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REVIEW Open Access

Understanding the host-microbe
interactions using metabolic modeling
Jack Jansma and Sahar El Aidy*

Abstract

The human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However,
interactions within the complex microbiota community and between the microbiota and its host are challenging to
elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis.
Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated.
Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the
distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic
environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable
the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a
personalized manner. This review aims to introduce to experimental biologists the possible applications of flux
balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.

Keywords: Flux balance analysis, Gut microbiota, Probiotics, Metabolic model, Microbial community

Application of bacterial metabolic networks to
study metabolic interactions
The gut microbiota is the community of microorganisms
residing in the gut and include commensal, symbiotic,
and pathogenic bacteria. Under normal circumstances,
the gut microbiota and its host are in symbiosis [1]. Dis-
ruption of the symbiosis is detrimental for host health
and can result in disease including gastrointestinal disor-
ders such as inflammatory bowel disease [2], metabolic
disorders such as diabetes mellitus [3], and mental disor-
ders such as autism spectrum disorder [4], and major
depressive disorder [5]. To understand the symbiotic re-
lationship, the different members of the gut microbiota,
and the way they communicate with each other and with
the host need to be known. The gut microbiota commu-
nicates via the production of metabolites [6]. Therefore,
it is key in the field of host-microbe interactions to

identify which microbial members are present and what
their metabolic output is. However, this does not fully
elucidate the dynamic interactions within the micro-
biota, and between the host and the microbiota, since
the metabolic output of microorganisms is dependent
on their surroundings [7]. Therefore, the metabolic out-
put and, in turn, the interactions between the host and
the microbiota is different among individuals [8], making
successful treatment of the aforementioned disorders
more challenging. Although experimental approaches
are crucial to the progress of the microbiota field, they
are not able to fully capture the mechanisms, interac-
tions, and behavior due to the huge complexity of the
gut environment. These limitations have led to the de-
velopment of a complimentary approach to completely
understand the relationship between the host and its mi-
crobes; bacterial metabolic networks [9]. In this ap-
proach, bacterial interactions can be visualized in the
form of a metabolic network. The metabolites comprise
the nodes of the metabolic network. Biological processes
such as conversions, uptake, and secretion are
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represented by the edges. By placing the set of metabolic
reactions of a single bacterium into a compartment, one
could separate the metabolic reactions of one bacterium
from another bacterium or from host cells in the meta-
bolic network. Placing each cell compartment into a
shared compartment can simulate how the different cells
metabolically interact with each other [10] (Fig. 1a).
Metabolic networks can be used to predict the effect

of alterations in the metabolic network in silico. A
constraint-based reconstruction and analysis (COBRA)
approach is often used to simulate the operation of a
metabolic network under different external nutrient con-
ditions. A COBRA method suitable for investigating the
metabolism of the microbiota is flux balance analysis
(FBA) [11]. A flux is the rate of turnover of a metabolite
through a metabolic pathway. To perform FBA, all the
fluxes in the network should be represented by a set of
linear equations. The equations are placed in a stoichio-
metric matrix, which consists of the substrates, products,
and directionality of the reactions (Fig. 1b). Next, FBA
uses constraints to limit the flow of metabolites through
the network and calculates the distribution of metabolic

fluxes in the metabolic network for a given objective
function (OF), resulting in an optimal distribution of
fluxes (Fig. 1c). For example, an OF that maximizes the
production of the short chain fatty acid (SCFA) acetate
will result in a different flux distribution compared to an
OF that maximizes butyrate production. Other examples
of OFs include minimizing the production of a particular
metabolite, maximizing cell growth or for a community
of bacteria maximizing growth of a single species or
maximizing the growth of the whole community [11].
FBA works at steady-state, i.e., the amount of the me-

tabolite produced is equal to the amount of the metabol-
ite consumed. Accordingly, the set of linear equations is
formulated as:

S � v ¼ 0 ð1Þ

Where (S) represents a stoichiometric matrix, and (v)
represents the flux distribution. The formula describing
a biomass function contains all the metabolites in the
system that are required to build a new cell. In other
words, a biomass function simulates cell growth.

Fig. 1 Application of flux balance analysis to simulate a metabolic interaction among multiple bacteria. a A metabolic network of a bacterial
community consisting of Faecalibacterium prausntizii and Bifidobacterium adolescentis (adapted after El-Semman et al. [20]). Fluxes of the exchange
reactions are represented by arrows. Solid black arrows indicate uptake, and secretion reactions of the bacteria, dashed black arrows indicate the
flow of metabolites in or out of the system, and dashed grey arrows indicate the formation of new biomass, where metabolites cannot be
secreted by the bacteria anymore, thus leaving the system. b Stoichiometric matrix of the exchange reactions depicted in panel a. BA depicts B.
adolescentis and FP depicts F. prausnitzii. c Visual representation of the concept of flux balance analysis; (i) A solution space of the flux distribution
in a system; (ii) The allowable solution space is the result of addition of constraints depicted in Eqs. 1 and 2, which equations limit the available
flux distributions; (iii) Addition of an objective function as depicted in Eq. 3 determines the optimal solution for the flux distribution in the system.
Adapted after Orth et al. [3].
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Importantly, since Eq. 1 depicts a set of linear equations
and there are typically more reactions than compounds,
there is more than one flux distribution possible. Con-
straints are imposed on a flux as upper- and lower-
bounds to limit the maximum and minimum values that
each flux can take. Constraints could reflect media con-
ditions, where uptake and secretions rates are limited, or
reaction velocities of internal enzymes obtained from ex-
perimental data [12, 13]. Accordingly, each flux with
constraints is formulated as:

Vi; min < Vi < Vi; max ð2Þ
Similarly, the OF is formulated as follows:

Z ¼ cT� v ð3Þ
where (Z) is the solution of the OF, (C) is the vector of
weights, indicating how much each reaction contributes
to the OF and (T) represents the matrix transpose. For
example, when a single flux is maximized or minimized,
C is a vector of 0s with a single 1 [14, 15]. However, for-
mulating an OF can be challenging and is fully
dependent on the research question [16, 17].
FBA is a versatile tool to employ for many purposes.

