition (a, b) = 1

is detected by the indicator function
∑

t|(a,b) µ(t) shows that for X ≥ 1 a real number we

have
∑

a,b≤X
(a,b)=1

1 =
6

π2
X2 +O(X logX).

We apply this twice in (5.5), once for the sum over b2, b3 and once for the sum over b0, b1.

This gives

M4(B) =
36

π4
B2
∑

m≤B

1

m2

∑

k,ℓ≤
√

B/m

(k,ℓ)=1

1

k2ℓ2
+O(B3/2(logB)2).

All of the three sums appearing above are absolutely convergent. We first complete the sum

over ℓ, it equals ζ(2)
∏

p|k(1 − 1/p2). The error in M4(B) coming from this completion is

O(B3/2). We do the same for the sum over k. The function inside the sum is multiplicative

and hence this sum has an Euler product, it is
∏

p(1 + 1/p2). The error here is once again

negligible compared to B3/2(logB)2. Lastly, we complete the sum over m to get

M4(B) =
∏

p

(

1 +
1

p2

)

B2 +O(B3/2(logB)2). (5.6)

What is left is to combine (5.1), (5.2), (5.3), (5.4), (5.6) and to observe that the infinite

product above equals ζ(2)/ζ(4) = 15/π2. This gives

N4(B) =
60

π2
B3 +O(B5/2(logB)2),

which completes the proof of Proposition 5.1. �

6. Proof of Theorem 1.2

In order to prove Theorem 1.2 we first need to show that there are only a few surfaces

in F with trivial BrXa/BrQ. This is done in the next proposition.

Proposition 6.1. We have

N1(B) ≪ B3(logB)4.
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Proof. Recall that by Proposition 2.2 we have BrXa/BrQ trivial if and only if one of

−a0a4d, −a1a4d, a2a4d, a3a4d is a non-zero rational square. Let N
(0)
1 (B) be the number

of those Xa ∈ F with −a0a4d ∈ Q∗2 and |a| ≤ B. Define N
(1)
1 (B), N

(2)
1 (B), N

(3)
1 (B) in a

similar fashion according the the conditions −a1a4d, a2a4d, a3a4d ∈ Q∗2. Forgetting the

assumption on the existence of local points everywhere we clearly have

N1(B) ≪ N
(0)
1 (B) +N

(1)
1 (B) +N

(2)
1 (B) +N

(3)
1 (B).

We shall now explain how to treat N
(0)
1 (B), the analysis of the other quantities being

similar. Letting

a0 = w0v
2
0, a4 = w4v

2
4, −a0a1 + a2a3 = w5v

2
5,

with w0, w4, w5 square-free allows us to see that −a0a4d ∈ Q∗2 is equivalent to w0w4w5

being a non-zero rational square. Thus we must have w0 = st, w4 = sw, w5 = tw with

stw square-free. On the other hand, −stv20a1 + a2a3 = twv25 implies that t | a2a3. Write

a2 = t2b2 and a3 = t3b3, where t = t2t3 with µ2(t2t3) = 1. Thus

b2b3 − a1v
2
0s− v25w = 0.

Let S, T2, T3,W,A1, B2, B3, V0, V4, V5 ≫ 1 run through the powers of 2. We shall also

require then to satisfy the following conditions

ST2T3V
2
0 ≪ B, A1 ≪ B, T2B2 ≪ B, T3B3 ≪ B, SWV 2

4 ≪ B

and finally WV 2
5 ≪ B2B3 + A1SV

2
0 . We break the the quantity N

(0)
1 (B) into sums Σ =

Σ(S, T2, T3,W,B1, B2, B3, V0, V4, V5) over the dyadic ranges s ∈ (S/2, S], t2 ∈ (T2/2, T2]

and so on.

What follows is an application of an upper bound of Heath-Brown [HB84, Lem. 3] which

states that if α = (α1, α2, α3) is a integer vector with coprime coordinates, then

#{x ∈ Z3
prim : |xi| ≤ Xi, i = 1, 2, 3 and α · x = 0} ≪ 1 +

X1X2X3

max |αiXi|
.

We choose x = (a1, b2, w) and let h = gcd(a1, b2, w). Thus X1 = A1, X2 = B2, X3 = W ,

α1 = −sv20 , α2 = b3 and α3 = v25. Let x
′ = x/h and α

′ = α/ gcd(sv20, b2, v
2
5). Applying

Heath-Brown’s bound for the number of x′ with coordinates at most Xi/h and satisfying

x
′ ·α′ = 0 now gives

#{x ∈ Z3 : |xi| ≤ Xi and α · x = 0} ≪
∑

h≤min{A1,B2,W}

(

1 +
X1X2X3 gcd(sv

2
0, b3, v

2
5)

h2max |αiXi|

)

.
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It is clear that when we open the brackets the first sum is O(W ). On the other hand,

the second sum over h is convergent and the error coming from its tail is negligible.

Thus summing over the remaining variables in the first sum and replacing max |αiXi|
by (α1X1α2X2α3X3)

1/3 in the second sum gives

Σ ≪ ST2T3WB3V0V4V5 + T2T3(WA1B2)
2/3V4

∑

s,b3,v0,v4

gcd(sv20 , b3, v
2
5)

(sb3v20v
2
5)

1/3
.

Running the same argument with x = (a1, b3, w) and then using the elementary fact that

min{B2, B3} ≪ (B2B3)
1/2 now gives

Σ ≪ST2T3W (B2B3)
1/2V0V4V5 + T2T3(WA1B3)

2/3V4

∑

s,b2,v0,v4

gcd(sv20, b2, v
2
5)

(sb2v0v5)1/3

+ T2T3(WA1B2)
2/3V4

∑

s,b3,v0,v4

gcd(sv20, b3, v
2
5)

(sb3v0v5)1/3
.

