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Beyond the Artificial Intelligence Hype
What Lies Behind the Algorithms and What We Can Achieve

Marly van Assen, MSc, PhD,*† Imon Banerjee, MSc, PhD,‡§
and Carlo N. De Cecco, MD, PhD†

Abstract: The field of artificial intelligence (AI) is currently experiencing
a period of extensive growth in a wide variety of fields, medicine not
being the exception. The base of AI is mathematics and computer sci-
ence, and the current fame of AI in industry and research stands on 3
pillars: big data, high performance computing infrastructure, and algo-
rithms. In the current digital era, increased storage capabilities and data
collection systems, lead to a massive influx of data for AI algorithm. The
size and quality of data are 2 major factors influencing performance of
AI applications. However, it is highly dependent on the type of task at
hand and algorithm chosen to perform this task. AI may potentially
automate several tedious tasks in radiology, particularly in cardiothoracic
imaging, by pre-readings for the detection of abnormalities, accurate
quantifications, for example, oncologic volume lesion tracking
and cardiac volume and image optimization. Although AI-based
applications offer great opportunity to improve radiology work-
flow, several challenges need to be addressed starting from image
standardization, sophisticated algorithm development, and large-scale
evaluation. Integration of AI into the clinical workflow also needs to
address legal barriers related to security and protection of patient-
sensitive data and liability before AI will reach its full potential in
cardiothoracic imaging.

Key Words: artificial intelligence, cardiac imaging, thoracic imag-
ing, radiology

(J Thorac Imaging 2020;35:S3–S10)

ARTIFICIAL INTELLIGENCE (AI) AND ITS
JOURNEY

According to the Britannica definition, AI is the ability of
computer-controlled agents (eg, software, robots) to perform
cognitive tasks that broadly cover 4 core behaviors—learning,
reasoning, perception, and action. The era of AI was originally
initiated in the 1950s with a simple question posed by mathe-
matician Alan Turin—“Can a machine think?”1 This definition
of AI has given rise to many debates, and, even after 80 years, no
singular definition of the field is universally accepted. Although
at its core AI is a branch of computer science, it is becoming
more and more interdisciplinary, including fields ranging from
material science to aeronautics; circuit design to greenhouse
technology; and precision health to car technology.2

In 1954, AI originally started with complex mathematical
problem solving, proving logical theorems, and decryption of
coded messages with the demonstration of machine translation
in the Georgetown-IBM experiment, and stayed within a narrow
range of usability in defense-related applications for a significant
time-period. AI encountered a few years of “AI-winter” begin-
ning in 1973, which was triggered by the report “Artificial
Intelligence: A General Survey” authored by Professor Sir James
Lighthill to the British Science Research Council where he
expressed great disappointment in AI by stating that the existing
AI techniques worked well only in a research environment, but
were inadequate in a real-world setting. This report was followed
by pessimism in the press, leading to a severe cutback in funding,
resulting in the termination of AI research.

What changed that made AI so popular again in the 90s?
—In the 90s, AI was introduced in larger industrial expert-sys-
tems3 and achieved heavy commercial successes, particularly in
machine translation, data mining, search engines, and robotics.

Although commercially successful, AI started with large
industrial automation, and, in the current time, AI has pene-
trated our daily life with several successful products and
applications, from virtual digital assistants such as Siri (Apple,
Cupertino, CA) and Alexa (Amazon, Seattle, WA), which help
find information and schedule appointments, to self-driving
cars (Tesla, Palo Alto, CA; Uber, San Francisco, CA; Waymo
[Google spin-off], Mountain View, CA). Amazon’s transac-
tional AI shopping engine is another successful example that’s
been in existence for quite some time and resulted in an
astronomical increase in profit. The base of AI is mathematics
and computer science, but the current fame of AI in industry
and research stands on the following 3 pillars (Fig. 1):
(1) Big data: data sets are growing rapidly, as they are now

gathered by cheap and numerous information-sensing
devices such as mobile devices, aerial cameras, micro-
phones, radio frequency readers, and wireless sensor
networks. Every human being is roughly contributing
2MB data per second,4 which can potentially be used to
train AI algorithms. Adequate AI modeling of a
complex task with deep learning techniques5 needs large
heterogenous training data sets to be able to utilize the
large number of free trainable parameters in the model,
which can run in millions. A rule of thumb is that the AI
models need 10 times the amount of data to be trained in
relation to the number of parameters. Thus AI and big
data are now seemingly inseparable.

