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a b s t r a c t

We extend a sliding mode control methodology to linear evolution equations with uncertain but
bounded inputs and noise in observations. We first describe the reachability set of the state equation
in the form of an infinite-dimensional ellipsoid, and then steer the minimax center of this ellip-
soid toward a finite-dimensional sliding surface in finite time by using the standard sliding mode
output-feedback controller in equivalent form. We demonstrate that the designed controller is the
best (in the minimax sense) in the class of all measurable functionals of the output. Our design is
illustrated by two numerical examples: output-feedback stabilization of linear delay equations, and
control of moments for an advection–diffusion equation in 2D.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Robust output-based feedback control algorithms are required
or many practical applications. The output-based sliding mode
ontrol design methodology is well-developed for finite dimen-
ional systems (see, for example, [1–4] and references therein).
nfinite-dimensional (distributed parameter) systems are widely
sed in practise, e.g., to model flexible robots, controlled tur-
ulent flows, combustion, and chemical processes. The sliding
ode methodology can also be used to design controllers for such
omplicated systems [5,6]. We refer the reader to [7–12] for an
xtensive overview of the recent achievements in this field.
We stress that, in practice, it is quite difficult to apply the

tate of the art sliding mode methods in the case of noisy mea-
urements (see, [13,14]) and/or mismatched disturbances (see,
15–17]). The aim of this paper is to propose a mathematically
ound extension of the sliding mode control methodology allow-
ng one to deal with the aforementioned cases efficiently. Specifi-
ally, we consider conventional (first-order) sliding mode control
rinciples and study the problem of observer-based sliding mode
ontrol design for a plant described by a linear evolution equation
n a Hilbert space with additive exogenous disturbances and
2-bounded deterministic measurement noise. Note that, in this
ase, the solution of the classical sliding model control problem
oes not exist, i.e., it is impossible to ensure the ideal/exact
liding mode (even in the finite-dimensional case [18]) due to

∗ Corresponding author.
E-mail address: o.v.iftime@rug.nl (O.V. Iftime).
ttps://doi.org/10.1016/j.sysconle.2020.104830
167-6911/© 2020 Elsevier B.V. All rights reserved.
the noise in the measurements. Following [18–21] we propose to
generalize the notion of the solution of the classical sliding mode
control problem for linear evolution equations, i.e., to construct a
control law u steering the state’s motion as close as possible (in
the minimax sense) to the selected sliding surface. To design such
u we first provide a dual description of the reachability set for a
linear evolution equation, and then solve the following minimax
control problem: find a feedback control u steering the minimax
center of the reachability set towards the sliding surface. The
dual description of the reachability set relies upon the minimax
framework [22–25] and a duality argument [26,27]. As it turns
out, the optimal control for this problem combines a linear ob-
server whose gain is given by the solution of a differential Riccati
equation, with a linear, memoryless, but time-varying feedback
law. In order to implement the proposed sliding mode control
design, we approximate the solution of the differential Riccati
equation, and we discuss the convergence of the approximating
sequence. We apply the theory presented in this paper to two
examples. The first example is a delayed differential equation,
where the infinite dimensionality is caused by the delay-operator,
which is discretized by using averaging (over time). The sec-
ond example is an advection–diffusion equation over two spatial
dimensions, where we use a spectral-element method for dis-
cretization. We solve the resulting large-scale finite-dimensional
differential Riccati equation using Bernoulli substitutions and an
implicit midpoint rule.

The paper is organized as follows. The next section presents
the problem statement and basic assumptions. The minimax ob-
server for linear systems is discussed in Section 3. The problem

https://doi.org/10.1016/j.sysconle.2020.104830
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2020.104830&domain=pdf
mailto:o.v.iftime@rug.nl
https://doi.org/10.1016/j.sysconle.2020.104830
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f control design is studied in Section 4. Next the numerical
imulation results and conclusions are provided.
Throughout the paper the following notations are used: H , Hu,

d, Hy are abstract Hilbert spaces, ⟨x, y⟩H denotes the canonical
nner product of H , ∥x∥2

H := ⟨x, x⟩H , L (H,H) denotes the space
f linear continuous operators from H to H , A⋆ denotes the adjoint
f a linear operator A, D(A) denotes the domain of A, I denotes the

identity operator of the corresponding space, L2(0, T ,H) denotes
the space of square-integrable functions on (0, T ) with values
in H .

2. Problem statement

Consider a linear evolution equation
dx(t)
dt

= Ax(t) + Bu(t) + Dd(t) , t ≥ 0 , x(0) = x0 , (1)

where A : D(A) ⊂ H → H generates a strongly continuous
semigroup G(t) on a Hilbert space H (see [28] or [29]), x0 ∈ H
is a given initial condition, u ∈ L2(0, T ,Hu) is a control function,
d ∈ L2(0, T ,Hd) an uncertain disturbance, and B ∈ L (Hu,H),

∈ L (Hd,H) are given bounded operators. Then

(t) = G(t)x0 +

∫ t

0
G(t − s)(Dd(s) + Bu(s))ds (2)

is the mild solution of (1) and is continuous on [0, T ] (see
[28, p.104, Lem. 3.1.5]). Note that this mild solution is unique and
it coincides with a so-called weak solution used in the study of
partial differential equations (see [28, p.106, Thm. 3.1.7]).

The output of (1), y(t) ∈ Hy is measured in the following
form:

y(t) = Cx(t) + w(t) , t ∈ [0, T ) , (3)

where C ∈ L (H,Hy) is an observation operator, which repre-
sents a mathematical model of a gauge, and w ∈ L2(0, T ,Hy) is
unknown deterministic measurement noise.