Our analysis so far showed that

N
(0)
1 (B) ≪

∑

S,T2,T3,W,A1,B2,B3,V0,V4,V5

ST2T3W (B2B3)
1/2V0V4V5

+
∑

S,T2,T3,W,A1,B2,B3,V0,V4,V5

T2T3(WA1B3)
2/3V4

∑

s,b2,v0,v4

gcd(sv20, b2, v
2
5)

(sb2v0v5)1/3

+
∑

S,T2,T3,W,A1,B2,B3,V0,V4,V5

T2T3(WA1B2)
2/3V4

∑

s,b3,v0,v4

gcd(sv20, b3, v
2
5)

(sb3v0v5)1/3
.

Let S1, S2 and S3 denote the first, the second and the third sum above, respectively.

We claim that

S1 ≪ B3(logB)3.

Indeed, recall the simple bound

∑

A=2i≤X

Aθ ≪















Xθ if θ > 0,

logX if θ = 0,

1 if θ < 0,

(6.1)

which follows from the fact that we are summing the terms of a geometric progression.

With the arrangements made above we have guaranteed that

U0 ≪
(

B

ST2T3

)1/2

, U4 ≪
(

B

SW

)1/2

, U5 ≪
B

(T2T3W )1/2
.
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Thus applying (6.1) to the sums over B2, B3, U0, U4, U5 gives

S1 ≪ B3
∑

S,T2,T3,W,A1

1

(T2T3)1/2
.

We then apply (6.1) to the sums over the remaining variables to get

S1 ≪ B3(logB)3,

which proves the claim.

Finally, we claim that

S2 ≪ B3(logB)4, S3 ≪ B3(logB)4.

We will prove the above bound for S2, the analysis for S3 being similar. We begin by

studying of the sum over s, b2, v0, v4 appearing in S2. Write

s = ks′, b2 = kmn2c2, v0 = mnu0, v5 = kmnu5.

Then gcd(sv20, b2, v
2
5) = kmn2 and thus

∑

s,b2,v0,v4

gcd(sv20, b2, v
2
5)

(sb2v0v5)1/3
≪

∑

k,m,n,s′,c2,u0,u5

1

(km2s′c2u2
0u

2
5)

1/3
,

where the sum is over ks′ ≪ S, kmn2c2 ≪ B2, mnu0 ≪ V0 and kmnu5 ≪ V5. Summing

over s′, u0, c2 and u5 then gives

∑

s,b2,v0,v4

gcd(sv20, b2, v
2
5)

(sb2v0v5)1/3
≪ (SB2)

2/3(V0V5)
1/3
∑

k,m,n

1

(kmn)2
.

The sums over k,m, n are convergent and their tails after completion have only negligible

contribution. Thus

S2 ≪
∑

S,T2,T3,W,A1,B2,B3,V0,V4,V5

S2/3T2T3W
2/3(A1B2B3)

2/3(V0V5)
1/3V4.

Proceeding in a similar fashion as in the study of S1 now gives the claim which completes

the proof. �

We continue with a lower bound for the quantity analysed in the previous proposition.

Proposition 6.2. We have

N1(B) ≫ B3.
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Proof. To show this we shall count the number of a ∈ Z5
prim coming from the following

subfamily

F ′ = {Xa ∈ F : a0a1 − a2a3 ∈ Q∗2 and a4 = −a0}.
Clearly, (1 : 0 : 0 : 0 : 1) ∈ Xa(Q) for each Xa ∈ F ′ and thus we need not worry about the

existence of local points. Moreover, Proposition 2.2 implies that all varieties in F ′ have a

trivial Brauer group and thus

N1(B) ≫ #{Xa ∈ F ′ : |a| ≤ B}.

Let N ′
1(B) denote the cardinality of the set on the right hand side above. We then have

N ′
1(B) =

∑

k≤B
√
2

∑

|a0|,|a1|,|a2|,|a3|≤B
a0a1−a2a3=k2

1 ≫
∑

k≤B/2

∑

a2
0
+a2

1
+a2

2
+a2

3
≤B2

a0a1−a2a3=k2

1.

The inner sum in the far right hand side corresponds to the number of matrices in M2(Z)

with non-zero entries of height at most B with respect to the standard Euclidean norm

whose discriminant is equal to k2. We shall apply [DRS93, Ex. 1.6] to this sum. Since

in [DRS93, Ex. 1.6] quadruples with ai = 0 are allowed we must first guarantee that the

contribution from these a is negligible. Indeed, let a0 = 0. Then a1 can be chosen almost

arbitrarily in the region a21 + a22 + a23 ≤ B2 and the choice of a2 uniquely determined a3 for

each fixed k. Thus
∑

k≤B/2

∑

a2
1
+a2

2
+a2

3
≤B2

−a2a3=k2

1 ≪ B
∑

k≤B/2

τ(k2) ≪ B2+ε,

where ε is arbitrarily small positive number and τ(k2) denotes the number of divisors of

k2. Applying [DRS93, Ex. 1.6] and taking the above into account now gives

N ′
1(B) ≫ B2

∑

k≤B/2

∑

d|k2

1

d
.

Changing the order of summation and applying a standard asymptotic formula for the sum

over k above shows that N ′
1(B) ≫ B3 which completes the proof. �

We are now in position to prove Theorem 1.2. Recall that there are only three possibilities

for BrXa/BrQ. With the notation set up earlier in the introduction we then have

N2(B) = # {Xa ∈ F : |a| ≤ B and Xa(AQ) 6= ∅} −N1(B)−N4(B).
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On one hand, N4(B) = O(B3) by Proposition 5.1 and B3 ≪ N1(B) ≪ B3(logB)4 by

Propositions 6.1 and 6.2. On the other hand, the remaining quantity above was studied in

Theorem 1.1. This proves Theorem 1.2. �

7. Proof of Theorems 1.3 and 1.4

We begin with the following simple lemma.

