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Abstract
Many everyday decisions require an accurate perception of how much time has passed since a previous event. Although humans
estimate time intervals with a high degree of mean accuracy, the precision of estimations varies greatly between individuals. In
situations in which accurate timing is rewarded but responding too early is punished, the optimal amount of risk is directly
dependent on the precision of the timer. Previously, it was found that humans and rodents displayed near-optimal adjustment of
their mean response time based on their individual precision and the level of punishment. It is as of yet unknown whether these
strategies of optimality in interval timing are specific to the timing domain, or instead reflect an ability that generalizes to other
sensorimotor modalities of decision making. Here, we address this by combining a temporal reproduction experiment and a
distance estimation experiment with an identical reward scheme. We found that participants approached optimality in both tasks,
but generally underadjusted their responses in the face of high risk. As this individual adjustment was consistent over modalities,
these results can best be explained by assuming that the adjustment of behavior towards optimal performance is driven by a
modality independent mechanism.

Keywords Decisionmaking . Response timemodels

The last 27 Olympic finals of the 100-meter sprint for men
were won with an average difference of 87 milliseconds.
Therefore, an athlete waiting for the go signal to start a race
will aim to respond as fast as possible to get an early advan-
tage. Usually, the go signal is given after a variable but pre-
dictable amount of time has passed since “ready . . . set . . . .”
An athlete with an accurate representation of this time interval,
and who is able to reproduce it, could take the lead right at the
beginning of the race. However, the decision about when to
start moving is marked by both external and internal uncer-
tainty. Externally, some uncertainty exists about the duration
between “set . . .” and “go,” which will be somewhat predict-
able but can vary between races (i.e., due to a different referee,

or randomly generated starting signals). Internally, uncertainty
arises due to the noisiness of the athlete’s ability to estimate
time (Gibbon, Church, & Meck, 1984; Jazayeri & Shadlen,
2010;Maaß& van Rijn, 2018). Given this uncertainty, aiming
tomove exactly at the start signal may result in a false start. To
avoid the risk of disqualification, an optimal athlete might
therefore take his or her timing precision into account, and
prepare for a slightly later start.

When temporal precision is a significant source of noise,
probabilistic reasoning may be used to obtain optimal results.
This type of behavior adaptation can be observed in a paradigm
in which rewards to a response are only given when a certain
duration, referred to as the schedule, has passed since the pre-
vious response (Çavdaroğlu, Zeki, & Balcı, 2014; differential
reinforcement of low rates [DRL] paradigm). In this paradigm,
a too-early response resets the waiting period, resulting in a
sudden decrease of reward rate, but the reward rate also de-
creases with every time unit that the response is later than the
schedule. Typical results indicate that participants with noisier
response time distributions respond later compared with the
more precise timers. This is a signature of rational adaptation,
as their noisier response timeswouldmore often trigger a costly
reset of the waiting period if the aim of their response times
were closer to the target duration. Similar behavior can be
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observed in other tasks (see for a review Freestone & Church,
2016). For example, in a beat-the-clock task, participants are
rewarded for responding temporally as close to the schedule as
possible, but not later. This task also results in participants
aiming for a response before the target duration, with the un-
derestimation determined by a participant’s temporal noisiness
(Simen, Balcı, deSouza, Cohen, & Holmes, 2011).

A statistical decision-making theory of time estimation can
describe the timing strategy to arrive at an optimal timing plan
(Balci et al., 2011; Hudson, Maloney, & Landy, 2008). The
expected gain (EG) of a temporal aim point S is determined by
the individual gains (Gi) that are associated with the potential
time points at which a response could be given (Ti) multiplied
by the probabilities of responding at those time points given S
and its standard deviation. In the DRL task described in
Çavdaroğlu et al. (2014), the maximum reward rate for a per-
fect timer (e.g., an ideal but unrealistic timer who can produce
durations without any noise) is achieved by responding exact-
ly at the scheduled time. However, the expected gain for
aiming at exactly this time point is lower for a more realistic,
slightly noisy timer with a symmetrical response distribution:
Because of the .5 probability to respond before the target
duration due to noise, this realistic timer would receive costly
punishment in half of the trials. The maximum expected gain
is therefore associated with a temporal aim that is shifted to-
wards a later point in time, with the magnitude of the shift
depending on the magnitude of the precision. A graphical
example of the expected gain function is shown in Fig. 1. In
their review, Freestone and Church (2016) emphasized the

complexity of the statistical inferences required for optimal
timing and discuss that some animals do not account for their
own noisiness, whereas humans are reported to earn close to
the maximum gain given their precision.