We further assume that x0, d, w are uncertain and belong to
the following bounding set:

E (T ) := {(x0, d, w) : ρT (x0, d, w; S,Q , R) ≤ 1} , (4)

where

ρt (x, d, w; S,Q , R) := ⟨Sx, x⟩H +

∫ t

0
⟨Qd(s), d(s)⟩Hdds

+

∫ t

0
⟨Rw(s), w(s)⟩Hyds,

and S,Q , R are given self-adjoint positive definite bounded linear
operators in H , Hd and Hy respectively. Clearly, E (T ) ⊂ H ×

L2(0, T ,Hd)×L2(0, T ,Hy), and ρT defines a new norm in the space
H × L2(0, T ,Hd) × L2(0, T ,Hy), and E (T ) represents the unit ball
of this space w.r.t. to ρT . In what follows we suppose that Hu and

y are abstract Hilbert spaces.
The aim of this paper is, for a given finite-rank linear operator
: H → Hu and any (fixed) time T < +∞, to design a control

law u ∈ L2(0, T ,Hu) in the form of a functional of the output which,
for all (x0, d, w) ∈ E (T ), steers the state vector of (1) towards the
null-space of F (as close as possible in Hu). More specifically, given
F such that FB : Hu → Hu is a linear bounded invertible operator,
we aim at finding u as a solution of a minimax version of the
classical Mayer optimal control problem:

inf
u

sup
(x0,d,w)∈E (T )

∥Fx(T )∥Hu

s.t. (1)–(3)
(5)

We recall that the classical sliding mode control problem is
(see, [3,10]) to find a feedback control law u which (i) steers the
2

state of (1) towards a given linear hyperplane Fx = 0, and (ii)
guarantees that the state does not leave this plane, provided FB is
a linear bounded invertible operator. It is worth noting [2,3] that
the latter condition is necessary (in the finite-dimensional case)
for existence of a control law, which ensures sliding mode on the
null-space of F . We stress that reaching {x | Fx = 0} exactly may
not be possible (as it is demonstrated by our examples below) due
to the presence of generic L2-disturbances, instead (5) guarantees
that the state will be ‘‘as close as possible’’.

3. Dual description of the reachability set

According to the classical methodology of the sliding mode
control design, the precise knowledge of the so-called sliding
variable σ (t) := Fx(t) is required in order to ensure the motion
f the system (1) on the surface {x | Fx = 0}. In the con-
idered case this information is not available as the output y(t)
s incomplete and subject to deterministic noise, and the state
quation is subject to uncertain deterministic disturbances. In the
ollowing proposition we construct the a priori reachability set
f the evolution equation (1), i.e., the set of all the states of (1)
hich are compatible with all possible outputs y and uncertainty
escription E (T ). This representation is then used to solve (5).

heorem 1. Assume that x is a mild solution of (1) for some
x0, d, w) ∈ E (T ). Then, for any t∗ ∈ [0, T ] the following estimate
olds true:

sup
(x0,d,w)∈E (t∗)

|⟨l, x(t∗) − x̂(t∗)⟩H | = ⟨l, P(t∗)l⟩
1
2
H ∀l ∈ H , (6)

where

• the linear bounded self-adjoint positive definite operator P
is the unique solution of the infinite-dimensional differential
Riccati equation

d
dt

⟨P(t)v, q⟩H = ⟨P(t)A⋆v, q⟩H+⟨P(t)v, A⋆q⟩H +

+ ⟨DQ−1D⋆v, q⟩H−⟨P(t)C⋆RCP(t)v, q⟩H (7)

with P(0) = S−1 (for all v, q ∈ D(A)), and
• x̂ is the unique mild solution of the following evolution equa-

tion:⎧⎨⎩
dx̂(t)
dt

= Ax̂(t) + P(t)C⋆R(y(t)−Cx̂(t)) + Bu(t),

x̂(0) = 0 ,

(8)

Proof. A. Existence of solutions
Let us first note that (7) has the unique solution P , i.e., P(t)

s a linear bounded self-adjoint positive definite operator on
for any finite t ∈ [0, T ], and t ↦→ P(t)x is a continuous

ector-valued function for any x ∈ H [29, p.393,Thm. 2.1]. This
act allows us to represent the unique mild solution of (8) by
eans of an evolution operator Φ(t, s) generated by A−P(t)C⋆RC

see [29, p. 138]). Indeed, it has been shown in [29, p.135,
em. 3.2] that the unique mild solution of the evolution equation
′

= Au + F (t)u + f , u(0) ∈ H exists, provided f ∈ L2(0, T ,H)
nd F (t) is a strongly continuous function with values in L (H),
nd it coincides with the mild solution. Moreover, the strong
olution of the aforementioned equation can be represented in
erms of a so-called evolution operator generated by A+F (t) (see
[29, p.139, f.(3.20)]). Since t ↦→ P(t) is a strongly continuous
function with values in L (H) and t ↦→ P(t)C⋆Ry(t) + Bu(t) ∈

L2(0, T ,H) it follows that there exists an evolution operator
Φ(t, s) generated by A − P(t)C⋆RC such that:
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• Φ(t, s) is a bounded linear operator in H , strongly continu-
ous for all s ≤ t and

Φ(t, s) = Φ(t, τ )Φ(τ , s) , s ≤ τ ≤ t , Φ(t, t) = I

• the unique mild solution of the evolution equation (8),
x̂(0) = 0 and
d
dt

⟨x̂(t), v⟩H = ⟨x̂(t),
(
A⋆

− C⋆RCP(t)
)
v⟩H

+ ⟨P(t)C⋆Ry(t) + Bu(t), v⟩H

is given by

x̂(t) =

∫ t

0
Φ(t, s)(P(s)C⋆Ry(s) + Bu(s))ds . (9)

In what follows we will be using the following representation:

x̂ = x̂n + xu, where
dx̂n
dt

= Ax̂n + PC⋆R(yn(t) − Cx̂n), x̂n(0) = 0 and
ẋu = Axu + Bu, xu(0) = 0, provided yn(t) = y(t) − Cxu(t).

