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Modeling Memory Effects in Activity-Driven Networks\ast 

Lorenzo Zino\dagger , Alessandro Rizzo\ddagger , and Maurizio Porfiri\S 

Abstract. Activity-driven networks (ADNs) have recently emerged as a powerful paradigm to study the tem-
poral evolution of stochastic networked systems. All the information on the time-varying nature of
the system is encapsulated into a constant activity parameter, which represents the propensity to
generate connections. This formulation has enabled the scientific community to perform effective
analytical studies on temporal networks. However, the hypothesis that the whole dynamics of the
system is summarized by constant parameters might be excessively restrictive. Empirical studies
suggest that activity evolves in time, intertwined with the system evolution, causing burstiness and
clustering phenomena. In this paper, we propose a novel model for temporal networks, in which a
self-excitement mechanism governs the temporal evolution of the activity, linking it to the evolution
of the networked system. We investigate the effect of self-excitement on the epidemic inception by
comparing the epidemic threshold of a Susceptible--Infected--Susceptible model in the presence and
in the absence of the self-excitement mechanism. Our results suggest that the temporal nature of
the activity favors the epidemic inception. Hence, neglecting self-excitement mechanisms might lead
to harmful underestimation of the risk of an epidemic outbreak. Extensive numerical simulations are
presented to support and extend our analysis, exploring parameter heterogeneities and noise, tran-
sient dynamics, and immunization processes. Our results constitute a first, necessary step toward a
theory of ADNs that accounts for memory effects in the network evolution.

Key words. Hawkes process, epidemic threshold, self-excitement, SIS model, stochastic differential equation,
time-varying network

AMS subject classifications. 37H10, 60H10, 90B15, 92D25
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1. Introduction. Most real-world systems are unceasingly evolving, and social communi-
ties are no exception. Empirical studies have shown that the pattern of connections between
individuals evolves in time [35, 36, 43, 66, 86], and their heterogeneous propensity to generate
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connections is subject to burstiness, which yields temporal clusters of connections separated
by latency periods [3, 8, 27, 37, 40, 46, 85]. These two dynamics are often intertwined through
memory and self-excitement mechanisms, such that the temporal evolution of the system de-
pends on the evolution of the characteristics of the single individuals, and vice versa [87]. Em-
pirical evidence from the analysis of real-world data supports the presence of self-excitement
mechanisms in many biological, social, and economical systems [25, 54, 56]. In this vein, the
more an individual is active in generating links and connections with others, the more he/she
tends to further increase his/her activity in such tasks. Together with other mechanisms, such
as ``rich get richer"" dynamics [64], self-excitement contributes to the emergence of significant
phenomena, such as burstiness, temporal clustering of events, and heavy-tailed distributions,
as shown in [54, 58, 87].

The temporal evolution of the network of interactions has recently been modeled through
activity-driven networks (ADNs) [69]. Early versions of ADNs entail the definition of a time-
invariant activity parameter, which represents an individual's propensity to interact with
other individuals. Then, the pattern of connections is dynamically generated according to
a probabilistic rule determined by the activity parameter. Epidemics [30, 51, 52, 69, 89,
91], percolation [81], the spread of innovation [76], and opinion dynamics [50] have been
extensively analyzed through ADNs, touching on real-world features, such as heterogeneous
attractiveness [2, 71], modularity [62], and coupled structures [48]. Alternative approaches to
deal with time-varying interactions have been formulated in network models of social behavior,
such as adaptive and/or co-evolving networks [29, 33, 38, 79].

Few attempts have been made to account for the temporal evolution of individuals' char-
acteristics within the ADN paradigm. The reduction of social activity due to illness has been
considered in ADN-based epidemic models [59, 74, 75, 90]. However, the mechanisms pro-
posed in these studies are only able to model state-dependent variations and cannot account
for burstiness and clustering phenomena. Some efforts have included memory mechanisms on
the link formation process, which increases the probability to connect with individuals who
have already been contacted in the past [41, 83]. These memory mechanisms elicit the emer-
gence of ``strong"" recurrent connections, but do not affect individual characteristics, which
remain constant throughout the evolution of the network. Finally, significant attempts to
tackle burstiness in temporal networks can be found in [34, 42, 85], where dedicated models
have been established through a modification of the interevent time distribution. However,
both the inclusion of memory [41, 83] and burstiness [34, 42, 85] in these models have a se-
rious drawback. More specifically, the Markov property is lost, thereby hindering analytical
tractability.

