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ABSTRACT

In this paper, we propose a two-stage learning framework for visual navigation in which the experience
of the agent during exploration of one goal is shared to learn to navigate to other goals. We train
a deep neural network for estimating the robot’s position in the environment using ground truth
information provided by a classical localization and mapping approach. The second simpler multi-goal
Q-function learns to traverse the environment by using the provided discretized map. Transfer learning
is applied to the multi-goal Q-function from a maze structure to a 2D simulator and is finally deployed
in a 3D simulator where the robot uses the estimated locations from the position estimator deep
network. In the experiments, we first compare different architectures to select the best deep network
for location estimation, and then compare the effects of the multi-goal reinforcement learning method
to traditional reinforcement learning. The results show a significant improvement when multi-goal
reinforcement learning is used. Furthermore, the results of the location estimator show that a deep
network can learn and generalize in different environments using camera images with high accuracy

in both position and orientation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Learning by reward and punishment is one of the fundamental
learning methods in nature. This learning process is intrinsic in
most of the species living on Earth, especially the ones with
higher levels of cognitive abilities such as humans [1]. This type
of learning, reinforcement learning [2], has been a subject of
research for a long time. Its modern form, which is highly based
on Markov decision processes, started to emerge in the 1980s [3],
and became popular in the second half of the '90s [2,4].

There are two main learning methods in reinforcement learn-
ing (RL): model-based and model-free. The model-based ap-
proach requires a deep knowledge of the environment which
allows us to build decision processes that connect the states
with consequences of actions [5,6]. However, the model grows
substantially when the number of states and actions increases. In
addition, it is often very complex to learn a model of the tasks
that the agent needs to solve. Model-free RL plays an important
role by allowing the exploration of unknown state spaces and
using function approximators (FA) [7-9]. These approximators
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estimate values of actions in a state through a linear or non-linear
mapping. The linear FAs are proven to converge, but they lack
the ability to map complex states (e.g. camera images as input)
into meaningful value estimates for actions. This is the reason
that non-linear FAs are often used to tackle complex problems.
One suitable and frequently used non-linear FA is the artificial
neural network. The main problem with neural networks and
other non-linear FAs is that they can diverge from the optimal
solution due to forgetting past experiences or instabilities in the
learning process [7]. Therefore, careful thinking should be done
during the design of the system. Types of feature inputs, the
rewarding mechanism, and the propagation of these rewards
are some of the important topics to consider. Due to these
problems, the use of model-free RL methods was for a long
time restricted to reasonably small sized problems such as robot
gait control [10], unit control in games such as StarCraft [11],
etc. However, with the recent progress in training deep neural
networks, the prospects have changed for RL. Google’s Deep-
Mind Research on Atari games [12] was, perhaps, a substantial
landmark and more influential than TD-Gammon [13] toward
a large scale RL deployment that can solve difficult tasks that
matches or surpasses human performance. Later, in 2014, with
Google’s DeepMind research on the complex board game Go [14],
we saw yet another hurdle being removed from the world of
non-linear approaches in RL. The trend has not stopped there;
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we have seen many RL publications ranging from completing
objectives in games such as Doom [15], besting top tier players
at StarCraft II [16] to more real-world applications such as the
Google research on robotic manipulation [17].

All the above applications have one thing in common, the
need for hundreds of thousands of epochs which translates to
significant training time. This can, however, be reduced by using
a combination of simulation, transfer learning, or multiple agents.
For example, in order to learn to avoid obstacles in the environ-
ment with a robot, one can first train it in a simulator, and then
use the same network to continue the training in real life [18].
However, avoiding obstacles using a camera requires learning the
optical flow. While it is possible to partially learn optical flow in
simulation and later complete the learning on a real robot, the
same does not apply to place recognition, which is necessary for
navigation. Nevertheless, it is possible to use simulations to speed
up parts of the learning process. For this reason, we propose
a method that can tackle robotic navigation tasks using a deep
neural network architecture and model-free RL benefiting from
simplified and complex simulations.

In this paper, we propose a novel two-stage framework to
alter the common end-to-end RL scheme and reduce the required
time to learn and navigate in the environment. In the first stage,
we train a deep neural network to localize the robot in the
environment using supervised learning, and in the second stage, a
multi-goal RL method is used which uses the estimated positions
given by the deep network to drive the robot toward the given
goals. In stage one, we use a traditional grid-mapping algorithm
(GMapping) to extract the geometrical topology of the environ-
ment for the supervised training section of our approach [19,20].
A set of images is recorded during the data gathering phase
that are tagged with the estimated location from the GMap-
ping algorithm. In our previous research [21], we showed that
a stacked denoising autoencoder (SDA) can learn the geometrical
relation between the images and the robot location in a small 3D
simulated environment. In this paper, we use deep convolutional
neural networks (CNNs) [22] to test the scalability and precision
of this approach and compare the results to that of SDAs in order
to select the best type of network architecture. In parallel, we
use a grid-based approach to train our second stage multi-goal RL
method. In the first step, we extract a maze from the given map,
and train a multi-goal Q-function. When the training is finished,
we continue the training of the same Q-function in a 2D simulator
using the same map. Finally, we combine the position estimator
network, which provides the global location, and the multi-goal
Q-function, which was trained in the maze and 2D simulator, to
navigate the robot to different destinations in the 3D simulated
environment.

We summarize our contributions as follows:

e Proposing a novel framework for robot navigation.

e Testing the scalability and localization performance of con-
volutional deep neural networks that learn to map camera
images to positions.

e Proposing a multi-goal reinforcement learning framework to
learn to navigate to several different goals at once.

e Transfer learning from maze to the 2D, and 3D physics
simulator.

e Comparison of the results of the proposed multi-goal frame-
work with traditional reinforcement learning.

In Section 2, we further investigate the state of the art in
robotic localization and the advances in deep RL. In Section 3,
we describe the different methods used in this paper for position
estimation and multi-goal RL. In Section 4, we portray in detail
the experiments done in which different types of position estima-
tor neural networks are compared, and further elaborate on the
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environments that are used to carry out the tests. We continue
the section by demonstrating the results for the multi-goal RL
method. Finally, we discuss the benefits and shortcomings of our
proposed method and conclude the paper in Section 5.

2. Previous work

Extensive research has been done on robot navigation, from
indoor mobile robots [23], to drones [24], and vehicles [25]. Most
of the research is focused on creating a map and localizing the
robot in this map using a variety of sensors, such as 2D/3D
LIDARs [24,26], cameras [27], or a combination of both [28]. Often
these maps are created based on the notion of grid cells. These
methods extract geometrical information from the scene and
stitch them together by combining the robot motion model and
the information that comes from the sensors using probabilistic
approaches [29]. In the end, the robot has to be able to plan a
path (e.g. A%, or Dijkstra’s algorithm, [30]) and avoid static and
dynamic obstacles to maintain safe and reliable trajectories. This
is done mostly through different control algorithms which often,
in a predictive manner, forward simulate the movement of the
robot and check the sampled path versus a variety of criteria
(e.g., proximity to obstacles, distance to global path, oscillation,
etc.) [31,32]. The performance and scalability of these methods,
however, is directly related to the precision of the sensors, and
the available computational power. This is one of the reasons that
most mobile robots or vehicles use dedicated 3D sensors such as
laser range finders or time-of-flight cameras to map and navigate
in the environment. This, however, comes with a price, the range
finders are very expensive.