B. Optimality of the estimate
In order to prove (6), we first fix t∗ ∈ (0, T ]. Then, for any

ṽ ∈ L2(0, t∗,Hy), we define

Jt∗ (ṽ) := sup
(x0,d,w)∈E (t∗)

|⟨l, x(t∗)⟩H −

∫ t∗

0
⟨ṽ(t), yn(t)⟩Hydt − ct∗ (u)|

(10)

where ct∗ (u) := ⟨l, xu(t∗)⟩H . To prove (6) we will first show that

inf
ṽ∈L2(0,t∗,Hy)

Jt∗ (ṽ) = ⟨l, P(t∗)l⟩
1
2 , ∀l ∈ H , (11)

nd then we will prove that there exists a unique v̂ ∈

arginfṽ∈L2(0,t∗,Hy) Jt∗ (ṽ) such that:

⟨l, x̂n(t∗)⟩H =

∫ t∗

0
⟨v̂(t), yn(t)⟩Hydt , (12)

hich implies (6) by virtue of (11) and the equality:
t∗

0 ⟨v̂(t), yn(t)⟩Hydt + ct∗ (u) = ⟨l, x̂(t∗)⟩H .
Let us prove (11). We note that x = xn + xu where ẋn =

Axn + Dd, xn(0) = x0 and so

⟨l, x(t∗)⟩H −

∫ t∗

0
⟨ṽ(t), yn(t)⟩Hydt − ct∗ (u)

= ⟨l, xn(t∗)⟩H −

∫ t∗

0
⟨ṽ(t), yn(t)⟩Hydt .

(∗)

Let us further transform the latter formula. By using the semi-
group representation (2) for xn, namely xn(t) = G(t)x0 + LtDd,
where Ltq :=

∫ t
0 G(t − s)q(s)ds, we compute:

⟨l, xn(t∗)⟩H = ⟨G⋆(t∗)l, x0⟩H +

∫ t∗

0
⟨G⋆(t∗ − s)l,Dd(s)⟩Hds,

and∫ t∗

0 ⟨ṽ(t), yn(t)⟩Hydt =
∫ t∗

0 ⟨G⋆(t)C⋆ṽ(t), x0⟩Hdt+∫ t∗

0 ⟨C⋆ṽ(t), LtDd(t)⟩Hdt +
∫ t∗

0 ⟨ṽ, w⟩Hyds .
(∗∗)

We note that∫ t∗

0 ⟨C⋆ṽ(t), LtDd(t)⟩Hdt = ⟨C⋆ṽ, LtDd⟩L2(0,T ,H) =

⟨L⋆
t C

⋆ṽ,Dd⟩L2(0,T ,H) =∫ t∗

0

⟨∫ t∗

t G⋆(s − t)C⋆ṽ(s)ds,Dd(t)
⟩
H
dt .

(∗ ∗ ∗)

Now, let us define the adjoint variable

z(t) = G⋆(t∗ − t)l −
∫ t∗

G⋆(s − t)C⋆ṽ(s)ds . (13)

t

3

By subtracting (∗∗) from (∗) and taking into account (∗ ∗ ∗) and
the definition of z we get:(

⟨l, xn(t∗)⟩H −

∫ t∗

0
⟨ṽ(t), yn(t)⟩Hydt

)2

=

(
⟨z(0), x0⟩H +

∫ t∗

0
⟨D⋆z(t), d(t)⟩Hdt −

∫ t∗

0
⟨ṽ(t), w(t)⟩Hydt

)2

.

Hence, we find that

J2t∗ (ṽ) = sup
(x0,d,w)∈E (t∗)

(
⟨l, xn(t∗)⟩H −

∫ t∗

0
⟨ṽ(t), yn(t)⟩Hydt

)2

= sup
(x0,d,w)∈E (t∗)

⟨

[ z(0)
D⋆z
−ṽ

]
,

[ x0
d
w

]
⟩
2
H×L2(0,t∗,Hd)×L2(0,T ,Hy)

.

(14)

Now, the 2nd line of the latter formula represents the support
functional of the strictly convex bounded set E (t∗), and hence,
for any ṽ ∈ L2(0, t∗,Hy), there exists the unique tuple (x̄0, d̄, w̄) ∈

E (t∗) such that the sup is attained. Indeed, we can compute the
latter sup by applying the generalized Cauchy–Schwartz inequal-
ity: ⟨[ z(0)

D⋆z
−ṽ

]
,

[ x0
d
w

]⟩2
H×L2(0,t∗,Hd)×L2(0,T ,Hy)

≤

ρt∗ (z(0),D⋆z, −v; S−1,Q−1, R−1)ρt∗ (x0, d, w; S,Q , R) .