Lemma 7.1. Let p > 7 be a prime and let a, b, c ∈ F∗
p. Then there exist u1, u2 ∈ Fp such

that u2
1 + b ∈ F∗2

p and u2
2 + b ∈ F∗

p \ F∗2
p . Moreover, u2

1 + c and u2
2 + c are both units in Fp

and a(u2
1 + b)(u2

1 + c), a(u2
2 + b)(u2

2 + c) ∈ F∗2
p .

Proof. Consider the projective curve C defined over Fp by v2 = u2 + bt2. This is a smooth

quadric with an Fp-rational point and thus it is isomorphic to P1. Hence #C(Fp) = p+ 1.

If −b 6∈ F∗2
p , then all Fp-points on C satisfy v 6= 0. Alternatively, if −b ∈ F∗2

p there are two

points in C(Fp) with v = 0. Finally, the divisor given by t = 0 consists of two Fp-points.

We conclude that

#{(u, v) ∈ F2
p : v2 = u2 + b 6= 0} = p− 2−

(−b

p

)

.

In particular, there exists u1 ∈ Fp such that u2
1 + b ∈ F∗2

p when the above quantity is

positive.

To see the existence of u2 as in the statement we apply a similar argument to show that

#{(u, v) ∈ F2
p : u2 + b 6= 0} = p2 −

(

1 +

(−b

p

))

p.

Thus we have

#
(

{(u, v) ∈ F2
p : u2 + b 6= 0} \ {(u, v) ∈ F2

p : v2 = u2 + b 6= 0}
)

> p2 − 3p+ 1.

It is clear that if p > 3, then both p− 2−
(

−b
p

)

and p2 − 3p+ 1 are positive. Moreover, if

p > 7, then both quantities are at least (p+1)/2 and thus we can choose u1 and u2 so that

the assumptions of the statement are satisfied. This completes the proof of Lemma 7.1. �

Recall that the Brauer–Manin obstruction is known to be the only obstruction to the

Hasse principle and weak approximation for Xa ∈ F since such surfaces are conic bundles

with four degenerate geometric fibres [CT90], [Sal86]. A Brauer–Manin obstruction to the

existence of rational points on Xa is present only if BrXa/BrQ ≃ Z/2Z by Remark 2.3.

Moreover, we can assume that BrXa/BrQ ≃ Z/2Z since by Theorem 1.2 the number of
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surfaces with BrXa/BrQ 6≃ Z/2Z is negligible compared to the bounds we need to show

in order to prove Theorems 1.3 and 1.4. In this case, BrXa/BrQ is generated by

(a0(x0/x2)
2 + a2,−a0a4d) = ((x0/x2)

2 + a2/a0,−a0a4d) ∈ BrXa/BrQ.

Let α = ((x0/x2)
2 + a2/a0,−a0a4d) as an element of BrXa.

For a detailed background on the Brauer–Manin obstruction we refer the reader to

[CTS19, Ch. 12] or [Poo17, Ch. 8]. What is important for us is that the Brauer–Manin set

Xa(AQ)
BrXa is determined by the adelic points on Xa for which the sum of local invariant

maps invp of α vanish. In particular, Xa(AQ)
BrXa is defined as the kernel of the map

X(AQ) → Q/Z in the following diagram

X(Q) X(AQ)

BrQ
⊕

p≤∞
BrQp Q/Z

evα evα
∑

p invp

.

For a point xp ∈ Xa(Qp) the value of invp(evα(xp)) is either 0 or 1/2. Thus if there is

a prime p for which this map surjects on {0, 1/2} we can modify the adèle (xp) at p to

get a point inside Xa(AQ)
BrXa . This shows that there is no Brauer–Manin obstruction to

the Hasse principle in this case. It implies further that Xa(AQ)
BrXa is a strict subset of

Xa(AQ) and thus weak approximation fails.

Assume now that there is a prime p > 7 dividing a4 to an odd power and such that p

does not divide a0a1a2a3d. On one hand, the invariant map invp(evα(xp)) depends only on

the Hilbert symbol ((x0/x2)
2 + a2/a0,−a0a4d)p as seen by the following formula

invp(evα(xp)) =
1− ((x0/x2)

2 + a2/a0,−a0a4d)p
4

.

On the other hand, in view of (2.1) Lemma 7.1 applied with u = x0/x2, a = a0a3, b = a2/a0

and c = a1/a3 together with Hensel’s lemma shows the existence of x′
p,x

′′
p ∈ Xa(Qp) for

which the Hilbert symbol takes both values −1, 1. Therefore, in order to obtain the upper

bounds in Theorems 1.3 and 1.4 we can count all a ∈ Z5
prim of height at most B failing the

above assumption.

It is clear that we only need to deal with divisibility conditions on the coordinates of

a. Since the sign of each ai is irrelevant to such conditions and we aim to prove only

upper bounds we can freely assume that ai > 0 for i = 0, . . . , 4. Let k = gcd(a4, a0),
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ℓ = gcd(a4/k, a1), m = gcd(a4/kℓ, a2) and n = gcd(a4/kℓm, a3). Then write

a0 = kb0, a1 = ℓb1, a2 = mb2, a3 = nb3, a4 = 2v23v35v57v7kℓmnsb24, (7.1)

with vp = vp(a4) for p = 2, 3, 5, 7 and s being the square-free part of a4/2
v23v35v57v7kℓmn.