The integration of risk into decision-making processes has
been described extensively (Birnbaum, 2008; Diederich &
Trueblood, 2018). Before that, the early model of expected
utility (EU) described how decision-makers seek to maximize
expected utility: The product of the probability of a certain
outcome and the value of that outcome (Bernoulli, 2011/
1738). However, this model does not always capture observed
behavior. For example, when an outcome is framed as a po-
tential loss, this will lead to a different decision compared with
when it is framed as a gain (Tversky & Fox, 1995). This bias
was accounted for by prospect theory (Kahneman & Tversky,
1979; Trepel, Fox, & Poldrack, 2005), which explains these
differences in terms of risk-seeking or risk-avoiding tenden-
cies. For example, a risk-avoiding participant, deciding be-
tween two monetary gambles with the same expected value,
might avoid the prospect in which the chance of a negative
outcome, irrespective of its value, is higher. It has been pro-
posed that a dynamic combination of two decision systems
drive the outcome of these decisions: System 1 is associated
with fast and automatic decisions, whereas System 2 is char-
acterized by deliberate and rational decisions (Diederich &
Trueblood, 2018; Evans, 2008; Kahneman & Frederick,
2002). Kahneman and Frederick (2002) assume an initial de-
cision is made by the fast System 1, which can be overruled by
the rational System 2. This dynamic combination can play a
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Fig. 1 a Example of the mean expected points for a participant with a
Gaussian response-time-based standard deviation of 100 ms in a task in
which reproducing a 750-ms interval within a margin of 30% is rewarded
with 5 points, while being too early or late, respectively, results in penalty
points of no points. The green line reflects the expected outcome for
different mean response times in blocks without penalty: The highest
possible reward is achieved when this participant aims for intervals of
750 ms. As the punishment increases to 5 or 30 points, reflected by the
pink and red lines, the expected gain peak for this participant decreases

and the optimal mean response time shifts towards the right. b Surface
plot of the expected reward for different means and standard deviations of
the Gaussian response-time distributions in a block with 30-point punish-
ment for too-fast response. The red line represents a participant with a
standard deviation of 100 ms as depicted in Panel a. The black, solid line
indicates optimal mean responses as a function of the standard deviation
in the −30 block. The optimal response time for the participant with a
100-ms standard deviation is defined by the intersection of the red and
black line. (Color figure online)
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role when decisions are made based on uncertainty that arises
from a decisions-makers’ own impreciseness, such as noise in
timing judgements.

In everyday tasks, timing is not the only source of internal
uncertainty, as any form of external response will be affected
by motor noise. Indeed, earlier work has demonstrated that
humans take the likelihood of success into account when
performing a motor task in which uncertainty is defined by
manual motor precision (Maloney, Trommershäuser, &
Landy, 2007). In their study, participants were instructed to
quickly touch a small reward region on a touch screen to earn
points. The deadline for the speeded response was set so low
that participants would sometimes miss the target. In addition
to a target region, participants were also informed about the
existence of a punishment region. Analogous to the expected
gain calculations discussed earlier, the location of the punish-
ment region and the magnitude of the punishment determine,
together with motor precision, the location of the maximum
expected value. The behavioral profiles of the participants
indicated that they indeed adjusted their movement plans to
aim for that location.