Since ρt∗ (x0, d, w; S,Q , R) ≤ 1 for any (x0, d, w) ∈ E (t∗) we find
that supE (t∗) in (14) is attained at

x̄0 :=
S−1z(0)
√

ρ̄t∗
, d̄ :=

Q−1D⋆z√
ρ̄t∗

, w̄ :=
−R−1 ṽ√

ρ̄t∗
,

ρ̄t∗ := ρt∗ (z(0),D⋆z, −v; S−1,Q−1, R−1),
(15)

and
J2t∗ (ṽ) = ρt∗ (z(0),D⋆z, −ṽ; S−1,Q−1, R−1) =

⟨S−1z(0), z(0)⟩H +
∫ t∗

0 ⟨Q−1D⋆z,D⋆z⟩H + ⟨R−1ṽ, ṽ⟩Hdt .
(16)

This latter representation shows that to find v̂ ∈ arginfṽ∈L2(0,t∗,Hy)
Jt∗ (ṽ) one needs to solve an LQ-control problem with cost J2t∗ (ṽ)
along mild solutions of the adjoint equation (13). Following
[30, p.263,5.2] we can represent the unique solution v̂ of the
latter LQ-control problem as follows: v̂(t) = RCP(t)z(t), provided
P(t) solves (7). By substituting v̂ into (13) we get the following
evolution equation:
d
dt

⟨ẑ(t), q⟩H = ⟨ẑ, (−A + PC⋆RC)q⟩H , ⟨ẑ(t∗) − l, q⟩H = 0,
∀q ∈ D(A) .

(17)

Following [30, p. 255] we can represent the unique mild solution
of this equation in the following form: ẑ(t) = Φ⋆(t∗, t)l where
the evolution operator Φ has been defined above in subsection A.
The validity of (11) follows from the identity: J2t∗ (v̂) = ⟨l, P(t∗)l⟩H
(see [30, p. 268]).

To conclude the proof we need to show (12). By using the
operator Φ defined above we can represent x̂ as follows:

x̂n(t) =

∫ t

0
Φ(t, s)P(s)C⋆Ryn(s)ds

nd so

⟨l, x̂n(t∗)⟩H =

∫ t∗

0
⟨Φ⋆(t∗, s)l, P(s)C⋆Ryn(s)⟩Hds

=

∫ t∗

0
⟨RCP(s)ẑ(s), yn(s)⟩Hyds

=

∫ t∗

0
⟨v̂(t), yn(t)⟩Hydt . ■
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Using [30, p.339, Th.6.8.3] the following corollary can also be
proven.

Corollary 1. Assume that (A,D) and (A⋆, C⋆) are exponentially
stabilizable. Then

lim
t→+∞

|⟨l, x(t) − x̂(t)⟩H | ≤ ⟨l, P∞l⟩
1
2
H , ∀l ∈ H , (18)

here P∞ is the unique self-adjoint solution of the algebraic Riccati
quation:

⟨P∞v, A⋆v⟩H+⟨A⋆v, P∞v⟩H+

⟨Q−1D⋆v,D⋆v⟩H−⟨RCP∞v, CP∞v⟩H = 0 .
(19)

n addition, A − P∞C⋆RC generates an exponentially stable semi-
roup.

It is worth noting that (6) is describing an ellipsoid, which is
entered at vector x̂(T ) with axes defined by eigenfunctions of
(T ). This ellipsoid is, in fact, the worst-case realization of the
eachability set of (1), i.e., it takes into account all (x0, d, w) ∈

(T ). The estimate (18) describes an ellipsoid which contains all
he states of (1) in the limit t → ∞. Finally, we stress that P(t)
oes not depend on the control u(t). This suggests to design the
ontroller u as a function of the center of the ellipsoid, x̂.

. Control design

Denoting the sliding variable by σ = Fx we derive

σ (T ) = Fx(T ) = σ̂ (T ) + Fe(T ),

|⟨l, e(T )⟩H | ≤ ⟨l, P(T )l⟩
1
2
H , ∀l ∈ H,

where σ̂ (T ) = F x̂(T ), and x̂ satisfies (8).

Theorem 2. If the control u verifies the following equality:

σ̂ (T ) = 0 (20)

then it solves the minimax control problem (5).

roof. Let us first transform the cost function
˜(u) := sup

(x0,d,w)∈E (T )
∥Fx(T )∥Hu . (21)

ince ∥Fx(T )∥Hu = sup∥ℓ∥Hu=1⟨ℓ, Fx(T )⟩Hu we can substitute this
latter representation into the right hand side of (21) and swap
the sup operations, i.e., we can write:

J̃(u) = sup
∥ℓ∥Hu=1

sup
(x0,d,w)∈E (T )

⟨ℓ, Fx(T )⟩Hu .

Now, recall from (10)–(16) that for t∗ = T

J2T (v̂) = sup(x0,d,w)∈E (T )

×

(
⟨l, x(T )⟩H −

∫ T
0 ⟨v̂(t), yn(t)⟩Hydt − cT (u)

)2
=

ρT (ẑ(0),D⋆ẑ, −v̂; S−1,Q−1, R−1) = ⟨l, P(T )l⟩H ,

(22)

where v̂ = RCPẑ and ẑ is the unique mild solution of (17).
Moreover, according to (15) we have that the sup in (22) is
attained at:

x̄0 :=
S−1 ẑ(0)
√

ρ̂T
, d̄ :=

Q−1D⋆ ẑ√
ρ̂T

, w̄ :=
−R−1 v̂√

ρ̂T
,

ρ̂T := ρT (ẑ(0),D⋆ẑ, −v̂; S−1,Q−1, R−1) .
(23)

Denote by y′ the output y′
= Cx′

+ w̄, which corresponds to the
solution x′ of (1) with initial condition x̄0, disturbance d̄ and noise
w̄, and let x̂(·, y′) denote the unique mild solution of (8) which
corresponds to y′. It then follows that

sup(x0,d,w)∈E (T )⟨l, x(T ) − x̂(T )⟩2H =

′ ′ 2 (24)

⟨l, x (T ) − x̂(T , y )⟩H = ⟨l, P(T )l⟩H .

