
 

 

 University of Groningen

UNITY and Büchi automata
Hesselink, W H

Published in:
Formal Aspects of Computing

DOI:
10.1007/s00165-020-00528-x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (2021). UNITY and Büchi automata. Formal Aspects of Computing, 33, 185–205.
https://doi.org/10.1007/s00165-020-00528-x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1007/s00165-020-00528-x
https://research.rug.nl/en/publications/7463ef91-3d83-444f-b0d9-43993aa748f7
https://doi.org/10.1007/s00165-020-00528-x


https://doi.org/10.1007/s00165-020-00528-x
The Author(s) © 2021
Formal Aspects of Computing (2021) 33: 185–205

Formal Aspects
of Computing

UNITY and Büchi automata
Wim H. Hesselink
Bernoulli Institute, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Abstract. UNITY is a model for concurrent specifications with a complete logic for proving progress properties
of the form “P leads to Q”. UNITY is generalized to U-specifications by giving more freedom to specify the
steps that are to be taken infinitely often. In particular, these steps can correspond to non-total relations. The
generalization keeps the logic sound and complete. The paper exploits the generalization in two ways. Firstly,
the logic remains sound when the specification is extended with hypotheses of the form “F leads to G”. As
the paper shows, this can make the logic incomplete. The generalization is used to show that the logic remains
complete, if the added hypotheses “F leads toG” satisfy “F unlessG”. The main result extends the applicability
and completeness of UNITY logic to proofs that a given concurrent program satisfies any given formula of LTL,
linear temporal logic, without the next-operator which is omitted because it is sensitive to stuttering. For this
purpose, the program, written as a UNITY program, is extended with a number of boolean variables. The proof
method relies on implementing the LTL formula, i.e., restricting the specification in such a way that only those
runs remain that satisfy the formula. This result is a variation of the classical construction of a Büchi automaton
for a given LTL formula that accepts precisely those runs that satisfy the formula.

Keywords: Concurrency, Progress, UNITY, LTL, Büchi automaton

1. Introduction

UNITY [CM88, Mis01] is a formalism to reason about never-terminating concurrent programs or distributed
systems. Büchi automata are finite statemachines to acceptω-regular languages, see e.g. [GPVW95] and references
given there. Both kinds of systems are primarily transition systems. An execution of such a system is an infinite
sequence of states in which every pair of subsequent states satisfies the next-state relation. For both kinds of
systems, the semantics are given by the set of runs, where a run is defined to be an acceptable execution. The
acceptance criterion will be discussed below.

The important part of UNITY is UNITY logic, a system for deriving assertions of the form P �→ Q ,
interpreted as “P leads to Q”. UNITY logic is sound and complete for this interpretation. Soundness means
that, if P �→ Q can be derived for a UNITY program, then, in all runs of it, every state where P holds and Q
does not, is followed eventually by a state where Q holds. Completeness of UNITY logic means that, if, in all
runs of some program, every state whereP holds andQ does not, is followed eventually by a state whereQ holds,
P �→ Q is derivable in UNITY logic for this program.
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Linear temporal logic (LTL) is a language to express properties of runs. Büchi automata are complete for
LTL, in the sense that, for every LTL formula, there is a Büchi automaton that accepts precisely those runs that
satisfy the formula.

Coming back to the acceptance of runs, the acceptance criterion for UNITY programs is primarily that all
steps are taken infinitely often. A Büchi automaton has a fairness set of states, and the acceptance criterion is
that the execution visits the fairness set infinitely often. As will be shown, in both cases the criteria have been
generalized in such a way that the two theories meet. At that point, UNITY logic is still sound and complete.
One has to be careful, however, with executability. Indeed, a system will be described that, if executable, would
solve the Halting Problem!

Two practical differences remain. First, UNITY allows infinite state spaces, e.g., with integers or more com-
plicated data structures, while Büchi automata are finite state machines. Consequently, UNITY programs are
usually given in terms of variables, while Büchi automata are described in terms of state diagrams. Secondly,
UNITY is insensitive to stuttering to allow abstraction from irrelevant internal steps of components, while for
Büchi automata this is not built in, so as not to hamper expressiveness.

In this paper, it is from the side of UNITY that the meeting point is approached. UNITY is generalized
to U-specifications because this is possible and preserves soundness and completeness of UNITY logic. Some
aspects of the generalization are obvious and useful in practice. Other aspects are useful for the theory, even when
they endanger executability.

The first application (of the latter type) concerns leads-to hypotheses. Such hypotheses can be added to
UNITY logic in an obvious way, which preserves soundness. It is shown here that it need not preserve complete-
ness.Adding leads-to hypotheses of a special kindpreserves completeness. Theproof of this uses the generalization
to U-specifications.

UNITY logic can only prove assertions of the formP �→ Q . This seems like a fundamental flaw in expressive-
ness. The second application of U-specifications enables us, however, to use UNITY logic to prove that a given
UNITY program satisfies any given LTL property.

Roughly speaking the method is as follows. LetC be the UNITY program and ϕ the LTL property one wants
to prove. Extend program C with a Büchi automaton to a U-specification E with initialization predicate D in
such a way, thatD �→ false in E means that C has no runs that satisfy ¬ϕ. Then use UNITY logic in E to derive
D �→ false. This proves that all runs of C satisfy ϕ.

The construction of program E from program C and property ϕ can be split into three parts. First, find an
LTL formula α that can be interpreted inC as property ϕ. Next, construct a Büchi automatonB for the negation
¬α. Finally, superimpose B onto C to get E .

The construction of B is the most complicated part, but of course, this construction of an automaton for an
LTL formula is known. The constructions in the literature are usually in terms of state diagrams with the explicit
aim to make the automaton as small as possible. As one needs to apply UNITY logic to the resulting program E ,
however, it is important that program E is accessible for analysis. The paper therefore gives a new construction
of B in terms of Boolean variables.

Some related research
Around 1990, several formalisms related to UNITY were proposed: action systems [BKS88], specifications

[AL91], temporal logic of actions [Lam94]. They all model the execution of the system as a repeated non-
deterministic choice between different atomic commands with mild conditions that the choice is made in a “fair”
way. The derivation system UNITY logic, however, is unique.

The soundness of UNITY logic is fairly obvious, the completeness was proved in [Kna92, Dij00]. In [Hes13], it
was shown that UNITY programs can be generalized to g-unity specifications, called U-specifications here, while
retaining soundness and completeness. This step is the starting point for the two extensions of the theory to be
presented here.

The problem of adding leads-to hypotheses while preserving completeness of the logic was investigated first
by Tsay and Bagrodia [TB95], and Gumm and Zhukov [GZ96]. The present solution is relatively simple because
of the generalization of UNITY to U-specifications.

Büchi automata go back to Büchi [Bue60]. The application of temporal logic in concurrency research has
been promoted by Manna and Pnueli [MP83], and Lamport [Lam83]. Büchi automata and temporal logic are
used together in model checking, see [BK08, Hol04]. Gerth e.a [GPVW95] give a construction of a Büchi
automaton for a given LTL formula. This construction is mechanically verified in Isabelle/HOL by Schimpf
et al. [SMS09].
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Overview
Section 2 introduces the basic material: UNITY, U-specifications, UNITY logic, and the operational semantics.

Section 3 treats the addition of leads-to hypotheses to the logic and the cases were the logic becomes incomplete
or remains complete. Section 4 introduces linear temporal logic, the concept of implementation, and proves that
the validity of an LTL formula on a U-specification can be proved by UNITY logic with an implementation of its
negation. This section also contains the treatment of theHalting Problem. The construction of an implementation
is done in Sect. 5. Conclusions are drawn in Sect. 6.

Mechanical verification
For the writer’s confidence, almost everything in the paper has been mechanically verified with the proof

assistant PVS. The dump file is available at [Hes20]. The verification was especially helpful because without
intuitive understanding a handwritten formal proof is never completely convincing.

2. UNITY and U-specifications

This section contains a very brief introduction to UNITY programs in Sect. 2.1, followed by a more formal
description of U-specifications and UNITY logic in Sect. 2.2. Some linear temporal logic is introduced in Sect.
2.3. Section 2.4 discusses stuttering. The operational semantics are described in Sect. 2.5. Recurring sets and
B-specifications are investigated in Sect. 2.6.

2.1. UNITY programs

A UNITY program [CM88, Kna94] consists of state space X , given by a declaration of the available variables and
their types, a predicate A that specifies the initial states, followed by an assignment section, which is a set W of
commands R of the form

(0) [] R : B → S .

Here B is the guard, the condition under which the assignment S is executed. If B is false, command R does
nothing. CommandR is identified with the relation that contains a pair (x , y) if and only if execution ofR in state
x can result in state y . The next-state relation of the program isN � 1X ∪⋃

R∈W R, where 1X � {(x , x ) | x ∈ X }.
Executing the program means a fair non-deterministic interleaving of the commands R ∈ W with optional skip
steps of 1X . The fairness condition is that every command R ∈ W is taken infinitely often. Note that each
command R is total: if the present state x satisfies B , then S transforms x into the next state; otherwise the next
state is x itself.

Example. Consider the UNITY program

var k : int
[] R1 : k � 17 → k :� 4
[] R2 : true → k :� k + 1

If command R1 is executed when k �� 17, nothing changes. It follows that the program has two kinds of runs.
Those where k cycles infinitely often between 17 and 4, and those where k goes to infinity.

In the next section, non-total relations R ∈ W are allowed. If in the above program, R1 is replaced by the
non-total relation {(17, 4)}, the requirement that commandR1 be taken infinitely often implies that the executions
where k goes to infinity are rejected. Then there are no runs that go beyond 17. ♣

Using the initial predicateA and the next-state relationN , the developer of a UNITY program proves a system
invariant, say J . This is typically done before any progress of the system is considered, because mistakes in the
invariant must be found as soon as possible, and because the progress assertions usually depend on it. Once a
satisfactory system invariant has been found, the state space X can be replaced by J , i.e., by the set of the states
that satisfy J . This has the effect that J need not be mentioned anymore but can be invoked whenever needed.
This is a semantic way of postulating the substitution axiom of Chandy and Misra [CM88, Sect. 3.4].
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2.2. U-specifications and UNITY logic

Generalizing UNITY programs, aU-specification is defined to be a triple (X ,N ,W), whereN is a reflexive relation
on X , and W is a countable set of relations on X . Relation N is called the step relation or next state relation.
The setW is called the set of fairness relations. The g-unity specifications of [Hes13] are U-specifications with the
additional requirement thatR ⊆ N for allR ∈ W . This requirement is eliminated here, at the cost of occasionally
replacing R by R ∩ N .

