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Clustering-Based Model Reduction of Laplacian Dynamics With
Weakly Connected Topology

Xiaodong Cheng , Member, IEEE, and Jacquelien M. A. Scherpen , Senior Member, IEEE

Abstract—This article studies the structure-preserving model
reduction of Laplacian dynamics, which represent weakly con-
nected directed networks with diffusive couplings. The notion of
clusterability is introduced to guarantee a bounded reduction er-
ror, and a clustering algorithm is then proposed to partition the
nodes into clusters, such that the nodes in each cluster form a
connected subgraph of the original network. Then, a reduced-order
model, which is established using the generalized balanced form
of the original network, preserves the weakly connection structure
and consensus property. Finally, the effectiveness of the proposed
approach is illustrated by a numerical example.

Index Terms—Graph clustering, graph topology, model order
reduction, network systems.

I. INTRODUCTION

A network system captures the collective behavior of a number
of interacting dynamical subsystems. One of important properties of
network systems is consensus, which occurs when certain agreements
are reached via exchanging the information among the nodes [1]. In
applications, e.g., formation control of mobile vehicles, coordination
of distributed sensors, or balancing in chemical kinetics, consensus
networks are modeled as Laplacian dynamics [2]–[4], which are com-
monly used to describe diffusion processes, e.g., information or energy
spreading in networks. The model reduction of Laplacian dynamics is
motivated by challenges caused by large scale and high complexity of
networks that hinder both theoretical analysis and experimental stud-
ies. In this article, we address a structure-preserving model reduction
problem for directed networks exhibiting consensus properties, and we
aim for a lower-dimensional model that approximates the behavior of
the original network with an acceptable accuracy and without being too
expensive to evaluate.

The mainstream approach for reducing the complexity of networks
is graph clustering, which is relevant to the problem of community or
cluster detection for static graphs (see [5]). By partitioning the nodes
into disjoint clusters, the nodes in each cluster can be assimilated into a
single node such that the original topology is simplified, and its essential
structure is retained. For dynamical networks, the clustering process
has to take into account the evolution of node states driven by external
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input signals. The methods in [6]–[13] formulate the model reduction
problem of undirected networks via the Petrov–Galerkin framework,
where the projections are generated from selected clusters. A pioneer-
ing extension of the clustering approach to the reduction of directed
networks is presented in [14], where clusters are formed based on the
notion of reducibility, characterized by the uncontrollability of local
states. However, the projection of this method heavily relies on the as-
sumption that the network matrix has only one simple zero eigenvalue,
whose corresponding eigenvectors (i.e., the Frobenius eigenvectors) has
all strictly positive entries. In [15], the proposed clustering approach
is restricted to directed networks with strongly connected topology.
Moreover, in [6], [10], [12], and [14], the connection topology in each
cluster is not considered, i.e., some nodes may be separated from the
others in the same cluster, which actually complicates the interpretation
of the reduced-order network in terms of the original network.

In contrast to the existing results, this article investigates a model
reduction scheme for weakly connected directed networks with diffu-
sive couplings. The studied systems describe a more general class of
networks than undirected networks and strongly connected networks.
In practice, weakly connected structures are found in various network
applications, e.g., vehicle formations, self-synchronizing sensor net-
works, pagerank algorithms, and social networks (see [2], [3], [16],
and [17]). One of the major difficulties comes from the semistability of
the network system, in which the network matrix, different from [14],
[15], may contain multiple semisimple zero eigenvalues, and the cor-
responding eigenvectors may have rows with only zeros. Furthermore,
weakly connected networks may only achieve local consensus rather
than a global one. In our model reduction method, the local consensus
phenomenon of weakly connected networks is also taken into account,
such that the obtained reduced networks can preserve the consensus
property. However, this consideration is not specified in [14].

To tackle the above difficulties, this article introduces the concept
of generalized balanced digraphs, by which the projection matrices
are generated. Moreover, node clusterability is defined for weakly
connected networks, and it is shown that merging clusterable nodes
guarantees an bounded approximation error. The concept of nodal
dissimilarity is used for quantifying the difference between a pair of
clusterable nodes, which then leads to an iterative clustering algorithm
to yield a set of proper clusters, achieving a small model approximation
error between the full-order and reduced-order networks. This method
preserves a connection topology of the nodes in each cluster such that
each cluster forms a connected subgraph of the original network.