Studies that investigate planning optimization, as the ex-
amples discussed above, suggest that humans can adjust their
responses to maximize their gains in line with Bayesian deci-
sion theories (for a review, see Körding & Wolpert, 2006).
These types of Bayesian frameworks have been used to un-
derstand a variety of magnitude judgements, such as distance,
angle, and time estimations (Petzschner, Glasauer, & Stephan,
2015). In the field of timing, for example, it has been shown
that participants’ clock accuracy determines the extent to
which they weigh prior experiences, with noisier clock mea-
surements associated with a stronger influence of the prior
knowledge (Cicchini, Arrighi, Cecchetti, Giusti, & Burr,
2012; Hallez, Damsma, Rhodes, van Rijn, & Droit-Volet,
2019;Maaß, Riemer,Wolbers, & van Rijn, 2019) and affected
integration of perception and prior knowledge in clinical pop-
ulations (Maaß et al., 2019).

Each of the timing and movement preparation studies
mentioned above focuses on a single modality (for other
modalities, e.g., distance, see Healy, Tack, Schneider, &
Barshi, 2015; Petzschner & Glasauer, 2011), with the
proposed mechanisms just applying, either implicitly or
explicitly, to the specific modality under study. However,
all provided explanations assume integration of perceptu-
al and motor noise with potential outcomes. If risk strat-
egies are stable across modalities, the performance of a
participant in one domain should predict the participant’s
performance in another domain when the differences in
domain-specific noise are taken into account. To test this
notion, we report on an experiment in which participants
performed a timing task and a distance estimation task. In
both tasks, participants could earn money by responding
accurately, but could, in some experimental blocks, lose

money for responding too early (in the timing task) or too
close to the reference location (in the distance estimation
task). In both tasks, we determined, for each participant,
how much adjustment of the mean response from the no-
punishment block is required, based on their endogenous
noise in the penalty block, to reach the optimal strategy
in that penalty block. Thus, optimality is operationalized
as the difference between the observed adjustment in the
5 and 30 penalties blocks, and the theoretical adjustment
associated with optimal responses. This approach allows
us to compare optimality, independent from possible re-
sponse biases, in the timing task and the distance estima-
tion task.

We hypothesize that participants will respond later/
further from the reference in the blocks with punishment.
Importantly, we expect the magnitude of this adjustment to
be dependent on a combination of their precision and their
risk-seeking or risk-avoiding tendencies. We hypothesize
that the degree to which a participant is optimal in these
adjustments is stable across modalities and therefore corre-
lated. For example, a participant who only adjusts timing
response 20 ms, while an optimal shift would have been 40
ms, is expected to underadjust by 50% in the distance esti-
mation task, too.

Methods

Participants

Thirty-six participants (age M = 24.8 years, SD = 4.3
years) volunteered in exchange for €7–10, depending on
their performance on the tasks. Participants were recruited
from the payed participant pool of the University of
Groningen. The study was approved by the Psychology
Ethical Committee of the University of Groningen
(17129-SP-NE), and participants signed a form giving
their informed consent.

Materials and procedure

Participants performed a timing task and a distance-estimation
task, of which the order was counterbalanced between partic-
ipants. In each task, participants tried to earn as many points as
possible (each point was worth 0.69 eurocent). The accumu-
lation of points and money was shown to the participants
during the course of the experiment.

Timing task Stimuli were presented on a 12-inch touch-screen
monitor (SCHURTER Electronics) using OpenSesame
(Mathot, Schreij, & Theeuwes, 2012), and responses were
made with the left or right rear buttons of a gamepad
(Microsoft Sidewinder), depending on the participants’
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preferred hand. Since the viewing distance was not precisely
controlled, the descriptions of stimuli contain only estimations
of visual angle. All code needed to run this experiment is
publicly available (https://osf.io/f68wm/).