By adjusting the upper- and lower- bounds of metabo-
lites, growth on different media [18] or, in the case of
the gut microbiota, changes in diet, can be simulated.
Similarly, by setting the flux of a certain metabolite to
zero, a gene knock-out or the absence of a member of
the microbiota can be simulated [11, 15, 19]. In this way,
we can estimate the viability of a microbial community
under different conditions as well as the effect of adding
new species to a bacterial community on host health

[16]. For example: FBA used to study the effect of lactate
production on Bifidobacterium adolescentis shows a re-
duction in the production of formate, ethanol and acet-
ate as well as a reduction in biomass formation if lactate
production is manually increased. The OF in this ex-
ample is maximizing biomass production (Fig. 2) show-
ing that the flux distribution changes with altering the
environment [20]. To investigate interactions in a micro-
bial community, the authors added another bacterium,
Faecalibacterium prausnitzii, in the same metabolic en-
vironment as B. adolescentis. F. prausnitzii needs acetate
to grow well on glucose and to produce butyrate [21]. If
acetate is not supplied, F. prausnitzii will use the acetate
produced by B. adolescentis to grow and consequently
produce butyrate (Fig. 3). Since the biomass reaction
simulates bacterial growth, altering the flux through the
biomass reaction of one bacterium, while keeping the
total biomass of the system constant, can simulate
changes in the bacterial composition in the gut. Altering
the amount of flux through a biomass reaction will re-
sult in alteration of the flux distribution of the whole
system, which, in turn, causes an increase in butyrate
production when the flux through the biomass reaction
of F. prausntizii is increased in the system compared to
a situation with more flux through the biomass reaction
of B. adolescentis. The OF in this example is
minimization of glucose consumption for both bacteria
(Fig. 3) [20]. This example shows that FBA can be used
to investigate interactions between bacteria. In a similar
approach, the introduction of a compartment that repre-
sents a host cell and connecting it to a shared metabolic
compartment that represents the intestinal lumen can be
used to study host-microbiota interactions (Fig. 4). Using

Fig. 2 Representation of the use of FBA in metabolic modeling of an organism. The OF in panels a and b is maximizing the production of the
biomass. The thickness of the arrows indicate the amount of flux, where a thicker arrow indicates a higher flux. When the production of lactate is
manually altered in panel b, the flux distribution changes, whereby the flux of acetate, formate, ethanol, and biomass is lowered compared to
panel a. Adapted after El-Semman et al. [20]

Jansma and El Aidy Microbiome            (2021) 9:16 Page 3 of 14



this approach, Heinken et al. combined metabolic com-
partments of Bacteroides thetaiotamicron and a general-
ized mouse cell [22] in a metabolic network. The
authors investigated metabolic dependencies between
the host and its microbe by simultaneous optimization

of the growth rates of both the host cell and the mi-
crobe. The authors showed that the presence of B. the-
taiotamicron could influence the growth of the
generalized mouse cell by supplying the host cell with
essential and non-essential amino acids. Furthermore,

Fig. 3 Representation of the use of FBA in the modeling of a bacterial community consisting of two gut bacteria: F. prausnitzii and B. adolescentis.
Fluxes are represented by arrows. Solid black arrows indicate uptake and secretion reactions of the bacteria, dashed black arrows indicate the
flow of metabolites in and out of the system and dashed grey arrows indicate the formation of new biomass, where metabolites can no longer
be secreted by the bacteria, thus leaving the system. The amount of flux is represented by the thickness of the arrows, a higher flux is a thicker
arrow. The ratio of the produced biomass is used as a measure for the number of F. prausnitzii and B. adolescentis in the system, whereby the
total biomass is kept constant. A higher flux through the biomass reaction represents more bacteria of that species in the system. The OF is the
minimization of glucose uptake for both bacteria. Adapted after El-Semman et al. [20]

Fig. 4 Representation of the use of FBA to study the complex host-microbe interactions. A bacterial metabolic compartment is placed in a
compartment which is connected to a metabolic compartment representing a host cell. The host cell compartment is connected to another
compartment representing the bloodstream of the host. Arrows between the different compartments indicate exchange reactions. Solid arrows
represent influx of metabolites into the system, which represents metabolites originating from the diet and/or metabolites present in the
bloodstream. Dashed arrows represent efflux of metabolites out of the system symbolizing metabolites excreted in feces and/or translocating in
the bloodstream
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the authors simulated gene knockouts of B. thetaiotami-
cron and the mouse cell by setting the corresponding
flux to 0. By optimizing the biomass function of the cell
with the knockout the authors showed that B. thetaiota-
micron is able to rescue lethal knockouts in the host cell
and vice versa [23]. Although this metabolic network
shows only an interaction between one bacterium and
one host cell type, which is far from accurately depicting
the community in the gut, expanding this network by
introducing more bacterial and host compartments can
give new insights into systemic effects of the microbiota
on the host and vice versa. Metabolic networks depicting
human metabolism, which includes host interactions
with the microbiota can be used to investigate causality
in microbiota-related disease and, in turn, can generate
new hypotheses for the treatment of microbiota related
diseases. To date, the most comprehensive model of hu-
man metabolism is Recon3D [24, 25].
The examples of metabolic networks depicted in Figs.