The rest of this article is organized as follows: In Section II, we intro-
duce the model of directed networks and the clustering-based projection
for reducing network models. In Section III, the clusterability is defined,
and a greedy algorithm is proposed to generate proper clusters. Then,
the scheme is illustrated through an example in Section IV. Finally,
concluding remarks are made in Section V.

Notation: Denote R as the set of real numbers. Let W be a subspace
of Rn, then W ⊥ denotes the orthogonal complement of W in Rn. The
cardinality of a set V is denoted by |V|, and The identity matrix of size
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n is given as In, and 1n denotes a n-entries vector of all ones. The
subscript n is omitted when no confusion arises. ei is the ith column
vector of In, and eij = ei − ej . The trace, rank, image, and nullspace
ofA are denoted bytr(A),rank(A),im(A), andker(A), respectively.

II. PRELIMINARIES AND PROBLEM SETTINGS

In this section, we provide necessary preliminaries on graph theory,
based on which the model of a directed network is given in the form
of Laplacian dynamics. The clustering-based projection framework is
then introduced.

A. Directed Network Systems

We briefly recap some definitions in graph theory, (see [18] and [19]
for more details). A digraph graphG = (V, E) is composed of a node set
V = {1, 2, . . . , n} and a directed edge set E ⊆ V × V . Each elements
in E is an ordered pair of V , and if (i, j) ∈ E , we say that the edge is
directed from vertex i to vertex j. A directed path connecting nodes
i0 and in is a sequence of edges of the form (ik−1, ik), k = 1, . . . , n.
A node i is reachable from j, if there is a directed path from j to i.
A strongly connected component (SCC) is a subgraph of G in which
any pair of nodes are reachable from each other. It is obvious that any
digraph G can be partitioned into a series of SCCs that do not share
any common nodes. If an SCC has only outflows, i.e., there is no edges
from our other components to this SCC, it is then called a root strongly
connected component (RSCC). For a weighted weakly connected graph
G, we denoteW ∈ Rn×n as its weighted adjacency matrix, whose (i, j)
entry, denoted by Wij , is positive if the directed edge (j, i) ∈ E , and
Wij = 0 otherwise. Then, G can be represented by a Laplacian matrix,
which is defined by

L = diag(W1)−W. (1)

The behavior of a directed consensus network evolving over G is
presented by the following Laplacian dynamics:

Σ :

{
ẋ(t) = −Lx(t) + Fw(t)
y(t) = Hx(t)

(2)

where x(t) ∈ Rn, w(t) ∈ Rp, and y(t) ∈ Rq are the vectors of node
states, external inputs, and measurement signals, respectively. The
input and output matrix F and H represent the distribution of the
external inputs and measurements, respectively. The Laplacian matrix
L represents a weighted digraph with diffusive couplings among the
nodes.

Throughout the article, we assume that the underlying digraph G
of the network system Σ is weakly connected, namely, replacing all
the directed edges of G with undirected ones and yields a connected
(undirected) graph. Note that a weakly connected digraph is the most
general topology characterization of a dynamic network in (2), and
it allows for multiple RSCCs. Without loss of generality, we suppose
G can be decomposed to m̄ SCCs, namely S1, . . . ,Sm̄, and the set
S1, . . . ,Sm are all the RSCCs. DenoteSR := S1 ∪ S2 · · · ∪ Sm. Then,
the Laplacian matrix is written as

L(G) =

⎡
⎢⎢⎢⎢⎣
Lα1 · · · 0 0

...
. . .

...
...

0 · · · Lαm 0

Lγ1 · · · Lγm Lβ

⎤
⎥⎥⎥⎥⎦ (3)

where the first m diagonal blocks,Lαi ∈ R|Si |×|Si | (i = 1, . . . ,m), are
the Laplacian matrices associated with the m RSCCs, while Lβ corre-
sponds to the remaining nodes in G, i.e., V \ SR andLγi ∈ R|V\SR |×|Si |

indicates the incoming edges from Si to V \ SR.

Note that L has semisimple zero eigenvalues with the multiplicity
m, and the real part of each nonzero eigenvalue ofL is strictly positive.
Thus, the network systemΣ is semistable. i.e., limt→∞ e−Lt exists [20].

Remark 1: If m = 1, G is a digraph containing one spanning tree,
and L has one simple zero eigenvalue. Particularly, if all the nodes in
G are reachable to each other, then G is strongly connected, and the
Frobenius eigenvector of L (i.e., the left eigenvector corresponding to
the zero eigenvalue) has all positive entries [14], [15].