Participants performed an interval reproduction task, in
which they had to reproduce a single interval of 750 ms.
First, five passive learning trialswere presented, in order to
become familiar with the target interval. In each trial, par-
ticipants were first shown a white intertrial fixation circle
with a 3-mm diameter (0.46 ° visual angle) for a random
duration between 1,000 ms and 2,000 ms. Next, a yellow
circle with an 18-mm diameter (visual angle of 2.6° visual
angle) was on the screen for 750 ms, then disappeared for
random duration between 1,000 ms and 2,000 ms.
Subsequently, during the experimental trials, participants
were asked to reproduce the previously learned interval.
The trial procedure was similar to the learning trials; the
reproduction interval was initiated by the appearance of
the yellow circle, and the participant marked the offset with
a gamepad button press. Feedback on whether the produced
interval was too long, too short, or within the 30% margins
of 750 ms was presented for 1,000 ms. An example of the
trial procedure is shown in Fig. 2a.

Equally spread over five experimental blocks, 250 intervals
were produced, preceded by a practice block of 50 trials. In the
experimental blocks, participants earned 5 points for
responding within the 30% margin. In Block 2 and Block 4,
points would be deducted if the response was too early. Before
each block started, the payoff scheme was presented on the

screen. The payoff scheme is shown in Table 1. The total
number of points and money collected was shown together
with each trial’s feedback.

Distance estimation task Participants did a distance estima-
tion task on the same touch-screen monitor as used for the
timing task. Each trial started with a “start circle” present-
ed at a random location below the right diagonal for right-
handed participants and below the left diagonal for left-
handed participants. After touching the start circle, an
arrow appeared originating from the start circle, pointing
to an invisible target that was always 55 mm (7.9° visual
angle) away from the center of the start circle at a random
angle (see Fig. 2b). The participant then tried to touch the
invisible target to earn points. Feedback was presented on
whether the tap was a hit, too close, or too far away
relative to the start circle. Also, the accumulation of mon-
ey was shown during the feedback screen, followed by a
1,000-ms to 2,000-ms intertrial period. In order to learn
the distance, participants were shown a visible target once

a

b

Fig. 2 Typical procedure of a timing trial (a), in which the participant
responded within the 30% margin and received 5 points, and a distance
estimation trial (b), in which the participant responded too close and 30
points were subtracted. Figure b shows an example of a possible
configuration of start circle, arrow, and target. The target is represented
in dashed lines and was not visible to the participant, except in the

instruction screen at the beginning of each block. Between trials, only
the angle at which the arrow points and the position of the circle on the
screen changed. The green bar in the bottom of the feedback screen
indicated the amount of money accumulated over the course of the
experiment. (Color figure online)

Table 1 Payoff scheme, no points are earned during the practice (P)
block

Block P 1 2 3 4 5

Too early/close 0 0 −5 0 −30 0

Correct 0 5 5 5 5 5

Too late/far 0 0 0 0 0 0

1900 Atten Percept Psychophys (2021) 83:1897–1906
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at the typical distance from the start circle during the
instructions at the beginning of each block.

Participants performed the distance estimation 250
times, equally spread over five experimental blocks, pre-
ceded by 50 practice trials. The procedure regarding
points and feedback was identical to the timing task:
Participants earned 5 points for touching the target, but
points would be deducted in Blocks 2 and 4 if their re-
sponse was too close to the start circle (see Table 1).

Analysis

Response times and distance estimations that deviated
more than three median absolute deviations from the me-
dian, pooled over all trials per participant, were excluded
from the analysis (2.7% of the timing trials, 2.1% of the
distance estimation trials).

Three hierarchical linear mixed-effects models (LMMs)
were performed using the lme4 package (Version 1.1-14;
Bates, Mächler, Bolker, & Walker, 2014) in R (Version
3.6.0; R Core Team, 2018). Separate models for timing
and distance estimation were estimated to test the effect of
punishment level and the precision of the timer on adjust-
ment of mean response. Adjustment was calculated as the
difference between mean responses of the blocks with
punishment and Block 1 and were used as dependent con-
tinuous variables (in seconds for the timing task and mm
for the distance estimation task). Punishment level was
added as a categorical fixed factor, in which the 5-
punishment condition was the reference group and stan-
dard deviations per participant and block was added as a
continuous fixed factor. To assess the relationship be-
tween the performance in the two different tasks a model
was estimated with timing optimality (i.e., the difference
between the actual adjustment and the optimal adjust-
ment) as continuous dependent variable, distance optimal-
ity as continuous fixed factor, and punishment level as
categorical fixed factor.