There have been attempts to solve this problem by using
cheaper sensors such as cameras to map and navigate the envi-
ronment(Visual SLAM). In these methods, either feature extrac-
tion and matching are used to find correspondences between
multiple images using corner detectors [33,34], SIFT descrip-
tor [35], ORB descriptor [36], or featureless approaches are used
that generate a global map using direct image alignment, and
probabilistic depth maps [37]. By applying geometric and motion
constraints, these algorithms separate static and moving features
from one another to localize the robot and build a map. A recent
survey paper by Saputra et al. [38] gives a comprehensive view
of these methods.

With the popularity of deep neural networks [39], different
approaches were made to tackle the navigation problem using
deep neural networks. Previously, we transferred the knowledge
from a traditional map to a stacked denoising autoencoder (SDA)
in which the robot used grid mapping for training data, and
could localize its position using a camera after training in a
small environment [21]. Bidoia et al. [40], used a semi-supervised
approach to create a graph map using deep CNNs. QR codes were
scattered in the environment while the robot randomly moved
throughout the environment. Later, using these codes, several
graph nodes were created which allowed the network to predict
its location. Moving through the graph was done by remembering
the geometrical distance between the nodes.

Wang et al. [41], proposed a deep visual odometry method
using a recurrent convolutional neural network architecture that
receives a pair of images in each forward pass and outputs the
poses. In this architecture, the CNN learns to extract features from
pairs of images while a long short-term memory (LSTM) block
learns the motion model and movement in the environment.
Zhou et al. [42], presented an unsupervised learning framework
for monocular depth and camera motion estimation from un-
structured video sequences. While the results are promising and
have comparable performance to supervised methods, the current
framework requires intrinsic camera parameters and has diffi-
culties with dynamic scenes. In our approach, we evaluate how
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well our architecture can learn positions using only one image
before applying additional recursion complexity. In addition, our
proposed architecture tackles the kidnapped robot problem.

Researchers have also used end-to-end learning schemes to
solve this problem. Kemkpa et al. [15] used RL to solve different
sub-tasks in the game of Doom. Although this research lacks the
constraints of a mobile robot due to an unconstrained movement
in the virtual world, it shows how well the deep networks can
condense information in the form of images and make decisions
to reach certain goals. Kulhanek et al. [43] used a long short
term memory (LSTM) as part of their CNN network in com-
bination with a modified batched advantage actor-critic (A2C)
algorithm [44] to solve end-to-end visual navigation. The LSTM
part of the network was added to solve the partial observability
of the navigation task. In addition, the CNN network predicted the
depth map and image segmentation of the current observation
and the goal image to enhance the training process and increase
the generalizability of the network. Kahn et al. [18] developed
a generalized computational graph using deep recurrent neural
networks to navigate a remote control (RC) robot in a hallway.
The focus of this research was mainly to train the local control
mechanism of the robot to perform movements without hitting
obstacles using a fixed longitudinal and a controllable angular
velocity. The researchers showed that by pretraining their model
in simulation, they can achieve faster convergence and better
results in the real world.

There is one main issue regarding these end-to-end approa-
ches, and that is the difficulty of extracting meaningful and hu-
man understandable data from the system. It would be very
difficult to tell the RC robot to go to a certain place (e.g. next
to the kitchen counter), or extract information from the system
where it thinks it is. Therefore, the training procedure has a hit-
miss characteristic. One may never know whether the system will
converge, nor which problems are causing the divergence.

Our focus is to make the navigation process goal oriented
and more explainable. We would like to know in which location
the robot has difficulties reaching or localizing itself, and why.
In addition, we would like to make the robot learn multiple
objectives at the same time while exploring the space for the
current objective. If the robot is traversing a home environment
looking for the kitchen, it may gain knowledge about reaching the
bedroom as well, or by using reverse logic, it can know which new
places it has to explore.

There has been prominent research in the past years regarding
the utilization of experiences and exploration, but the initial idea
has been around for a long time [45]. The main drive to use the
past experiences is to avoid spending a lot of time searching for
different goals again and again, while avoiding that the neural
networks forget the old experiences. From this perspective, any
attempt to reuse experiences is an advantage. The more recent
reuse of this idea combined with deep neural networks was
done by Mnih et al. [46] which allowed multiple agents to share
their experiences while a single server computes the gradients
and sends the newest neural network function approximator
back to the agents. As we mentioned before, neural networks
as function approximators have problems with forgetting past
experience. Therefore, in DQN [12] the agent uses a replay buffer
as well. Every now and then, this buffer is sampled from, and the
state-action pairs are used to train the system.

While using neural networks as function approximators, one
can wonder how to create one network that remembers all the
Q-values for different goals. The universal value function approx-
imator [47] showed that this can be done by augmenting the
feature input with the position of the goal. This way, the network
will not have any problem remembering and assigning different
Q-values to different goals.
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Although this approach allows us to use one function approxi-
mator for multiple goals, it solely relies on the generalizability of
the FA for providing correct Q-values for unseen goals. However,
every action results in reaching a new state which can become
a goal in the future. For example, if we are driving for the first
time to the supermarket, we may also see the gas station on the
way. Next time, if we want to go to the gas station, we do not
have to search for it. This is the idea behind hindsight experience
replay [48].

Veeriah et al. [49] continued this trend to apply multi-goal RL
using an unsupervised mastery in scenarios where there are no
apparent goals. For example, in most of the Atari games, the goal
is to increase the reward intake, and therefore, no specific single
goal can be set.

Our research focuses on the specific navigation problem with
obstacles and environmental boundaries in place. The simulated
robot should be able to keep track of certain fixed goals and be
able to use the experiences to learn to navigate to a new goal.
In addition, due to the two-stage training style of the proposed
framework, our method does not have to use the universal value
function approximator and includes goals in the input. Instead,
look-up tables are used in our architecture in which each goal
has a separate Q-function.

3. Methodology

In this section, we address in detail the methodology that
we used to design and test the robot navigation pipeline. Fig. 1
shows the complete framework proposed in this paper. First,
we elaborate on how we solve the exploration and path finding
problem through our proposed multi-goal RL method, and then
explain our position estimator network.