B. Clustering-Based Projection

We construct the reduced-order network model using projection
matrices that are generated by graph clustering. Consider a connected
digraph G = (V, E). Graph clustering is to find nonempty subsets Ci
(called clusters), i = 1, 2, . . . , r such that V = C1 ∪ C2 ∪ · · · ∪ Cr , and
Ci ∩ Cj = ∅, ∀ i, j = 1, 2, . . . , r.

Definition 1: The characteristic matrix of a clustering C1, C2, · · · Cr
is denoted by a binary matrix Π ∈ Rn×r , whose (i, j)-entry is defined
by

Πij :=

{
1, node i ∈ Cj
0, otherwise.

(4)

As each node is included in a unique cluster, each row of Π has a
single 1 entry while all the others are 0. Thus, the property Π1n = 1r

holds. For a given clustering of G, with |V| = n, the clustering-based
projection is applied to construct a reduced network system as

Σ̂ :

{
ż(t) = −L̂z(t) + F̂w(t)

x̂(t) = Ĥx(t)
(5)

with z(t) ∈ Rr , L̂ := Π†LΠ, F̂ = Π†F , and Ĥ = HΠ, where Π† ∈
Rr×n is full row rank such that Π†Π = Ir .

Denote the transfer matrices of Σ and Σ̂ by

η(s) = H (sIn + L)−1 F, and η̂(s) = Ĥ(sIr + L̂)−1F̂ (6)

respectively. For the rest of this article, we address the following model
reduction problem.

Problem 1: Given a directed network systemΣ in (2), find matrices
Π andΠ† such that the obtained reduced-order model Σ̂ in (5) preserves
a network structure and approximates the behavior of Σ, i.e., ‖η(s)−
η̂(s)‖H2

is bounded and small.

III. MAIN RESULTS

The strategy of constructing a reduced-order network system is
discussed. First, we construct the projection matrices to guarantee the
boundedness of the error ‖η(s)− η̂(s)‖H2

, and then, we develop an
effective algorithm to find appropriate clusters that make reduction error
small.

A. Clusterability

The network matrices in [14] and [15] have a single zero eigenvalue
whose corresponding left eigenvector has all positive value. In that case,
any clustering will result in a bounded reduction error. However, this
property does no longer hold in the weakly connected case, where the
network matrixLmay contain multiple zero eigenvalues. To character-
ize the clusters that guarantee the boundedness of reduction error, the
notion of clusterability is introduced.

Before proceeding, we first extend the definition of balanced graphs
from strongly connected graphs to weakly connected ones. A strongly
connected graph is balanced if the indegree and outdegree of each node
in the graph are equal [19].

Authorized licensed use limited to: University of Groningen. Downloaded on February 15,2021 at 14:54:07 UTC from IEEE Xplore.  Restrictions apply. 
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Definition 2: A weakly connected digraph G is generalized bal-
anced if each RSCC is balanced, i.e.,

∑
j∈Sk wij =

∑
j∈Sk wji,∀ i ∈

Sk, ∀ k ∈ {1, 2, . . . ,m}.
We show that any directed network system in (2) can be converted

to a generalized balanced form.
Lemma 1: Consider a directed network system Σ in (2). There

always exists an equivalent representation{
Mẋ(t) = −Lx(t) + Fw(t)
y(t) = Hx(t)

(7)

where L is the Laplacian of a generalized balanced digraph, and M ∈
Rn×n is diagonal and positive definite such that F = MF and L =
ML.

Proof: Note that each Lri in (3) represents a strongly connected
digraph. From [19], there exists a vector of all positive entries νi such
that L�αiνi = 0 for all i = {1, . . . ,m}. Thus, diag(νi)Lαi represents
a balanced directed subgraph, i.e.,

1�diag(νi)Lαi = 0 and diag(νi)Lαi1 = 0. (8)

Let

M := diag
([
ν�1 , . . . , ν

�
m, ν�r

])
(9)

with νr an arbitrary positive vector. Then, L := ML represents a
generalized balanced digraph by Definition 2. �

Then, the clusterability of nodes is defined using the generalized
balanced representation of Σ in (7).

Definition 3: Consider a directed network system Σ in (2). The
nodes i and j are clusterable if eij ∈ ker(L)⊥ and eij ∈ ker(L�)⊥

simultaneously, where L is defined in (7). Furthermore, a clustering of
G is proper, if all the nodes in each cluster are clusterable.