2, 3, and 4 show the usefulness of computational
methods in understanding the complex interactions
within the gut microbiota. Fortunately, the principles of
using FBA in small metabolic networks are the same as
in large metabolic networks. Thus, a thorough under-
standing of these principles will help making predictions
beyond what experimental biologists can expect from lo-
gical reasoning to eventually allow the discovery of novel
interventions to improve human health.
Since FBA works at steady-state, it gives an optimal

distribution of fluxes for a given OF in small metabolic
networks. In large metabolic networks multiple solutions
are possible. To find these alternative solutions flux vari-
ance analysis can be used, which uses FBA to maximize
and minimize each flux in the system [15]. Finding opti-
mal solutions by simulating a metabolic network once
does not capture dynamic changes in metabolite levels
and dynamic interactions between bacteria. Dynamic
changes are an important factor when studying bacterial
communities, because cells are dividing and dying. Add-
itionally, in the human gut there is movement of cells
from the upper part of the intestine to the lower part
due to gut motility and metabolites levels change dy-
namically during the day due to the cycles of food intake
[26–28]. Therefore, capturing the dynamic changes in
metabolic networks is necessary to study the gut micro-
biota. To capture dynamic changes, dynamic FBA
(DFBA) has been developed. DFBA uses ordinary differ-
ential equations (ODE) to couple FBA to a kinetic model
[29]. This can be done using three approaches: static
optimization approach (SOA), dynamic optimization ap-
proach (DOA), or direct approach (DA) [30]. The most
widely used approach is SOA. Essentially, SOA makes a
series of snapshots using FBA. The starting conditions of
each snapshot is determined by the outcome of the

previous snapshot. SOA requires small time steps be-
tween the snapshots to accurately capture the dynamic
changes, making it computationally expensive [31]. DOA
obtains time profiles of fluxes and metabolite levels by
optimizing the entire time period of the simulation. The
dynamic optimization problem is transformed into a
non-linear programming problem which is solved once
[31, 32]. In contrast to DOA, DA uses a linear program
solver at the right side of the ODE. Similar to SOA, DA
is also computationally expensive since the linear pro-
gram needs to be solved each time the right side of the
ODE is evaluated [30]. An example of the application of
the SOA was shown by Mahadevan et al. to investigate
the restructuring of the metabolic network of Escheri-
chia coli during a diauxic shift. The authors simulated a
batch culture of 10 h, which was divided into 10,000-
time intervals. The concentration of the metabolites at
the start of each interval was directly calculated from the
previous interval. This approach showed that during the
first 4.6 h the oxygen, and glucose uptake rates of the
cells were the limiting constraints on biomass formation.
During the second phase between 4.6 h and 6.9 h, the
limiting constraint on biomass formation was the con-
centration of oxygen in the environment. During the last
phase, where acetate is utilized from 6.9 h to 10 h the
mass transfer coefficient was the limiting constraint on
biomass formation. The computational values were simi-
lar to experimental values confirming the usefulness of
DFBA to determine the limiting factors of growth in
bacteria [32]. DFBA has been used to study communities
of microorganisms including a community of E. coli and
Saccharomyces cerevisiae [33]. However, DFBA can only
be used in small communities of bacteria because adding
more species in a network increases the amount of reac-
tions dramatically, which consequently increases the
time and costs for simulations. DFBA in microbial re-
search is extensively reviewed elsewhere [30, 34]. To
simulate microbial communities with FBA, not only the
uptake and secretion reactions are necessary, but all the
molecular capabilities of each bacterium in the meta-
bolic network should be known. Thus, a metabolic net-
work of each individual bacterium is needed. This is
done by generating metabolic models of each bacterium
directly from their sequenced genome.