Here, we address self-excitement mechanisms within an analytically tractable mathemat-
ical model for temporal networks that generalizes the standard ADN paradigm. Toward
a realistic description of individual self-excitement, we use Hawkes processes [19, 31, 47]
to model nodes' activations, rather than time-homogeneous processes, which are typically
used in standard implementations of ADNs [69, 89]. These time-homogeneous processes may
not reflect the temporal characteristics of real-world phenomena, as extensively discussed
in [68]. Hawkes processes, introduced in the 1970s [31] with a primary application in seis-
mic events [55], have recently become popular in several fields of investigation, encompassing
financial events [5, 16, 32], crime [58, 82], civilian deaths in conflicts [49], events in socialD
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media [9, 73, 87], social interactions [25, 56], and animal locomotion [61].
We first study how self-excitement mechanisms dynamically shape the propensity of indi-

viduals in establishing connections with their peers in our novel mathematical model. Then,
we investigate how the outcome of an epidemic spreading is modified by the introduction
of such an individual dynamics. Our approach allows for the analytical computation of the
epidemic threshold in the thermodynamic limit, that is, when the number of individuals tends
to infinity [44, 45], and reveals that, in our setting, self-excitement dynamics tend to decrease
the epidemic threshold, thus favoring the inception of the epidemic process. This result offers
a strong motivation for our analysis. In fact, neglecting self-excitement might lead to the
underestimation of the risk of the spread of an infectious disease, with harmful consequences
for the society.

A wide range of numerical simulations is presented to deepen the understanding of the
model. We examine the effect of heterogeneity and noise in the self-excitement mechanism
among individuals, the evolution of the epidemic prevalence (also known as epidemic curve)
when the disease becomes endemic, and the combined effect of self-excitement and immuniza-
tion on epidemic spreading. The results of our numerical simulations yield new insights into
the epidemic dynamics. For example, in our model we find that heterogeneity translates into
an increased variability of the activity rate distribution and, differently from what is observed
in the ADN model with memory proposed in [83], immunization seems to further promote the
inception of the epidemic in the presence of self-excitement mechanisms.

The rest of the paper is organized as follows. In section 2, we introduce Hawkes processes
and analyze their long-run behavior. In section 3, we formalize our generalized ADN-based
model that includes self-excitement. Section 4 is devoted to the analytical treatment of the
model. In section 5, we present our numerical results. Finally, section 6 summarizes our
results and concludes the paper.

2. Hawkes processes. Discrete-event dynamical systems, such as the evolution of tem-
poral networks, can be conveniently modeled by point processes that generate the event oc-
currences [13]. A point process is represented by its counting process Nt, taking values in the
nonnegative integer set \BbbN , which counts the number of occurrences of an event up to time
t [7]. Time is treated as a continuous, real variable, taking values in \BbbR +, which is the set of
nonnegative real numbers, such that N0 = 0. The counting process Nt is characterized by a
stochastic law governing the distribution of the interevent times. In this setting, events are
assumed to be instantaneous. Poisson processes are the most used point processes in appli-
cations [7]. They are characterized by a unique (possibly time-varying) parameter at, named
intensity, such that the probability that an event occurs in the time window between t and
t+\Delta t is equal to

(2.1) \BbbP [Nt+\Delta t  - Nt = 1] =

\int t+\Delta t

t
asds+ o(\Delta t).

If at is constant in time and equal to a, the process is said to be homogeneous, the integral
in (2.1) is independent of time t, and it reduces to the product a\Delta t [7].

Due to their analytical tractability, homogeneous Poisson processes have often been used
in the literature to model the occurrence of instantaneous events in social systems [65, 67, 89].D
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However, homogeneous Poisson processes may be inadequate to represent point processes
underlying real-world social systems, whose intensities are seldom constant in time [8, 68].
Hawkes processes have recently emerged as a powerful modeling tool to address this issue [32].
The rationale for these processes is that the intensity of real-world processes is often influenced
by the occurrences of the process itself through two mechanisms: (i) a self-excitement effect,
which increases the intensity at each occurrence of the point process; and (ii) a forgetting
mechanism, through which the self-excitement effect of previous occurrences tends to vanish
in time.