Furthermore, the physical meaning of the clusterability is explained
in the following lemma.

Lemma 2: The nodes i and j are clusterable if and only if the
following conditions hold.
1) The nodes i and j reach consensus, i.e., when w = 0

lim
t→∞

[xi(t)− xj(t)] = 0

for all initial conditions.
2) The nodes i and j are either contained in the same RSCC or i, j ∈
V\SR.

Proof: Consider the decomposition

L =
[
U Ū

] [0
0 D̄

][
V

V̄

]
(10)

where D̄ ∈ R(n−m)×(n−m) is Hurwitz withm the algebraic multiplicity
of the zero eigenvalue of L, and U, V ∈ Rn×m satisfy

LU = 0, V �L = 0, and V �U = Im (11)

It then follows from L = ML that im(U) = ker(L), im(M−1V ) =
ker(L�), with M given in (9). By Definition 3, the clusterability of
the nodes i and j is equivalent to

e�ijU = 0, and e�ijM
−1V = 0. (12)

Note that for any initial condition x0 ∈ Rn, the zero input response
of Σ satisfies limt→∞ e−Ltx0 = UV �x0. Thus, the nodes i and j
reach consensus for all initial conditions x0, if and only if the ith and
jth rows of U coincide, i.e., e�ijU = 0. Furthermore, from Lemma 1,
e�ijM

−1V = 0 holds if and only if the nodes i and j belongs to the same
RSCC, or i, j ∈ V\SR. In the latter case,e�i V = 0, for all i ∈ V\SR. �

Remark 2: The clusterability of two nodes does not simply mean
that the two nodes are in the same SCC, or they reach consensus
at the same final value. Particularly, the clusterability of different
types of directed networks are discussed. If G is strongly connected,
we have U = 1√

n
1n, and V ∈ Rn has all positive entries such that

1�L = 1�ML = 0. Thus, all the nodes are clusterable. IfG is a weakly
connected digraph containingmRSCCs, local consensus is achieved in
each RSCC, and thus the nodes in the same RSCC are clusterable. For a
pair of nodes in V\SR (may be in different SCCs), they are clusterable
if and only if their states reach consensus.

The clusterability determines the feasibility of a graph clustering.
More specifically,‖η(s)− η̂(s)‖H2

is bounded if and only if clusterable
nodes are aggregated.

Theorem 1: Consider the directed network system Σ in (2) and its
reduced-order model Σ̂ in (5) with

L̂ =
(
Π�MΠ

)−1
Π�LΠ, and F̂ =

(
Π�MΠ

)−1
Π�F (13)

where M , L, and F are defined in (7). For all input matrix F , the error
η(s)− η̂(s) ∈ H2 if and only if Π characterizes a proper clustering of
G.

Proof: TheH2-norm of the approximation error is given by

‖η(s)− η̂(s)‖2H2
=

∫ ∞

0

‖ξ(t)− ξ̂(t)‖22dt (14)

where ξ(t) := e−LtF and ξ̂(t) := Πe−L̂tΠ†F are the impulse re-
sponses of Σ and Σ̂, respectively. Since both ξ(t) and ξ̂(t) are smooth
functions over t ≥ 0, the integral in (14) is finite if and only if the error
ξ(t)− ξ̂(t) exponentially converges to zero. Hence, for any H and F
matrices with proper dimensions, η(s)− η̂(s) ∈ H2 is equivalent to

J = ΠĴΠ†. (15)

where J := limt→∞ e−Lt and Ĵ := limt→∞ e−L̂t.
To prove the “if” part, we assume {C1, C2, . . . , Cr} to be a proper

clustering of G. We first verify that

U = ΠΠ†U, and V � = V �ΠΠ†. (16)

Without loss of generality, assume that

Π = blkdiag
(
1|C1 |,1|C2 |, . . . ,1|Cr |

)
. (17)

Accordingly, the matrices U and V in (11) are partitioned as U� =
[U�1 , . . . , U

�
r ] and V � = [V �1 , . . . , V �r ]. Meanwhile, Γ = ΠΠ† be-

comes block diagonal with the ith diagonal entry

Γi = 1|Ci |
(
1�|Ci |Mi1|Ci |

)−1
1�|Ci |Mi (18)

where Mi is the corresponding principal submatrix in N . Then, the
equations in (16) hold if and only if

Ui = ΓiUi, and V �i = V �i Γi. (19)