3.1. Multi-goal reinforcement learning

The first step of our algorithm is to learn the correlation be-
tween the estimated position of the robot and the robot’s utilities
of different actions in different states. In end-to-end deep RL,
the system learns to optimize (state, action) pair Q-values using
an image as input. This approach has several drawbacks. The
most prominent is the required number of trials for a complex
task such as navigation. In order to learn to navigate in the
environment, one would need a deep network to be able to
extract meaningful information from raw images. In the case of
model-free methods such as Q-learning [50,51] and Sarsa [52,
53], exploration of possible new states adds to the difficulty of
the task at hand. Parallelizing the experiences in deep RL and
multi-objective approaches, however, has allowed to reduce this
number significantly in applications such as robot manipula-
tion [54]. Our proposed method focuses on the idea of sharing
the experiences between multiple goals and using a goal selec-
tion technique that gives us the most useful information from
exploration throughout the trials.

In robotic navigation, the state space has six dimensions with
three position and three orientation axes. Most robots, apart from
drones and robots that operate in uneven terrain navigate only in
three dimensions (X, Y, and #). One can define this state space as
a discrete set of blocks or a continuous set of numbers. In practice,
low level control of the robot base is done in a continuous space
while the location estimation and general path planning use a
discrete approach.

We use a discrete separation of locations with fixed resolution.
While the selected action of the robot is decided through the
multi-goal RL method, the movement of the robot between the
cells is done using the dynamic window approach (DWA) [31].
We only use the X and Y dimensions in order to reduce the
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Fig. 1. The complete proposed framework in a nutshell. In the first step, the position estimator is trained with positions extracted from a traditional mapping method
while the model-free RL agent learns the environment using an approximated maze extracted from the map. In the second step, the RL agent continues to learn the
effects of the robot controller on its actions in a 2D simulated environment. Finally, in the 3D environment, the agent uses position estimation from the proposed

CNN and continues learning.

size of the state space. Our localization method, as described
in Section 3.2, accurately estimates the orientation of the robot
which allows the local controller to reach the desired orientation.
Fig. 2 shows a discrete and down-sampled maze extracted from
a higher resolution 2D map.

We consider that the agent’s knowledge of the environment
is incomplete and requires exploration. Therefore, we select a
model-free RL approach. In the model-free domain, we can either
select on-policy or off-policy RL. On-policy RL algorithms, such as
Sarsa are suitable when we want to evaluate the policy that also
generated the current outcome of the agent’s actions. Off-policy
RL methods such as Q-learning, on the other hand, allow to train
policies that did not generate the current data. This is the main
reason why RL methods that share experiences with one another
should always use off-policy RL. Google’s DeepMind DQN [12],
and a promising robotic manipulation system [54] are examples
of such approaches. Our proposed approach uses a model-free
multi-goal off-policy RL algorithm. For example, in Fig. 2(b), the
agent can use the experiences during exploration of goal 1 and
use it later to reach goal 4.

3.1.1. Q-learning

Q-learning requires a way to store Q-values for each state—
action pair (s¢, a;). These values estimate how good the given
action is to reach the goal. The Q-values are updated based on
rewards that are given to the agent when it reaches a goal or
rewards that are given during the navigation phase. Eq. (1) shows
the general update rule for the Q-learning method [50].

Qer1(se, ag) = Qu(se, ag)+a (TH‘V max Qu(Seq1, a)—Qulse, ar)) (1)

After each action, the agent moves and receives a reward r;.
The Q-value of the previously selected action is updated based
on the reward of the current state, the performed action, and the
prospect of the next state based on its highest Q-value estimation.
The y parameter is the discount factor which determines the
importance of future rewards versus immediate rewards and «
is the learning rate. The function that approximates the Q values
from each state-action pair can either be linear or non-linear. For
our problem, since the position estimation network provides the
location of the robot, the state space of the RL can be a grid, hence
we use a look-up table. For problems in which the state space
and the connection to actions are not trivial, a more complex
non-linear approximator is required. Considering the grid state
space, the available actions to perform in each state are up, down,
left, and right movements. We discard the rotation dimension to
reduce the size of the state space. This is again possible because
the position estimation network gives global coordinates, and
before the robot needs to go to the next position, it can rotate
to the desired angle.

Due to exploration with Q-learning and the required time to
move a robot, the convergence to the optimal solution takes a
considerable amount of time. We speed up the convergence by
using previous experiences of the agent in the environment. We
accumulate all the state, action, reward, and next state experience
tuples (s, a;, ¢, St+1) in a replay buffer. After a certain number of
online updates, we re-calculate target values. Then, we shuffle the
buffer to remove correlations between data points that are next
to each other in time. We take a mini batch from the dataset and
train the Q-function. This process is continued until all the past
experiences in the replay buffer are used.

Using the above approach, we can initialize a separate lookup
table for each goal. After the Q-function for the first goal is
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Fig. 2. Fig. 2(a) is the 2D generated map of the big apartment using the Rao-Blackwellized grid mapping method with 5 cm resolution. Fig. 2(b) shows the
down-sampled approximated maze of the map with 40 cm resolution, which needs to be learned by the RL algorithm. The red squares show the initial positions,
and the yellow squares show the goals for the RL experiments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

optimized, we go to the next one until all the goals can be found.
The downside is that for each Q-function, we must reset the
values to the initial ones since these Q-values are optimized for
one goal.

3.1.2. Multi-goal Q-learning with experience replay

Using the Q-learning method allows us to train multiple poli-
cies at once. This means that while the agent is searching for one
goal, it can learn about reaching other goals at the same time. To
this end, the first step is to update the Q-values for all the goal
Q-functions at the same time. In the worst-case scenario, none
of the other goals will be traversed during the exploration of the
current goal. However, the Q-functions for all the other goals can
learn from all the negative results due to obstacles in the state
space. In the best case, some of the other goals will be traversed
during the exploration phase of the first goal, and therefore, the
robot can learn to optimize its path toward them. With multi-
goal Q-learning, multiple Q-functions are trained each time step
which all have their own reward function that emits a reward rf

(Eq. (2)):

Q.]<g+](st7 ag) = fo(st, ag)+ a("f +vy maax ng(stﬂs a)— ng(sh a[))
(2)

The selection of which policy to use or on which goal to train is
an important factor and determines the total time of convergence.
We use the notion of temporal difference (TD) errors to measure
how many times a secondary goal was traversed. The TD error is
the squared difference between the new target of a Q-value of a

state-action pair, and its previous value (Eq. (3)).
1D, = (rf +y max Q¥(scs1, @) — Q¥(st, @)’ 3)

When the TD error is high for some Q-function, it shows that
the specified goal location has not been fully learned by the
policy. When the TD value is low, it means that the robot has
visited this state several times, and the Q-values are converging
to an optimal value. We set up a TD-error matrix for each of the
Q-functions with a high initial value. After reaching and meeting
the convergence criteria for the current goal, we select the new
goal with the highest TD error. This makes sure that the robot
traverses the environment in an efficient way and increases the
chances of reaching other goals on the way.