4

Thus, we can write

sup
(x0,d,w)∈E (T )

⟨ℓ, Fx(T )⟩Hu ≥ ⟨ℓ, Fx′(T )⟩Hu =

⟨ℓ, F x̂(T , y′)⟩Hu + ⟨ℓ, Fx′(T ) − F x̂(T , y′)⟩Hu
by (24)

= ⟨ℓ, F x̂(T , y′)⟩Hu + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H

and so

J̃(u) ≥ sup
∥ℓ∥Hu=1

(
⟨F ⋆ℓ, x̂(T , y′)⟩H + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩

1
2
H

)
(25)

for any u ∈ L2(0, T ,Hu). Let u0 be chosen so that F x̂(T ) = 0. Then

J̃(u0) = sup
∥ℓ∥Hu=1

⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H = ∥(FP(T )F ⋆)

1
2 ∥Hu . (26)

Indeed, recalling (24) we get:

J̃(u0) = sup
∥ℓ∥Hu=1

sup
(x0,d,w)∈E (T )

⟨ℓ, Fx(T ) − F x̂(T )⟩Hu =

sup
∥ℓ∥Hu=1

⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H = ∥(FP(T )F ⋆)

1
2 ∥ ,

where ∥(FP(T )F ⋆)
1
2 ∥ denotes the induced operator norm of the

square-root of the finite-rank non-negative operator FP(T )F ⋆. We
claim that J̃(u) > J̃(u0) for any u such that F x̂(T ) ̸= 0. To prove
his it is enough to show that

sup
∥ℓ∥Hu=1

(
⟨ℓ, F x̂(T , y′)⟩Hu + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩

1
2
H

)
≥

∥(FP(T )F ⋆)
1
2 ∥Hu = J̃(u0)

(27)

nd then apply (25). Let us prove (27): ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩H ≥ 0 for
ny ℓ, but ⟨F ⋆ℓ, x̂(T )⟩H can be either positive or negative, depend-
ng on ℓ. There exists ℓ̃ such that ∥ℓ̃∥Hu = 1 and ⟨F ⋆ℓ̃, x̂(T )⟩H ≥ 0.
Denote the set of all such ℓ̃ by S+. We get:

sup
∥ℓ∥Hu=1

(
⟨ℓ, F x̂(T , y′)⟩Hu + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩

1
2
H

)
=

sup
ℓ∈S+

(⟨F ⋆ℓ, x̂(T , y′)⟩H + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H ) ≥

⟨F ⋆ℓ, x̂(T , y′)⟩H + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H ≥

⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H , ∀ℓ ∈ S+ .

nd so

sup
∥ℓ∥Hu=1

(
⟨ℓ, F x̂(T , y′)⟩Hu + ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩

1
2
H

)
≥

supℓ∈S+
⟨F ⋆ℓ, P(T )F ⋆ℓ⟩

1
2
H } .

On the other hand, S+ is the intersection of the sphere {ℓ : ∥ℓ∥ =

1} and the (closed) half-space H+ := {ℓ : φ(ℓ) ≥ 0} where
φ(ℓ) = ⟨F ⋆ℓ, x̂(T , y′)⟩H . Clearly, if ℓ ∈ H+ and φ(ℓ) > 0 then

ℓ ∈ H− where H− is the (open) half-space complement to H+,
.e., H− ∪ H+ = Hu and H− ∩ H+ = ∅. Since the functional

↦→ q(ℓ) := ⟨F ⋆ℓ, P(T )F ⋆ℓ⟩
1
2
H is even, i.e., q(ℓ) = q(−ℓ), we

onclude that supS+
q = sup∥ℓ∥=1 q. This proves (27) which in

turn proves that J̃(u) > J̃(u0) for any u such that F x̂(T ) ̸= 0. The
latter proves (20). ■

Usually (see, e.g. [9,10]), additional technical considerations
are required in order to apply a discontinuous sliding mode con-
trol and prove the existence of solutions in this case. In contrast,
the theorem allows us to construct a continuous feedback control
verifying the condition (20). To this end without loss of generality
assume that the range of F is spanned by orthonormal vectors
φ1 . . . φN so that Fx =

∑N
i=1⟨Fx, φi⟩φi.
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orollary 2. If F ⋆φi ∈ D(A⋆), i = 1 . . .N then the following control
functional

ueq(t)= − (FB)−1F
[
Ax̂(t)+P(t)C⋆R(y(t)−Cx̂(t))

]
(28)

solves (5). The minimal possible worst-case deviation of the state
vector of (1) from the sliding hyperplane is given by

max
(x0,d,w)∈E (T )

∥Fx(T )∥ = ∥FP(T )F ⋆
∥Hu . (29)

and the maximum is attained at the worst-case realizations of
x0, d, w given in (15).

Proof. Note that by plugging ueq into (8) one obtains a per-
turbed operator (I − B(FB)−1F )(A − PC⋆RC). The term involving
P is uniformly continuous, hence the perturbed operator will
be a generator provided so is the term involving A. Clearly,
B(FB)−1FAx =

∑N
i=1⟨x, A

⋆F ⋆φi⟩B(FB)−1φi hence B(FB)−1FA ∈ L (H)
by assumption, and thus A−B(FB)−1FA generates a C0-semigroup.

Now, ∀v ∈ Hu the feedback ueq ensures

⟨F x̂(t), v⟩Hu =∫ t

0
⟨FAx̂(s) + FP(s)C⋆R(y(s) − Cx̂(s)) + FBueq(s), v⟩Huds =∫ t

0
⟨(F − FB(FB)−1F )[Ax̂(s) + P(s)C⋆R(y(s) − Cx̂(s))], v⟩Hu

ds = 0.