It follows from Lemma 2 that Ui = 1|Ci |, which leads to the first
equation in (19). Moreover, as the nodes in Ci are clusterable, Lemma
2 implies that these nodes are either contained in the same RSCC or in
the set V\SR, implying that Vi = Mi1|Ci| or Vi = 0. Thus, the second
equation in (19) also holds. Let Û := Π†U and V̂ � := V �Π, which
yield L̂Û = Π†LΠΠ†U = Π†LU = 0, and V̂ �L̂ = V �ΠΠ†LΠ =
V �LΠ = 0. Due to V̂ �Û = V �ΠΠ†U = V �U = Im, we obtain

Ĵ := Û V̂ � = Π†UV �Π (20)

and thus, we obtain ΠĴΠ† = ΠΠ†UV �ΠΠ† = UV � = J , which
implies η(s)− η̂(s) ∈ H2.

Authorized licensed use limited to: University of Groningen. Downloaded on February 15,2021 at 14:54:07 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Illustration of clusterability. (a) Directed graph, with a proper
clustering C1 = {1, 2, 3}, C2 = {4}, and C3 = {5, 6}. (b) Reduced net-
work, obtained by the proper clustering, gives a bounded approximation
error. (c) Reduced network obtained by an improper clustering, resulting
in an unbounded approximation error.

For the “only if” part, ‖η(s)− η̂(s)‖H2
is assumed to be bounded for

all F , equivalently, (15) holds. Similarly, we consider a block diagonal
structure of Π as in (17) such that (15) is presented as⎡

⎢⎢⎣
U1

...

Ur

⎤
⎥⎥⎦[

V �1 , · · · , V �r
]
=

⎡
⎢⎢⎣
1|C1 |Ũ1

...

1|Cr |Ũr

⎤
⎥⎥⎦[

Ṽ �1 Π†1, · · · , Ṽ �r Π†r
]

(21)

where Π†i := (1�|Ci |Mi1|Ci |)
−11�|Ci|Mi, Ũi := e�i Ũ and Ṽi := e�i Ṽ ,

with Ũ and Ṽ fulfilling

im(Ũ) = ker(L̂), im(Ṽ ) = ker(L̂�), and Ṽ �Ũ = I. (22)

The matrices Ui, Vi ∈ R|Ci |×m are the corresponding submatrices of
U and V , respectively. Then, (21) yields UiV

�
j = 1|Ci |ŨiṼ

�
j Π†j =

αij · 1|Ci |1�|Cj |Mj , ∀ i, j = 1, 2, . . . , r, with a scalar αij := ŨiṼ
�
j ·

(1�|Cj |Mj1|Cj |)
−1. It follows that e�ijUk = 0 and V �k N−1k eij = 0,

∀i, j ∈ Ck. Note thatLU = 0 andV �M−1L = 0withL defined in (7).
Thus, we obtain for all i, j ∈ Ck, eij ∈ ker(L)⊥ and eij ∈ ker(L�)⊥.
As the result holds for all clusters C1, C2, . . . , Cr , the graph clustering
is proper by Definition 3. �

Note that L̂ ∈ Rr×r in (13) is also a lower-dimensional Laplacian
matrix that represents a digraph with fewer nodes. Thus, the reduced-
order model Σ̂ preserves the structure of a directed network and the
local consensus property.

Remark 3: When L has only one simple zero eigenvalue, all the
nodes in the network Σ are clusterable, i.e., any clustering of G is
proper, and thus η(s)− η̂(s) ∈ H2 is always guaranteed. In this case,
the proposed projection in (13) is essentially identical to that in [14]
and can be reduced to it.

Remark 4: For a weakly connected network, we can find a set of
maximal proper clusters, C̄1, C̄2, . . . , C̄κ, where all the nodes in the each
cluster are clusterable, while every two nodes from distinct clusters
are not. From Remark 2, it is clear that κ ≥ m+ 1. Furthermore, to
guarantee the boundedness of the reduction error, it is necessary for the
order of the reduced-order network system to be larger or equal to κ.