Constructing metabolic networks from annotated
genomes
To generate and simulate a metabolic network, the
metabolic capacity of the bacteria in the network should
be known and translated into a model that can be used
by FBA. Genomic-scale metabolic models (GEMs), also
known as genomic-scale metabolic reconstructions
(GENREs), consist of all the metabolic capacities of a
bacterium [35], and are automatically constructed from
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annotated genomes [36]. Several tools are available to
construct GEMs, which are reviewed elsewhere [37].
However, not all genes of an organism are active during
each growth phase, or in every environment [38, 39];
hence, the constraints of these automatically generated
GEMs should be manually refined [40]. Recently,
AGORA, a semi-automated GEM database of 818 mem-
bers of the gut microbiota became available [41]. How-
ever, the AGORA GEMs differ from other available
GEM databases such as BiGG, KBase, and CarveMe
[42–44]. Taxonomically, the AGORA database contains
a wider variety of organisms and the GEMs are more
generally constructed, making it possible to use these
GEMs in different ways. Furthermore, the AGORA data-
base is constructed to simulate the gut microbiota com-
munity in general. Therefore, the AGORA GEMs have,
for example, more carbon-uptake reactions compared to
the BiGG database, which has a more limited number of
bacteria and is generally used to simulate metabolic cap-
abilities of a single bacterium and predicts possible
changes in the metabolic capacity of this bacterium in
case it harbors inoperative genes [45, 46]. For example,
the BiGG database contains numerous GEMs of E. coli,
which is a heavily researched organism, thus the meta-
bolic reactions and constraints can be accurately deter-
mined from literature. On the contrary, the AGORA
database contains numerous underinvestigated organ-
isms, which results in more general GEMs, highlighting
the need for further investigation, update of the metab-
olism of gut microbes, and refining of the GEMs accord-
ingly [46]. The AGORA database should thus be seen as
repository for general GEMs of gut bacteria, which
should be made into condition-specific GEMs before
usage by adding proper constraints and formulating OFs
depending on the research question of the user. This
needs to be done before using GEMs obtained from da-
tabases containing condition-specific GEMs as well [47].
For example, Pryor et al. showed an in vivo increase in
the lifespan of Caenorhabditis elegans due to bacterial-
produced agmatine, whereby agmatine production is in-
duced by metformin a commonly used drug in type 2
diabetes patients. The authors used GEMs from the
AGORA database to translate the observed in vivo re-
sults found in C. elegans to humans. The authors con-
structed a metabolic network based on 16S sequencing
data from metformin-treated and untreated type 2 dia-
betic patients, respectively. The authors successfully
showed a molecular mechanism between the host and
its microbes via their findings of a higher production of
agmatine in the metformin-treated patients. However,
before the authors could use the GEMs from the
AGORA database, they manually curated the GEMs and
included agmatine uptake and secretion reactions. More-
over, the authors had to adjust constraints of the

AGORA GEMs, which were originally constructed using
a western diet [48] to the dietary information available
for the patients in the cohort used for the construction
of metabolic communities. Taken together, the metfor-
min study highlights the need the carefully optimize the
AGORA models specific for the research question of the
user [19, 48–50].
Nevertheless, community efforts are being taken to

standardize GEMs and assure the quality of the models
[45]. To optimize GEMs of bacteria, Kuang et al. com-
bined FBA with an untargeted mass spectrometry-based
approach to identify metabolites produced by Citrobac-
ter sedlakii, a non-pathogenic bacterium found in hu-
man stool. The authors investigated the metabolic
output of C. sedlakii by taking samples at different
growth stages and analyzing the extracts using two li-
quid chromatography mass spectrometry (LCMS) ap-
proaches, reverse phase (RP) and hydrophilic interaction
liquid chromatography (HILIC). The obtained data was
compared to a predicted list of metabolites generated via
FBA using a tool called MS_FBA. The comparison
showed that the metabolic output of the GEM of C.
sedlakii did not cover all the metabolites measured with
LCMS, highlighting the need to determine the accuracy
of bacterial GEMs and more precise genome annotation
[51]. Lastly, when comparing flux distribution between
different sets of microbial profiles, for example between
patients and healthy controls, the metabolic environ-
ment of the microbial community should be known.
This can be partly inferred from the diet of the patients,
but never to a full extent. Another approach to infer the
metabolic environment of the microbial community is to
infer the metabolic environment from abundance distri-
bution in individual samples. The Metabolic Analysis of
Metagenomes using FBA and Optimization (MAMBO)
approach combines 16S sequencing data from individual
fecal samples with GEMs obtained from reference ge-
nomes of the sequenced bacteria to infer the metabo-
lome in the sequenced fecal sample. The rationale
behind this approach is that the metabolic environment
shapes the abundance profile in a given sample, because
the metabolic potential of the bacteria indicate which
species will thrive in the metabolic environment [52]. To
answer this question, GEMs were constructed from an-
notated reference genomes made available in the human
microbiome project [53] using the modelSEED pipeline
[54]. In addition, 372 GEMs were obtained from the
AGORA database. The constructed GEMs were added
in the same metabolic environment in a similar way as
seen in Fig 3. The starting concentration of the metabo-
lites in the metabolic environment was defined at ran-
dom and FBA was performed, where the OF is defined
as: the biomass functions of all the GEMs should be as
close to the obtained abundance distribution. In a next
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step the metabolites in the metabolic environment were
slightly altered and FBA with the same OF was per-
formed again. If the Pearson correlation between the
biomass functions and the abundance profile is higher
compared to the previous metabolic environment the
metabolite change is accepted and the process is re-
peated until the Pearson correlation does not improve.
Comparing the biomass distribution in the FBA results
with the abundance profile obtained from the fecal sam-
ple shows which metabolic environment fits the abun-
dance distribution best [55]. Collectively, the application
of a well-defined metabolic environment, microbial com-
position and metabolic capabilities, the relationship be-
tween host and microbe can be studied.