The generalization has several aspects. Non-trivial steps in N need not be subject to fairness (i.e. not in⋃
R∈W R), as in [CK97]. This is often necessary. For example, in the case of the dining philosophers, it is important

that philosophers are allowed to remain thinking forever. Infinitely many fairness relations R are allowed, and
they can be non-deterministic [GP89, Dij95]. The critical generalization is that the fairness relations need not be
total [Hes13]. The U-specification is defined to be total iff the relation R ∩ N is total for all R ∈ W .

Let (X ,N ,W) be a U-specification. UNITY is unique in its logic for progress, which is called UNITY logic. This
is a derivation system for the operator �→, pronounced “leads to”. If P andQ are predicates on the state, P �→ Q
means that, if some run of the system has a state that satisfies P ∧ ¬Q then it has a later state that satisfies Q .
The validity of this interpretation is discussed in Sect. 2.5 below.

Recall that, for a relation R and a postcondition Q , the weakest precondition is

wp.R.Q � {x | ∀ y : (x , y) ∈ R ⇒ y ∈ Q} .

Before defining �→, one defines the relations co, unless, recurring, and ensures by

P co Q ≡ P ⊆ wp.N .Q ,
P unless Q ≡ P ∧ ¬Q co P ∨ Q .
recurring P ≡ (P � X ) ∨ (∃ R ∈ W : P ∈ recur(R ∩ N )) ,
where P ∈ recur.R ≡ ¬P ⊆ wp.R.P ,

P ensures Q ≡ P unless Q ∧ recurring (P⇒Q) .

These notions are illustrated in the example below. Every predicate P satisfies P co P because N is reflexive. By
definition, the total space X is recurring. Therefore, any inclusion P ⊆ Q implies that P ensures Q .

Remarks. Misra’s book [Mis01] uses transient instead of recurring, where ¬P is transient iff P is recurring.
Recurrence is preferred here because transience tends to introduce a confusing number of negations in the
analysis.

If R is not total, P ∈ recur.R can hold while there is no pair (x , y) ∈ R with x �∈ P and y ∈ P . The “step”
from ¬P to P is then calledmiraculous. In sequential programming, such steps were forbidden by Dijkstra’s Law
of the Excluded Miracle [Dij76]. Morris [Mor88] and other authors, however, have argued against this law, see
[Hes92, Sect. 1.3] for this and further references. Miraculous steps cannot be expected from any implementation,
but they are useful in the theory and do not endanger soundness. ♣

The leads-to operator �→ is defined [CM88,Mis01] as the least relation �→ on predicatesP andQ that satisfies
the progress rules

RuleP0: P ensures Q ⇒ P �→ Q ,
RuleP1: P �→ U ∧ U �→ Q ⇒ P �→ Q ,
RuleP2: (∀ i ∈ I : Pi �→ Q) ⇒ (∃ i ∈ I : Pi ) �→ Q .

Note that P ⊆ Q implies P �→ Q because of RuleP0.
One says P ensures Q via R if P unless Q holds and R ∈ W and P⇒Q ∈ recur(R ∩ N ).
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Example. Consider the UNITY program

var i , k : int
[] R1 : i ≤ k + 1 → i :� i + 1
[] R2 : k ≤ i + 1 → k :� k + 1

As announced in Sect. 2.1, the step relation is N � 1X ∪ R1 ∪ R2, where R1 and R2 are the binary relations
corresponding to the guarded commands, labelled by R1, R2, respectively. The fairness relations are given by
W � {R1,R2}.

In order to prove that i and k grow arbitrarily large, one can proceed as follows. For arbitrary n, one proves
that

n ≤ i + k ∧ i ≤ k + 1 ensures n + 1 ≤ i + k via R1,
n ≤ i + k ∧ k ≤ i + 1 ensures n + 1 ≤ i + k via R2.

The definitions of ensures, unless, and co are used here. By RuleP0 and RuleP2, it follows that n ≤ i + k �→
n + 1 ≤ i + k . Using RuleP1 and induction, one then obtains n ≤ i + k �→ n +m ≤ i + k for all integer n and
natural m. After an application of RuleP2, one gets true �→ n ≤ i + k . This means that i + k becomes arbitrary
large. By similar arguments, one can prove that true �→ i ≤ k + 1, and that true �→ k ≤ i + 1. ♣

2.3. State sequences and properties

Unless stated otherwise, all sequences in a state space X are infinite sequences beginning at index 0. The set of
these sequences is denoted X ω.

For a set U ⊆ X , the set of sequences that start in U is denoted [[U ]]. For a relation R ⊆ X 2, the set of the
sequences that begin with an R step is denoted [[R ]]2. One thus has

xs ∈ [[U ]] ≡ xs0 ∈ U ,
xs ∈ [[R ]]2 ≡ (xs0, xs1) ∈ R .

For a sequence xs and a number k ∈ N, the k th suffix of xs is defined to be the sequence xs | k with (xs | k )n �
xsk+n for all n ∈ N. For a subset ϕ ⊆ X ω, the sets �ϕ (always ϕ), and �ϕ (eventually ϕ) are defined by

xs ∈ �ϕ ≡ ∀ k : (xs | k ) ∈ ϕ ,
xs ∈ �ϕ ≡ ∃ k : (xs | k ) ∈ ϕ .

Writing ¬ϕ for the complement of ϕ in X ω, it holds that �ϕ � ¬�¬ϕ.

Remark. Let U ⊆ X . Then ��[[U ]] consists of the sequences that are infinitely often in U . The set ��[[U ]] is
smaller: it is the strict subset of ��[[U ]] that consists of the sequences for which from some index onward all
elements are in U . ♣

Any subset ϕ of X ω is called a property on X . To distinguish the properties false and true from the predicates
false and true, the properties are denoted by ⊥ and �, respectively. The logical connectives ∨, ∧, ⇒ are used for
properties, just as for predicates, with e.g. (ϕ⇒ψ) � (¬ϕ ∨ ψ).

2.4. Stuttering, and good properties

A sequence ys is said to be a stuttering of a sequence xs iff xs can be obtained from ys by replacing some
(possibly an infinite number of) finite nonempty constant subsequences of consecutive elements of ys with their
first elements. For example, if a, b, c are different states, the infinite sequence (aabaaacc)ω is a stuttering of
(abaac)ω.

According to Lamport’s stutter principle (e.g., [Lam83, AL91]), the semantics of concurrent systems should
be insensitive to stuttering. When discussing properties, one should therefore concentrate on good properties
defined as follows.

A property ϕ ⊆ X ω is called good iff xs ∈ ϕ is equivalent to ys ∈ ϕ for every sequence xs and stuttering ys
of xs. All properties constructed in this paper will be good. To avoid distracting proof obligations, however, the
term “property” is not restricted to good properties.
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Intersections, unions and complements of good properties are good. If ϕ is a good property, then �ϕ and �ϕ
are good. Also, [[U ]] is a good property for any subset U ⊆ X .

For a reflexive relationR, the property�[[R ]]2 is good. It follows that�[[R ]]2 is goodwheneverR is irreflexive.
According to the stutter principle, �[[R ]]2 should only be used for irreflexive relations R. If R is not necessarily
irreflexive, the term �[[R ]]2 is therefore replaced by �[[R ]]+ where [[R ]]+ is defined by

[[R ]]+ � [[R ]]2 ∪ [[ stut.R ]] where stut.R � {x | (x , x ) ∈ R} .
The index + of [[ ]]+ serves to remind us that the argument is a relation and that stuttering is taken into account. As
� distributes over unions, the set�[[R ]]+ is the union of�[[R \ 1X ]]2 and�[[ stut.R ]]. The latter two properties are
good because R \ 1X is irreflexive and � preserves goodness. Therefore �[[R ]]+ is good. It captures the intention
of �[[R ]]2, because xs ∈ �[[R ]]+ holds iff �[[R ]]2 contains a stuttering of xs.

2.5. Operational semantics

The operational semantics of the U-specifications of Sect. 2.2, and also of B-specifications (Sect. 2.6), L-
specifications (Sect. 3.1), and U*-specifications (Sect. 4.2) that will be introduced later, are all expressed by
means of the following general semantical concept of specification.

A specification is a tripleK � (X ,N , ϕ) whereX is a set, the state space,N is a reflexive relation onX , and ϕ
is property on X . For a specification K the set of runs is defined by run.K � �[[N ]]2 ∩ ϕ. So, a run is a sequence
xs with (xsi , xsi+1) ∈ N for all i ∈ N, that satisfies ϕ.

Remark. Abadi and Lamport [AL91] define a specification to be a tuple (X ,N ,A, ψ) where X is a set (the state
space), N is a reflexive relation on X , A is a subset of X (of the initial states), and ψ is a good property. The set
of behaviours of such an AL-specification is �[[N ]]2 ∩ [[A ]]∩ψ . An AL-specification induces the specification in
our sense by taking ϕ � [[A ]]∩ψ . Conversely, if one ignores the requirement thatψ is good, a specification in our
sense induces an AL-specification by taking A � X and ψ � ϕ. The only difference therefore is that goodness is
ignored. For shortness, the word behaviour is replaced by run. ♣

A sequence xs with (xsi , xsi+1) ∈ N for all i ∈ N is called an execution. A nonempty finite sequence with
the same property is called an incomplete execution. Specification K is said to be machine closed [AL91] iff every
incomplete execution can be extended to a run. Note that an infinite execution need not be a run, because it need
not satisfy ϕ.