Since x̂ starts on the linear sliding hypersurface {F x̂ = 0} as
x̂(0) = 0 it follows that the minimax center of the reachability set
stays on the hyperplane F x̂ = 0 and the actual state x(t) fluctuates
in the ellipsoid centered at x̂, i.e.,

|⟨Fx(t), v⟩Hu | ≤ ⟨F ⋆v, P(t)F ⋆v⟩

1
2
H , ∀v ∈ Hu.

oreover, (21) and (26) imply (29). The very last claim can be
asily deduced from (22) and (23). ■

emark 1. In fact, the feedback ueq is an infinite-dimensional
nalog of what is known as ‘‘equivalent control’’ in sliding mode
ontrol, which can be found explicitly: indeed, ueq depends on P
nd x̂ which can be computed numerically (or even analytically
n some cases). Note that the speed at which x(t) approaches the
liding hyperplane is proportional to the speed of the decay of
he eigenvalues of FPF ⋆. In the infinite-horizon case, the actual
tate of the plant reaches the sliding surface exactly, provided

F ⋆v, P∞F ⋆v⟩

1
2
H = 0 for any v ∈ Hu (see (18)).

5. Approximation of solutions of infinite-dimensional opera-
tor differential riccati equations (ODRE)

To implement the proposed sliding mode control design and
perform numerical experiments, one needs to approximate P(t),
the unique solution of
d
dt

⟨P(t)v, q⟩H = ⟨P(t)A⋆v, q⟩H+⟨P(t)v, A⋆q⟩H +

⟨DQ−1D⋆v, q⟩H−⟨P(t)C⋆RCP(t)v, q⟩H ,

P(0) = P0, (30)

here v, q ∈ D(A⋆), t ∈ [0, T ], and P0 is nonnegative and
elfadjoint. Note that this is Eq. (7) with P0 = S−1. Without loss
f generality, take Q = I and R = I . We follow the lines from
31–33] to construct (PN (t))N , a sequence approximating P(t),
such that strong convergence (uniformly in time) is obtained
assuming that certain conditions are satisfied.

Consider the system (H,A,D, C, P0). Let (HN )N , N ∈ N, be
a sequence of subspaces of H of finite dimension, (ΠN ) the
N

5

corresponding sequence of orthogonal projections ΠN
: H → HN

satisfying limN→∞ ∥ΠNx − x∥ = 0, ∀x ∈ H . Let also (AN )N ,
(DN )N and (CN )N be the sequences of approximating linear and
bounded operators where AN

: HN
→ HN , DN

: Hd → HN and
CN

: HN
→ Hy. Consider also a sequence (P0N )N of nonnegative

and selfadjoint initial conditions. Denote by TN (t) the semigroup
generated by AN . The system (HN ,AN ,DN , CN , P0N ) is the Nth
approximating system for (H,A,D, C, P0) with the corresponding
Riccati equation

ṖN (t) = PN (t)(AN )⋆ + ANPN (t) + DN (DN )⋆

−PN (t)(CN )⋆CNPN (t), t ∈ (0, T ], PN (0) = PN
0 .

(31)

Consider the following assumptions:

Assumption 1 (Convergence Conditions). For every x ∈ H , every
y ∈ Hy and every d ∈ Hd

(i) TN (t)ΠNx → T (t)x as N → ∞, uniformly in t on bounded
subintervals of [0, T ],

(ii) (TN (t))⋆ΠNx → T ⋆(t)x as N → ∞, uniformly in t on
bounded subintervals of [0, T ],

(iii) CNΠNx → Cx as N → ∞,
(iv) (CN )⋆y → C⋆y as N → ∞,
(v) (DN )d → Dd as N → ∞,
(vi) (DN )⋆ΠNx → D⋆x as N → ∞,
(vii) PN

0 ΠNx → P0x as N → ∞.

These assumptions are of the same type as in [32, Assump-
tion (H1) and (H2)] (see also [33, (H2)]) but now on the finite
interval [0, T ]. Note that we also added assumption (vii) on the
convergence of the nonnegative initial conditions.

The following convergence result is a direct consequence
of [31] and [32].

Theorem 3. Consider (HN ,AN ,DN , CN , P0N ) the Nth approximat-
ing systems of (H,A,D, C, P0) such that Assumption 1 is satisfied.
If

viii) the family of pairs (AN , CN )N is uniformly detectable, and
(ix) the family of pairs (AN ,DN )N is uniformly stabilizable,

hen the sequence (PN (t))N of unique and non-negative solutions of
31) converges strongly to P(t) uniformly in t on bounded subinter-
als of [0, T ], where P(t) is the unique non-negative solution of the
iccati equation (30). Moreover, (TN (t))N converges strongly to T (t)
niformly in t on bounded subintervals of [0, T ].

roof. Using similar reasoning as in the proof of [34, Theo-
em 6.9] (see pg. 165), the Riccati equation (30) can be written
s an integral operator Riccati equation similar to [31, (3.28)].
f (i) − (ix) hold and are satisfied, the theorem follows from
31, Theorem 5.1] (or [33, Theorem 2.2]) and [32], now restricted
o the finite-time interval [0, T ]. ■

Note that [33, Theorem 2.2] is contained in [31, Theorem 5.1],
ut the main difference is that in [33, Theorem 2.2] the finite di-
ensional state problems are defined in the projection subspaces.
he uniform detectability condition imposed in [32] can be seen
s a relaxation of the coercivity assumption from [33, Theorem
.2]. The assumptions are satisfied for averaging approximations
f hereditary systems and Galerkin approximation of parabolic
ystems [32,33], so we can implement the proposed sliding mode
ontrol design and perform numerical experiments.