Formally, a Hawkes process is a nonhomogeneous Poisson point process, whose count-
ing process Nt follows (2.1) with a time-varying intensity at that is ruled by the stochastic
differential equation (SDE) [63]

(2.2) dat = \gamma (\^a - at) dt+ JdNt.

Three parameters define Hawkes processes: (i) the jump J \geq 0, which measures the magnitude
of the intensity increase due to the self-excitement effect; (ii) the forgetting rate \gamma > 0, which
determines the velocity of the forgetting process; and (iii) the background activity \^a > 0, which
poses a lower barrier for the forgetting mechanism and represents the intensity of the process
in the absence of self-excitement. In our framework, we set the jump J as a constant. In a
general formulation of Hawkes processes [16, 17, 31], the jump may be set as a random variable
(RV), such that each variation in the intensity would be obtained as a different realization of
the RV.

Equation (2.2) can be integrated by applying Ito's lemma to ate
\gamma t, obtaining [16]

(2.3) at = \^a+ (a0  - \^a) e - \gamma t + J

\int t

0
e - \gamma (t - s)dNs,

where a0 \geq 0 is the initial condition for the intensity and the computation of the integral
requires the concurrent solution of (2.2).

Hawkes processes (Nt, at) satisfy the Markov property [7], since the value of the intensity
at alone encapsulates all the past history of the process up to time t. In fact, given the process
state at time t, its evolution at any time s > t only depends on at, which, in turn, is governed
by (2.2) and only depends on the value of the process at time t.

Remark 2.1. For small time steps \Delta t, a discrete-time approximation of (2.3) is

(2.4) at+\Delta t \approx ate
 - \gamma t + \^a

\bigl( 
1 - e - \gamma t

\bigr) 
+ J\xi t,

and the corresponding evolution of the Hawkes process is

(2.5) Nt+\Delta t \approx Nt + \xi t,

where \xi t is a Poisson-distributed RV with intensity at\Delta t. Also, when \Delta t \rightarrow 0, the probability
that \xi t assumes values larger than 1 becomes negligible [7]. Therefore, the Poisson RV \xi t can be
approximated by a Bernoulli RV with parameter at\Delta t [7]. This discrete-time approximation
enables the implementation of fast numerical simulations.D
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Figure 1. Comparison between sample path (a) and intensity (c) of a homogeneous Poisson process with
intensity 1, and the corresponding quantities (b), (d) in a Hawkes process with a0 = 1, \^a = 0.5, J = 0.4, and
\gamma = 0.8. The activity of the Hawkes process presents burstiness, and its events tend to cluster close to the
intensity peaks.

Figure 1 compares a homogeneous Poisson process with a Hawkes process, highlighting
that the events of a Hawkes process tend to occur in clusters. This feature is consistent with
the phenomenon of burstiness in social behavior [8, 27, 46]. An alternative strategy to include
burstiness into network models consists of the use of non-Poisson renewal processes, which
can represent any desired interevent distribution [34, 42]. However, these models do not share
the Markov property, thereby challenging their analytical treatment. The Markov property
enables the proof of the following results concerning the first two moments of the intensity of
Hawkes processes, which will be useful in what follows.

Lemma 2.2. Let (Nt, at) be a Hawkes process such that J/\gamma < 1. Then, at converges to an
asymptotic invariant distribution a\infty such that

(2.6) \BbbE [a\infty ] =
\^a

1 - J
\gamma 

and \BbbE [a2\infty ] =
\^a2\Bigl( 

1 - J
\gamma 

\Bigr) 2 +
J2\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2 .
Proof. Following [16], we can describe the evolution of \BbbE [at] and \BbbE [a2t ] through the follow-

ing pair of ordinary differential equations (ODEs):

d\BbbE [at]
dt

= \gamma \^a+ (J  - \gamma )\BbbE [at],(2.7a)D
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d\BbbE [a2t ]
dt

= (J2 + 2\gamma \^a)\BbbE [at] + 2(J  - \gamma )\BbbE [a2t ].(2.7b)

The derivation of these ODEs is performed in a probabilistic framework. The Markov property
of the Hawkes process allows for the application of Dynkin's formula [63], that is,