Specification K is said to satisfy a property ψ , notation K |� ψ , if and only if all its runs satisfy ψ . In other
words, one has

K |� ψ ≡ run.K ⊆ ψ .

In [Hes13], the functionLT is definedbyLT.P .Q � �([[P ]]⇒ �[[Q ]]).One says thatP leads-toQ ifK |� LT.P .Q .
The following lemma is a variant of the PSP rule of [Mis01]:

Lemma 1 Let P , Q , A, B be predicates on X . Assume that P leads-to Q and that A : co : B . Then P ∧
B leads-to (Q ∨ ¬A) ∧ B .

Proof Let xs be a run with xsk ∈ P ∧ B . One has to prove that xsn ∈ (Q ∨ ¬A) ∧ B holds for some n ≥ k .
Assume to the contrary that xsn ∈ ¬ ((Q ∨ ¬A) ∧ B ) for all n ≥ k . As ¬ ((Q ∨ ¬A) ∧ B ) � ¬B ∨ (A ∧

¬Q), one has xsn ∈ B ⇒ xsn ∈ A ∧ ¬Q for all n ≥ k . It follows from the assumption A coB that xsn ∈ A
implies xsn+1 ∈ B for all n. We have xsk ∈ B . By induction, it follows that xsn ∈ B for all n ≥ k , and hence that
xsn ∈ ¬Q for all n ≥ k . This contradicts the assumption P leads-to Q . �

Back toU-specifications. The semantics of aU-specificationA � (X ,N ,W) are determined by the associated
specification σ.A � (X ,N , ϕ) where ϕ � ⋂

R∈W ��[[R ]]+. For every R ∈ W , the conjunct ��[[R ]]+ expresses
that there are infinitely many indices n such that (xsn , xsn+1) ∈ R or (xsn , xsn ) ∈ R. This is called impartiality
in [Hes13]. It is a variation of weak fairness. One can use a scheduler [Hes13, Sect. 4.1] to prove

Proposition 2 Let A be a total U-specification. Then the associated specification σ.A is machine closed.

One can therefore argue that a U-specification is executable if and only if it is total.
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The operational concept of leads-to of specification σ.A is lifted implicitly to the U-specification A. Then
the operational interpretation of P �→ Q in Sect. 2 amounts to the assertion that P leads-to Q . Indeed, in
[JKR89, Hes13], it is proved that

Theorem 3 In every U-specification, P leads-to Q if and only if P �→ Q .

The assertion “if” is soundness of the logic, the “only if” is completeness.

2.6. Recurring sets

The expression for recur in Sect. 2.2 can be simplified. It is easy to verify that

(1) P ∈ recur.R ≡ ∀ (x , y) ∈ R : x ∈ P ∨ y ∈ P .

It follows that every set that contains a recurring set is recurring.
Instead of imposing some relations to be impartial, one can choose to impose some predicates to be recurring.

This is done in the concept of B-specification.
A B-specification is defined to be a triple K � (X ,N ,V) where N is a a reflexive relation on X , and V is a

countable set of sets. The associated specification is σ.K � (X ,N , ϕR) where ϕ � ⋂
V∈V ��[[V ]].

Remark. The B of B-specifications refers to Büchi. Indeed, the generalized Büchi automata of [GPVW95, Sect. 3]
have the same acceptance condition, and are therefore B-specifications with an initialization and a finite state
space. Ordinary Büchi automata, see e.g., [BK08, Hol04], are the special case where V consists of a single set. ♣

A B-specification K � (X ,N ,V) is equivalent to the associated U-specification K ′ � (X ,N ,W) with
W � {ρ.V | V ∈ V}, where ρ.V � {(x , x ) | x ∈ V }. The specifications K and K ′ have the same sets of runs
because [[ ρ.V ]]+ � [[V ]]. Formula (1) implies that P ∈ recur(ρ.V ) is equivalent to V ⊆ P .

The following example shows that not every U-specification is equivalent to an B-specification:

Example. Consider the U-specification K0 of a ring of size n ≥ 3:

var k : X � {0 . . .n − 1}
[] R : k :� (k + 1) mod n
[] L : k :� (k − 1) mod n

where both commands R and L, to turn right or left, are treated impartially. Let cs be the execution in which
command R is always executed and never L. This sequence satisfies �N , and ��[[P ]] for every nonempty set P ,
but it does not satisfy ��[[L ]]+, and it is not a run ofK0. This proves that U-specificationK0 is not equivalent to
any B-specification.

Let K1 be the B-specification (X ,N ,V) where N is as in K0, and V consists of the sets V that are recurring
in K0. Then K0 and K1 have the same relation �→, but K1 has more runs that K0 (e.g. cs). There exist properties
ψ with K0 |� ψ and K1 �|� ψ . Indeed, ��[[L ]]+ is such a property. ♣

3. Adding leads-to hypotheses

Consider an assertion like

(2) Every run in which F leads to G , is such that P leads to Q ,

where F , G , P , and Q are predicates on the state. We do not write that F �→ G implies P �→ Q , because this
would mean that, if F leads to G for every run of the system, then P leads to Q for every run of the system. A
priori, implication (2) is stronger. Implication (2) is formalized by regarding F �→ G as a hypothesis that restricts
the set of runs of the system. The aim then is to use this hypothesis to prove that P �→ Q holds for all (restricted)
runs. One may want to add any number of such hypotheses. For example, in a threading system with mutual
exclusion, one may want to investigate the hypothesis that every thread q in the entry protocol, will eventually be
in the critical section, as formalized in

∀ q : q in entry �→ q in CS .
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The introduction of leads-to hypotheses is formalized by the concept of L-specifications in Sect. 3.1. In Sect.
3.2, it is shown that, in general, the resulting logic is incomplete. Section 3.3 shows that completeness is retained
if the L-specification is very moderate. This result is generalized to moderate L-specifications in Sect. 3.4.

3.1. L-specifications

An L-specification extends a U-specification with a set of leads-to hypotheses L. It is defined to be a tuple
K � (X ,N ,W,L) where (X ,N ,W) is a U-specification and L is a countable set of pairs of predicates. The
semantics is determined by the associated specification σ.K � (X ,N , ϕ) given by

ϕ � ⋂
R∈W ��[[R ]]+ ∩ ⋂

(F ,G)∈L LT.F .G .

The first conjunct imposes impartiality of the members of W . The pairs (F ,G) ∈ L are called leads-to
hypotheses. The second conjunct restricts the runs to those that satisfy the leads-to hypotheses.

For an L-specification (X ,N ,W,L), the leads-to operator �→ is defined as the least relation on predicates P
and Q that satisfies the rules RuleP0, RuleP1, RuleP2, as well as

RuleP3: F �→ G for every pair (F ,G) ∈ L,
RuleP4: If P �→ Q and A co B , then P ∧ B �→ (Q ∨ ¬A) ∧ B .

RuleP3 introduces the leads-to hypotheses of L. RuleP4 is justified by Lemma 1. It follows that the rules RuleP0,
up to RuleP4 are sound in the sense that P �→ Q implies P leads-to Q for every pair of predicates P , Q .

In general, the rules are not complete as is shown in Sect. 3.2 below. In Sect. 3.4, it is proved that the rules are
complete, if restricted to so-called moderate L-specifications.

3.2. Incompleteness with leads-to hypotheses

The following argument shows that, in general, the system of the UNITY rules RuleP0, . . . , RuleP4 is incomplete.
Consider an L-specification with X as the only recurring set, and with four predicates P , Q , R, S , that satisfy
¬P co ¬P and the three leads-to hypotheses

(3) P ∧ Q �→ P ∧ ¬Q ,
P ∧ ¬Q �→ P ∧ Q ,
R �→ S .

Every run that satisfies the first two hypotheses satisfies P co P , because ¬P is stable and a state that satisfies
P needs to toggle Q while remaining inside P . Therefore, the system satisfies P ∧ R leads-to P ∧ S . This
consequence, however, is not derivable by means of the rules RuleP0, . . . , RuleP4.

In order to prove this, one considers a different model of the rules RuleP0, . . . , RuleP4 in which this conse-
quence does not hold. This model consists of a state spaceX with a reflexive next state relationN . Relation unless
is defined as in Sect. 2.2. The set X is the only recurring set. Therefore, P ensures Q is equivalent to P ⊆ Q . The
relation �→ is defined by

P �→ Q ≡ (∀ x ∈ P : ∃ y ∈ Q : (x , y) ∈ N ∗) .

The rules RuleP0, RuleP1, RuleP2 hold trivially. An easy inductive argument shows that RuleP4 also holds.
Now specialize to X � {1, 2, 3}. Let N consist of the identity relation together with the three transitions

2 → 1, 1 → 2, and 2 → 3. Take P � {1, 2}, Q � R � {2}, and S � {3}. The safety property ¬P co ¬P
holds because state 3 has no transitions to 1 or 2. The three hypotheses of (3) precisely correspond to the three
transitions. Yet the consequence P ∧ R leads-to P ∧ S is false because P ∧ R � {2} and P ∧ S is empty.

3.3. Very-moderate completeness

Let an L-specification (X ,N ,W,L) be called very-moderate if F � X (i.e., the predicate true) for every pair
(F ,G) ∈ L.
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Example. Consider the UNITY program with a single integer variable k , the assignment

[] k :� k + 1 ,

and the leads-to hypothesis true �→ k � 7. This is a very-moderate L-specification.
PredicateA : 7 < k satisfiesA co A. Therefore,RuleP4 impliesA �→ false. On the other hand, by RuleP0, the

incrementation of k gives k � 7 �→ A. Finally, transitivity gives true �→ false. This means that the L-specification
has no runs. Operationally, this is also obvious because in every run k goes beyond 7. It follows that the L-
specification is not machine-closed. Therefore, by Proposition 2, the L-specification is not equivalent to any total
U-specification. ♣

A very-moderate L-specificationK can be transformed into the U-specification in which the leads-to axioms
X �→ G of K are replaced by making G recurring, i.e., by postulating that ρ.G � {(x , x ) | x ∈ G} is impartial
for every pair (X ,G) ∈ L, see Sect. 2.6. More precisely, the L-specification K � (X ,N ,W,L) is transformed
into the U-specification π.K � (X ,N ,W ′) with W ′ � W ∪ {ρ.G | (X ,G) ∈ L}.
Lemma 4 Let K be a very-moderate L-specification. Then the U-specification π.K has the same runs and the
same relations �→ and leads-to as K . For both K and π.K , the relations �→ and leads-to are equal.