3.1.3. Robot movements and transfer learning

We discussed our approach toward solving a maze navigation
problem using the multi-goal approach. However, learning to
solve a maze is straightforward compared to a robot moving in
an environment. A robot has a footprint which is a projected
polygon of the 3D shape of the robot on the 2D floor plan. For
easier calculations, all the concave footprints are often changed to
a convex version. The robot also has an axis of rotation which is
often on the center of the robot. Movements of the robot are given
through a velocity vector. In a 2D navigation scenario this velocity
consists of a positional speed in X, Y, and a rotational speed in 6.
If the robot has a differential drive base, the positional speed in X
direction, and rotational speed in 6 can be used, while an omni-
directional robot can freely move in all directions. The robot base
program will translate these velocities to wheel speeds. In order
to have a safe navigation system, we need to apply the speeds
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given to the robot and change the position and orientation of
the footprint. Using obstacle detection sensors, such as infrared,
sonar, or laser, the robot can identify its position in relation to
these obstacles and processes the movement commands in such
a way that the edges of its footprint polygon never touch the
obstacles on the way. We use the dynamic window approach
(DWA) method to control the robot locally. In this method, the
robot has a global path to the sub-goal, the location of the sub-
goal, and a cost-map that shows the surrounding obstacles and
the current footprint of the robot. The global path in our case
is very short because the actions just move the robot from one
cell to another neighboring cell (sub-goal). The location of the
set sub-goal is therefore one step away from the robot in either
X or Y direction. The cost-map is a matrix with a selectable
resolution. Based on the sensor, if a certain cell is occupied, it will
be marked. Multiple sensors can mark and clear cells in the cost
maps. DWA will sample velocities in the available dimensions
based on the type of robot. Then, it will forward simulate the
robot movements for a short amount of time based on these
samples. In the end, a trajectory will be selected which causes no
collision, and keeps the robot close to the designated path with a
safe distance from obstacles. This accomplishes having the robot
move to neighboring cells.

In order to connect the maze navigation results to a more
realistic setting, we must adapt the continuous movement of the
robot in the 3D simulated environment, so it matches the cell
centers in the maze. To this end, our first step is to move from
the approximated maze to a 2D simulator. The 2D simulator has
a simpler physical model and does not require any rendering,
allowing us to speed up the simulation by a factor of ten in
comparison to the 3D simulator. In the 2D simulator, we use the
map that was made from the 3D simulation.

The actions in the simulator do not necessarily have the same
results as in the maze due to the higher resolution of the map,
and the nature of the DWA method. Actions can fail, especially in
corners, and the RL method needs to be able to cope with it. We
use the trained Q-function from the maze, and continue learning
in the 2D simulator. It is notable that the robot position in the
2D simulator is always correct. Therefore, the robot is exactly at
the location that it thinks it is. However, in the 3D simulator this
is not the case, because the position is inferred from a camera
image and this brings us to our next challenge, dealing with
approximation errors.

Each robot has an odometry error model. There are 5 different
noise types that affect the odometry of the robot. Three of which
are the direct deviations in X, Y, and 6 dimension. The other
two are co-dependent errors across these dimensions. When the
robot moves forward, it can slightly rotate, or when the robot
rotates, the position of the robot can also change due to wheel
skid. These 5 error types make a fully functional navigation based
on odometry impossible. This problem is solved by estimating
the global position of the robot using a variety of sensors and
combining it with the odometry model through filtering. Non-
linear Kalman filters (e.g. extended [55], and Unscented Kalman
Filter [56]), and particle filters [57] are the mostly used methods.
The idea is to predict the new position of the robot after a series
of motion commands (Eq. (4)) and update this belief with the
estimation of the position from any sensor (Eq. (5)).

bel(x,) = / Plxelxe1, e Ybel(xe_1 )dxe_s @)

bel(x;) = np(z¢|x; bel(x;) (5)

Where x; is the state vector (e.g. X, Y, and @), u; is the given
motion command, and z is the sensor reading of the robot at
time t. n is a normalization factor since the multiplications of
the beliefs of the robot at time t by the probability p(z;|x;) may

Robotics and Autonomous Systems 138 (2021) 103731

integrate to a value unequal to one. By knowing the noise model
of the robot movement, and the probability of being in the current
location by the position estimator, one can keep a good track of
the location of the robot for small movement steps, such as used
in our methods.

For the final step of transfer learning, the trained Q-functions
in the 2D simulator for all the goals will be further trained
in a 3D simulator. In the 3D simulator, the position estimator
networks give the estimated position of the robot, while the RL
method must deal with wrong location estimations. Since the
position estimation of the neural networks is accurate and the
distance between the cells are small, the odometry error can
be ignored. Therefore, we leave out Eq. (4), and use the global
estimation from the network to determine the grid-cell of the
robot’s position. We are curious to see whether the RL method
is able to handle the measurement errors of the network without
the use of motion prediction and learns to navigate the robot to
all goals along the shortest path.

3.2. Position-estimator networks

In our previous research, we have shown that SDA can map
images to positions in a small 3D simulated environment with
adequate generalizability [21]. However, the question is how well
the network scales with the size of the environment. SDAs have
shown promising results since their introduction in academia in
2009 [58]. Due to the fully connected architecture of the net-
work, the number of weights to train increases significantly when
the input vector is large. Each additional layer will increase the
number of weights significantly which requires a large amount
of training data in order to learn a good position estimator. In
addition, by flattening the two-dimensional image into a one-
dimensional vector, we lose topological information of the pixels
which is crucial in the process of learning. Perhaps, these are the
main reasons that SDAs were outdated quickly with the advent
of faster learning and more accurate CNNs. The CNN was first
proposed by LeCun et al. [59] but they became widely popular
after Alex Krizhevsky et al. [60] bested the ImageNet Large Scale
Visual Recognition Competition (ILSVRC) in 2012. Combining the
processing power of GPUs with the new ReLU activation function,
dropout [61], and contrast normalization of the images in the
CNN architecture allowed them to perform much better than
all other approaches in the object recognition field. Since then,
researchers have been working to find ways to optimize the
training and design of the networks - creating deeper and deeper
networks - such as the Google Inception architecture [62,63]
while others focused on broadening the application of CNNs
in different fields such as object detection [64] and semantic
segmentation of the scene [65]. By changing parts of the CNN
architecture, we use its potential for scalability and generalizabil-
ity, and compare the results of CNNs and SDAs to select the best
network to estimate the position of the robot in the environment.

3.2.1. Convolutional neural networks

When we talk about CNN architectures, it is important to see
what type of problem we are trying to solve. CNNs are used
extensively in the area of object recognition, where one would
like to recognize the main object that can be displayed in different
parts of the image. Therefore, one would like the networks to
have scale and translation invariance. This is where the pooling
layers play an important role. The pooling layers not only reduce
the size of the feature map of a hidden unit, they also carry
either the maximum or the average response over the input
window. When applied in multiple layers, it works as a scale, and
shift invariant feature for the network. This property, although
useful for object recognition, is detrimental for precise location
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Fig. 4. Big apartment of size 14 x 9 meters.

estimation [40]. We would like the network to observe exactly
where an edge was in the image and with what size, since this
is important for localizing the agent. Therefore, we do not use
pooling layers in our architecture. This has a drawback as well,
the input resolution should be limited, because the number of
parameters to optimize are greatly higher than that of networks
with pooling layers.