(2.8) \BbbE [aht ] = ah(0) + \BbbE 
\biggl[ \int t

0
\scrL 
\Bigl[ 
ahs

\Bigr] 
ds

\biggr] 
,

where the operator \scrL [\cdot ] is the infinitesimal generator of the stochastic process [63]. For the
case of Hawkes processes, \scrL [ahs ] has been explicitly computed in [16]. Finally, the Fubini--
Tonelli theorem allows for swapping the order of expectation and integration operators, and
differentiation with respect to variable t yields (2.7a) and (2.7b). Further details can be found
in [16, 19].

The integration of (2.7a) under the condition J < \gamma is straightforward [17], yielding

(2.9) \BbbE [at] =
\^a

1 - J
\gamma 

+

\Biggl( 
a(0) - \^a

1 - J
\gamma 

\Biggr) 
e - (\gamma  - J)t,

and, similarly, the integration of (2.7b) for J < \gamma gives

(2.10)

\BbbE [a2t ] =
\^a2\Bigl( 

1 - J
\gamma 

\Bigr) 2 +
J2\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2
+

\left[    
\Biggl( 
a(0) - \^a

1 - J
\gamma 

\Biggr) 2

 - 
J2

\biggl( 
2a(0) - \^a

1 - J
\gamma 

\biggr) 
2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 
\right]    e - 2(\gamma  - J)t

+

\left[    2
\Biggl( 
a(0) - \^a

1 - J
\gamma 

\Biggr) 
\^a\Bigl( 

1 - J
\gamma 

\Bigr) +

J2

\biggl( 
a(0) - \^a

1 - J
\gamma 

\biggr) 
\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 
\right]    e - (\gamma  - J)t.

The proof of the asymptotic results is completed by computing the limit of (2.9) and (2.10)
for t \rightarrow \infty .

For the purpose of this work, the convergence of the first two moments of the intensity is
sufficient to perform further computations. However, for the sake of completeness, we remark
that for J/\gamma < 1, the intensity at weakly converges to a stationary distribution a\infty , whose first
two moments are those detailed in (2.6). Then, a phase transition occurs at J = \gamma , separating
a subcritical (stable) regime and a supercritical (unstable) one. In the supercritical regime, the
intensity at does not weakly converge to any stationary distribution. Under our assumptions,
the system is always in the stable regime. For further details, see [12, 17].

Remark 2.3. From Lemma 2.2, we observe that the behavior of the quantities of interest,
i.e., the first two moments of the intensity, is subject to the following set of considerations.

\bullet The ratio J/\gamma \in [0, 1) controls the increase in the asymptotic average intensity with
respect to the background intensity: when the ratio is equal to 0, the two averages
coincide; as the ratio tends to 1, the asymptotic average intensity grows.D
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\bullet The ratio J2/\gamma \in \BbbR + regulates the asymptotic variability of the intensity: the larger
the ratio, the broader the asymptotic distribution of the intensity.

\bullet The difference \gamma  - J determines the speed of convergence to the asymptotic quantities.
The larger this difference, the faster the convergence is. Slow convergence occurs
if either (i) J and \gamma are both close to 0, or (ii) J and \gamma are large but very close
to each other. However, (i) is the case where the self-excitement is negligible and
(ii) is the extreme case close to the phase transition where the asymptotic average
intensity blows up. Therefore, under our assumptions on J and \gamma , if self-excitement is
nonnegligible, fast convergence can always be assumed, so that the quantities always
converge exponentially to their corresponding asymptotic values.

In the rest of this work, we associate a Hawkes process with each individual of a population,
in order to model his/her activation patterns. To enhance readability, we will denote the time
variable of the Hawkes processes in parentheses, whereas subscripts will be used to refer to
individual Hawkes processes. Therefore, the values of the counting process and its intensity
at time t for the Hawkes process associated with individual v will be denoted by Nv(t) and
av(t), respectively.

3. ADN+HP model. Here, we formalize our model by including into the ADN paradigm
self-excitement mechanisms, defined through Hawkes processes. We name the resulting model
ADN+HP.