. Examples

In this section we implement the proposed sliding mode con-
rol design and perform numerical experiments on two exam-
les: a delay system (particular hereditary system) and a linear
arabolic equation in two spatial dimensions.
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Fig. 1. Closed-loop behavior of the delayed differential equation (32) when coupled with the proposed controller. The top panels show the trajectories of x1 and x2
s well as the sliding variable σ resulting if the disturbance d and measurement noise w are as shown in the bottom panels. The control input ueq is also shown in
he bottom panels. The panels on the left demonstrate the worst-case d and w (and also initial state x0 , which is not shown) in the ellipsoid (4), as given in (15);
.e. σ (T ) should equal its largest possible value. As can be seen, σ (T ) =

√
FP(T )F ⋆ , as claimed in (29) in Corollary 2. The panels to the right demonstrate the case of

n arbitrary, non-worst-case realization of w, d and x0; we see that the control ueq is effective in steering σ close to zero, and that the actual σ is way below the
orst-case bound (29).
o
[

1
t

H

a

Π

w

−

.1. Delay systems

We consider the system of delayed differential equations that
as used to illustrate the infinite horizon controller in [35];
amely the delayed differential equation with point-delay

ż(t) = A0z(t) + A1z(t − h) + B0u(t) + D0d(t), t ≥ 0,
z(0) = r, z(θ ) = f (θ ), −h ≤ θ < 0,
y(t) = C0x(t) + w(t).

On the space M2 (see e.g. [28, Chapter 2]), the system can be
represented as the abstract evolution equation
dx
dt

(t) = Ax(t) + Bu(t) + Dd(t), t ≥ 0, x(0) = x0,

y(t) = Cx(t) + w(t),
(32)

with the state vector x(t) =

[
z(t)

z(t + ·)

]
. As M2([−h, 0];Rn)

is isometrically isomorphic to Rn
× L2(−h, 0;Rn) (see also [36]),

one may define H = Rn
× L2(−h, 0;Rn) and A, the infinitesimal

generator of the corresponding C0-semigroup, as

A
[

r
f (·)

]
=

[
A0r + A1f (−h)

df
dθ (·)

]
,

ith domain

D(A) =

{[
r

f (·)

]
∈ H | f abs. cont.,

df
dθ

(·) ∈ L2(−h, 0;Rm)

and f (0) = r
}

.

he disturbance operator D : Rd
→ H , measurement operator

C : H → Rd, and input operator B : Ru
→ H are defined by

Dd :=

[
D0d
0

]
,

Cx := C
[

r
f (·)

]
= C0r

and Bu :=

[
B0u

]
.

0
6

To approximate P , the unique non-negative solution of the
operator Riccati equation (30), consider the sequence of finite
dimensional spaces (HN

AVE)N , and (AN
AVE)N , (BN

AVE)N , (DN
AVE)N and

(CN
AVE)N , the sequences of approximating linear and bounded
perators obtained using averaging approximations (AVE) as in
37]:

Let tNj :=
jh
N , for j = 0, . . . ,N , and χN

j the normalized
characteristic functions on [−tNj , −tNj−1) such that ∥χN

j ∥L2 =

. The sequence of finite-dimensional approximating spaces is
hen

N
:=

⎧⎨⎩[ξ, φN
] ∈ H | φN (τ ) =

N∑
j=1

vN
j χN

j (τ ), vN
j ∈ Rn

⎫⎬⎭ ,

nd the projection ΠN
: H → HN is

N
[ξ, φ] :=

⎡⎣ξ,

N∑
j=1

φN
j χN

j

⎤⎦ , φN
j :=

√
N
h

∫
−(j−1)h/N

−jh/N
f (τ )dτ .

The approximating operators on those spaces are

AN
AVE[ξ, φN

] :=

[
A0ξ +

√
N
h
A1v

N
N ,

N
h

N∑
j=1

(vN
j−1 − vN

j )χ
N
j

]
, (33a)

BN
AVEu := ΠNBu = Bu, DN

AVEd := ΠNDd = Dd, (33b)

CN
AVE[ξ, φ]

T
:= CΠN

[ξ, φ]
T

= C[ξ, φ]
T , (33c)

here we take vN
0 =

√
h/Nξ . The operators C and D are compact.

The semigroup T (t), and the operators D and C in combination
with their averaging approximations, satisfy Assumption 1 and
Theorem 3.

As a concrete example, we take A0 =
[

−1 1
1 −3

]
and A1 =[

0.5 0
0 0.5

]
, B0 =

[
1
1

]
, C0 = [1 0], D0 = B0, and h = 2. We dis-

cretize the infinite-dimensional part using the AVE scheme [37]
as laid out above, with N = 128. The matrix representation of
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Fig. 2. As in Fig. 1, the left column demonstrates the worst case, whereas the right column demonstrates some arbitrary values for d, w, x0 . The top panels show
the values of x(t) in 3 locations within Ω , whereas the middle shows the components σi(t), i = 1, 2, 3, of the sliding variable, as well as its norm, and we see that
lso in this case, the worst-case bound is reached as claimed, and the arbitrary case stays well below it. The observations were generated setting c̃ = 1 in every

2nd grid-point of Ω .
b
ξ

i

the operator AN
AVE on HN in the orthonormal basis of characteristic

functions χN
j (t) =

√
N/h · 1

[−
jh
N ,−

(j−1)h
N ]

(t), j = 1, . . . ,N for the
‘‘L2-part’’, is given by

AN
AVE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 0 · · · · · · 0
√

N
h A1√

N
h I2 −

N
h I2 0 · · · 0 0

0 N
h I2 −

N
h I2

. . .
...