For each LMM we started with an intercept-only mod-
el, including participant as a random factor. We then se-
quentially added the relevant fixed factors. To test wheth-
er a fixed factor improved the model, we calculated Bayes
factors using the lmBF function from the BayesFactor
(Version 0.9.12-4.2; Morey & Rouder, 2018) package
for R. The default priors of the BayesFactor package as
described in Rouder and Morey (2012) were used. We
will denote the evidence for the alternative hypothesis
(H1; i.e., the model including the fixed factor) over the
null hypothesis (H0; i.e., the model excluding the fixed
factor) as BF10. Fixed factors that yielded a model with
a BF over 3 were included in the models (Wagenmakers,
2007).

Results

Timing and distance adjustments

Figure 3 shows the distribution of the average responses in the
different blocks of the timing and distance estimation tasks.
The figure shows that participants adjusted their mean re-
sponses away from the punished criterion in the punishment
blocks (Block 2 and Block 4) in both tasks. Their timing and
distance estimations had an efficiency of nearly 100% in the
blocks with 0 or 5 points punishment; the median percentage
of maximum expected points earned was, respectively, 97%
and 95%. In the blocks with 30 points punishment, the median
received points equated 82% of the maximum expected
amount.

We hypothesized that imprecise timers and distance esti-
mators would adjust their responses in the blocks with pun-
ishment more relative to precise participants. Figure 4 shows
that the difference of mean responses between Block 1 and the
two blocks with punishment is larger for participants with a
high standard deviations. To test this, LMMs predicting the
adjustment of mean responses in blocks with punishment rel-
ative to Block 1 were estimated, separately for timing and
distance estimation. Adding punishment level and standard
deviation as fixed factors improved the model of the timing
task significantly (BF10 > 1,000 and BF10 = 373, respective-
ly), but their interaction did not (BF10 = 1.57). The final model
coefficients are reported in Table 2. The positive beta coeffi-
cients confirm both our primary hypotheses in the timing task:
If there was a risk of punishment for being too early, responses
were delayed, and noisy timers adjusted their responses more
than precise timers did.

In the distance task, the same modelling procedure was
used as for the timing task. The model including only standard
deviation as fixed factor was preferred over the intercept only
model (BF10 = 20), but the data provided no evidence to
include punishment level (BF10 = 1.38), and moderate evi-
dence to include the interaction between standard deviation
and height of punishment (BF10 = 2.19). These results are
similar to the timing task, although the effect of punishment
for responding too close to the center contributed only when it
was considered as the interaction with standard deviation (i.e.,
the effect of SD was less pronounced in the low punishment
block)

Within-modality optimality

To test whether participants adjusted their responses optimally
in the timing and the distance estimation tasks, we calculated
optimal responses by maximizing the expected gain function
in each block. The “landscapes” of expected gains and the
actual responses of participants are shown in Fig. 5, separately

1901Atten Percept Psychophys (2021) 83:1897–1906



for the 0-punishment, 5-punishment, and 30-punishment
blocks in both modalities. They demonstrate that, depending
on the height of the punishment and the precision of a deci-
sion-maker, a ridge of maximum gains emerges. The observed
responses can be seen roughly to follow the optimal ridge in
the 0-punishment and 5-punishment blocks, but deviate from
it in the 30-punishment block. In both the timing task and
distance estimation, 81% of the mean responses in the face
of 30-points punishment are on the left side of the ridge, indi-
cating these participants did not adjust their mean responses
enough to reach their optimal gain, but adopted a risk-seeking
strategy. This is also expressed in the efficiency score (i.e., the

percentage of points earned in a block relative to the maxi-
mum expected amount of points given their SD), which in
some cases exceeds 100%when the risk-seeking strategy pays
off because of “lucky shots.”