We experimented with presence and absence of pooling lay-
ers, different depths of the network, and single or multiple kernel
sizes in the same layer which we will explain in detail in the next
section.

4. Experiments and results

In this section, we describe the experiments for the position
estimator networks, and the reinforcement learning algorithms
in the maze, 2D, and 3D simulation. For the environments, we
use one maze simulator, the 2D Stage simulator [66], and the
3D Gazebo physics simulator [67]. We used the robot operating
system (ROS) framework [68] to develop our software. The envi-
ronments for the experiments are shown in Figs. 3 and 4. We used
OpenCV, Theano, and Tensorflow to extract images and train the
SDA and CNNs [69-71]. We created a simulated robot with which
we carried out the experiments, which can be seen in Fig. 5.

4.1. Data gathering

We first extract the map of the 3D simulated environment
(see Figs. 3 & 4) using the Rao-Blackwellized grid mapping ap-
proach [72]. In this method, the map-building process starts from
the first laser reading. When the robot moves, the position of
the robot is updated by using scan matching of the new laser
reading with the old one. If this scan matching fails, the odometry
model of the robot is used to update the location and merge the
laser reading from the existing map with the previous map. This
process led to the map shown in Fig. 2.

We divide the map in 25-centimeter cells. The center of each
cell is a location that the robot should traverse in order to gather
the training and test data. In order to do this in an automatic
manner, we use Dijkstra’s shortest-path algorithm to plan a path
to the center of the cell [30]. We consider the footprint of the
robot in order to make sure that it fits in the destination cell. The
unknown locations, occupied locations, and locations where the
robot does not fit are ignored. Finally, we send the robot to each
of these positions, and record images and corresponding positions
given by the grid mapping method while rotating the camera 1
degree at a time in each position.

After data gathering, we create a test, validation, and training
set. We split the images from each location into thirty-six sections
(using 10-degree steps). For each section, half of the positions and
rotations together with the images are assigned to the training
set. For the remaining five images, two go to the validation set,
and three to the test set. Therefore, 50% of the data is used for
training, 20% for validation, and 30% for testing. The total data
set size for the small kitchen and the big apartment are 24,000
and 195,000 images, respectively.

4.2. Deep networks and localization

We performed a set of experiments to find the best architec-
ture for the position estimator network. As mentioned in Sec-
tion 3, we use SDAs and CNNs to estimate the position and
orientation of the robot. We want to find out which of these
networks has the best global localization performance in the
environment and how well they scale with the size of the room.

4.2.1. Stacked denoising autoencoder architecture

For the SDAs, we selected a number of architectures that can
be seen in Table 1. The number of SDA layers, the number of
neurons in each layer, and the size of the position estimator
multi-layer perceptron (MLP) on top of the SDA layers are the
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Fig. 5. The differential-drive Pioneer robot that was used for the data gathering
and RL experiments. To speed up the RL experiments, we attached an omnidi-
rectional plugin to the simulated robot to minimize the required time to move
from a cell to another. During the experiments, the range finder values are cut
off to half a meter range and are used as a simple infrared collision detector
Sensor.

subject of our tests. We train each network for 10,000 epochs, and
save the validation results. The network with the lowest valida-
tion error for each architecture is used for testing. In our previous
research, we did experiments in a room very similar to the small
kitchen in Fig. 3. However, there are two main differences in the
setup of the localization experiment of this paper in comparison
to the previous one. In our previous paper, we had a large pre-
training data set of 150,000 unlabeled images. However, since
we want to compare the results of SDAs to CNNs, we decided
to use the pre-training phase on the smaller labeled data set.
We estimate that the performance of the network will drop due
to the importance of the unsupervised phase of SDA training. In
addition, the environment used in our previous research had a
large number of texture-less walls, which forced us to reduce
the data gathering locations to positions with some textures
in the field of view of the camera. In this paper, however, we
added paintings to the walls to allow for complete data gathering
of the environment, since the agent has access to meaningful
information of the whole environment to localize itself.

The input size of the images for the SDA network are HSV
color images of size 36 x 36 which led to the best results in our
previous paper. Due to full connectivity of the layers, increasing
the image size results in very high testing errors.
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Table 1
SDA architectures for experiments.

Layers Units per layer Corruption per layer
1 [4000] [0.2,0.2]

1 [1500] [0.2,0.2]

2 [4000, 4000] [0.2,0.2]

2 [1500, 1500] [0.2,0.2]

3 [4000, 4000, 4000] [0.2,0.2,0.2]

3 [1500, 1500, 1500] [0.2,0.2,0.2]

4.2.2. Convolutional neural networks

The same procedure applies to training the CNNs. Table 2
shows the CNN architectures that were trained and evaluated. For
the CNNs, presence and absence of pooling layers, the depth of
the network, and Convolution type (Inception vs. Normal) were
selected as the main criteria for testing different architectures.
We use strides in networks without pooling layers to reduce the
number of parameters. We compare the use of RGB and HSV
images to train and validate the CNNs on the date from the small
kitchen, and will train the best performing network on the data
from the big apartment. The input size for the CNNs are images
of size 84 x 84 x 3. The detailed design of the third architecture
from Table 1 is shown in Fig. 6.

4.3. Reinforcement learning

We first compare the normal and multi-goal Q-learning ap-
proach on random mazes. The mazes are grids of size 10 x 10
surrounded by walls. The randomization of the maze is as follows.
The (0, 0) cell is empty, and we call it the starting point. For
each column, there is a thirty percent chance to have obstacles
inside. When the column has obstacles, a random number will
generate how long the obstacles will be. Another random number
selects the position of the obstacles in the column. The length
of the obstacle cannot exceed more than half of the maze. This
procedure is repeated for all columns, and we also repeat it
for all the rows. After this operation, there may exist obstacles
with hollow cells inside. From the starting point, we perform
connected component analysis, to find out all the cells that are
reachable from this point. We fill the non-blocked remaining cells
inside with obstacles. Then, we generate X = 10 random goals,
the distance of these goals to the starting point (0, 0) should be
more than 7 steps. If the random agent cannot find these goals
after several iterations, we reject the maze and start over. Finally,
we randomize X — 1 more initial positions to create in total, 10
mazes with 10 goals and 10 initial positions.

Reaching the goal gives the agent a reward of 100 while hitting
blocked cells gives a reward of —2. All other actions receive a
fixed punishment of —0.1. We initialize the Q-values to 80 to
encourage exploration. The learning rate for the update of Q-
values is 1.0 for the maze, 0.1 for the 2D simulator, and 0.8 for
the Gazebo 3D simulator. The maze learning rate is set to 1.0
because the environment and actions are deterministic. For the
2D simulator, a smaller value is selected to avoid large changes
in Q-values during training due to the stochasticity of the robot
control. In the 3D simulator, however, we increased the learning
rate because the simulation speed is slower and due to the
position estimation errors the Q-values should be updated faster.