Our analysis above shows that if there is a Brauer–Manin obstruction to the Hasse principle,

then for every prime p | s we must have b0b1 − b2b3 ≡ 0 mod p. Since s is square-free this

condition is equivalent to b0b1 − b2b3 ≡ 0 mod s. We therefore obtain the upper bound

NBr(B) ≪ #{a ∈ Z5
prim : |ai| ≤ B, a satisfies (7.1) and b0b1 − b2b3 ≡ 0 mod s}.

Let N(B) denote the quantity on the right hand side above. Forgetting the coprimality

conditions except those between s and bi now gives

N(B) ≪
∑

k,ℓ,m,n,s,v2,v3,v5,v7,b0,b1.b2
(s,b0b1b2)=1

µ2(s)
∑

b3≤B/n

b3≡b0b1b
−1

2
mod s

1, (7.2)

where the summation is taken over kb0, ℓb1, mb2, nb3, 2
v23v35v57v7kℓmnsb24 ≤ B. We treat

the inner sum in a standard way by detecting the condition b3 ≡ b0b1b
−1
2 mod s via the

orthogonality of the characters modulo s. This gives

∑

b3≤B/n

b3≡b0b1b
−1

2
mod s

1 =
B

nϕ(s)
+O(B1/2 logB),

where ϕ(s) is the Euler totient function. We then apply the above asymptotic formula

in (7.2). Forgetting the remaining coprimality conditions and the squarefreeness of s and

then summing over b4 shows that

N(B) ≪
∑

k,ℓ,m,n,s,vi,b0,b1,b2

(

(

B

2v23v35v57v7kℓmns

)1/2

+O(1)

)

(

B

nϕ(s)
+O(B1/2 logB)

)

,

where the summation is once again taken over kb0, ℓb1, mb2, 2
v23v35v57v7kℓmns ≤ B. Hence

N(B) ≪ B3/2
∑

k,ℓ,m,n,s,vi,b0,b1,b2

1

(2v23v35v57v7kℓmn3)1/2sϕ(s)
+O(B4(logB)2).
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Since s ∼ ϕ(s) on average, the above sum over s is convergent. Thus summing over b0, b1, b2

gives

N(B) ≪ B3/2
∑

k,ℓ,m,n,vi

1

(2v23v35v57v7kℓmn3)1/2

(

B

k
+O(1)

)(

B

ℓ
+O(1)

)(

B

m
+O(1)

)

+O(B4(logB)2.

It is now clear that N(B) ≪ B9/2. Since the quantities appearing in Theorems 1.3 and 1.4

are O(N(B)) this proves Theorems 1.3 and 1.4. �

8. Arithmetic of the lines on X

In what follows we will analyse how the conditions of Proposition 2.2 on the coefficients

a = (a0 : · · · : a4) reflect on the arithmetic of the lines on the del Pezzo surface Xa. The

results in this section hold over an arbitray number field, but for the sake of consistency

we work over Q.

Following Swinnerton-Dyer [SD99] we detect the double fours that give rise to Brauer

classes. Firstly we show that a del Pezzo surface of degree 4 given by (1.1) has a trivial

Brauer group if and only if it is rational over the ground field (see Lemma 8.3). In par-

ticular, no Q-minimal del Pezzo surface of degree 4 given by (1.1) has a trivial Brauer

group. We notice that the largest orbit of lines has size four. This together with [BBFL07,

Prop. 13] tells us that surfaces given by (1.1) with non-trivial Brauer group have orbits of

lines of sizes (2, 2, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 4, 4) or (4, 4, 4, 4). We note that for a del Pezzo

surface of degree 4 with a conic bundle structure the sizes of the orbits of lines are deter-

mined by the order of the Brauer group (but, of course, not vice-versa as a surface with

eight pairs of conjugate lines can have both trivial or non-trivial Brauer group for example).

On the other hand, if one assumes that the Brauer group is non-trivial then the size of the

orbits does determine that of the Brauer group (see Lemma 8.9). Moreover, given a Brauer

element, we describe in detail a genus one fibration with exactly two reducible fibres as in

[VAV14] for which a non-trivial element is vertical. We obtain a rational elliptic surface

by blowing up four points, namely two singular points of fibres of the conic bundle 2.1

together with two singular points of fibres of the conic bundle 2.2. The field of definition

of the Mordell–Weil group of the elliptic fibration is determined by the size of the Brauer

group of Xa. In general, it is fully defined over a biquadratic extension. We also show that

the reducible fibres are both fo type I4.



QUARTIC DEL PEZZO SURFACES 29

8.1. Conic bundles and lines. Let Xa be given by (1.1). Then it admits two conic

bundle structures given by (2.1) and (2.2). Each conic bundle structure has two pairs of

conjugate singular fibres with Galois group (Z/2Z)2 acting on the 4 lines that form each

of the two pairs. The intersection behaviour of the lines on Xa is described in Figure 8.1.

Together, these 8 pairs of lines give the 16 lines on Xa.

We now assign a notation to work with the lines. Given i ∈ {1, · · · , 4}, the union of two

lines L+
i and L−

i will denote the components of a singular fibre of the conic bundle (2.1).