(2) High performance computing (HPC) infrastructure:
local computing infrastructure with limited computing
resources and memory is not capable to deal with such
big data sets. AI algorithms require immensely powerful
processes across computer, networking, and storage,
with highest benefit when computational resources are
closest to the origin of data. This was a limiting factor of
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AI utilization in the early days when AI was captured
only by a few resourceful people. With the availability of
HPC cloud computing by the major companies, training
AI algorithms with extremely large data sets has now
become achievable for a wide range of people from their
home environment. HPC proved to be a game changer
for AI adaptation and scientific discoveries in this field.

(3) Algorithms: the true AI’s capabilities come from the
machine learning (ML) algorithms, which can broadly be
categorized as supervised and unsupervised learning
algorithms. Supervised learning refers to the process of
learning associations from training data sets wherein the
algorithm learns a mapping function (y= f(x)), which
maps the input variables (x) to an output variable (Y).
Models such as support vector machine (SVM) and
logistic regression fall into the category of supervised
learning. In unsupervised learning, given the input
variables (x) only, the algorithm explores the internal
structure of the data. K-Nearest Neighbors, and K-means
can be categorized as unsupervised learning algorithms
when the model learns the structure of the data space
without learning an association with targeted outcome.
With the recent advancement in big data and HPC, ML
algorithms are getting more and more complex, with
millions of densely connected processing nodes (neurons),
which attempt to replicate the functionality of the human
brain categorized as “Deep learning” with multiple layers
of processing. Deep learning (DL) algorithms are basically
a class of ML algorithms with more processing power to
perceive nonlinear structure within the data.5

AI IS HERE TO HELP: APPLICATION IN
RADIOLOGY

In the digital era, volume of radiologic imaging exami-
nations per day at any standard care center is growing enor-
mously, while the number of available trained readers has
stayed constant. Recently, this created a huge bottleneck in

clinical practice and dramatically increased the workload for
radiologists.6 The primary goal behind the emergence of AI in
radiology has always been the desire to assist the radiologist
with the increasing workload by creating an automatic agent
that can do the tedious tasks (eg, volumetric analysis, outline,
measurement, reporting) and help with initial image inter-
pretation, thereby reducing the workload.

The current AI applications are designed in such a way
that they are integrated within the current radiology work-
flow, with the main goal being to assist radiologists with
their day-to-day tasks by increasing efficiency, reducing
errors, and achieving objectives with minimal manual input
provided by trained radiologists. In addition, substantial
efforts and policies are being put forward to facilitate
technological advances related to AI in medical imaging. In
the following subsection, we are highlighting a few types of
AI tasks in medical imaging that are either the current focus
of AI research or already have been successfully tackled by
the AI components, followed by some core ingredients of
success.

AI TASKS AND ALGORITHMS

Classification
One of the most popular uses of AI algorithms is for

radiologic image classification tasks, in which the algorithm
takes an image (or volume) as input and assigns a pre-
determined category (ie, differential diagnosis, clinical risk)
to each data set, as seen in Figure 2. Classification models
(algorithms) can be broadly categorized into the following
(and they are):
(1) Linear classifier and classifier with kernel—a linear