Application of GEMs in modeling the gut
microbiota
To understand the effect of the microbiota on the host,
microbial metabolic networks can be extrapolated to in-
clude metabolic networks of the host. This enables pre-
dicting the effects of gut microbiota on the host and
suggesting possible interventions to promote host health.
Diener et al. constructed microbial metabolic networks
from the metagenome data of a cohort of Swedish
people with and without diabetes mellitus and used FBA
to analyze SCFA production. In this study, 16S abun-
dance data was integrated with metabolic fluxes to con-
struct personalized predictions of metabolic output and
interventions such as dietary changes and medical treat-
ment. The authors used GEMs from the AGORA data-
base, however the AGORA database did not cover all
the species found in the Swedish cohort. Instead, the au-
thors performed FBA on the genus and species level,
whereby AGORA models were pooled together into
higher phylogenetic ranks. This resulted in networks
containing between 12 and 30 GEMs at the genus level
and 23 and 81 GEMs at the species level. The GEMs
were placed in a shared metabolic environment for each
sample in the cohort representing the gut lumen. The
relative biomass for each GEMs was estimated from the
relative read distribution in each sequenced sample. The
authors found a minimal overlap of resource utilization
between microbes in different niches, suggesting an
upper bound on alpha diversity in the gut. Next to eco-
logical insights, the authors concluded from their model
that SCFA production is highly specific per individual.
Nonetheless production of butyrate and propionate was
reduced in diabetic subjects compared to healthy con-
trols and the overall SCFA production profile could be
restored upon metformin treatment [19]. The authors
did not measure metabolite levels in vitro, but the out-
come is in line with other experimental-based research
[56]. Another study expanded GEMs found in the
AGORA database with reactions for bile acid

metabolism. Here, paired bacteria were placed in a
shared metabolic environment to compare their ability
to metabolize bile acid with that of a single bacterium.
An average European diet supplemented with the bile
acids taurocholate, glycocholate, taurochenodeoxycho-
late, and glycochenodeoxycholate was used as modeling
constraints and maximizing the exchange of the bile
acids was used as the OF. The authors showed that me-
tabolism of bile acids is higher in a microbial community
compared to a single bacterium because individual bac-
teria cannot metabolize each bile acid. In a similar man-
ner, the authors integrated publicly available microbial
abundance data of healthy individuals and patients with
inflammatory bowel disorders (IBD) into metabolic net-
work to study bile acids metabolism in IBD. The study
showed that the metabolism of bile acids was lower in
patients with IBD [49], which is in line with in vivo re-
sults [57]. However, the authors did not perform inter-
ventions such as dietary change or introduction of other
bacteria in the metabolic network to predict possible
treatment of IBD patients. Dietary interventions were in-
vestigated in another study that used 16S sequencing
data to construct metabolic networks of 28 Crohn’s dis-
ease (CD) patients, and 26 healthy controls. The study
placed GEMs obtained from the AGORA database and
used BacArena, a tool used for modeling bacterial com-
munities [58], to place the GEMs in a grid environment
for each individual (Fig. 5). The bacterial composition
obtained from the 16S sequencing data was used to de-
termine the number of GEMs for each species placed in
the grid environment at the start of the simulation. The
microbial biomass was used as the OF and all possible
metabolites that could be taken up by the GEMs were
added in high concentrations to the environment. Bac-
terial growth was simulated in 24 steps of 1 hour. The
last time-point was used to compare the microbial abun-
dance and metabolite production between CD patients
and healthy controls. Interestingly, the outcome showed
a higher production of SCFAs in the control group.
Next, the authors identified metabolites, which could
have resulted in increased SCFAs production in each of
the constructed metabolic networks of the CD patients.
By adding more of the identified metabolites in the en-
vironment in a personalized manner, the authors showed
that altering the diet in silico can have different results
in each individual based on their microbiota compos-
ition [59], which is in line with experimental results [60].
Currently, several tools are available for modeling bac-

terial communities, such as OptCom, BacArena, Mi-
MoSa, COMETS, FLYCOP and MICOM [19, 58, 61–
65]. To fully capture the effect of the microbial commu-
nity on the host, metabolic networks of the gut commu-
nity need to be extended with GEMs of host cells. A
number of GEMs for human tissue such as the liver,
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blood vessels, and gut epithelial cells are already avail-
able to expand the existing metabolic networks of the
gut microbiota to include human cells [66]. Combining
metabolic networks based on 16S sequencing data with
a representative GEM of human metabolism may be
used to investigate the effect of the microbiota metabolic
output on host health. A representative model of human
metabolism is Recon3D, which contains over 13,000
metabolic reactions and can be used to integrate host
and microbiota metabolism [24, 25]. However, combin-
ing host GEMs and bacterial GEMs can be challenging
due to the formulation of the OF and spatial
organization. For example, the intestine is spatially orga-
nized where intestinal cells surround the microbiota. Ac-
cordingly, gut microbiota metabolites have the highest
concentration in the lumen and will be first available for
the microbiota and not the host cells [67, 68]. When
simulating interactions between gut microbiota and the
host, metabolic networks should take these gradients
into account. Similarly, metabolic and pH gradients exist
along the length of intestinal tract [69, 70] and the
microbiota composition in the small intestine differs
from that in the colon. Furthermore, bacterial cells travel
from the upper part of the intestine to the colon to be
ultimately shed in the feces [71]. One way to simulate
these gradients and spatial organization is through the
addition of empty compartments between the compart-
ments of the host cells and the bacterial compartments
in a metabolic model. The compartments are organized
in a two-dimensional grid and each bacteria has its own
compartment from which it can exchange nutrients. The
compartments are connected through exchange reac-
tions, thus bacteria can interact with each other. By