Similarly, the union of two lines M+
i and Mi will denote the singular fibres of the conic

bundle (2.2). More precisely, using the variables (x0 : x1 : x2 : x3 : x4) to describe the

conic bundles, we have the following

x0x1 = x2x3 = −
√

−a2
a0

, x4 = ±
√

d

−a0a4
x1,(L±

1 )

x0x1 = x2x3 =

√

−a2
a0

, x4 = ±
√

d

−a0a4
x1,(L±

2 )

x0x1 = x2x3 = −
√

−a1
a3

, x4 = ±
√

d

a3a4
x2,(L±

3 )

x0x1 = x2x3 =

√

−a1
a3

, x4 = ±
√

d

a3a4
x2,(L±

4 )

x0x1 = x2x3 = −
√

−a0
a3

, x4 = ±
√

d

a3a4
x2,(M±

1 )

x0x1 = x2x3 =

√

−a0
a3

, x4 = ±
√

d

a3a4
x2,(M±

2 )

x0x1 = x2x3 = −
√

−a2
a1

, x4 = ±
√

d

−a0a4
x1,(M±

3 )

x0x1 = x2x3 =

√

−a2
a1

, x4 = ±
√

d

−a0a4
x1.(M±

4 )

One can readily determine the intersection behavior of these lines, which we describe in

Lemma 8.1. We also take the opportunity to identify fours and double fours defined over

small field extensions. Recall that a four in a del Pezzo surface of degree 4 is a set of four

skew lines that do not all intersect a fifth one. A double four is four together with the four

lines that meet three lines from the original four ([BBFL07, Def. 8]).
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Lemma 8.1. Let i, j, k, l ∈ {1, · · · , 4} with j 6= i. Consider L+
i , L

−
i ,M

+
i and M−

i as above.

Then

(a) L+
i intersects L−

i ,M
−
i and M+

j , while L−
i intersects L+

i ,M
+
i , and M−

j .

(b) M+
i intersects M−

i , L
−
i and L+

j , while M−
i intersects M+

i , L
+
i and L−

j .

(c) The lines L+
i , L

+
j ,M

−
k ,M

−
l and the lines L−

i , L
−
j ,M

+
k ,M

+
l , with i + j ≡ k + l ≡

3 mod 4, form two fours defined over the same field extension L/Q of degree at

most 2. Together they form a double four defined over Q.

Proof. Statements (a) and (b) are obtained by direct calculations. For the line L1, for

instance, one sees readily that it intersects L−
1 ,M

−
1 ,M

+
2 ,M

+
3 and M+

4 respectively at the

points (−
√

−a2
a0

: 0 : 1 : 0 : 0), (−
√

−a2
a0

: −
√

−a0
a3

: 1 : −
√

a2
a3

: −
√

d
a4a3

), (−
√

−a2
a0

:
√

−a0
a3

:

1 :
√

a2
a3

:
√

d
a4a3

), (−
√

−a2
a0

: −
√

−a2
a1

: 1 : a2√
a0a1

: −
√

da2
a4a0a1

) and (−
√

−a2
a0

:
√

−a2
a1

: 1 :

− a2√
a0a1

:
√

da2
a4a0a1

). Part (c) follows from (a) and (b). To see that one of such fours is defined

over an extension of degree at most 2, note that each subset {L+
i , L

+
j } and {M−

k ,M
−
l } is

defined over the same extension of degree 2. For instance, taking i = 1, j = 2, k = 3 and

l = 4, we see that the four is defined over Q(
√
−a0a4d). The double four is defined over Q

since both {L+
i , L

+
j , L

−
i , L

−
j } and {M+

k ,M
+
l ,M

−
k ,M

−
l } are Galois invariant sets. �

Among the 40 distinct fours on a del Pezzo surface of degree 4, the ones that appear in

the previous lemma are special. More precisely, given a four as in Lemma 8.1 such that

its field of definition has degree d ∈ {1, 2}, the smallest degree possible among such fours,

then any other four is defined over an extension of degree at least d.

Definition 8.2. Given a four as in Lemma 8.1 part (c), we call it a minimal four if the

field of definition of its lines has the smallest degree among such fours.

Borrowing the definition of complexity as in [FLS18, Def. 1.4], that is the sum of the

degrees of the fields of definition of the non-split fibres, we see that the conic bundles in

Xa have complexity at most four. This allows us to obtain in our setting the following.

Lemma 8.3. Let Xa be given by (1.1) such that Xa(AQ) 6= ∅. Then BrXa/BrQ is trivial

if and only if Xa is rational.

Proof. The if implication holds for any rational variety since BrXa is a birational invariant.

To prove the non-trivial direction, we make use of [KM17] which shows that conic bundles

of complexity at most 3 with a rational point are rational. Firstly, note that if BrXa/BrQ

is trivial, then either −a0a4d ∈ Q(
√−a0a2)

∗2 or −a1a4d ∈ Q(
√−a1a3)

∗2 by Proposition 2.2



QUARTIC DEL PEZZO SURFACES 31

L+
1 L−

1 1 L+
2 L−

2 L+
3 L−

3 L+
4 L−

4

M−

1

M+
1

M−

2

M+
2

M−

3

M+
3

M−

4

M+
4

Figure 1. The lines on Xa and their intersection behavior. The intersection
points of pairs of lines are marked with •.

and thus the complexity of the conic bundle π1 is at most 2. It remains to show that Xa

admits a rational point. This follows from the independent work in [CT90] and [Sal86] that

show that the Brauer–Manin obstruction is the only obstruction to the Hasse principle for

conic bundles with 4 degenerate geometric fibres. Hence Xa(AQ) 6= ∅ and the triviality of

BrXa/BrQ imply the existence of a rational point on Xa. �

Remark 8.4. Lemma 8.3 is parallel to [CTKS87, Lem. 1] which deals with diagonal cubic

surfaces whose Brauer group is trivial. Moreover, a simple exercise shows that in our case,

if the Brauer gorup is trivial, then the surface is a blow up of a Galois invariant set of four

points in the ruled surface P1 × P1, while the diagonal cubic satisfying the hypothesis of

[CTKS87, Lem. 1] is a blow up of an invariant set of six points in the projective plane.