classifier without kernel computes the classification
decision on the basis of the value of a linear combination
of the characteristics derived from the images (ie, image
features—intensity, shape, texture). Logistic regression,
SVMs, and Perceptron all fall into this category. Linear
classifiers are useful when the relationship between
features and targeted outcome can be described with a
linear function. In return, it provides nice probabilistic
interpretation and can be regularized to avoid
overfitting7 and thus can be trained with limited data.
However, these types of algorithms are not equipped to
capture naturally complex relationships (nonlinear
decision boundaries), which are often encountered in
medical image classification tasks. In order to model
such complex relationships, SVMs can use a trick called
“kernel” to project the feature in a multidimensional
space where it is linearly separable. Thus, SVM had been
quite a popular solution in the medical image analysis
field (magnetic resonance [MR],8 computed tomography
[CT],9 Mammograms10) until the recent deep learning
success.

(2) Tree-based methods and boosting —the core idea
behind these methods is to stratify or segment the data
space into regions on the basis of a set of splitting rules,
which can be represented as a tree, for example, decision
tree method. The output of tree-based algorithms are
easy to interpret, as it is clarified by the rules; however, a
single tree is often not capable of identifying complex
boundaries between the regions. Boosting (XGBoost)
and bagging (RandomForest) constructs multiple trees,
which are then combined to yield a single consensus
prediction. Such methods have successfully been applied
in several challenging tasks, for example, classification

FIGURE 1. Three pillars of AI: big data, high performance com-
puting, and algorithm.
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of Alzheimer from MR volume, lung nodule classifica-
tion, schizophrenia classification.11–13

(3) Deep neural network (DNN)—SVM, Random Forest,
and XGBoost classification usually do not read the full
images (or volume) as input; instead, they use hand-
crafted features acquired by applying several image
feature extraction algorithms (eg, texture—Gabor,
Riesz). Image feature engineering needs to be heavily
supervised by humans and often requires extreme
expertise in finding the right trade-off between accuracy
and computational efficiency.14 In the case of DNNs,
the features are learned automatically from the raw
images and are represented hierarchically in multiple
levels; however, this comes with the cost of needing large
amounts of data and computational power.

With the increased availability of open-source labeled
x-ray image archives (eg, NIH ChestX-ray14, Open-i), sev-
eral high-performance DNN classification algorithms have
been developed for the detection of common chest diseases.
Yao et al15 presented a combination of 2 deep learning
architectures—convolutional neural network (CNN) and a
recurrent neural network, to exploit label dependencies in
the chest data set. Rajpurkar et al16 proposed transfer-
learning with fine tuning, using a DenseNet-121, which
resulted in higher area under the curve results on ChestX-
ray14 for multilabel classification.

Segmentation
Image segmentation (Fig. 2) is the process of detection of

boundaries of the targeted object (eg, tumor, anatomy) within
2D or 3D images based on certain image characteristics
(eg, pixel value, relations with neighbors in volumetric space).
Segmentation can be performed by solely computer vision
techniques without any learning. For example, region

growing, watershed, and level-set algorithms were successfully
applied for the medical image segmentation, but with limited
generalizability, and they are highly prone to noise.17–19

Segmentation can also be considered as a special case
of supervised classification wherein the target is to assign a
classification label to each pixel. CNN—a deep learning
approach was successfully translated to a fully convolu-
tional network that generates a pixel-level classification map
as output by upsampling, tackling the image segmentation
problem. In medical image processing, however, a slightly
modified version of fully convolutional network —UNet
(multiple upsampling layers)—is the most popular solution
because it works with fewer training images and yields more
precise segmentation (Fig. 3). UNet has been applied in
segmentation from various modalities—ultrasound and MR
and CT images.20,21