The agent uses Boltzmann exploration for the selection of
actions for all the maze scenarios which can be seen in Eq. (6).

exp( Q(S;ﬂi) )

_ (6)
N Q(st,q5)
> i1 exp(—1 )
T is the temperature, and for each action in state s;, we com-
pute action probabilities for the N actions. When the temperature

P(ajls) =
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Fig. 6. The nine-layer position estimation convolutional neural network architecture with inception. The input to the network is an 84 x 84 image; The output is
estimated as X, Y, sin#, cosf. Images (A) and (B) show two different Inception modules and (C) shows the complete CNN architecture.

Table 2

CNN Architectures for Experiments.

Layers Convolution type Kernel size Dense layer Optimizer

size

7 Convolution — no pooling 5x%x5 512 Adam

7 Inception convolution — 5x%x 5, 3x 3, 512 Adam
pooling and 1 x 1
Convolution — no pooling 5x%x5 512 Adam

9 Inception convolution — no 5x%x 5, 3x 3, 512 Adam
pooling and 1 x 1

9 Inception convolution — 5x 5, 3x 3, 512 Adam
pooling and 1 x 1

T is high, actions will be assigned similar probabilities. When
T drops, higher Q-values will have a higher probability to be
selected. We initialize the temperature T to 2 with a decay value
of 0.998. After each trial, the temperature is multiplied by the
decay value. For the 2D and the 3D environment, however, we
use the e—greedy method to reduce exploration because the Q-
functions have already been trained and too much additional

exploration costs more time in the simulators. The € value is set
to 0.1.

For the maze experiments, we consider a goal learned when
the success ratio at reaching the goal is 100 percent for fifty
consecutive trials from each starting position, and the average
difference in number of steps to reach the goal is smaller than
10.
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Table 3
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The experimental results for position and orientation approximations with the stacked denoising autoencoders.

Small Kitchen - HSV

Layer size No. layers Corruption Position error(m) Angular error (degree)
Mean Std Mean Std
1500 1 0.218 0.213 12.6 14.0
4000 1 0.217 0.207 12.8 13.6
1500 2 20% 0.204 0.221 11.6 13.7
4000 2 i 0.193 0.205 113 12.8
1500 3 0.198 0214 11.6 13.9
4000 3 0.182 0.205 10.7 12,5
Big apartment - HSV
4000 3 20% 0.560 0.869 288 48.9
The results on the mazes allow us to reliably measure the Table 4

performance of the multi-goal RL approach versus the sequential
goal selection method. To assess the temporal difference goal
selection, we perform a separate set of maze experiments with
different convergence criteria. In these experiments, the required
success ratio of 100 percent is only necessary for fifteen con-
secutive trials. We also remove the average difference in the
number of steps to show the difference between the two ap-
proaches better. However, the final goal is to use our method
to navigate a robot in a realistic environment. Therefore, we
perform experiments in the 2D and 3D simulator as well. For
these environments, we use the same big apartment map as
during the data gathering phase. We have to, however, downscale
the map and convert it to a maze with the correct cell sizes. We
start the map approximation by selecting the top left corner of the
map images as (0, 0). We divide the width and height of the map
with the required cell resolution to extract rows and columns.
Any cell with an occupied map pixel will be considered as an
obstacle, and the rest will be free cells. We apply the same closing
method as we perform for the random mazes.

4.3.1. Big apartment and transfer learning

For the big apartment in Fig. 4, the map size has a width
of 17 and length of 9 m. The cell resolution is 40 centimeters,
and therefore the approximated maze size is 47 x 24. We run
the RL tests on the approximated maze, 2D simulator, and 3D
simulator. The location of the robot in the maze is just a cell
index. For the 2D simulator, we use the ground truth pose of the
robot to determine the location of the robot in the cells. In the 3D
simulator, the position estimator network outputs the predicted
position of the robot. These experiments are repeated 10 times.

In order to test the performance of transfer learning, we train
the agent in the maze using RL, and then use the trained Q-
function in the 2D simulator to cope with the possible problems
of local navigation. Finally, the trained Q-function in the 2D sim-
ulator is used for the 3D simulation where the position estimator
neural network predicts the location of the robot, and the RL
method deals with the errors in the predictions. We expect to see
a sharp decrease in the required time to converge to reliably find-
ing the goals. These experiments are done on the big apartment
(Fig. 4).

4.4. Experiment results

In this section, we discuss the results of the position estima-
tion networks and the RL experiments.

4.4.1. Position estimator results

Table 3 shows the results of the SDA experiments. The best
results for the small kitchen room are for the network with 3
layers and 4000 hidden units with 20 percent corruption of the
input data. We used the same network for the big apartment as

10

The experimental results for the convolutional neural networks.
Small kitchen RGB

Network Type Position error (m) Angular error (degree)

Mean  Std Mean  Std
7 Layer 0.066 0.087 49 1.96
9 Layer 0.069 0.101 6.1 2.59
Inception 9 layer 0.056 0.079 49 2.07

Small kitchen HSV
Network type

Position error (m) Angular error (degree)

Mean Std Mean Std
7 Layer 0.065 0.086 6.1 2.46
9 Layer 0.069 0.101 6.2 2.60
Inception 9 Layer 0.056 0.080 5.1 2.10

Big apartment RGB

Network type Position error (m) Angular error (degree)

Mean  Std Mean  Std
7 Layer 0.156  0.190 3.9 2.67
9 Layer 0.113 0.125 3.1 2.21
Inception 9 layer 0.076 0.067 3.8 1.63
Inception pool 7 layer 0.324 0.087 5.6 1.94
Inception pool 9 layer 0.276 0.174 45 251

well. The high position and angular errors in the big simulated
room show that these networks cannot scale well with the size
of the environment. Fig. 7(a) shows a better overview of the
error throughout the environment for the big apartment. For
each location, the robot estimates the position for each angular
rotation of the camera. Then, we average this error for each
cell. The green color shows the minimum mean cell error value
from the network and the shades toward red mean higher errors.
Positions in the center of the map have a better localization in
comparison to locations close to walls and corners. The main
reason is that the robot has a wider view and can see a larger part
of the room when it is in the center. This gives the network more
information to distinguish its location robustly. In the corners and
next to the walls on the other hand, the estimations are poor.
Plain looking walls or objects do not have much information, and
therefore the estimations suffer from this lack of information.
Table 4 shows the results of the position estimation for the
CNNs. The best results are achieved by the Inception architecture
in both rooms. In addition, the results for the RGB color space
is slightly superior to that of the HSV space. The best 9-layer
network with the RGB color space has 0.056 cm position error
and 4.9 degrees angular error with 0.079 cm and 20.7 degrees
standard deviation. The use of the RGB color space works slightly
better with the CNNs which is confirmed by other researches as
well [73]. Having more layers allows the system to encapsulate
the environment better, while using the inception architecture in
each level allows the network to use coarse and fine information
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The experiment with 10 different random mazes. The values in the table are the total number of steps required to

solve the maze from each initial location to each goal.