ProofFirst,K andπ.K have the same runs because they have the same step relationN andLT.X .G � ��[[ ρ.G ]]+
for every pair (X ,G) ∈ L.

It follows that (leads-toπ.K ) � (leads-toK ). As π.K is a U-specification, plain completeness (Theorem 3)
implies ( �→π.K ) � (leads-toπ.K ). Soundness of �→ for all L-specifications implies that ( �→K ) ⊆ (leads-toK ).

It therefore remains to prove that ( �→π.K ) ⊆ ( �→K ). We first prove that

(4) P ensuresπ.K Q ⇒ P �→K Q .

As K and π.K have the same step relation N , they have the same unless relation. The antecedent of (4) therefore
implies P unlessK Q . It also implies that P⇒Q ∈ recur.R for some R ∈ W ′. If R ∈ W , this implies that
P ensuresK Q and hence P �→K Q .

The main case is therefore thatR � ρ.G for some pair (X ,G) ∈ L. In this case,P⇒Q ∈ recur.R is equivalent
to P ∧ G ⊆ Q because of the definition of ρ.G . On the other hand, using RuleP4, the axiom X �→K G , and
P ∧ ¬Q co P ∨ Q because of P unless Q , one obtains

X ∧ (P ∨ Q) �→K (G ∨ ¬ (P ∧ ¬Q)) ∧ (P ∨ Q) .

This reduces to P ∨ Q �→K (P ∧ G) ∨ Q . As P ∧ G ⊆ Q , this implies formula (4).
Relation �→π.K is the least relation between predicates on the state space that satisfiesRuleP0,RuleP1,RuleP2

using ensuresπ.K . As relation �→K also satifies these rules, it follows that �→π.K is contained in �→K . �

3.4. Moderate completeness

An L-specification (X ,N ,W,L) is called moderate iff every pair (F ,G) ∈ L satisfies F unless G . It follows that
every very-moderate L-specification is moderate. It now remains to extend the result of the previous section from
very-moderate L-specifications to moderate ones.

The main idea is that any moderate leads-to formula F �→ G is equivalent to the very-moderate property
X �→ ¬F ∨ G . Something similar holds in the operational semantics. More precisely, in any L-specification K ,
it holds that

Lemma 5 Let F and G be predicates.
(a) The relation F �→ G implies X �→ ¬F ∨ G .
(b) If F unless G holds, then relation X �→ ¬F ∨ G implies F �→ G .
(c) LT.F .G ⊆ LT.X .(¬F ∨ G).
(d) If F unless G holds, then (LT.X .(¬F ∨ G) ∧ run.K ) ⊆ LT.F .G .

Proof (a) The assumption F �→ G weakens to F �→ ¬F ∨ G . We also have ¬F �→ ¬F ∨ G because ¬F is a
subset. Therefore, RuleP2 gives X �→ ¬F ∨ G .
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(b) We have F ∧ ¬G co F ∨ G because F unless G . RuleP4 with X �→ ¬F ∨ G results in:

X ∧ (F ∨ G) �→ ((¬F ∨ G) ∨ ¬ (F ∧ ¬G)) ∧ (F ∨ G) .

The lefthand side equals F ∨ G , and is therefore implied by F . The righthand side reduces to G .
(c) Let xs ∈ LT.F .G . In order to prove xs ∈ LT.X .(¬F ∨ G), assume xsn ∈ X for some index n. One has

to prove that xsk ∈ ¬F ∨ G for some k ≥ n. If xsn �∈ F , one can take k � n. Otherwise, one uses xs ∈ LT.F .G
to infer that xsk ∈ G for some k ≥ n.

(d) Let xs ∈ LT.X .(¬F ∨ G) ∧ run.K . In order to prove xs ∈ LT.F .G , let xsn ∈ F for some index n. One
has to prove that xsk ∈ G for some k ≥ n. As F unless G holds and xs is a run of K , the sequence xs satisfies
xsi ∈ F ⇒ xsi+1 ∈ F ∨ G for all indices i . It follows that either xsk ∈ G for some k ≥ n, or xsk ∈ F for all
k ≥ n. Finally, use xs ∈ LT.X .(¬F ∨ G). �

Given a moderate L-specificationK � (X ,N ,W,L), we construct the very-moderate L-specification ω.K �
(X ,N ,W,L′) with L′ � {(X ,¬F ∨ G) | (F ,G) ∈ L}.
The axioms X �→ ¬F ∨ G of L-specification ω.K are derivable in K because of Lemma 5 (a). The axioms

F �→ G of K are derivable in ω.K because of Lemma 5(b). It follows that L-specifications K and ω.K have the
same relations ( �→K ) � ( �→ω.K ).

One uses Lemma 5(c) and (d) to prove that the L-specifications K and ω.K have the same runs. This implies
that leads-toK � leads-toω.K .

Lemma 6 Let K be a moderate L-specification. Then the L-specification ω.K has the same runs and the same
relations �→ and leads-to as K .

As ω.K is very-moderate, Lemma 4 gives ( �→ω.K ) � (leads-toω.K ). This proves moderate completeness:

Theorem 7 For a moderate L-specification K , the relations �→K and leads-toK are equal.

4. Validity and LTL formulas

As explained in the Introduction, validity of an LTL formula can be proved by means of an implementation of
its negation. The proof of this result requires some heavy definitions, but then it is fairly simple. It is given in Sect.
4.2.

Roughly speaking, an implementation of a property ϕ on a U-specification A is a U-specification C with an
initial predicate D such that every run of A that satisfies ϕ corresponds to a run of C that starts in D , and vice
versa. The formal definition is given in Sect. 4.2.

The construction of implementations is postponed to Sect. 5. To give an impression how it is done, Sect.
4.3 describes an implementation of a property with three temporal operators. As a warning not to expect the
impossible, this example is used to “solve” the Halting Problem in Sect. 4.4.

Section 4.5 defines linear temporal logic, LTL, with its operators for always, eventually, release, and until.
LTL has two sides: a semantic side with LTL properties and a syntactic side with LTL formulas. The connection
is that the formulas are interpreted as properties.

4.1. Action of functions

In this investigation, functional simulations are used, and not relational ones, because functions are simpler than
relations, and are good enough for the purpose.

Let f be a function X → Y . This function transfers sequences in X ω to sequences in Y ω because a sequence
xs in X is a function N → X , so that the composition f ◦ ys : N → Y is a sequence in Y . The function transfers
a predicate P on Y backwards to the predicate P ◦ f on X . It also transfers relations and temporal properties
backward. If R is a binary relation on Y , then f •R is the relation on X that contains the pairs (x , x ′) with
(f .x , f .x ′) ∈ R. If ϕ is a property on Y , i.e., a subset of Y ω, then f •ϕ � {xs ∈ X ω | f ◦ xs ∈ ϕ} is the induced
property on X .



UNITY and Büchi automata 195

4.2. U*-specifications

A U*-specification extends a U-specification with a temporal property ϕ. It is defined to be a tuple K �
(X ,N ,W, ϕ) such that (X ,N ,W) is a U-specification and ϕ is a property on X . The associated specification is
σ.K � (X ,N , ψ) where ψ � (

⋂
R∈W ��[[R ]]+) ∧ ϕ.

If K is a specification of some kind, its constituents are denoted by XK , NK , WK , etc. In the remainder of
this section, variables K and L range over arbitrary U*-specifications, and A, C , E range over U-specifications.

Given aU-specificationA and a property ϕ on the state spaceXA ofA, theU*-specificationA∗ϕ is defined by
A ∗ ϕ � (XA,NA,WA, ϕ). Of course, every U*-specification K can be written K � A ∗ ϕ with a U-specification
A in a unique way. The set of runs of A ∗ ϕ is the conjunction run.A ∧ ϕ. It follows that A ∗ ϕ |� ψ is equivalent
to A |� (ϕ ⇒ψ). A U*-specification is called atomic iff ϕ is an atomic property, i.e., of the form [[D ]] for some
predicate D . The notation A ∗ ϕ is convenient because the aim is to implement ϕ, i.e., to replace ϕ by an atomic
property.

If f : XL → XK is a function between the state spaces of specifications L and K , it is convenient to speak of
a function f : L → K by abuse of notation. A function f : L → K is defined to be a refinement function iff it
satisfies

∀ ys ∈ run.L : f ◦ ys ∈ run.K ,

and to be a corefinement function iff

∀ xs ∈ run.K : ∃ ys ∈ run.L : f ◦ ys � xs .

It is defined to be a birefinement function iff it is both a refinement and a corefinement function.

Remark. If f is a refinement mapping as defined by Abadi and Lamport [AL91], it is a refinement function. The
converse implication does not hold.

The concept of birefinement function is not directly related tobisimulationbetween transition systems, because
bisimulation works in branching temporal logic and compares computation trees, while birefinement functions
work in linear temporal logic and compares runs. ♣

The specialization froma temporal propertyϕ to an initialization [[D ]] is formalized in the followingdefinition.
An implementation of a U*-specification A ∗ ϕ is defined to be a birefinement function f : C ∗ [[D ]] → A ∗ ϕ
where C is a U-specification and D is a predicate on XC .

Note that C ∗ [[D ]] is equivalent to C if D � true. The term implementation must be understood in a strict
sense. The fact that f is a refinement function means that every run of C ∗ [[D ]] induces a run of A ∗ ϕ. That it is
a corefinement function, adds to this that every run of A ∗ ϕ is represented. In other words, all non-deterministic
choices of A ∗ ϕ are still possible for the implementation.