Figure 6a shows the adjustment participants should
make from Block 1 in order to become optimal in another
block. The between-participant variability of theoretical
optimal adjustments is illustrated by the error bars. For
example, it shows that in distance estimation, some partic-
ipants were already responding so far away from the center
in Block 1 (0-punishment), that hardly an adjustment was
necessary in Block 2 (5-punishment). Finally, actual mean
adjustment from each block compared with Block 1 was
subtracted from the optimal adjustments in order to create
two variables: timing optimality and distance optimality
(see Fig. 6b). This resulted in positive values for blocks
in which the participant overadjusted (e.g., was too careful)
and negative values for blocks in which the participant
should have adjusted more in order to become optimal.

Cross-modal optimality

Figure 6b shows the relation between a participant’s distance
and timing optimality. In order to test whether optimality was
correlated across modalities, an intercept-only LMM was es-
timated with timing optimality as a continuous dependent var-
iable. This model was compared with a model that included
distance optimality as a fixed factor. The latter model was
highly preferred over the intercept-only model (BF10 =
89.00). Adding height of punishment as main effect im-
proved the model (BF10 = 3.23), but its interaction with
distance optimality did not (BF10 = 1.51), showing that
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the slope of the effect of timing optimality on distance op-
timality was similar across punishment magnitudes.
However, the large negative coefficient (see Table 3) of

the categorical variable 30-punishment shows that in this
condition adjustments in both timing and distance estima-
tion are suboptimal compared with the 5-punishment

Table 2 Model coefficients of the two LMMs predicting responses

Timing Distance

β SE p β SE p

Intercept −53.65 19.00 <.01** Intercept −0.20 1.81 .62

30-punishment 44.38 6.83 <.01** 30-punishment −2.92 1.75 .10

SD 0.76 0.15 <.01** SD 0.51 0.38 .17

30-punishment × SD 0.88 0.41 .04*

**p < .01, *p < .05
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adjustment of mean response to the block with 5-punishment was too
large, while the adjustment to 30-punishment was too small. The black
lines across the ridge of the surfaces indicate optimal mean responses.
(Color figure online)
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condition. Together, these results suggest that the more a
participant underadjusts in distance estimation, the more
that participant will underadjust timing estimations, regard-
less of the height of the punishment.

Discussion

We investigated whether responses are optimally adjusted in
the face of different reward/punishment schemes in two dif-
ferent tasks: an interval timing task and distance estimation
task. In addition, we tested to which extent the patterns of
optimality are similar across modalities. In the two tasks, par-
ticipants earnedmoney for responding within a fixed temporal
or spatial region, but could lose money when responding in an
adjacent temporal or spatial region (earlier or closer to the start
circle). We found that, when risk increased, imprecise partic-
ipants adjusted their responses more than precise participants
did. As expected, given the scalar property of these estimation,
larger mean responses also led to larger standard deviations.
When the potential punishment was the same amount as the
reward, this adjustment led to near optimal responses in both

the timing and distance estimation task, in line with previous
timing and motor experiments (Akdoğan & Balcı, 2017; Balci
et al., 2011; Freestone, Balcı, Simen, & Church, 2015;
Maloney et al., 2007), conforming to the patterns predicted
by prospect theory (Kahneman & Tversky, 1979). However,
when the potential losses were increased (i.e., six times the
amount of the reward), responses in the timing and distance
estimation task were respectively earlier and closer to the
center than optimal, yielding increased penalties and
indicating suboptimal adaptation. The difference between
the two punishment levels might be related to what Maloney
et al. (2007) call implicit and explicit reasoning about proba-
bilities. They found that if the decision-making is implicit,
subjects respond close to optimal, but if part of the reasoning
is made explicit, subjects exhibit risk aversion. This suggests
another mechanism that may bemore domain-general than the
one adjusting for endogenous noise.