Random mazes

Maze number

RL Method 1 2 3 4 5 6 7 8 9 10 Average

Normal RL 184k 209k 204k 185k 255k 212k 186k 172k 203k 201k 201k

Multi-Goal RL 76k 82k 90k 73k 10k 91k 83k 75k 78k 93k 84k
Table 6

Comparison between temporal difference error based goal selection and random goal selection with 10 different
random mazes with different starting temperatures and initial Q-values.

Random mazes - multi-goal RL

T=10,Q=0 Maze number

Goal selection 1 2 3 4 5 6 7 8 9 10 Average
Random 23k 31k 28k 27k 46k 29k 32k 52k 38k 29k 34k
TD-error 23k 30k 23k 26k 43k 28k 31k 41k 40k 28k 31k
T=20 Q=280 Maze number

Goal selection 1 2 3 4 5 6 7 8 9 10 Average
Random 26k 39k 31k 27k 26k 33k 26k 50k 26k 31k 32k
TD-error 33k 41k 29k 27k 28k 31k 21k 47k 28k 34k 32k

at the same time. The smaller 3 x 3 kernels only use the sur- Table 7

rounding pixel information while the bigger 5 x 5 kernels also
include a larger neighborhood which adds more global informa-
tion. The result of the inception network on the bigger room is
also interesting. The positional and angular error has remained
similar while the size of the room is doubled. This shows that the
CNNs can scale with the size and type of the environment. The
results on the bigger room also clearly show that pooling layers
should not be used for precise localization purposes.

The results from Tables 3 and 4 clearly show that not only
the CNN network performs better in a small environment, but
it also scales much better when the environment is larger. For
this reason, the 9 layer inception network is used to estimate the
positions for the RL method in the 3D simulator.

Fig. 7(b) shows the distribution of the errors in the big envi-
ronment. The same procedure for the SDA heat map is repeated
here. The higher error values are strictly for the positions that
are closer to walls. In addition, we also observe that the network
gives higher position estimation errors when the scene has a large
depth. Since the network uses only a single image, it will be quite
hard for it to correctly estimate the depth, and the appearances
of the objects that are further away do not change a lot when the
camera moves toward them.

4.4.2. Reinforcement learning results

Table 5 shows the results of experiments with the normal
and multi-goal approach for random mazes. The data show the
average required number of steps to learn to navigate to all the
goals from all the initial positions. The multi-goal approach on
average has a 239% faster convergence time. Table 6 shows the
comparison between random and temporal difference based goal
selection with different starting temperatures for the Boltzmann
exploration. Note that we relaxed the convergence criteria for this
experiment. When the starting temperature and initial Q-values
are high, the agents are encouraged to explore the complete
environment, and most of the new goals do not need addi-
tional training. However, with a reduced starting temperature
and initial Q-values, the agents will not encounter all the goals
where smart goal selection can positively impact the convergence
time. With this setting, The TD-based goal selection performs on
average 9 percent better than random goal selection.

Tables 7 and 8 show the results of the big apartment maze
for the single and multi-goal approach. The multi-goal approach

11

The average number of trials to reach the goals from all initial
positions in the approximated maze of the big simulated apart-
ment using the single and the multi-goal approach. The multi-goal
approach requires 40 percent less trials for convergence.

Goal No. Single goal Multi goal

Mean Std Mean Std
1 1121 50.8 112.6 50.6
2 123.2 62.9 107.7 48.6
3 89.6 16.4 50.0 0.0
4 87.2 28.2 50.1 0.1
5 107.2 49.8 50.4 0.3
6 99.7 22.6 51.3 0.9
7 87.3 17.8 50.7 0.5
8 88.4 31.6 51.0 0.7
9 96.0 219 52.4 16
10 98.9 32.2 50.1 0.1
Average 98.9 322 62.6 10.3

requires 40% less trials and requires half the number of actions
as well. The large difference between the random mazes and
the approximated maze can be explained by the position of the
goals. In random mazes, it is possible that two goals are very
close to each other which benefits the multi-goal approach. In our
approximated maze, the goals and initial positions are scattered
fairly, hence the improvement is less substantial. Figs. 8(a) and
8(b) depict the differences between the single and the multi-goal
approach more clearly. The single goal network has to learn to
navigate to goals from scratch and therefore the number of trials
and actions to learn the optimal path is higher compared to the
multi-goal approach. For the multi-goal approach, however, all
the goals that were close to the exploration range of the first goal
were learned almost immediately, while due to the experience
sharing between the Q-functions the agent learned to navigate to
all the goals faster. The TD-based goal selection obtained a similar
overall performance as the random goal selection in this scenario.
While the average number of trials is similar, the TD-based error
has a significantly lower standard deviation, making it a suitable
candidate for the rest of the multi-goal experiments as well.
Table 9 shows the performance of the multi-goal method in
the 2D and 3D simulator. For the 2D simulation, the robot could
reach all the goals. The required number of actions to reach the
goals were slightly higher than that of the maze simulations.
The stochasticity of the e-greedy method, and non-deterministic
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(a) Position errors for the best SDA
network. Green color represents min-
imum errors of 0.43 meter per loca-
tion, and red color has the maximum
error of 1.6 meter per location.

Fig. 7. The error heat map for the position of the robot in the big simulated room.

is referred to the web version of this article.)

Table 8

The average number of actions to reach the goals from all initial positions in
the approximated maze of the big simulated room using the single and the
multi-goal approach. The multi-goal’s required number of actions is two times
less compared to the single goal method. This shows that goals were quite often
reached during exploration to other goals. The temporal difference goal selection
has a slightly higher mean but a significantly lower standard deviation in this
specific maze.

Goal No. Single goal Multi goal - TD Multi goal - random
Mean Std Mean  Std Mean  Std
1 115.0 734 1175 2.8 1206 207
2 1035 59.7 54.7 5.0 28.3 13.7
3 55.2 15.7 266 0.1 19.8 7.6
4 68.0 379 171 3.2 219 78
5 79.7  49.0 174 24 17.7 34
6 65.5 23.7 20.8 5.4 24.3 114
7 56.0 17.9 168 4.1 189 7.6
8 75.0 442 18.1 29 227 5.8
9 534 18.3 203 42 24.6 11.2
10 59.0 16.3 17.7 5.9 230 98
Average 73.0 35.6 327 3.6 322 9.9

behavior of the controller of the robot can explain the higher
number of actions. The local navigation system considers the
robot footprint and must locally navigate from cell to cell. This
can introduce problems when the robot is in tight corners due to
insufficient sampling of the velocity space by the DWA approach
which may result in failed or incomplete actions.