For every U-specification A and every LTL property ϕ, the U*-specification A ∗ ϕ has an implementation.
The proof of this fact is postponed to Theorem 21 in Sect. 5 below. At this point, we can show its relevance. It
enables us to use UNITY logic to prove validity of ϕ, by means of the following result.

Theorem 8 Let f : C ∗ [[D ]] → A ∗ (¬ϕ) be an implementation. Then A |� ϕ holds if and only if D �→C false.

Proof A |� ϕ means that all runs of A satisfy ϕ. In other words, it means that A has no runs that satisfy ¬ϕ, or
equivalently, that the U*-specification A ∗ (¬ϕ) has no runs. As f : C ∗ [[D ]] → A ∗ (¬ϕ) is an implementation,
this is equivalent to C ∗ [[D ]] having no runs. In U-specification C , every suffix of a run is a run. Therefore,
C ∗ [[D ]] has no runs if and only if D leads-toC false. By plain completeness (Theorem 3), this is equivalent to
D �→C false. �

Remark. This result means that, for the claim A |� ϕ, an implementation gives an initialized U-specification
C ∗ [[D ]] such that the validity of the claim can either be proved with UNITY logic applied to C , or refuted by
exhibiting a run of C ∗ [[D ]]. Perhaps such a run can be found by model checking. ♣

4.3. An example

Let C be a U-specification on a state space Y . Let F , G , H , be predicates on Y . Consider the property

ϕ � �[[H ]] ∧ �([[F ]] ∨ �[[G ]]) .
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When applied to ϕ, the construction of an implementation f : E ∗ [[D ]] → C ∗ ϕ in Sect. 5.3 uses three
auxiliary Boolean variables: b0 for �[[H ]], and b1 for �[[G ]], and b2 for the outer �. So the new state space is the
Cartesian product Z � Y × B

3, and f : Z → Y is the natural projection. The step relation of E is given by

((y, b0, b1, b2), (y ′, b ′
0, b

′
1, b

′
2)) ∈ NE

≡ (y, y ′) ∈ NC ∧ (b0 ⇒ b ′
0 ∨ H .y ′)

∧ (b1 ∧ G .y ⇒ b ′
1 ∧ G .y ′)

∧ (b2 ∧ (F .y ∨ b1 ∧ G .y) ⇒ b ′
2 ∧ (F .y ′ ∨ b ′

1 ∧ G .y ′)) .

Note that primes refer to the next state. The initial predicate D is

D � (b0 ∨ H .y) ∧ b2 ∧ (F .y ∨ b1 ∧ G .y) .

The fairness setWE consists of the relations inherited fromWC , augmented with ρ.(¬b0) to make ¬b0 recurring.
This means that

WE � {ρ.(¬b0)} ∨ {f •R | R ∈ WC } .
The reader is invited to try and prove that f : E ∗ [[D ]] → C ∗ ϕ is birefinement function, i.e. maps runs of

E ∗ [[D ]] to runs of C ∗ ϕ and that every run of C ∗ ϕ is obtained in this way.

4.4. Solving the halting problem!?

Let A � (X ,N ,W) be a total U-specification. Let P be a stable predicate on the state space X . One can regard
reachingP as termination. In other words, the Halting Problem is a special case of the problem to decide whether
predicate P is reached or not.

To solve this problem, specificationA is extended with a Boolean variablem to a total U-specificationC . The
Booleanm is amessage thatP will never be reached. The predicatem ismade stable inC and,when it is false, it can
become true non-deterministically. This is formalized in the step relation N1 given by (m,m ′) ∈ N1 ≡ (m⇒m ′).
The full U-specification becomes C � (Y ,N ′,W) where Y � X × B and ((x ,m), (x ′,m ′)) ∈ N ′ ≡ (x , x ′) ∈
N ∧ (m,m ′) ∈ N1, while the fairness setW is inherited fromW . The first component of a run of C is just a run
of A.

The idea that m determines non-termination is expressed in the LTL formula

ϕ � �[[P ∨ m ]] ∧ �([[m ]]⇒ �[[¬P ]]) .

A run of C satisfies ϕ if and only if it always reaches a state where P ∨ m holds, and if m ever holds, then
henceforth P is false. In other words, any run in ϕ halts after finitely many steps or sends a messagem indicating
that it will never halt.

This property ϕ is a case of the LTL formula of Sect. 4.3 with H � (P ∨ m), F � ¬m, and G � ¬P . One
can therefore use its implementation f : E ∗ [[D ]] → C ∗ ϕ. It is easy to verify that, for every x ∈ X , there exists
z ∈ D with f .z � (x , false).

The runs of E that start in D induce runs of C that satisfy ϕ, and all runs of C that satisfy ϕ are represented
in this way. Assume that every state inD is the starting point of a run of E . Then, if one wants to know whether a
computation ofA with initial state x ∈ X terminates, one can submit it to the U*-specification E ∗ [[D ]]. Choose
y ∈ D with f .y � (x , false), extend y to a run of E , execute this run until P ∨ m holds. If P , the computation
of A has terminated. If m, it will never terminate. This shows that U*-specification E ∗ [[D ]] solves the Halting
Problem for A.

IfA is undecidable, this is a contradiction. Therefore, the initial state y ∈ D that was used cannot be extended
to a run of E . This implies that E is not machine closed. By Proposition 2, it follows that U-specification E is
not total. As U-specification C is total, it follows that the nontotality was introduced by the construction of the
implementation. Indeed, the constructions of Sect. 5.6 often give nontotal impartiality relations.
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4.5. Linear temporal logic, LTL properties and formulas

Linear temporal logic, LTL, is defined as follows. The unary temporal operators � and � are special cases of the
binary operators U (until) and R (release) given by

xs ∈ ϕ U ψ ≡ ∃ k : (xs | k ) ∈ ψ ∧ (∀ i : i < k ⇒ (xs | i ) ∈ ϕ) ,
xs ∈ ϕ R ψ ≡ ∀ k : (xs | k ) ∈ ψ ∨ (∃ i : i < k ∧ (xs | i ) ∈ ϕ) .

Indeed, �ϕ � � U ϕ and �ϕ � ⊥R ϕ. The operators U and R are dual in the sense that ϕ Rψ � ¬(¬ϕ U ¬ψ).
If ϕ and ψ are good properties, then ϕ U ψ and ϕ R ψ are good.

The set of LTL properties on a set X is defined inductively as the least set 	 of properties on X such that

[[P ]] ∈ 	 for every predicate P on X ,
ϕ ∧ ψ , ϕ ∨ ψ , ϕ U ψ , ϕ R ψ ∈ 	 for every pair ϕ, ψ ∈ 	.

The properties of the form [[P ]] are called atomic properties.
All properties in 	 are good. It holds that ⊥ � [[ false ]] ∈ 	 and � � [[ true ]] ∈ 	. For every ϕ ∈ 	, we have

¬ϕ ∈ 	. This is proved by induction, by pushing the negation inward and finally using ¬ [[P ]] � [[¬P ]]. For
every ϕ ∈ 	, it holds that �ϕ � ⊥ R ϕ ∈ 	, and �ϕ � � U ϕ ∈ 	.

Remark. Traditionally (e.g. [MP83]), LTL has a next operator X, such that Xϕ means that ϕ holds after one step.
As X is sensitive to stuttering, and insensitivity to stuttering is an essential feature of UNITY, this operator is not
treated here. ♣

The LTL properties are tied to the state space X via the atomic properties. LTL formulas are introduced to
abstract from the state space. They are obtained by replacing the atomic properties by symbols (i ) with i ∈ N.
The set of LTL formulas is thus defined syntactically as the least set 
 of formulas such that

(i ) ∈ 
 for every i ∈ N,
α ∧ β, α ∨ β, α U β, α R β ∈ 
 for every pair α, β ∈ 
.

To interpret an LTL formula α, a state space is needed where the symbols (i ) represent boolean variables and
the symbols ∧, ∨, U, R have meaning as logical and temporal operators. The state space used here is the set of
sets of natural numbers Z � P(N). For any set (state space) X and any function f : X → Z , the interpretation
of α on X via f is defined recursively as the property on X given by

[[ (i ) ]]f � [[ {x ∈ X | i ∈ f .x } ]] ,
[[ β ⊕ γ ]]f � [[ β ]]f ⊕ [[ γ ]]f ,

for all i , β, γ , and all operator symbols ⊕ ∈ {∧,∨,R,U}. The index f is omitted if f is the identity function
Z → Z .

Lemma 9 (a) For every LTL formula α and every function f : X → Z , it holds that [[ α ]]f is an LTL property on
X with [[ α ]]f � f •[[ α ]].

(b) For every LTL property ϕ on X , there is an LTL formula α and a function f : X → Z with ϕ � f •[[ α ]].

Proof (a) This is straightforward by induction on the structure of α.
(b) One first proves that every LTL property ϕ has a finite expression by means of the atomic building blocks

and the operators ∧, ∨, R, and U. Write each atomic building block as [[Pi ]] for some predicate Pi on X , with
i ∈ N. Let α be the LTL formula obtained by replacing each [[Pi ]] by (i ). Let I be the set of indices i for which
Pi has been defined. Let function f : X → Z be defined by

f .x � {i ∈ I | x ∈ Pi } .
It follows that [[ (i ) ]]f � [[Pi ]] for all i ∈ I . As Pi only occurs in ϕ when i ∈ I , it follows that ϕ � [[ α ]]f . �

Remark. One represents the properties � and ⊥ by [[X ]] and [[ ∅ ]], respectively.
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5. Constructing an implementation of an LTL property

As announced in Sect. 4.2, for every LTL property on a U-specification A, the U*-specification A ∗ ϕ has an
implementation. The present section is devoted to the proof of this and its contruction.

This section contains more manipulation of subsets and boolean functions than elsewhere. Subsets are identi-
fied with boolean functions, and we write P .x or P (x ) or x ∈ P , all with the same meaning, for predicate (subset)
P and state x .