adding compartments without bacteria in between com-
partments filled with bacteria, a new bacterium can fill
the empty compartment, which can simulate movement
or replication of the bacteria (Fig. 5). Moreover, the
empty compartments simulate gradients, since not all
the nutrients entering the empty compartment will move
to the next compartment, which is filled with a bacter-
ium [58]. Another way to simulate gradients and move-
ment of bacteria is by employing differential equations.
Van Hoek et al. used a metabolic model in which spatial
organization is included to investigate cross feeding. The
authors expanded a GEM of Lactobacillus plantarum
with metabolic reactions commonly found in the gut
such as butyrate and propionate fermentation. Next, the
authors placed multiple expanded GEMs of L. plan-
tarum randomly in a tube-like grid environment and
used the SOA to simulate the network in 80,000 time
steps. For every cell in the grid the OF is maximizing the
rate of ATP production, which is an alternative to bio-
mass formation. Periodically, glucose was added to the
system at the proximal side of the tube and concentra-
tions of metabolites in each compartment were shifted
to the right until they leave the system at the distal side
of the tube. Together, this represents metabolic gradi-
ents that occur in the gut. The authors then included
growth, removal, movement and evolution of single or-
ganisms in the network and showed that diversification
can be an emergent property of cross feeding among mi-
crobial communities. When diarrhea was simulated by
increasing the flux speed through the system, the micro-
bial diversity was destroyed [72], which is in line with
in vivo observations [73]. Chan et al. used a similar ap-
proach, to show that aerobic and anaerobic bacteria

Fig. 5 Representation of the use of empty compartments in studying the gut microbiota. The metabolic compartments indicated with grey
squares are organized in a two-dimensional grid. Each bacterium has its own metabolic compartment. Exchange of metabolites takes place
between the bacterium and its own metabolic compartment. Metabolic exchange can also take place between adjacent metabolic
compartments. The metabolic compartments without any bacterium can still exchange metabolites with the adjacent compartments. In this way,
metabolic gradients occur. Introduction of a time step to a grid of compartments gives the opportunity to include movement and division of
bacteria. a Bacterial community at the start of a simulation, movement is indicated with black, curved arrows and division is indicated with grey
arrows. b After a time step, some cells move and others divide, resulting in a different distribution of bacteria in the grid
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separate into different niches based on the oxygen gradi-
ent [74]. These examples show the importance of the
gut environment and these factors should be taken into
account. Persi et al. integrated pH dependent activity of
enzymes obtained from experimental data in the
BRENDA database in a GEM of cancer cells. The au-
thors showed that cancer cells proliferate differently in
silico based on the pH [75]. However, integrating pH
dependent activity in a GEM is heavily dependent on
experimental work done in vitro. Since most enzymes
from gut bacteria are under investigated, integrating pH
dependent activity in GEMs used for metabolic modeling
is currently not feasible.
Another problem in combining bacterial GEMs and

host GEMs is formulating an appropriate OF. In the ma-
jority of metabolic networks, the total biomass growth,
or metabolic output is optimized. In the gut, the host
benefits the most from a balance between the metabolic
output of all bacteria, which requires a balance among
the distribution of the different microbial species. To ad-
dress this problem OptCom was developed. This ap-
proach uses two layers of OFs. The first layer maximizes
the biomass formation of each individual species. The
second layer maximizes the growth of the whole com-
munity, resulting in a more realistic growth distribution
in a bacterial community [61]. The extension d-OptCom
can be used in DFBA [76]. However, OptCom cannot
easily be used with communities consisting of a large
number of bacteria due to increasing computational
time needed with increasing community complexity.
Therefore, community and systems level interactive
optimization (CASINO) was developed. The CASINO
framework uses two layers of OFs, but differs from Opt-
Com by optimizing both layers of OFs iteratively [77]. A
problem with OptCom and CASINO is the description
of the biomass function. As mentioned above, the host
benefits the most from a balance in the metabolic
output of all bacteria. Thus, for a healthy microbiota
the community needs to function at steady-state.
However each individual bacterium grows with a spe-
cific growth rate [78]. OptCom and CASINO do take
bacterial growth into account, but not the community
steady state. Therefore, optimizing biomass formation
results in the domination of the fastest growing bac-
terium in the system, resulting in a flux distribution
that does not represent the flux distribution in the
gut community. To overcome this problem, SteadyCom
was developed which takes the community steady-
state into account [79].

Simulation of dysbiosis and treatment using
metabolic networks
While the composition of the gut microbiota fluctuates
over time due to, among others, the diet, the overall