Anomaly Detection
In medical imaging applications, the unbalance

between negative and positive data sets and the possible
variation in degree of disease in positive data sets poses a
difficulty for learning algorithms, as the outcomes will be
biased toward the largest group. For anomaly detection
tasks, algorithms are trained to flag data samples as being
unusual or atypical. Anomaly detection can also be seen as a
special case of classification with only one output class.
Using anomaly detection algorithms addresses the issue of
imbalanced data sets by training on negative cases only. In
contrast to classification tasks that require large amounts of
training data for each specific output label, anomaly detec-
tion algorithms can be trained on relatively small data sets.
However, these algorithms are only able to identify whether
data sets belong to this label or not without any further
specification. An example of anomaly detection is given by
this study of Wei et al22 on the MURA database, containing
40,561 images of musculoskeletal radiographs, wherein each

FIGURE 2. Classification (top) and segmentation (bottom) of chest radiograph.
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study is manually labeled as either normal or abnormal. A
169-layer DenseNet baseline model, extension of the pre-
viously mentioned ResNet, was used to detect and localize
abnormalities.

De-noising
De-noising algorithms are used to create a clean data

sample, given a corrupted data sample as input. In the
training phase, the clean sample is given as desired output,
while the noise version serves at input. De-noising algo-
rithms can play a role in optimizing image quality in images
taken at lower image quality settings to reduce radiation
dose. In medical imaging, CNNs have been used for noise
reduction in low-dose CT scans, increasing the image
quality to be equivalent to standard dose CTs.23,24 By using
low-dose CTs as input, the use of CNNs enabled the crea-
tion of CT images equal to the standard dose output CT
images.

Each algorithm has its respective strengths and weak-
nesses, and an optimal algorithm needs to be selected on the
basis of the specific task at hand. The consideration leading
to the optimal choice of a specific AI model is based on the
cognitive and computational complexity, desire accuracy,
scalability, and interpretability of the algorithm, depending
on the task and the data.

Core Ingredient of Success: Data
Besides the actual algorithm, the data used to train and

validate the algorithm is another important factor. One of
the main issues arising in current day medicine is the vast
amount of data generated and digitally stored for each
patient. This accumulation of data is caused by the
increased use of electronic medical records and increased

storage capabilities allowing for the collection of all sorts of
data that were not previously recorded or saved. Current
systems now allow for the collection and storage of data
such as imaging data, interventional reports, lab values, and
pathology reports. With the increase of available data, AI is
a main candidate to play an essential role in the evaluation
of all these data and offers the possibility of enhancing the
ability of relevant data for patient care and present it in a
digestible format. AI has the advantage of reviewing vast
amounts of data to become proficient at using them for a
wide variety of purposes.

The quality and amount of data on which the algo-
rithm is trained are 2 important determinants of the per-
formance and generalizability of the algorithm. Especially
CNNs, one of the main AI algorithms used for imaging-
related tasks, inherently need large amount of data to
perform optimally. However, currently, a wide variety of
protocols are being used depending on geography, image
system manufacturer, and personal preferences. Combined
with the variation in populations between continents,
countries, and even hospitals, this variability leads to a steep
increase in the number of data sets needed for adequate
performance of ML algorithms. With current privacy laws
and storage/sharing capabilities, there is a lack of sufficiently
large data sets that are needed to train and validate AI
algorithms to optimally perform their tasks. Several ini-
tiatives are being started to fill this gap in the AI workflow
by combining and creating databases from multiple insti-
tutions all over the world. A second, data set related, lim-
iting factor is the quality of the data. In the field of medical
imaging, many of the analysis are carried out on the basis of
visual assessment, leading to high inter-rater and intrarater
variability, introducing bias to the reference standard given

FIGURE 3. CNN-based segmentation architecture: FCN on top and UNet on bottom.
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to the ML algorithms. In order to further optimize the
workings of AI algorithms for medical imaging purposes, a
consistent and reliable reference label is of the essence.