For the construction, it is useful to regard the set Z � P(N) of Sect. 4.5 as the state space of a trivial U-
specification A0 � (Z ,Z 2,∅). The step relation of A0 is Z 2, which means that every step is possible. There are no
fairness requirements. Therefore, every state sequence is a run of A0.

Consider a U*-specification A ∗ ϕ where ϕ is an LTL-property on the state space X of A. The starting point
of the construction is Lemma 9(b) that yields an LTL formula α and a function f : X → Z such that ϕ � f •[[ α ]].
The subsequent construction of an implementation of A ∗ ϕ is split into two parts:

1. Construct an implementation g : C ∗ [[D0 ]] → A0 ∗ [[ α ]].
2. Lift the implementation g to an implementation E ∗ [[D ]] → A ∗ ϕ.

Part 1 is the difficult part, treated in the Subsects. 5.1 up to 5.7. Part 2 is treated in Sect. 5.8.

5.1. The construction of an automaton for an LTL formula

For every LTL formula there exists a Büchi automaton that accepts precisely those runs that satisfy it, as was
shown in the mid eighties [Hol04, p. 141]. As observed in Sect. 2.6, a generalized Büchi automaton is the same
as an initialized B-specification on a finite state space. For the construction of such an automaton, one can refer
to Gerth et al. [GPVW95]. This construction has been verified mechanically in Isabelle/HOL by Schimpf et al.
[SMS09]. To apply this construction in Theorem 8, however, one would have to translate this automaton into a
U-specification.

Therefore, in this section a construction is proposed that serves the purpose. The construction gives a B-
specification, because this is simpler than a U-specification and is easily translated into a U-specification, see
Sect. 2.6. The construction has a complete proof that has been mechanically verified in PVS.

The construction was conceived completely independent of the classical construction, indeed not at all think-
ingof automata.Thedesignof the construction is focussedon theproof, not on the size of the resulting automaton.
The recursive scheme of the construction differs completely from the one used by Gerth et al. [GPVW95]. It is
therefore unlikely that knowledge of this classical construction would help to understand the present one.

For easy translation between the B-specification for an LTL formula and the B-specifications for its subformu-
las, all B-specifications in this section are constructed in a single state space, where countably many fresh boolean
variables are available. For lack of better names, the kinds of specifications constructed in this state space are
called skeletons, automata, houses, and star-houses.

The state space and the skeletons and automata in it are introduced in Sect. 5.2. Section 5.3 gives the recursive
construction of the automaton for any LTL formula. The correctness proof of the construction begins with
syntactic matters in Sect. 5.4, followed by semantic matters in Sect. 5.5. In Sect. 5.6, the specific constructions for
release (R) and until (U) are treated. Section 5.7 concludes the correctness proof for the automaton construction.

5.2. Skeletons and automata

As explained in Sect. 4.5, LTL formulas are interpreted in the state space Z � P(N), that is spanned by the
propositional variables. Another sequence of boolean variables are added to make space for the B-specifications
to be constructed. The state space used is thus the Cartesian productW � P(N)× P(N). The elements ofW are
written as pairs (y, z ). The auxiliary variables Bn and the propositional variables Qn are the boolean functions
on W given by Bn (y, z ) � (n ∈ y) and Qn (y, z ) � (n ∈ z ) for (y, z ) ∈ W , respectively. The natural projections
on the first and second component are denoted p1 : W → P(N) and p2 : W → Z .

The first step in the construction of automata is formed by the skeletons, which are defined as follows. A
skeleton is a tuple H � (N ,V,F ) where N is a reflexive relation on the state space W , and V is a finite set of
predicates onW , and F is a finite set of natural numbers. Relation N is called the step relation, V is called the set
of fairness sets, and F is called the frame. This frame will be used later to indicate which auxiliary variables are
used.
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An automaton is a pair (H ,D) where H is a skeleton and D is a predicate on W , which may be used as the
initial predicate.

A skeleton H � (N ,V,F ) is defined to be extended by skeleton H ′ � (N ′,V ′,F ′), notation H � H ′, iff
N ⊇ N ′ and V ⊆ V ′ and F ⊆ F ′. It is clear that relation � is a partial order. The smallest skeleton with
respect to this order is the trivial skeleton Triv, given by Triv � (W 2,∅,∅). This means that in Triv every step is
allowed and all sequences are runs. The next construction operator for skeletons is joining. The join of skeletons
H � (N ,V,F ) and H ′ � (N ′,V ′,G) is defined by H �H ′ � (N ∩N ′,V ∪ V ′,F ∪G). Indeed, relation � makes
the set of the skeletons into a lattice, and � is the join of this lattice.

5.3. The construction

First, the temporal operators R (release) and U (until) are treated. This is done by defining functions that, given
a skeleton H , predicates P and Q on W , and starting point m ∈ N, return an automaton for the properties
[[P ]]R [[Q ]] and [[P ]]U [[Q ]], extending H . The parameter m is a counter used for the creation and numbering
of fresh boolean variables. The functions are defined as follows. Assume H � (N ,V,F ). Both functions use an
auxiliary variable Bm . They are defined by

Release(H ,P ,Q,m) � ((N ∩ N ′,V,F ∪ {m}),Bm ∧ Q)
where, for x , y ∈ W ,
(x , y) ∈ N ′ ≡ (Bm .x ∧ Q .x ∧ ¬P .x ⇒ Bm .y ∧ Q .y) .

Until(H ,P ,Q,m) � ((N ∩ N ′,V ∪ {¬Bm},F ∪ {m}), (Bm ∧ P ) ∨ Q)
where, for x , y ∈ W ,
(x , y) ∈ N ′ ≡ (Bm .x ∧ P .x ⇒ (Bm .y ∧ P .y) ∨ Q .y) .

In either case, the step relation is restricted, the frame is extended with m, and the initial condition is expressed
in terms of Bm , P , and Q . In the case of Until, a fairness set is added.

The automaton for an LTL formula α is constructed by a functionAuto, defined by recursion on the structure
of α. This function has two arguments, the LTL formula α, and a natural number m that indicates the leftmost
point of the frame for the construction. This m plays the same role as above. The function returns a triple. The
first two components form an automaton, while the third component is a natural number, the righthand limit of
the frame used.

If the LTL formula α is a leaf (i ), the definition refers to the propositional variable Qi . It is

Auto((i ),m) � (Triv,Qi ,m) .

If α is the result of a binary operator ⊕, function Auto is applied to the operands and the results are joined. If
the operator is ∧ or ∨, it is directly applied to the predicates generated by the two branches. For the operators R
and U, the functions Release and Until are applied.

Auto(β ⊕ γ,m) �
(H1,D1, p) :� Auto(β,m) ;
(H2,D2, q) :� Auto(γ, p) ;
H3 :� H1 � H2 ;
if ⊕ �∧ then return (H3,D1 ∧ D2, q)
elsif ⊕ �∨ then return (H3,D1 ∨ D2, q)
elsif ⊕ � R then (H4,P ) :� Release(H3,D1,D2, q) ;

return (H4,P , q + 1)
else {⊕ � U} (H4,P ) :� Until(H3,D1,D2, q) ;

return (H4,P , q + 1) .
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m p q q + 1A picture has been drawn to suggest the structure of the
construction, and the reason for the nomenclature.

Remark. As � and � are represented via �ϕ � ⊥R ϕ and �ϕ � �U ϕ, one may introduce the convention
P0 � ∅, P1 � X . The symbols (0) and (1) then get the reserved meanings ⊥ and �, and the base case of Auto is
redefined as Auto((i ),m) � (Triv,Q ′

i ,m) with Q ′
i � (i � 0? ∅ : i � 1?W : Qi ). ♣
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5.4. Houses

The proof of correctness of the construction has two main aspects: the syntactic question of non-interference of
the constructions for subformulas, and the semantic task of implementing a property. First non-interference. The
frames of the skeletons are used to ensure that the constructions for the subformulas do not interfere.

For any finite set F ⊆ N, the subset j .F ofW is defined by

j .F � {(y, z ) ∈ W | y ⊆ F } .
Note that in j .∅ the auxiliary variables are all false, but the propositional variables are still available.

The natural projection function πF : W → W is defined by πF (y, z ) � (y∩F , z ). Note that πF ◦πG � πF∩G
for subsets F and G of N.

A skeleton H � (N ,V,F ) is interpreted by its associated specification σ.H � (W ,N , ϕ1 ∧ ϕ2) where
ϕ1 � �[[ j .F ]] and ϕ2 � ⋂

V∈V ��[[V ]]. In words, runs are required to remain in the subset j .F and to visit every
V ∈ V infinitely often. It is convenient to note that ϕ1(ys) ≡ (ys � πF ◦ ys). For simplicity of notation, we define
run.H � run.(σ.H ); a run of H is defined to be a run of σ.H .

Remark. As the finite subset j .F is an invariant of the specification, it may be regarded as a proxy for the state
space. ♣
Lemma 10 Let H be a skeleton and ϕ a property with run.H ⊆ ϕ. Then run.H ⊆ �ϕ.

Proof Let xs ∈ run.H and k ∈ N. One needs to prove (xs | k ) ∈ ϕ. This holds, because (xs | k ) ∈ run.H in the
absence of initialization. �

A predicate P on W is defined to live on F , notation P � F , iff P � P ◦ πF . In the same way, a binary
relation R is said to live on F , notation R � F , iff R � π•

FR, and a property ϕ is said to live on F , notation
ϕ � F , iff ϕ � π•

Fϕ (see Sect. 4.1).
A skeleton (N ,V,F ) is called a house iff all its components live on F , i.e., iff it satisfies

(5) N � F ∧ (∀ V ∈ V : V � F ) .

An automaton (H ,D) is called proper iff H is a house and D � F for the frame F of H .
The trivial skeleton Triv is a house. It is straightforward to verify the following result.

Lemma 11 Let H � (N ,V,F ) and H ′ � (N ′,V ′,G) be houses. Then the join H �H ′ is also a house. An infinite
sequence ws in W is a run of H � H ′ if and only if πF ◦ ws is a run of H and πG ◦ ws is a run of H ′ and
ws ∈ �[[ j .(F ∪ G) ]].