composition is more or less stable [80] and is able to re-
cover from short-term perturbations such as short-term
antibiotic administration, periods of starvation, and rad-
ical changes in diet [28, 81, 82]. However, long term per-
turbations such as prolonged antibiotic use [82], but also
changing diet can cause a shift in microbiota compos-
ition, and in turn, a shift in its metabolic products [26,
83]. Alterations in microbiota composition, also known
as dysbiosis, can have negative consequences on host
health. Dysbiosis has been reported in patients with Alz-
heimer’s disease [84], Huntington’s disease [85], and Par-
kinson’s disease (PD) [86]. The microbiome modeling
toolbox can be used to construct a metabolic network of
the microbiota from the relative abundance data ob-
tained from 16S sequencing studies of fecal samples and
can be used to investigate dysbiosis [9]. Baldini et al.
used the microbiome modeling toolbox to investigate
differences in metabolic output between the microbiota
of PD patients and healthy controls. The authors placed
GEMs found in the AGORA database in a shared meta-
bolic environment to construct a metabolic network.
Differences in bacterial composition between each per-
son were achieved by adjusting the coefficient for the
biomass function in the stoichiometric matrix. Maximiz-
ing the total output of the microbial community for a
produced metabolite was used as the OF. In total, 129
metabolites were investigated for each individual. The
average European diet was used as input to simulate
changes in the metabolic output. The study reported 9
metabolites to have the potential to be significantly al-
tered in PD patients compared to healthy controls in-
cluding methionine and cysteinylglycine, which are part
of sulfur metabolism. Furthermore the authors showed
that a higher presence of Akkermansia muciniphila, and
Bilophila wadsworthia in PD patients, and identified a
new research target in PD research with the use of meta-
bolic networks [87]. Hertel et al. confirmed these results
by using the same approach as Baldini et al. [87] to con-
struct and simulate personalized community networks of
31 early stage, drug naïve PD patients and 28 age
matched controls from data obtained from Bedarf et al.
[88]. Simulation with FBA concluded that four microbial
reactions involved in homoserine metabolism are altered
in PD patients, which is consistent with measured levels
in plasma of PD patients and homoserine, the precursor
of methionine, is part of sulfur metabolism. Further-
more, the authors showed an increase in two bacterial
species both involved in sulfur metabolism, B. wads-
worthia and A. muciniphila [89]. Both species have been
reported in PD progression [90]. The above-mentioned
studies show the potential for metabolic networks and
FBA in investigating causal relationships in understand-
ing diseases. Additionally, dysbiosis can play a role in
the treatment of neurodegenerative diseases. For
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example, PD patients receive levodopa (L-DOPA) as
treatment. However, the dosage varies widely among pa-
tients [91]. Members of the gut microbiota can convert
L-DOPA. Thus, having more L-DOPA converting bac-
teria in the microbiota results in a higher dosage of L-
DOPA among PD patients [92, 93]. On the contrary,
medication used to treat brain-related diseases can have
negative consequences by inducing dysbiosis in the gut.
For example fluoxetine, a drug used as an antidepressant
[94], causes sporulation in members of the gut micro-
biota. Thus, changing the metabolic output of the micro-
biota, which may impact host health [95]. The above-
mentioned studies show an association between medica-
tion, and dysbiosis but lack the causality of dysbiosis and
options to treat the dysbiosis to improve drug effective-
ness. Constructing metabolic networks of a dysbiosis can
give insight in the interactions of the dysbiosis. Next, ef-
fectiveness of treatment can be tested in silico on the
microbiota of each patient individually, which will im-
prove the process of choosing the best treatment, when
prescribing medication.
Currently, dysbiosis can be treated in several ways

such as a fecal matter transplantation (FMT), antibiotic
use and using pro-, pre-, or psychobiotics. FMT has
been used successfully in recurrent Clostridium difficle
infection [96], but not as successful in treating IBD [97].
Interestingly, a study investigating FMT in IBD showed
that patients treated with fecal material from one par-
ticular donor showed more response compared to pa-
tients treated with fecal matter from other donors [98].
This suggests that for successful use of FMT the micro-
bial species and metabolites responsible for the benefi-
cial effects of FMT need to be identified. However, to
identify the differences between donors and understand
why some donors are better than others, not only the
microbiota and metabolite composition is needed but
also the interaction among the bacteria as well as be-
tween the bacteria and the host, indicating the need for
the construction of metabolic networks of the donors.
Another possible treatment for dysbiosis is the use of

probiotics. Probiotics are defined as live microorganisms
that, when administered in adequate amounts, confer a
health benefit on the host [99]. Numerous studies have
shown positive effects of single strains or mixture of
probiotics on host health in animals or humans [100–
102]. In humans, the effect of probiotic administration is
mostly studied in clinical trials, whereby the effect on
health is measured [103]. However, these study often
show contradictory or unexpected results [104–106]. For
example, Suez et al., reported that administering probio-
tics after antibiotic treatment slowed the recovery of the
microbiota [81]. Whereas other studies show that ad-
ministering probiotics after antibiotic treatment does
not impact the recovery of the microbiota [107, 108].

These contradicting results can be explained by differ-
ences in the probiotic strains used, types of antibiotics,
dosage of the treatment, but also diet, medical history,
initial microbiota composition and genetics of the pa-
tient [104, 109]. To address these problems there is a
need to decipher the molecular mechanisms underlying
the observed effects of probiotics. Furthermore, the via-
bility of the probiotic in vivo, and the interaction within
the microbiota and the metabolic output need to be in-
vestigated. In this respect, metabolic networks provide a
useful tool to investigate the effect of probiotics on the
gut microbiota. When a probiotic strain is added as a
compartment in a metabolic network of a gut commu-
nity, the metabolic flux distribution of the network will
change. In other words, certain levels of bacterial metab-
olites produced in the network will be increased or re-
duced. In turn, this might have an effect on the
microbiota composition presented in the network as
shown in Fig. 6. From these changes observed in silico,
the effectiveness of probiotic treatment can be predicted
[110]. However, to accurately predict the effect of adding
a new species to a community, the metabolic behavior of
the new species should be known at the strain level and
the metabolic capability under different environments
should be known. Bifidobacterium species are widely
used as probiotics [111]. As mentioned earlier, the
GEMs of Bifidobacteria in the AGORA database are not
condition-specific and do not give the metabolic behav-
ior in detail. For example the GEMs of Bifidobacteria in
the AGORA database do not show growth on starch,
whereas most Bifidobacteria can metabolize starch
[112]. Therefore, careful curation of the GEMs in the
AGORA database is needed before using a FBA ap-
proach in probiotic research. Devika et al. refined GEMs
of 36 strains of Bifidobacteria including probiotic strains
used in commercialized products. The authors compared
the metabolic capabilities of the GEMs under 30 differ-
ent environmental conditions, with maximizing the bio-
mass function as the OF. Based on metabolic capabilities
in the different environments the Bifidobacteria could
be divided into three groups. Based on the metabolic
capabilities of the GEMs the authors hypothesized that
the protective effect of the probiotic candidate Bifido-
bacterium thermophilum RBL67 on Salmonella and Lis-
teria species comes from the production of SCFAs.
Furthermore the authors hypothesize that Bifidobacter-
ium gallicum DSM20093 and Bifidobacterium kashiwa-
nohense DSM21854 can help relieve constipation via
production of acetate [50], showing that FBA can be a
useful tool for identifying new probiotic species.