IMPACT OF AI IN CARDIOTHORACIC IMAGING
Chest imaging is one of the major fields of interest for AI

applications due to the high number of examinations and the
availability of images in medical centers.25 Chest radiography
(CXR) is one of the most frequently performed procedures,
representing a large percentage of the radiology workload in all
institutions. One of the main focuses of AI application on CXR
images is the automated detection of tuberculosis.26 Tuber-
culosis is an important contributor to worldwide mortality,
especially in underdeveloped areas, where there is a shortage of
radiologists. Particularly, in this setting, automated AI appli-
cations can be of great assistance. Besides tuberculosis detec-
tion, pneumothorax and emphysema detection are other
examples of AI applications.25,27 The large amount of CXR
examination performed has led to the emergence of several
publicly available large databases of annotated chest radiog-
raphies. For example, the chestX-ray(8-14) database from the
National Institutes of Health consists out of images corre-
sponding to 14 different labels including atelectasis, con-
solidation, infiltration, pneumothorax, edema, emphysema,
fibrosis, effusion, pneumonia, pleural thickening, cardiomegaly,
and nodules. CXR is also a field wherein anomaly detection is
especially useful, differentiating normal and abnormal CXRs to
help optimize clinical work-flow and help reduce reading time
by the radiologist.

Another large group of chest examinations performed
in radiology are the chest CTs. These types of examinations
are especially increasing with the increase in large-scale lung
cancer screening programs. Large lung cancer screening
trials have been demonstrated to reduce lung cancer-related
mortality.28,29 It is expected that, on the basis of these
results, the United States and European countries will start
large scale screening. These increased numbers of chest CT
examination will require a lot of resources, and AI appli-
cation can help deal with the increased work load and
reduce false-negative readings. In 2017, the Kaggle Data
Science Bowl (KDSB17), focused on the prediction of lung
cancer risk, because of the probability that a patient will be
diagnosed with lung cancer within a year of the scan, on the
basis of lung cancer screening CT examinations reaching
accuracies of 94% using CNNs.30,31 Compared with radi-
ologists, the AI performance was proven to be equivalent or
higher. Although nodule detection is probably the best
documented field of AI research in chest CT imaging, the
use of AI is not limited to nodule evaluation only and can
also be applied to diagnose and stage chronic obstructive
pulmonary disease and tuberculosis, and it can be used in
the prediction of acute respiratory distress syndrome and
mortality in smokers.32

Besides chest imaging, cardiac imaging is also gaining
interest of the AI field. Cardiovascular diseases (CVDs) are
a large attributor to the global mortality rate. A total of 17.9
million people die from CVDs every year, which accounts
for 31% of all global deaths.33 Cardiac imaging is a field that
has been undergoing rapid innovation due to technological
developments in hardware systems such as the imaging
system itself, as in imaging analysis methods, allowing more
complex forms of evaluation. With the increasing role
of noninvasive cardiac evaluation in the clinical work-up of
patients with or suspected of a cardiac disease, the field of

cardiac imaging grows in volume and in complexity. With
the focus on pattern recognition, inherent to the imaging
nature of the field, AI holds great promise to help further
this specific field in medicine.

For instance, noncontrast coronary artery calcium
(CAC) scoring is computed to determine the presence and
extent of atherosclerotic CVD, as it has proven to be an
accurate risk factor for future cardiovascular events.34,35

The number of CAC scoring acquisitions is rapidly
increasing. CAC scoring is a fairly simple but time intensive
task but needs manual segmentation and classification of
calcified plaques throughout the entire coronary tree.
Therefore, CAC scoring has been one of the first tasks
tackled with AI algorithms. Research has shown that AI
allows for CAC scoring, not only on dedicated CAC
acquisitions, but also on chest CTs used for lung cancer
screening.36,37 Recent advances in image quality and com-
putational capabilities also allow for the functional analysis
of stenosis on CCTA images using computational fluid
dynamics to calculate the fractional flow reserve (FFR).
However, this approach needs extensive computational
power and is time intensive. To enable real-time on-site
evaluation of CT derived FFR, ML is successfully used.38