Example 1: A weakly connected graph is illustrated in Fig. 1(a),
which contains three SCCs, i.e.,S1 = {1, 2, 3},S2 = {4, 5}, andS3 =
{6}. S1 and S2 are the RSCCs. The weighted Laplacian matrix of the

network is written as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0

−2 2 0 0 0 0

0 −2 2 0 0 0

0 0 0 3 −3 0

0 0 0 −1 1 0

0 −1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

which has two zero eigenvalues, and the corresponding right and left
eigenvectors are be characterized by

U� =

[
0.25 0.25 0.25 0 0 0.125

0 0 0 0.25 0.25 0.125

]

V � =

[
2 1 1 0 0 0

0 0 0 1 3 0

]

as defined in (10). Let F = H = I6, and we can choose M =
diag(2, 1, 1, 1, 1, 3) to obtain the system in (7) with a Laplacian
matrix L associating with a generalized balanced digraph. Consider
two different graph clustering

C̃1 = {1, 2, 3}, C̃2 = {4}, C̃3 = {5, 6}
C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}

which leads to reduced-order network systems in form of (5) with

L̂ =

⎡
⎢⎣

0 0 0

0 0 0

−1 −1 2

⎤
⎥⎦ , L̂′ =

⎡
⎢⎣

2
3

− 2
3

0

0 0 0

− 3
2
− 1

2
2

⎤
⎥⎦ (24)

respectively. Both two matrices represent digraphs, as shown in
Fig. 1(b) and (c), respectively. But only the digraph in Fig. 1(b) is
obtained by a proper clustering, thus it gives an approximation error:
‖η(s)− η̂(s)‖H2

= 0.7852, while the latter reduced network yields an
unbounded reduction error.

B. Dissimilarity and Graph Clustering

We present a greedy algorithm to choose a proper clustering of G
such that ‖η(s)− η̂(s)‖H2

is small. To this end, we introduce the notion
of dissimilarity, which is defined only for a pair of clusterable nodes,
to characterize their difference in terms of their state responses with
respect to external inputs.

Definition 4: Consider the systemΣ in (2). Let I be a set collecting
all the clusterable pairs, i.e., (i, j) ∈ I, for all clusterable nodes i and
j. Then, the dissimilarity is defined for each element in I as

Dij = Dji := ‖e�ij(sIn + L)−1F‖H2
, ∀ (i, j) ∈ I. (25)

The similar definition for undirected networks can be found in [10]
and [12]. A direct computation of the H2-norm for each pair of
clusterable nodes can be rather expensive for a large-scale network.
Therefore, we utilize a novel controllability Gramian to facilitate the
dissimilarity computation.

Theorem 2: Consider the system Σ in (2). The dissimilarity be-
tween two clusterable nodes i and j is computed as

Dij =
√

e�ijPeij (26)

where P is the unique solution of the following equations:{LP + PL� = (In − J )FF�(In − J�)
JPJ � = 0

(27)
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with J := limt→∞ e−Lt a constant matrix.
Proof: Following [15], we define

Pn =

∫ ∞

0

(e−Lt − J )FF�(e−L�t − J�)dt (28)

as the pseudo controllability Gramian ofΣ. It is shown that thePn = P ,
which is the unique solution of (27) (see [10] for a similar proof).

Since i and j are clusterable, we obtain from Lemma 2 thate�ijJF =
0. Let g(t) := e�ije

−LtF . By the definition of the H2 norm [21], we
then have

D2
ij =

∫ ∞

0

e�ije
−LtFF�e−L�teijdt

=

∫ ∞

0

e�ij
(
e−Lt − J )FF� (e−L�t − J�) eijdt (29)

which gives (26). �
Remark 5: We can apply a blockwise computation of the matrix

P . Following the structure of L in (3), we can partition the input ma-
trix F as F� = [F�1 F�2 . . . ,F�m F�β ] and J = limt→∞ e−Lt =
blkdiag(ν11|S1 |ν�k

, . . . , νm1|Sm |ν�k
, 0), with νk the left Frobenius

eigenvector ofLαk, see the proof of Lemma 1. Consequently, we obtain

P =

⎡
⎢⎢⎢⎢⎣
Pα1 · · · 0 P�γ1

...
. . .

...
...

0 · · · Pαm P�γm
Pγ1 · · · Pγm Pβ

⎤
⎥⎥⎥⎥⎦ (30)

where Pαk (pseudocontrollability Gramians), Pγk, for k = 1, . . . ,m,
and Pβ are solved by the following matrix equations:{

LαkPαk + PαkL�αk = (I − νk1
�)FkF�k (I − 1ν�k )

νk1
�Pαk1ν

�
k = 0

(31)

LβPγk + PγkL�αk = FβF�k (I − 1ν�k )− LγkPγk (32)

LβPβ + PβL�β = FβF�β −
m∑

k=1

(LγkP�γk + PγkL�γk
)
. (33)

Note that−Lβ is Hurwitz, implying that both (32) and (33) have unique
solutions. Now, instead of directly solving large-scale equations in (27),
we tackle multiple problems in smaller dimensions, in which all the
blocks in (30) are computed by a cascading approach. Specifically, for
all i = 1, 2, . . . ,m, we solve Pαk in (31) which is then substituted to
(32) yielding Pγk. As a result, Pγk is computed in (33) using all Pγk.