Future perspectives
Metabolic networks and FBA are promising tools to elu-
cidate the precise interactions among bacteria, between
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bacteria and the host, and can be used to test the effect-
iveness of probiotic treatment before clinical trials Fur-
thermore, metabolic networks can help point at
knowledge gaps. For example, if there is a discrepancy
between the outcome of model simulations, and experi-
mental work, a more thorough understanding of the
metabolic capabilities of the organism of interest is
needed, which leads to new hypotheses and more experi-
ments. Next, metabolic networks can elucidate causality
in the microbiota research, because unlike in experimen-
tal work, numerous alterations can be implemented in
metabolic networks [113]. Currently, metabolic networks
of the gut microbiota are mainly based on databases
from samples collected from western individuals [114].
To make sure that metabolic networks can be used glo-
bally, more global sampling is needed. Furthermore, to
ensure the accuracy of the predicted output of the meta-
bolic networks, sufficient information of concentrations
of microbial metabolites in the gut, microbial compos-
ition, metabolic potential, and interactions is required to
be implemented in the metabolic network [50, 115]. Fur-
thermore, metabolic networks are mathematical descrip-
tions of reality. To make sure the metabolic networks
depict reality accurately, the outcome of simulating
metabolic networks should be experimentally validated.
However, the majority of the gut bacteria are not yet
culturable [116]. Therefore, GEMs of those bacteria can-
not be tested for accuracy. Furthermore, investigating in-
teractions between bacteria can be challenging.
Nevertheless, research is performed to identify, culture
and characterize new species from the gut microbiota

[117]. Currently, new in vitro methods to experimentally
validate metabolic networks become available such as
SHIME, HuMiX and others [113, 118, 119]. Medlock
et al. combined metabolic networks with co-culturing to
infer cross feeding between members of the Altered
Schaedler Flora (ASF) and validated that this metabolic
interaction leads to a growth benefit for the bacteria
[120]. This review focused on the use of FBA in model-
ing the gut microbiota. However, more modeling ap-
proaches are being used to understand and improve gut
health. An example of the use of a computational mod-
eling approach to benefit human health is a study per-
formed by Zeevi et al. where a machine learning
algorithm advised a personalized diet based on, blood
glucose levels and microbiota composition, to lower the
glycemic response after a meal. Indeed, when partici-
pants followed the advised diet, a lower glycemic re-
sponse was observed [121], indicating that algorithms
can predict the influence of diet on the host if data on
microbial composition and host parameters are gathered.
However, since this approach was based on machine
learning, not on FBA, the exact metabolic interactions
were not elucidated in the study. Computational fluid
dynamics is also used to study the digestion process
[122]. Similarly, mathematical descriptions based on ex-
perimental data obtained from fermentation experiments
are applied to predict the effect of a dietary change
[123], and regression based network approaches were
shown to be able to identify keystone species in the gut
microbiota [124]. Combining knowledge obtained from
different computational and experimental methods will

Fig. 6 Representation of the application of FBA to study the effect of adding probiotic species in a bacterial community consisting of two gut
bacteria, F. prausnitzii and B. adolescentis. Fluxes are represented by arrows. Solid black arrows indicate uptake and secretion reactions of the
bacteria, dashed black arrows indicate the flow of metabolites in and out of the system and dashed grey arrows indicate the formation of new
biomass, where metabolites can no longer be secreted by the bacteria, thus leaving the system. The amount of flux is represented by the
thickness of the arrows, a higher flux is a thicker arrow. a The community depicted in Fig. 3 Adapted after El-Semman et al. [20]. b Addition of
another species to the shared metabolic environment will change the flux distribution of the whole system. The added species might produce a
metabolite, which the other species can use, resulting in new products. Similarly, the abundance distribution of the community may change in
response to the addition of a new bacterium. A change in abundance distribution of the community is depicted an altered flux through each
biomass function
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help to better understand the intricate relationship be-
tween the microbiota and the host. Over time, this un-
derstanding can be used to design targeted, and
personalized approaches to alter the microbiota in a way
that it benefits the health of the host.

Conclusions
Interactions within the complex microbiota community
and between the microbiota and the host are challenging
to elucidate but understanding these interactions is vital
for successful intervention in the microbiota. This review
shows that the use of computational methods based on
flux balance analysis provides novel understanding of
the microbial interactions, helps formulating new test-
able hypotheses, and enables the investigation of the ef-
fectiveness of probiotic administration in a personalized
manner.
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