With the rise of new parameters such as CAC scoring
and CT-FFR showing the value of imaging biomarkers for
the diagnosis and treatment of CVD, new risk stratification
and prognostic models, including these imaging markers,
need to be developed. Because of its capabilities of analyzing
large amounts of features and data, enabling the detection
of complex relationships, AI algorithms are an ideal way to
create these predictive models. Some early studies on rela-
tively large data sets show the promise of using the ML
algorithm for this purpose, combining clinical risk factors
and imaging parameters.39,40

Besides cardiothoracic radiographs and CTs, AI
applications in MRI are mainly focused on segmentation
tasks, specifically cardiac structure segmentation for cardiac
function evaluation. Before the possibilities of successfully
using DNNs, multi-atlas registration and deformable shape
models were the most used techniques for segmentation;
however, most current approaches are currently based on
CNNs.41,42

In the future, AI packages will become available,
providing comprehensive analysis methods for pulmonary,
cardiac, and bone analysis on single acquisitions. An
example of one of these vendor-created software packages,
combining multiple AI applications, is given in Figure 4.

In addition to the many image-related applications
discussed above, there is another group of AI applications
that have the potential to assist in the field of medical
imaging. These are the algorithms that intervene in the
planning and administrative side of the imaging field. With
the use of natural language processing algorithms, applica-
tions for automated and structured reporting can be devel-
oped. In addition AI algorithms can be used to prioritize
reading lists for the radiologist and optimize the work flow.
All of these applications have as their main purposes the
reduction in time and the increase in efficiency.

PITFALLS
Recently, ML/DL algorithms have shown excellent

performance in a wide range of health care applications,
which not only reflects in scientific publications but also in
clinical practice. Despite all the debates about validation
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and regulatory restriction, a wealth of new health care–
focused software tools received clearance by the FDA.
Interestingly, most of the tools are designed for medical
image analysis with the applicability varying from analyzing
CT images for stroke detection (Viz.ai’s Contact, Viz.ai, San
Francisco, CA) to autonomous detection of diabetic retin-
opathy from retinal camera images (IDx-DR, IDx, Coral-
ville, IA). These AI systems are currently used in many
clinical facilities (Iowa Health Care, IA, Johns Hopkins,
Baltimore, MA, Erlanger Health System, Chattanooga,
TN) across the United States. The IDx-DR solution is even
currently being used in retail stores (Albertsons grocery),
providing easy and convenient access to preliminary diag-
nosis of diabetic retinopathy. This wide span of AI systems’
adoption clearly shows that AI in the health care industry is
introduced as a means of smart automation to reduce bur-
den and allow easy access to diagnostic tools.

However, AI algorithms in cardiac imaging, are
struggling to make it into clinical practice. There are several
factors contributing to the fact that AI is not living up to its
full potential in this field. One of the main problems is the
lack of large, well annotated, publicly available databases,
as discussed earlier.

Another issue is the adaption by clinicians being
hampered by the trust physicians put into these AI appli-
cations and the legal system protecting physicians and
patients. For AI applications to be functional in clinical
practice, the technical side (algorithm construction) and the
clinical side (data annotation and clinical context) need to
be perfectly attuned. Understanding and collaboration

between the 2 sides are imperative, especially since the
medical system is based on the physicians’ ability to take
well-informed decisions, even if they are largely based on AI
algorithms often constructed by computer scientists.
Therefore, it remains extremely important to provide a
functional understanding of the algorithms used in a clinical
context and make the AI process as transparent as possible,
needing clinicians and computer scientists to maintain open
and clear communication. Finally, workflow integration
plays a fundamental role in the successful clinical imple-
mentation of the AI algorithm. In order to be implemented
in the routine practice, implementation needs to be seamless
and effortless in the busy radiologic workflow.