The Picard group over the ground field of the former is of rank four while that of the latter

has rank three.

8.2. Brauer elements and double fours. The following two results of Swinnerton-Dyer

allow one to describe Brauer elements via the lines in a double four, and determine the

order of the Brauer group.

The first result is presented exactly as stated in [BBFL07, Thm. 10].

Theorem 8.5. Let X be a del Pezzo surface of degree 4 and α a non-trivial element of

BrX. Then α can be represented by an Azumaya algebra in the following way: there is a

double-four defined over Q whose constituent fours are not rational but defined over Q(
√
b),

for some non-square b ∈ Q. Further, let V be a divisor defined over Q(
√
b) whose class is
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the sum of the classes of one line in the double-four and the classes of the three lines in the

double-four that meet it, and let V ′ be the Galois conjugate of V . Let h be a hyperplane

section of S. Then the Q-rational divisor D = V + V ′ − 2h is principal, and if f is a

function whose divisor is D then α is represented by the quaternion algebra (f, b).

The following can be found at [SD93, Lem. 11].

Lemma 8.6. BrXa cannot contain more than three elements of order 2, and it contains as

many as three if and only if the lines in S can be partitioned into four disjoint cohyperplanar

sets Ti, i = 1, .., 4, with the following properties:

(1) the union of any two of the sets Ti is a double-four;

(2) each of the Ti is fixed under the absolute Galois group;

(3) if γ is half the sum of a line λ in some Ti, the two lines in the same Ti that meet

λ, and one other line that meets λ, then no such γ is in PicXa ⊗Q+ Pic X̄a.

We proceed to analyze how the conic bundle structures in Xa and the two results above

can be used to describe the Brauer group of Xa.

8.3. The general case. We first describe the general case, i.e., on which the combinations

of coefficients that appear in Proposition 2.2 are not squares.

Proposition 8.7. Let Xa be such that its defining equations satisfy (∗) of Proposition 2.2.

Then there are exactly two distinct double fours on Xa defined over Q with constituent

fours defined over a quadratic extension. In other words, there are exactly 4 minimal fours

which pair up in a unique way to form two double fours defined over Q.

Proof. Part (c) of Lemma 8.1 tells us that the minimal fours are given by the dou-

ble four formed by the fours {L+
1 , L

+
2 ,M

−
3 ,M

−
4 }, {L−

1 , L
−
2 ,M

+
3 ,M

+
4 } and that formed by

{L+
3 , L

+
4 ,M

−
1 ,M

−
2 } and {L−

3 , L
−
4 ,M

+
1 ,M

+
2 }. By the hypothesis, each four is defined over a

quadratic extension and the two double fours are defined over Q. The hypothesis on the

coefficients of the equations defining Xa also imply that any other double four is defined

over a non-trivial extension of Q. For instance, consider a distinct four containing L+
1 .

For a double four containing this four to be defined over Q, we need that the second four

contains L−
1 and that one of the fours contains L+

2 and the other L−
2 . The hypothesis that

each four is defined over a degree two extension gives moreover that L+
2 is in the same four

as L1 and hence, due to their intersecting one of the lines, M+
1 and M+

2 cannot be in the

same four. We are left with L+
3 , L

+
4 ,M

+
3 ,M

+
4 and their conjugates. But if L+

3 is in one

of the fours then L−
3 would be in the other four. This is impossible as neither L+

3 nor L−
3
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intersect L−
1 or L−

2 , and each line on a double four intersects three lines of the four that

does not contain it. �

Corollary 8.8. Let Xa be as above. Then BrXa/BrQ is of order 2.

Proof. This is a direct consequence of Proposition 8.7 together with Theorem 8.5. �

We shall now allow further assumptions on the coefficients of Xa to study how they

influence the field of definition of double fours and hence the Brauer group.

8.4. Trivial Brauer group. Suppose that one of −a0a4d,−a1a4d, a2a4d, a3a4d is in Q∗2.

Assume, to exemplify, that −a0a4d is a square. Consider the conic bundle structure given

by (2.1). Then the lines L+
1 and L+

2 are conjugate and, clearly, do not intersect. Indeed,

they are components of distinct fibres of (2.1). Contracting them we obtain a del Pezzo

surface of degree 6. Since, by assumption, Xa has points everywhere locally, the same

holds for the del Pezzo surface of degree 6 by Lang–Nishimura [Lan54], [Nis55]. As the

latter satisfies the Hasse principle, it has a Q-point. In particular, Xa is rational, which

gives us an alternative proof of Lemma 8.3.

8.5. Brauer group of order four. For the last case, assume that a0a1, a2a3,−a0a2 ∈
Q∗2,−a0a4d,−a1a4d, a2a4d, a3a4d 6∈ Q∗2. We produce two double fours that give distinct

Brauer classes. Firstly note that all the singular fibres of the two conic bundles are defined

over Q. In particular, their singularities are Q-rational points and thus there is no Brauer–

Manin obstruction to the Hasse principle. Moreover, every line is defined over a quadratic

extension, but no pair of lines can be contracted since each line intersects its conjugate.

Secondly, note that since −a0a2 is a square, thus Q(
√
−a0a4d) = Q(

√
a2a4d). We have

the double four as above, given by L+
1 , L

+
2 ,M

−
3 ,M

−
4 and the correspondent intersecting

components, and a new double four given by {L+
1 , L

+
3 ,M

−
2 ,M

−
4 }, {L+

2 , L
+
4 ,M

−
1 ,M

−
4 }, which

under this hypothesis is formed by two minimal fours.