The 3D simulation results show a higher number of actions
to reach the goals (also in Fig. 8(d)). In the 2D simulator, the
location of the robot is always correct. However, in the Gazebo
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(b) Position errors for the best CNN
network. Green color represents min-
imum errors of 0.12 meter per loca-
tion, and red color has the maximum
error of 0.56 meter per location.

(For interpretation of the references to colour in this figure legend, the reader

Table 9

The average number of actions (after convergence) to reach the goals from all
initial positions in the 2D and 3D simulator using the multi-goal approach. The
2D simulator used ground truth positions for the robot localization while the
3D simulation used the CNN to estimate the positions.

Goal No. 2D Simulation 3D Simulation
Mean Std Mean Std
1 353 7.3 43.6 10.3
2 424 7.8 734 16.3
3 19.7 2.6 28.0 4.6
4 252 6.4 46.7 15.7
5 33.7 79 445 11.1
6 23.8 4.0 28.9 5.0
7 22.1 4.2 26.6 53
8 27.6 6.3 43.0 125
9 19.2 4.4 27.7 9.4
10 212 2.1 29.0 3.7
Average 27.0 5.30 39.1 9.4

3D simulation, the inception CNN was used to estimate the po-
sition of the robot. Therefore, due to erroneous estimations, cell
selection will be incorrect at some positions in the room. As can
be seen in Fig. 9, it is possible that the actual location of the robot
is slightly different than the estimated position. This problem
becomes larger if the robot faces plain looking walls, or texture-
less surfaces, where the output of the CNN is usually the average
of all the different positions with the same input. However, the
e-greedy method allows the robot to get out of these situations
but with a cost of a higher number of actions.

Table 10 shows the results of training the agents directly in
the 3D simulator without any transfer learning. From the large
standard deviations and higher means compared to Table 9, and
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Fig. 8. The number of actions versus the number of trials for the multi-goal and the single goal RL method in the approximated maze, and for the multi-goal
approach in the 2D and 3D simulation of the big apartment. Fig. 8(a) shows the result for the single goal approach on the approximated maze. Fig. 8(b) shows the
multi-goal results for the approximated maze. Note that the Q-functions have almost converged after the second goal. Fig. 8(c) shows the 2D simulator results with
the multi-goal approach. Fig. 8(d) shows the results of the 3D simulation with the multi-goal approach. Note that the number of actions to reach some of the goals
are considerably higher than for the 2D simulation due to the errors of the CNN position estimation. Fig. 8(e) shows the results of the multi-goal approach without

transfer learning in the 3D simulation.

the number of agents that failed to learn all the goals, it is evident
that the two-stage transfer learning significantly speeds up the
learning process.

5. Discussion

In this paper, we introduced a two-stage visual navigation
framework using deep convolutional neural networks and multi-
goal reinforcement learning. Our goal was to design a system
that is robust, and resilient to localization errors. Therefore, we
first investigated whether a deep convolutional neural network
is capable of learning position information based on an image
and whether it can generalize well for locations that are outside
of the training set. We performed several comparisons between
different CNN architectures and our previously proposed SDA
architectures on a small and a large 3D simulated environment.
The proposed inception CNN architecture performed best with
0.076 m position error and 3.8 degrees angular error in the large
room and 0.056 m position error and 4.9 degrees angular error
in the small room. CNNs proved superior to SDA in both accuracy
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Table 10

The average number of trials and actions (after convergence) to reach the goals
from all initial positions in the 3D simulator using the multi-goal approach
without transfer learning. The right most column is the number of agents that
could not learn the respective goals after 14 thousand trials. These experiments
took approximately a month to complete.

Goal No. Trials Actions Not reached
Mean Std Mean Std No. of agents

1 6849.6 5154.0 74.8 8.4 0

2 376.6 253.2 87.9 40.3 3

3 181.1 104.5 46.9 63.5 1

4 141.8 1.8 24.0 3.8 0

5 432.0 60.0 144.4 45.2 4

6 1424 5.6 21.3 6.4 1

7 153.1 15.8 33.8 5.8 1

8 4731 181.5 189.7 31.6 1

9 31415 5343.4 131.1 60.9 3

10 160.4 239 372.7 26.1 0

Average 1205.2 11144 80.1 29.2
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(b)

Fig. 9. An example view of erroneous position estimation from the CNN. Fig. 9(a) shows one of the positions in the big apartment where the CNN estimation is
incorrect due to the limited view of the robot. Fig. 9(b) shows the robot’s camera view. Fig. 9(c) shows the actual position of the robot versus the estimated pose.
The estimated pose is shown by the red arrow, while the robot footprint is the green rectangle. The other colored pixels are the inflated cost maps with an increased
range to better visualize the situation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and the ability to scale with a more considerable amount of data.
However, CNNs, similar to other methods that rely on visual
input, suffer greatly from lack of texture, and therefore their
output values should be used in combination with the motion
model of the robot. Based on the results, we can argue that
the proposed CNN has good potential in robot localization. We
then tested our proposed multi-goal RL method to see whether
a combination of dynamic goal selection, experience sharing,
and transfer learning can reduce learning time. We first tested
the multi-goal and single-goal approach in 10 different random
mazes with 10 random goals and 10 random initial positions. Our
multi-goal approach learned to solve all navigation tasks around,
on average, 240 percent faster than the traditional method. We
then focused on robot RL experiments and tested how transfer
learning can reduce learning time. We compared RL agents on the
approximated maze of the large simulated room using the multi-
goal and the single-goal approach. The multi-goal agent was able
to learn to navigate to all the goals using half of the total number
of actions required by the single-goal method. We transferred the
trained multi-goal agent to the 2D simulation of the large room in
which we evaluated the effects of the stochasticity of robot base
movements. After learning to navigate to all goals in the 2D simu-
lator, we transferred the agent to the 3D simulated environment.
We showed that while the agent could guide the robot to the
goals, the number of actions for convergence was slightly higher
in the 3D simulator in comparison to the 2D simulator. The higher
number of actions was caused by the position estimation errors
of the CNN and the stochasticity of the robot moving platform.
We can conclude that CNNs can learn and transform images into
reliable coordinates for localization and that a multi-goal RL agent
can achieve faster convergence by sharing the experiences of
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one goal with all the others using transfer learning, and smart
exploration to reduce the required number of actions to navigate
to different goals.

For future work, the first improvement step could be to learn
continuous control of the robot. It is possible to use a neural
network with the position, angle, velocity, and acceleration in-
formation of the robot as inputs, and longitudinal and angular
velocity as outputs. This would simplify the method and since no
discretization would be needed, the generalization performance
would increase, which should lead to less training time.

We also want to research how we can train the position esti-
mator network without needing so much accurate position data.
It might be possible to use the locally accurate robot odometry
model for this purpose. This would allow to scale up our system
to learn to navigate in even larger environments.
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