Especially important is the join of houses with disjoint frames. Indeed, the next result shows that it is a kind
of Cartesian product.

Lemma 12 Let H � (N ,V,F ) and H ′ � (N ′,V ′,G) be houses such that the frames F and G are disjoint. Let
us ∈ run.H and vs ∈ run.H ′ have p2 ◦ us � p2 ◦ vs. Then there is a unique ws ∈ run.(H � H ′) with πF ◦ ws � us
and πG ◦ ws � vs.

ProofOne first verifies that, if u ∈ j .F and v ∈ j .G have p2.u � p2.v , there is a unique elementw ∈ j (F ∪G) with
πF .w � u and πG .w � v . It follows that there is a unique sequence ws of states in j (F ∪ G) with πF ◦ ws � us
and πG ◦ ws � vs. This is a run of H � H ′ because of Lemma 11. �

5.5. Star-houses

The semantics of the construction is analyzed by considering how properties on space W are treated.
A star-house is a pair H ∗ ϕ where H is a house and ϕ is a property on W that lives on the frame of H . If

H � (N ,V,F ), the semantics of H ∗ ϕ is given by the specification σ (H ∗ ϕ) � (W ,N , ϕ ∧ ϕ1 ∧ ϕ2) where
ϕ1 � �[[ j .F ]] and ϕ2 � ⋂

V∈V ��[[V ]], as before. It follows that

run(H ∗ ϕ) � ϕ ∩ run.H .
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The extension relation for skeletons is extended to star-houses in the following way.
Star-house H ∗ ϕ is defined to be extended by H ′ ∗ ψ , notation H ∗ ϕ � H ′ ∗ ψ iff

(a) H � H ′ ,
(b) ∀ ys ∈ run(H ′ ∗ ψ) : πF ◦ ys ∈ run(H ∗ ϕ) ,
(c) ∀ xs ∈ run.H : ∃ ys ∈ run.H ′ : πF ◦ ys � xs ∧ ys ∈ �(ϕ⇒ψ) ,

where F is the frame of house H , and where, as usual, ϕ⇒ψ is defined as ¬ϕ ∨ ψ . In condition (c), the operator
� is needed, because it is needed in Formula (6) below.

The relevance of relation � is shown in the following result.

Lemma 13 (a) Assume that H ∗ ϕ � H ′ ∗ ψ and that F is the frame of H . Then function πF is a birefinement
σ (H ′ ∗ ψ) → σ (H ∗ ϕ).
(b) Relation � between star-houses is reflexive and transitive.

Proof (a) The proof is straightforward, but rather tedious.
(b) Reflexivity is easy. Transitivity is obvious for condition (a), and easy for (b). Condition (c) is proved as

follows. Assume

(H1 ∗ ϕ) � (H2 ∗ ψ) � (H ∗ χ ) .

Let F and G be the frames of H1 and H2, respectively. Let xs be a run of H1. By the first extension, H2 has a run
ys such that πF ◦ ys � πF ◦ xs and ys ∈ �(¬ϕ ∨ ψ). The second extension implies that H has a run zs such that
πG ◦ zs � πG ◦ys and zs ∈ �(¬ψ ∨ χ ). As F ⊆ G , it holds that πF ◦ zs � πF ◦ys � πF ◦xs. It therefore suffices
to prove that zs ∈ �(¬ϕ ∨ χ ).

Let k ∈ N. Then (ys | k ) ∈ ¬ϕ ∨ ψ and (zs | k ) ∈ ¬ψ ∨ χ . As F ⊆ G , both ϕ and ψ live onG , i.e., ϕ � π•
Gϕ

andψ � π•
Gψ . It follows thatπG ◦(ys | k ) ∈ ¬ϕ ∨ ψ . AsπG ◦zs � πG ◦ys, it follows thatπG ◦(zs | k ) ∈ ¬ϕ ∨ ψ ,

and hence that (zs | k ) ∈ ¬ϕ ∨ ψ . As (zs | k ) ∈ ¬ψ ∨ χ , this implies (zs | k ) ∈ ¬ϕ ∨ χ , as required. �

The join of star-houses is used for the treatment of the binary temporal operators ∧, ∨, R, U. A binary
temporal operator ⊕ is defined to be monotonic iff, for all properties ϕ1, ϕ2, ψ1, ψ2 on W , one has the inclusion
of properties

(6) (�(ϕ1 ⇒ ψ1) ∧ �(ϕ2 ⇒ ψ2)) ⊆ �(ϕ1 ⊕ ϕ2 ⇒ ψ1 ⊕ ψ2) .

A binary temporal operator ⊕ is defined to preserve frames iff, for every finite set F and all properties ϕ and
ψ , it holds that

ϕ � F ∧ ψ � F ⇒ (ϕ ⊕ ψ) � F .

The binary temporal operators∧,∨,U,R are all monotonic and preserve frames. This is used via the following
result.

Lemma 14 Let H1 and H2 be houses with disjoint frames. Let ϕ1, ϕ2, ψ1, ψ2 be properties such that Triv ∗ ϕ1,
Triv ∗ ϕ2, H1 ∗ ψ1, H2 ∗ ψ2 are star-houses. Assume Triv ∗ ϕ1 � H1 ∗ ψ1 and Triv ∗ ϕ2 � H2 ∗ ψ2. Let ⊕ be a
monotonic binary operator that preserves frames. Then Triv∗ (ϕ1 ⊕ ϕ2) � (H1 �H2)∗ (ψ1 ⊕ ψ2) and these objects
are star-houses.

The proof of this result uses primarily Lemma 12. At a critical point, it needs Lemma 10. It is mainly a
cumbersome verification.

5.6. Proofs for the constructions for release and until

This section contains and proves the results for the functionsRelease andUntil, defined in Sect. 5.3. In either case,
it concerns the automaton for the property obtained when the operator R or U is applied to atomic properties.
Lemma 15 LetH � (N ,V,F ) be a house. LetP andQ be predicates onW that live on F . Consider the property
ϕ � [[P ]]R [[Q ]]. Let m �∈ F be chosen. Assume that (H ′,D) � Release(H ,P ,Q,m). Then (H ′,D) is a proper
automaton and H ∗ ϕ and H ′ ∗ [[D ]] are star-houses with H ∗ ϕ � H ′ ∗ [[D ]].

Proof Recall that

xs ∈ ϕ ≡ ∀ k : Q(xsk ) ∨ (∃ i : i < k ∧ P (xsi )) .
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As the predicates P andQ live on F , the property ϕ also lives on F . Therefore (H , ϕ) is a star-house. It is easy to
verify thatH ′ is a house. PredicateD � (Bm ∧ Q) lives on F ∪{m}, which is the frame ofH ′. ThereforeH ′ ∗ [[D ]]
is a star-house. It is clear that H � H ′, i.e., condition (a).

For the proof of condition (b), consider a run ys of H ′ ∗ [[D ]]. Then ys is a run of H ′ and hence of H . It
satisfies Bm (ys0) ∧ Q(ys0) because ys ∈ [[D ]]. As it is an execution of H ′, it satisfies, for all k ,

Bm (ysk ) ∧ Q(ysk ) ∧ ¬P (ysk ) ⇒ Bm (ysk+1) ∧ Q(ysk+1) .

By induction, it follows that

∀ k : Bm (ysk ) ∧ Q(ysk ) ∨ (∃ i : i < k ∧ P (ysi )) .

This proves that ys ∈ ϕ.
For part (c), consider a run xs ofH . A run ys ofH ′ is constructed from xs bymodifying the bits of the auxiliary

variableBm . Let ys be the infinite sequence of states within j .(F∪{m}) withπF ◦ys � xs andBm (ysn ) � ϕ(xs | n)
for all n ∈ N. It is straightforward to prove that ys is an execution of H ′. As xs is a run of H , it follows that ys is
a run of H ′. By construction it satisfies ys ∈ �(¬ϕ ∨ [[D ]]). This proves that H ∗ ϕ � H ′ ∗ [[D ]]. �

Lemma 16 LetH � (N ,V,F ) be a house. LetP andQ be predicates onW that live on F . Consider the property
ϕ � [[P ]]U [[Q ]]. Let m �∈ F be chosen. Assume that (H ′,D) � Until(H ,P ,Q,m). Then (H ′,D) is a proper
automaton and H ∗ ϕ and H ′ ∗ [[D ]] are star-houses with H ∗ ϕ � H ′ ∗ [[D ]].

Proof Recall that

xs ∈ ϕ ≡ ∃ k : Q(xsk ) ∧ (∀ i : i < k ⇒ P (xsi )) .

Again, it is clear that ϕ lives on F , thatH ∗ϕ is a star-house, thatH ′ is a house withH � H ′, thatD is a predicate
that lives on F ∪ {m}, and that H ′ ∗ [[D ]] is a star-house.

Let ys be a run ofH ′ ∗ [[D ]]. Then ys is a run ofH ′, and hence ofH . The run ys starts inD � (Bm ∧ P ) ∨ Q .
By induction over k , one can prove that

∀ n : P (ysn ) ∧ Bm (ysn ) ∨ (∃ i : i ≤ n ∧ Q(ysi )) .

As ys ∈ ��[[¬Bm ]] (see Sect. 2.6), there is an index n with ¬Bm (ysn ). It follows that ysk ∈ Q for some index k .
Taking the smallest index k , one gets ys ∈ ϕ.

Conversely, let xs be a run of H . The corresponding run ys of H ′ is constructed with πF ◦ ys � xs with
Bm (ysn ) � ¬Q(xsn ) ∧ ϕ(xs | n) for all n ∈ N. One then verifies that ys is a run of H ′ that satisfies ys ∈ �(¬ϕ ∨
[[D ]]). This concludes the proof that H ∗ ϕ � H ′ ∗ [[D ]]. �

5.7. The automaton proved

Let the weight w .α of an LTL formula α be defined as the number of occurrences of R and U in the syntax tree
of α. Write I (m, r ) � {i ∈ N | m ≤ i < r}.
Theorem 17 Let α be an LTL formula. Assume (H ,D, r ) � Auto(α,m). Then (H ,D) is a proper automaton
with Triv ∗ [[ α ]] � H ∗ [[D ]]. The frame of H is I (m, r ) and r � m + w .α.