Our hypothesis that the level of underadjustment or over-
adjustment is correlated across modalities was confirmed. In
both punishment conditions there was a correspondence be-
tween the modalities, although the main effect of punishment
indicated more underadjustment in the 30-punishment condi-
tions. However, no evidence was found to prefer the model
that included interaction over the model without interaction.
This may be because only a small adjustment is needed in the
balanced reward/punishment condition. The results from the
30-point punishment condition suggest that a similar, central
adaptive strategy may underlie the behavioral adjustments in
both tasks. That is, following Maloney et al. (2007), the 30-
point punishment may be resolved by a more explicit rea-
soning process, which leads to a decision bias that is similar
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Fig. 6 a Theoretically optimal adjustments from Block 1 are displayed in
the left panel. They illustrate the large variability in the need to adjust
main responses (error bars represent one standard deviation). For
example, if a participant was already biased towards late/far in Block 1,
there is less need to adjust in the face of punishment. b Participants

generally made optimal adjustments. A positive value on the y-axis means
that a participant made a too large adjustment of their interval estimation
in the blocks with punishment. Positive values on the y-axis indicate an
overadjustment in the distance estimation in the face of punishment

Table 3 Model coefficients of the LMM predicting timing optimality

β SE p

Intercept 4.74 8.10 .56

Distance optimality 7.41 3.53 .04*

30-punishment −23.84 11.10 .04*

**p < .01, *p < .05
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across modalities. However, whereas Maloney et al. rea-
soned this bias would reflect a risk-averse tendency, the
current study showed a response bias in the opposite direc-
tion. We speculate that the under-adjustment in the high
punishment condition does not reflect risk-seeking, but
rather a failure to accurately reason about how much adjust-
ment is needed to control the risk. Another explanation
might be that in risky situations decision-makers rely more
on System 1 reasoning, which is more prone to risk-seeking
or risk-avoiding biases (Evans, 2008). In the current study,
the general proneness to risk-seeking may be attributed to
the notion that the probability of being too early is
underestimated. Also, since the distance estimation task
did not require a speeded response, participants could po-
tentially take more time to deliberate their action compared
with the timing task. However, that does not mean that,
before the onset of a timing trial, no time can be taken to
deliberate about a plan when to response.

Furthermore, to become optimal requires intended re-
sponses to be adjusted based on feedback, which intro-
duces three kinds of feedback biases. An intended “re-
sponse plan” for a point in time will be earlier or later
based on the feedback on the previous trial. If a participant
is imprecise enough, the optimal response plan could en-
tail that this point is beyond the reward region in the high
punishment condition. Consequently, the feedback a par-
ticipant will “optimally” get is “too late, 0 points” on most
trials and an occasional “correct, +5 points.” Secondly, the
participant is unable to know how much too late the re-
sponse was, which makes calibration to an optimal re-
sponse plan more difficult. Third, seeing “too late” on a
couple of consecutive trials may incite earlier responses
despite the response in fact being optimal. These feedback
biases, introduced by experimental settings, raise the ques-
tion of what to consider true optimal behavior.

It has been suggested that describing the results from
perceptual decision-making studies as (sub)-optimal should
be avoided (Rahnev & Denison, 2018). A good argument
for this statement is that if one observes behavior that is
nonnormative, it may simply be because the model of nor-
mative—“optimal”—behavior does not describe all the fac-
tors of the task well enough. Therefore, Rahnev and
Denison (2018) argue for an approach that shifts from ideal
observer models towards standard observer models. A
standard observer model not only incorporates optimal de-
cision rules but also combines these with other plausible
decision rules. In response to this argument, Simen and
Balcı (2018) note that optimality may be at the core of
any standard observer model and that this is especially true
in timing tasks, in which evidence for optimality is often
observed. In that respect, we show that optimally can be
found in both domains with small penalties, but not in either
domain with larger penalties. Even though based on these

results we cannot argue that adjustment is identical, the
interaction that would be expected on the basis of Simen
and Balcı’s work is not observed.

In conclusion, we demonstrated that participants are
able to use near optimal strategies based on their level
of precision in both temporal and distance estimation. In
addition, we found evidence that these strategies might
be modality independent. However, a suboptimal re-
sponse bias was observed in both tasks when the pun-
ishment was significantly higher than the potential re-
ward, which could potentially be ascribed to explicit
reasoning processes. Understanding the nature of these
biases is instrumental for the development of standard
observer models.
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