Roughly speaking, a smaller value ofDij indicates a smaller amount
of input energy required to steer the nodes i and j to reach consensus.
Intuitively, clustering a pair of nodes with smaller dissimilarity results in
a smaller approximation error. Thus, we present a greedy algorithmic
procedure to generate clusters of a given network based on its node
dissimilarities. Different from the methods in [10], [12], [14], our al-
gorithm takes into account the interconnection topology of the original
network. More precisely, it preserves the connection topology in each
cluster such that the nodes in each cluster form a connected subgraph
of the original network.

First, a direct simplification of the original network can be applied. If
there exists an RSCC Sk, k ∈ {1, 2, . . . ,m} such that Fk = 0, we can
remove all the nodes in Sk. If there exists a pair of nodes i, j such that
Dij = 0, we then merge i, j as a single node. Note that both operations
do not yield any approximation error, since they essentially remove
uncontrollable component of the system.

Next, we consider a network system Σ of n nodes, which satisfies
Fk �= 0 for all k ∈ {1, 2, . . . ,m}, andDij �= 0, for all i, j ∈ V . Define

Algorithm 1: Connection-Preserving Clustering Algorithm.

Input: L, F , and desired order r
Output: L̂ and F̂

1: Compute the dissimilarity Dij by Theorem 2.
2: Remove all the nodes in Sk, if Fk = 0, k = 1, 2, . . . ,m, and

merge the nodes with dissimilarity 0;
3: Construct the distance matrix X in (34);
4: c← rank(diag(X1)−X )
5: repeat
6: Find (u, v) = arg(i,j)∈E∩I maxXij ;
7: Xuv ← 0, and Xvu ← 0;
8: c← rank(diag(X1)− X );
9: until c ≤ r

10: Generate Π, and compute L̂ and F̂ according to (13).

a distance matrix of Σ, denoted by X , whose (i, j) entry is

Xij = Xji =

{Dij , if (i, j) ∈ E ∩ I
0, otherwise

(34)

where E is the edge set of the original network, and E ∩ I collects all
the adjacent and clusterable pairs of nodes. Note thatX can be seen as a
weighted adjacency matrix of an undirected graph GD , which contains
multiple disconnected subgraphs, and each subgraph is composed of
clusterable nodes in G. Then, a clustering procedure is taken as follows.

We find the edge of GD with the largest weight, namely, the largest
dissimilarity among all pairs in E ∩ I. Then, we remove this edge in
GD such that a new distance matrix is obtained. We then repeat the
above step to remove more edges until r connected components are left
in GD . In every step, to check the number of connected components in
GD , we compute the Laplacian matrix of GD

LD = LT
D = diag(X1)− X . (35)

From [18], the rank of LD is equal to the number of connected
components. The detailed process is shown in Algorithm 1.

Remark 6: As X is defined in (34), the unclusterable nodes are
already separated into different connected components of the initial
GD . The subsequent operation is just to split the connected components
into more smaller ones. Thus, the resulting graph clustering is proper.
Moreover, each edge in GD also corresponds an edge in the original
graph G. Thus, the obtained r clusters form node-disjoint subgraphs
of G.

With a proper graph clustering of the original network, the reduced-
order network system Σ̂ in (5) achieves a bounded approximation error,
which can be evaluated by using the pseudo controllability Gramian
in (28).

Theorem 3: Consider the network system Σ in (2) and the reduced-
order network model Σ̂ obtained from a proper clustering. Then, the
reduction error is computed as

‖η(s)− η̂(s)‖2H2
= tr

[
H

(Pn +ΠPrΠ
� − 2ΠPx

)
H�

]
(36)

where Pn and Pr are the pseudocontrollability Gramians of Σ and Σ̂,
respectively. Px := P̃x −Π†JΠP̃xJ � ∈ Rr×n with P̃x an arbitrary
solution of the Sylvester equation

L̂�P̃x + P̃xL� = Π†(I − J )FF�(I − J�). (37)

Proof: The approximation error is characterized by

η(s)− η̂(s) := ηe(s) = C(sIn+r −A)−1B (38)
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with

A = −
[L 0

0 L̂
]
, B =

[F
F̂
]
, C =

[
H −HΠ

]
.