The Picard group of Xa is generated by L+
1 , L

+
2 , L

+
3 , L

+
4 , a smooth conic and a section,

say M+
1 of the conic fibration (2.1). We can apply Lemma 8.6 with Ti = {L+

i , L
−
i ,M

+
i ,M

−
i }

to check that in this case the Brauer group has indeed size four.

Lemma 8.9. Let Xa be as above. Assume that Xa does not contain a pair of skew conjugate

lines, equivalently Xa is not Q-rational. Then the following hold:

(i) #BrXa/BrQ = 4 if an only if the set of lines on Xa has orbits of size

(2, 2, 2, 2, 2, 2, 2, 2).
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(ii) #BrXa/BrQ = 2 if an only if the set of lines on Xa has orbits of size

(2, 2, 2, 2, 4, 4) or (4, 4, 4, 4).

Proof. This is an application of [SD93, Lem. 11] or a reinterpretation of Proposition 2.2

together with the description of the lines given in this section and the construction of

Brauer elements via fours given by Swinnerton-Dyer (see for instance [SD93, Lem. 10] and

[BBFL07, Thm 10.] for the construction of the Brauer elements via fours). �

9. A genus 1 fibration and vertical Brauer elements

In what follows we will give a description of the genus 1 fibration Xa 99K P1 from [VAV14]

for which a given Brauer element is vertical. First we recall some basic facts about elliptic

surfaces. We then obtain the Brauer element and the genus 1 fibration as in [VAV14]

to afterwards reinterpret it in our special setting of surfaces admitting two non-equivalent

conic bundles over the ground field. We study how the order of the Brauer group influences

the arithmetic of this genus 1 fibration. More precisely, after blowing up the base points of

the genus one pencil, we show that the field of definition of its Mordell–Weil group depends

on the size of the Brauer group.

9.1. Background on elliptic surfaces. Let k be a number field.

Definition 9.1. An elliptic surface over k is a smooth projective surface X together with

a morphism E : X → B to some curve B whose generic fibre is a smooth curve of genus 1.

If it admits a section we call the fibration jacobian. In that case, we fix a choice of section

to act as the identity element for each smooth fibre. The set of sections is in one-to-one

correspondence with the k(B)-points of the generic fibre, hence it has a group structure

and its called the Mordell–Weil group of the fibration, or of the surface if there is no doubt

on the fibration considered.

Remark 9.2. If X is a rational surface and an elliptic surface, we call it a rational elliptic

surface. If the fibration is assumed to be minimal, i.e., no fibre contains (−1)-curves as

components, then by the adjunction formula the components of reducible fibres are (−2)-

curves. In that case, the sections are precisely the (−1)-curves and the fibration is jacobian

over a field of definition of any of the (−1)-curves.

Given a smooth, projective, algebraic surface X its Picard group has a lattice structure

with bilinear form given by the intersection pairing. If X is an elliptic surface then, thanks

to the work of Shioda, we know that its Mordell–Weil group also has a lattice structure,
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with a different bilinear pairing [Shi90]. Shioda also described the Néron–Tate height

pairing via intersections with the zero section and the fibre components. This allows us to

determine, for instance, if a given section is of infinite order and the rank of the subgroup

generated by a subset of sections. We give a brief description of the height pairing below.

Definition 9.3. Let E : X → B be an elliptic surface with Euler characteristic χ. Let O

denote the zero section and P,Q two sections of E . The Néron–Tate height pairing is given

by

〈P,Q〉 = χ+ P · O +Q · O − P ·Q−
∑

F∈ reducible fibres

contrF (P,Q),

where contrF (P,Q) denotes the contribution of the reducible fibre F to the pairing and

depends on the type of fibre (see [Shi90, §8] for a list of all possible contributions). Upon

specializing at P = Q we obtain a formula for the height of a section (point in the generic

fibre):

h(P ) = 〈P, P 〉 = 2χ+ 2P · O −
∑

F∈ reducible fibres

contrF (P ).

Remark 9.4. The contribution of a reducible fibre depends on the components that P

and Q intersect. In this article we deal only with fibres of type I4, thus for the sake of

completion and brevity we give only its contribution. Denote by Θ0 the component that

is met by the zero section, Θ1 and Θ3 the two components that intersect Θ0, and let Θ2

be the component opposite to Θ0. If P and Q intersect Θi and Θj respectively, with i ≤ j

then contrI4(P,Q) = i(4−j)
4

.

9.2. Vertical elements.

Definition 9.5. Given an arbitrary1 fibration π : X → P1, the vertical Picard group,

denoted by Picvert is the subgroup of the Picard group generated by the irreducible com-

ponents of the fibres of π. The vertical Brauer group Brvert is given by the algebras in

BrQ(P1) that give Azumaya algebras when lifted to X (see [Bri06, Def. 3]).

Lemma 9.6. Assume that the Brauer group of Xa is non-trivial. Let F = L+
1 + L+

2 +

M+
3 +M+

4 and F ′ = L−
1 + L−

2 +M−
3 +M−

4 . The pencil of hyperplanes spanned by F and

F ′ gives a genus one fibration with exactly two reducible fibres on Xa which are of type I4,

for which a non-trivial element of its Brauer group is vertical. The other Brauer elements

are horizontal divisors.

1that is, not necessarily elliptic



36 VLADIMIR MITANKIN AND CECÍLIA SALGADO

Θ0,1 = L+

1

Θ1,1 = M+

3

Θ2,1 = L+

2

Θ3,1 = M+

4

E4

E3

E2

E1

Θ0,2 = L−

1

Θ1,2 = M−

3

Θ2,2 = L−

2

Θ3,2 = M−

4

Figure 2. The reducible fibres of the genus one fibration E . The eight •
denote fibre components and the four ◦ denote sections given by the blow
up of the 4 base points.