As with many new innovations, the regulatory system
is fighting to catch up with the pace of innovation. Cur-
rently, only few regulatory efforts are finalized to help deal
with the use of ML algorithms in clinical practice. Until
now, physicians and other imaging professionals are still
fully liable for the decisions they make, even if they are
based on an ML algorithms in which they have little to no
insight. With the grave consequences that come with some
of these decisions, it cannot be expected that the imaging
professionals involved are willing to take any risks. With
regulations trying to reach consensus on how to deal with
this responsibility, physicians will still be held responsible
for their decisions; therefore, it remains important to
increase the understanding of these algorithms and reduce
the risk of mistakes.

It deserves to be noted that the creation of well-defined,
annotated databases and the clinical interpretation of

FIGURE 4. Example of a fully automated AI software program (AI-Rad Companion Chest CT, Siemens Healthineers) that allows advanced
lung, cardiac, and bone assessment from chest CT images. With (A) lung nodule detection, (B, C) emphysema quantification, (D)
coronary calcium and plaque analysis, (E) aorta measurements, and (F) bone density measurements.
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features and AI prediction are highly dependent on the
efforts of dedicated clinicians.

In radiology, 2 types of AI applications can be dis-
tinguished, supporting applications and clinical interpreta-
tional applications. Supporting AI applications, such as
quantification of coronary calcium, are currently covered by
the US Food and Drug Administration (FDA), only requiring
a 510(k) approval.43 AI applications developed with the main
goal of clinical interpretation of images will require FDA pre-
market approval (PMA), requiring results from clinical trials.
In practice, this means that, for supportive AI applications,
manufacturers only have to prove that they are substantially
equivalent to similar legally marketed applications and do not
require human trials to prove efficacy and safety. This is in
contrast to the PMA approval, which requires data showing
the device’s performance in humans in a clinical setting, similar
to the approval process of drugs. The difference in these 2
processes can have grave consequences. Between 2005 and
2009, a total of 113 PMA devices were recalled, of which 70%
was cleared through the 510(k) process.44 As with all medical
applications using patient-related information, patient’s pri-
vacy is an important issue. The development of AI application
involves large amounts of patient data extracted from elec-
tronic health records, medical images, and lab results.

With the increased trust physicians put into the prediction
of AI applications, security and safety of these algorithms
becomes more and more important. With the increased use of
AI, adversarial attacks on ML models have gained a lot of
interest in the past years. An example is described in the paper by
Thys et al,45 showing that a small adversarial patch can hamper
the accuracy of object detection using neural networks. There are
other examples of wrongly interpreting AI results, clearly dis-
cussed by Cabitza et al.46

FUTURE PERSPECTIVE OF AI IN
CARDIOTHORACIC IMAGING

The field of cardiothoracic imaging is facing new
opportunities and challenges such as increasing acquisition
volumes due to increased cancer screening programs and
increasing numbers of cardiac examinations, now being
strongly recommended in recent guidelines.

AI-based applications hold the promise to improve
radiology workflow in the short term, providing pre-read-
ings for the detection of abnormalities, accurate quantifi-
cations, for example, oncologic volume lesion tracking and
cardiac volume and image optimization. For AI to be truly
of assistance to the cardiothoracic imaging community,
several issues need to be solved. First of all, integration into
the radiologic workflow, security and protection of patient-
sensitive data, especially for applications using cloud com-
puting (cybersecurity), and liability are issues that require
addressing.

In the long term, AI offers the possibility to improve
patient care, providing information that visually cannot be
extracted from medical images. Computers, in general, and
AI algorithms specifically, are able to detect small changes,
subtle deviation, and complex relationships, undetectable by
human vision. This has already been demonstrated by the
use of textural analysis and radiomics, using large amounts
of imaging features with direct relationship to visually
detectable differences. In contrast to the belief that AI will
make the role of radiologists obsolete, AI is able to
strengthen the position of the radiologist by making them
the connecting factor between patients, data, algorithms,

computer scientists, and all other specialists. AI offers the
field of medical imagers the unique opportunity to be once
again on the forefront of the fields by embracing technology
in their clinical workflow not only easing workload and
increasing efficiency but also improving patient care and
patients’ health, the ultimate goal of every physician.
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