Note that ηe(s) ∈ H2 due to Theorem 1. Denote Je := limt→∞ eAt =
blkdiag(J , Ĵ ). Then, from (15), we obtain CJeB = HJF −
HΠĴΠ†F = 0. Therefore

‖ηe(s)‖2H2
= tr

(∫ ∞

0

CeAtBB�eA�tC�dt
)

= tr

[∫ ∞

0

C(eAt − Je)BB�(eA�t − J�e )C�dt
]

: = tr(CPeC�) (39)

where Pe is defined as the pseudocontrollability Gramian of the error
system ηe(s) (see the definition in [15]). Moreover, similar to Lemma 2,
Pe is solved as the unique solution of

APe + PeA� + (I − Je)FF�(I − J�e ) = 0 (40)

JePeJ �e = 0. (41)

Consider an arbitrary solution of (40), which is partitioned as

P̃e =

[
P̃n P̃�x
P̃x P̃r

]
, with P̃n ∈ Rn×n, P̃r ∈ Rk×k. (42)

It then leads to three equations as follows:⎧⎪⎨
⎪⎩
LP̃n + P̃nL� = (In − J )FF�(In − J�)
L̂P̃r + P̃rL̂� = (Ir − Ĵ )F̂F̂�(Ir − Ĵ �)
L̂P̃x + P̃xL� = (Ir − Ĵ )F̂F�(In − J�)

(43a)

(43b)

(43c)

where (43c) is equivalent to (37) due to ĴΠ† = Π†JΠΠ† = Π†J .
Since both Pe and P̃e are solutions of (40), it follows from (41) that
P̃e − Pe = J (P̃e − Pe)J T = J P̃eJ �. Following the definition in
(28), we define Po and Pr as the pseudocontrollability Gramians of Σ
and Σ̂, respectively. Then, we obtain[

P̃n − J P̃nJ � P̃�x − J P̃�x Ĵ �
P̃x − Ĵ P̃xJ � P̃r − Ĵ P̃rĴ �

]
:=

[
Pn P�x
Px Pr

]
.

Thus, the reduction error in (36) is obtained from (39). �

IV. NUMERICAL EXAMPLES

The effectiveness of the proposed approach is shown by a large-scale
network example in Fig. 2, which contains three strongly connected
digraphs. The data is available from the Harwell–Boeing Sparse Matrix
Collection (https://math.nist.gov/MatrixMarket/data/Harwell-Boeing).

Note that the methods in [14] and [15] are not applicable to this
case. In the simulation, we select 1, 152, 728 as the input nodes and
246, 615, 733 as the measured nodes. The original network is reduced
using Algorithm 1 and a random clustering scheme, respectively. Their
comparison is shown in Fig. 3, where the reduction errors in terms of
the H2-norm are evaluated under different reduced order from 10 to
700. Clearly, the proposed method has a much better performance, as
the reduction error shows a rapidly decay. In Fig. 4, the topologies of
reduced-order networks with different dimensions r = 60 and r = 120
are plotted. The reduction error in the two cases are given by 0.0028
and 0.0012, respectively, which are much smaller than the maximal
dissimilarity 0.8839. Hence, the reduced-order network with 80 nodes
provides a rather accurate approximation of the original 735-node
network. In conclusion, this example shows that the proposed clustering

Fig. 2. Weakly connected directed network consisting of 735 nodes,
where the controlled and measured nodes are labeled by diamonds and
squares, respectively.

Fig. 3. Approximation error comparisons between the proposed algo-
rithm and the random clustering algorithm.

Fig. 4. Reduced directed networks of different dimensions. (a) r =
120. (b) r = 60.

method is feasible and effective in reducing the scale of a complex
directed network.

V. CONCLUSION

This article has proposed a structure-preserving model reduction
scheme for Laplacian dynamics of weakly connected networks that
are semistable and have local consensus properties. The notion of
clusterability is given to classify nodes that are mergeable, and pairwise
dissimilarity of nodes quantify the difference among clusterable nodes.
A graph clustering algorithm is applied to cluster clusterable and
adjacent nodes that behave similarly. Consequently, it is guaranteed
that the H2 reduction error is bounded, and the nodes in each cluster
form a connected subgraph of the original network.
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