Proof. The linear system spanned by F and F ′ is a subsystem of | −KXa
|. Hence it gives

a genus one pencil on Xa. Its base points are precisely the four singular points of the

following fibres of the conic bundle fibrations: L+
1 ∪ L−

1 , L
+
2 ∪ L−

2 ,M
+
3 ∪ M−

3 ,M
+
4 ∪ M−

4 .

The blow up of these four base points produces a geometrically rational elliptic surface2

with two reducible fibres given by the strict transforms of F and F ′. Since each of the latter

is given by four lines in a square configuration and the singular points of this configuration

are not blown up, these are of type I4. There are no other reducible fibres as the only

(−2)-curves are the ones contained in the strict transforms of F and F ′. Let E denote the

fibration map.

The Azumaya algebra (f, b) with f and b as in Theorem 8.5 taking as double four the

components of F and F ′, gives a Brauer element which is vertical for the genus one fibration

E . Indeed, the lines that give such a double four are clearly in Picvert and hence the algebra

(f, b) lies on H1(Q,Picvert). By [Bri06, Prop. 4] it gives an element of the form E∗A, where

A is in BrQ(P1).

The other Brauer elements on Xa are described by double fours, i.e., pairs of sets of four

(−1)-curves on Xa, subject to intersection conditions. Since each component intersects

each reducible fibre in exactly one point, after passing to its field of definition, these give

sections of the genus one fibration. That is, such Brauer elements are horizontal with

respect to this genus one fibration.

�

2not necessarily with a section over the ground field
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9.3. Mordell–Weil meets Brauer. In what follows we will keep the letter E for the

genus one fibration on the blow up surface just described.

Lemma 9.7. Let Xa and E be as above. Then the following hold:

(i) If BrXa/BrQ ≃ Z/2Z, then the genus 1 fibration E is an elliptic fibration over q

quadratic extension, i.e., admits a section. Moreover, it admits a section of infinite

order over a further quadratic extension. The Mordell–Weil group of E is fully

defined over at most a third quadratic extension.

(ii) If BrXa/BrQ ≃ (Z/2Z)2, then E is an elliptic fibration with a 2-torsion section

and a section of infinite order over Q. Moreover, the full Mordell–Weil group of E
is defined over a quadratic extension.

Proof. To prove (i) notice that the hypothesis of Proposition 2.2 imply that the four blown

up points form two distinct orbits of Galois conjugate points. To exemplify, we work with

the genus one fibration given by F and F ′ as in Lemma 9.6. Let Pi be the intersection

point of L+
i and L−

i for i = 1, 2 and that of M+
i and M−

i , for i = 3, 4. Denote by Ei the

exceptional curve after the blow up of Pi. Then {E1, E2} and {E3, E4} give two pairs of

conjugate sections of E . Moreover, the sections on a pair intersect opposite, i.e., disjoint,

components of the fibres given by F and F ′. Fixing one as the zero section of E , say E1,

then a height computation gives that E2 is the 2-torsion section of E . Indeed, as we have

fixed E1 as the zero section, the strict transform of L+
1 and L−

1 are the zero components

of the fibres F and F ′, respectively. We denote them by Θ0,j with j = 1, 2 respectively.

Keeping the standard numbering of the fibre components, the strict transforms of L2 and

L′
2 are denoted by Θ2,j, with j = 1, 2, respectively. Finally, in this notation, M+

3 and M−
3

correspond to Θ1,j while M+
4 and M−

4 correspond to Θ3,j, for j = 1, 2 respectively.

To compute the height of the section E2 we need the contribution of each I4 to the

pairing which in this case is 1 (see [Shi10, §11] for details on the height pairing on elliptic

surfaces and the contribution of each singular fibre to it). We have thus

〈E2, E2〉 = 2− 0− 1− 1 = 0.

In particular, E2 is a torsion section. Since E2 is distinct from the zero section E1 and such

fibrations admit torsion of order at most 2 (see [Per90] for the list of fibre configurations

and torsion on rational elliptic surfaces), we conclude that E2 is a 2-torsion section. The

two other conjugate exceptional divisors E3 and E4 give sections of infinite order as one

can see, for example, after another height pairing computation.
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To show (ii) it is enough to notice that the hypothesis of Proposition 2.2 imply that

the four base points of the linear system spanned by F and F ′ are defined over Q. From

the discussion above we have that the zero section, the 2-torsion and also a section of

infinite order, say E3, are defined over Q since each of them is an exceptional curve above

a Q-point. The height matrix of the sections E3 and E4 has determinant zero, hence the

section E4 is linearly dependent on E3. Moreover, it follows from the Shioda–Tate formula

for Pic(X)Gal(Q̄/Q) that any section defined over Q of infinite order is linearly dependent on

E3. Indeed, the rank of the Picard group of the rational elliptic surface is 6 since that of Xa

has rank 2 and we blow up 4 rational points. The non-trivial components of the two fibres

of type I4 give a contribution of 3 to the rank. The other 3 come from the zero section, a

smooth fibre and a section of infinite order, say E3. For a second section of infinite order

which is independent in the Mordell–Weil group of E3 one can consider the pull-back of a

line in Xa. The hypothesis on the Brauer group implies that Xa has no line defined over

Q but each is defined over a quadratic extension. �

Remark 9.8. The arguments above rely only on the presence of two conic bundle structures

on Xa and the Galois action on its singular fibres. Thus they can be generalized to any del

Pezzo surface of degree four with two conic bundle structures and a Z/2Z× Z/2Z action

on its singular fibres.
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