Proof The proof is by induction over the structure of α. If α is a leaf, the assertion is trivial. Therefore, assume
that α � β ⊕ γ for one of the binary temporal operators ⊕. Use the variables of the algorithm of Sect. 5.3. By
induction it holds thatm ≤ p ≤ q , that H1 and H2 have the disjoint frames I (m, p) and I (p, q), respectively, and
thatTriv∗[[ β ]] � H1∗[[D1 ]] andTriv∗[[ γ ]] � H2∗[[D2 ]]. Lemma 14 implies thatTriv∗[[ α ]] � H3∗([[D1 ]]⊕ [[D2 ]]),
andH3 has frame I (m, q). If⊕ is∧ or∨, one can conclude with the observations that [[D1 ]]⊕ [[D2 ]] � [[D1 ⊕ D2 ]]
and w .α � w .β + w .γ .

Otherwise ⊕ is one of the operators R or U and w .α � 1 + w .β + w .γ . Then one applies Lemma 15 or 16 to
obtain an automaton (H4,P ) with frame I (m, q +1) and the extension relationH3 ∗ ([[D1 ]]⊕ [[D2 ]]) � H4 ∗ [[P ]].
One concludes with Lemma 13 (transitivity of �). �
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5.8. Implementing a U*-specification

The first thing to be done is to translate the automaton constructed in the Theorem into a U-specification. Recall
that A0 is the trivial U-specification with state space Z � P(N), which was introduced in the beginning of this
section.

Corollary 18 Let α be an LTL formula with weight w .α � r . Then there is a U-specification C with state space
X � B

r × Z , and a predicate D on X , such that p2 : C ∗ [[D ]] → A0 ∗ [[ α ]] is an implementation, where p2 is the
projection on the second component.

Proof Let (H ,D ′, r ) � Auto(α, 0). Then the frame of H is I (0, r ). By Lemma 13(a), the function π∅ is a birefine-
ment H ∗ [[D ′ ]] → Triv ∗ [[ α ]]. The automaton (H ,D ′) is translated in a U-specification C on the state space X
by means of the injection f : X → W given by f .(x , z ) � (x ′, z ) where x ′(i ) � (i < r ∧ x (i )), and the projection
g : Z → X given by g(y, z ) � (y ′, z ) where y ′ � (y | I (0, r )). In particular, one takesD � D ′ ◦ f . Then f induces
a birefinement from C ∗ [[D ]] to H ∗ [[D ′ ]]. On the other hand, one constructs in a natural way a birefinement
from Triv ∗ [[ α ]] to A0 ∗ [[ α ]]. The composition of the three birefinements is the birefinement p2. �

Part 3 of the construction, the lifting of an implementation g : C ∗ [[D0 ]] → A0 ∗ [[ α ]] to an implementation
E ∗ [[D ]] → A ∗ ϕ is done by superposition. Formally, this is a fiber product construction.

In general, the definition is as follows. IfX0,X1, andX2 are sets with functions fi : Xi → X0, the fiber product
of X1 and X2 over f1 and f2 is defined as the set X � {(x1, x2) ∈ X1 × X2 | f1.x1 � f2.x2}.

Let Ci � (Xi ,Ni ,Wi ), with i � 1, 2, be U-specifications on X1 and X2, respectively. The fiber product of C1
and C2 over f1 and f2 is defined as the U-specification E � (X ,N ,W) on the fiber product X given by

N � {(y, z ) ∈ X 2 | (y1, z1) ∈ N1 ∧ (y2, z2) ∈ N2} ,
W � {N ∧ p•

1R | R ∈ W1} ∪ {N ∧ p•
2R | R ∈ W2} ,

where pi : X → Xi for i � 1, 2 are the canonical projection functions. Note that f1 ◦ p1 � f2 ◦ p2 holds by
construction. One can say that the conjoined state space X is the consistent part of the Cartesian product of the
component spaces, that the steps are done in parallel in both components, and that the fairness of the components
is retained. It is easy to prove:

Lemma 19 (a) The functions pi : E → Ci (i � 1 or 2) are refinement functions.
(b) If xs and ys are runs of C1 and C2 with f1 ◦ xs � f2 ◦ ys, there is a unique run zs of E with p1 ◦ zs � xs and
p2 ◦ zs � ys.

Now, part 3 of the construction is the special case, captured in the following diagram and proposition.

�

�

A ∗ ϕ

E ∗ [[D ]]

A0 ∗ [[ α ]]

C ∗ [[D0 ]]

p1 g

f

p2

� �

Proposition 20 LetA∗ϕ be a U*-specification with state spaceX1 and LTL property ϕ. Let α be an LTL-formula
and f : X1 → Z a function such that ϕ � f •[[ α ]]. Let g : C ∗ [[Do ]] → A0 ∗ [[ α ]] be an implementation. Let E be
the fiber product ofA and C over f and g , with state spaceX . PutD � p−1

2 D0 ⊆ X . Then p1 : E ∗ [[D ]] → A ∗ϕ
is an implementation.

Proof The proof obligation is that p1 : E ∗ [[D ]] → A ∗ ϕ is a birefinement function.
Let ys be a run ofE ∗ [[D ]]. By Lemma 19(a), the sequences p1 ◦ys and p2 ◦ys are runs ofA andC respectively.

As ys starts in D � p−1
2 D0, the sequence p2 ◦ ys is a run of C ∗ [[D0 ]]. As g : C ∗ [[D0 ]] → A0 ∗ [[ α ]] is an

implementation, it holds that g ◦p2 ◦ys ∈ [[ α ]]. This implies p1 ◦ys ∈ ϕ because of f ◦p1 � g ◦p2 and the equality
for ϕ. This proves that p1 : E ∗ [[D ]] → A ∗ ϕ is a refinement function.
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Let xs be a run ofA∗ϕ. AsA0 is the trivialU-specification, f ◦xs is a run ofA0. On the other hand, f ◦xs ∈ [[ α ]]
because xs ∈ ϕ. Therefore f ◦xs is a run ofA0 ∗ [[ α ]]. As g is an implementation ofA0 ∗ [[ α ]], the U*-specifcation
C ∗ [[D0 ]] has a run ys with g ◦ ys � f ◦ xs. By Lemma 19(b), there is a run zs of E with p1 ◦ zs � xs and
p2 ◦ zs � ys. It follows that zs starts in D . Therefore zs is a run of E ∗ [[D ]] that projects to xs. This proves that
p1 : E ∗ [[D ]] → A ∗ ϕ is a corefinement function. �

Corollary 18 and Proposition 20 together imply the final result:

Theorem 21 Let A be a U-specification on a state space X . Let ϕ be an LTL property on X . Then A ∗ ϕ has an
implementation E ∗ [[D ]] → A ∗ ϕ.

Remark. In the construction of Corollary 18, the state space X2 of C is a Cartesian product X2 � Y × Z and
g : X2 → Z is the projection onto the second factor. Therefore, the state space of the fiber product

X � {(x , (y, z )) ∈ X1 × (Y × Z ) | f .x � z }
is in a natural way isomorphic to the Cartesian product X × Y , viz. via the projection λ x , (y, z ) : (x , y). In this
way, the component Z is eliminated. It follows that one can give the U-specifcation E of the theorem the state
space X ×B

r where r is the number of operators R and U that occur in ϕ. This has been done in the example in
Sect. 4.3. ♣

6. Conclusions

It is striking how much smoother the UNITY theory becomes by postponing or omitting the initialization. Of
course, in almost all applications, one begins with the determination of the inductive invariants, which requires
the initialization as a starting point.

UNITY is a powerful and flexible formalism, especially if one allows the fairness relations to be nontotal. In
the completeness proof for L-specifications, the nontotal fairness relations only play an auxiliary role. They are,
however, essential for the construction of implementations of LTL formulas.

The algorithm to construct a Büchi automaton for an LTL formula in Sect. 5.3 is shorter and clearer than
Figure 1 of Gerth et al. [GPVW95], but it can make the state space bigger than necessary. The state space has
a clear relationship with the LTL formula: there is precisely one boolean variable for each temporal operator.
The termination of our algorithm is obvious, whereas Schimpf et al. [SMS09] need a page to discuss the proof of
termination of the algorithm of Gerth et al.

The construction of an implementation of an LTL property in Sect. 5 uses auxiliary variables. This may
remind the reader of the Completeness Theorem of Abadi and Lamport [AL91], which asserts that, under certain
conditions, every simulation between specifications can be factored over an extension with history variables
and prophecy variables followed by a refinement mapping. The three kinds of variables and their roles in the
constructions, however, are totally different.

Points for future research. In view of the example in Sect. 2.6, the difference between U-specifications and
B-specifications deserves further investigation. For Sect. 4, a useful application of Theorem 8 would be very
illuminating. When such applications are found, it will be useful to investigate LTL formulas that have imple-
mentations simpler than the ones constructed in Theorem 21. It should be possible to extend LTL and the results
of Sects. 4 and 5 with the infinitary operators for conjunction and disjunction

∧
and

∨
. It seems that, even after

this extension, the set of formulas that can be subjected to Theorem 8 is not yet exhausted, but natural candidates
are lacking.

Chandy, Dijkstra, and Sanders [CS95, DS97] extend UNITY logic with predicate transformers for ‘to-stable’
and ‘to-always’. While ‘to-always’ has a natural interpretation in LTL, ‘to-stable’ seems to require a more ex-
pressive form of temporal logic, e.g., as CTL. Once the operational semantics has been clarified, it should not be
too difficult to prove soundness of these predicate transformers. Their names are only justified, however, if their
completeness can be proved.

Would it be possible to implement parts of branching temporal logic (e.g. CTL) in UNITY? This is related to
the search for methods or rules to prove that a temporal property is invalid. Of course, a model checker may
produce a counterexample, but should we be content with this?
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