0 0
. . .

. . .

...
. . . 0

0 · · ·
N
h I2 −

N
h I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

nd BN
AVE = [B⊺

0 0 · · ·]
⊺, CN

AVE = [C0 0 · · ·]. The initial state is given
y

N
=

⎡⎢⎢⎢⎢⎢⎣
r√

N
h

∫ 0
−h/N f (τ )dτ

...√
N
h

∫
−(N−1)h/N
−h f (τ )dτ

⎤⎥⎥⎥⎥⎥⎦ ,

nd we denote the vector representing the state [ξ, φN
] by xN .

We let the sliding surface be defined by {Fx = 0}, where F
s such that FN

AVE = [
√
1/2

√
1/2 0 · · · 0] and simulate the full

ystem, consisting of the plant (32) with input u = uN
eq,AVE and

the filter (8). We have

uN
eq,AVE = −(FN

AVEB
N
AVE)

−1FN
AVE

[
AN
AVE x̂

N (t) − PN (t)(yN (t)−CN
AVE x̂

N (t))
]
,

where x̂N is the state of the filter (8) and PN (t) is the solu-
tion of the DRE (31). The plant and filter equations are solved
by discretization using the AVE scheme and a symplectic mid-
point integrator with time step dt = 0.002, and the DRE is
solved by conversion into a linear Hamiltonian system which
is then solved by means of the Mobius integrator (a combina-
tion of reinitialization and implicit midpoint rule, as reported
in [38]). Results are shown in Fig. 1, see the caption for an inter-
pretation.
7

6.2. Advection–diffusion equation in 2D

Assume that Ω = (0, 1)2 ⊂ R2, set H = L2(Ω) and Hu = R3,
and let x(t) ∈ H solve the following linear evolution equation:

dx(t)
dt

= Ax(t) + Bu(t) + Dd(t), x(0) = x0 , (34)

where A is a strongly elliptic differential operator with domain
D(A) = H1

0 (Ω) ∩ H2(Ω) (the specific expression of A is given
elow), D = B and Bu(t) = u1(t)+2ξ1ξ2u2(t)+3ξ 2

1 ξ 2
2 u3(t), where

i ∈ (0, 1) denote the spatial variable. Since B ∈ L (Hu,H), and A
s strongly elliptic it follows that (34) has a unique solution x ∈

L2(0, T , D(A)) such that
dx
dt

∈ L2(t0, T ,H), provided x(0) ∈ D(A).
To specify A let 1(a,b)×(c,d) denote the indicator function of

(a, b) × (c, d) and ∂ξi denote the partial derivative with respect
to ξi. Then

Ax =

2∑
i=1

∂ξi (K (ξ1, ξ2)∂ξix − ai(ξ1, ξ2)x)

a1(ξ1, ξ2) = α(ξ1, ξ2) sin(4πξ1), a2 = α(ξ1, ξ2) cos(4πξ2 + 0.2)

α(ξ1, ξ2) = 51(0,0.5)×(0,1.8)(ξ1, ξ2) +
5

100
1(0.5,1)×(0,0.2)(ξ1, ξ2),

K (ξ1, ξ2) = 0.11(0,0.5)×(0,1.8)(ξ1, ξ2) + 0.01/5.

(35)

Finally, let C be the multiplication by a H-function, c̃: Cx(t) =

c̃(ξ1, ξ2)x(ξ1, ξ2, t), and take Fx(t) =

[
2
∫
Ω x(ξ1,ξ2,t)dξ1dξ2∫

Ω ξ1x(ξ1,ξ2,t)dξ2dξ2∫
Ω ξ1ξ2x(ξ1,ξ2,t)dξ2dξ2

]
, i.e.

that the sliding surface is defined by three linear functionals,
namely the mean and two mixed moments of the state vector
x(t). In this specific case, the minimax control problem (5) is to
steer to 0 (as close as possible) the mean and two mixed moments
of a distribution (e.g. concentration of a non-reactive chemical
quantity) which verifies the advection–diffusion equation (34)
with A defined by (35) subject to homogeneous Dirichlet bound-
ary conditions (x(t, ξ1, ξ2) = 0 on ∂Ω), and a bounded unknown
time-varying disturbance f , which belongs to span{1, ξ1ξ2, ξ 2

1 ξ 2
2 },

and observation noise with values in H .
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For the numerical simulations, the operators A, B, C,D were
discretized by means of the spectral element method. The results
are shown in Fig. 2, see again the caption for interpretations.

7. Conclusion

The minimax sliding mode control which solves (5) general-
izes the conventional sliding mode control: it steers the state
of (1) as close as possible in the minimax sense) towards the
hyperplane {x | Fx = 0} (as the exact reaching Fx(T ) = 0,
required in the definition of the conventional sliding mode con-
trol, cannot be guaranteed due to unknown measurement noise
and uncertain model disturbances. We conjecture that the exact
reaching may be guaranteed provided the model disturbance and
measurement noise ‘‘disappear’’ after a given time instant T ∗.
This latter question will require a modification of the differential
Riccati equation and is left for the future research. We stress
that the exact ‘‘numerical’’ reaching, i.e., making the distance
between the actual state x and the sliding hyperplane negligible,
is possible, provided the eigenvalues of the Riccati operator P(t)
rapidly decay to zero (see (6)), and the null-space of the algebraic
Riccati operator P∞ contains the sliding hyperplane.
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