In the literature, ADNs have been defined according to two different formalisms: the orig-
inal formulation comprises a discrete-time process [69], while a continuous-time counterpart
has been proposed in [89, 90]. In [89], it has been proved that the two formulations coincide in
the limit when the time-step of the discrete-time model tends to 0. Moreover, a technique to
rescale the parameters from one model to the other has been presented and discussed therein.
The continuous-time framework has the advantages of relying on fewer parameters and being
independent of the confounding factors due to the selection of the discrete time-step [72],
ultimately leading to a model that is amenable to analytical treatment.

The considerations above and the original definition of Hawkes processes in continuous
time prompt us to formalize our model using continuous-time ADNs. However, it is straight-
forward to move to the discrete-time formalism when needed, for example during numerical
simulations [89].

We consider a population of n individuals, each one identified by a node on a temporal
network \scrG = (\scrV , \scrE (t)), where \scrV = \{ 1, . . . , n\} is the node set and \scrE (t) is a time-varying link set.
Node v activates according to a Hawkes process (Nv(t), av(t)), and each process is independent
of the others. Specifically, av(t) is governed by the following SDE:

(3.1) dav(t) = \gamma v (\^av  - av(t)) dt+ JvdNv(t), v \in \scrV ,

with initial condition av(0) > 0.
We summarize the algorithm to generate temporal networks according to a continuous-

time ADN+HP model as follows:
1. At time t = 0, we set \scrE (t) = \emptyset , and, for each node v \in \scrV , an independent Hawkes

process (Nv(t), av(t)) is initialized with given initial intensity av(0).D
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2. If the Hawkes process associated with node v has a jump at time t, then node v
activates.

3. Once node v activates, then it generates an instantaneous undirected link by connecting
to a node in w \in \scrV uniformly chosen at random. The undirected link \{ v, w\} is added
to \scrE (t).

4. The instantaneous link is immediately removed from the link set, and the procedure
reverts to step 2.

The mechanism described above creates ephemeral connections through which pairs of
individuals can establish spreading-like dynamical processes, such as epidemic spreading, ex-
change of information, payments, etc., according to the specific spreading model adopted. In
this formulation, self-loops may be present, such that a node is allowed to create a connection
with itself. A model without self-loops can be obtained by modifying step 3 of the algorithm
above by imposing that the node w is chosen from \scrV \smallsetminus \{ v\} . In the specific applications dis-
cussed in this paper and in the thermodynamic limit of large-scale populations, the presence of
self-loops has a negligible effect on the overall evolution. However, in other applications and/or
in different settings, self-loops might not be dismissed. Hence, the possibility of generating
time-varying networks either with or without self-loops could be of interest; see, e.g., [24].

Hence, the ADN+HP model is defined by the following parameters:
\bullet the node set \scrV = \{ 1, . . . , n\} ;
\bullet the n-dimensional jump vector J \geq 0 (entrywise), whose vth component Jv represents

the activity increase after an activation of node v;
\bullet the n-dimensional forgetting rate vector \gamma > 0 (entrywise), whose vth component
\gamma v represents the velocity with which individual v forgets its excitement due to its
previous activations;

\bullet the n-dimensional initial activity rate vector a(0) > 0 (entrywise), whose vth compo-
nent av(0) represents the initial activity rate of node v; and

\bullet the n-dimensional background activity rate vector \^a > 0 (entrywise), whose vth com-
ponent \^av represents the background activity rate of node v.

Remark 3.1. If J = 0 and a(0) = \^a, we retrieve the standard ADN model [69, 89, 90].
Therefore, the ADN+HP model encompasses and generalizes the standard ADN model.

Remark 3.2. Real-world features that have been successfully included within the standard
ADN framework can be readily included in the proposed ADN+HP model. These features
encompass behavioral changes due to node state [74], heterogeneous propensity of nodes to
attract connections [2, 71], modular structure [62], and interactions involving more than two
individuals [70]. Furthermore, the addition of memory mechanisms related to the emergence
of ``strong"" recurrent connections [41, 83] is straightforward. Communication and reaction
delays can be also included, similarly as in [80].

4. Analytical study of ADN+HP. Here, we analyze the ADN+HP model in the thermo-
dynamic limit, i.e., for n \rightarrow \infty and assuming that the model parameters, if they depend on n,
then converge uniformly to finite quantities [44, 45]. Specifically, we study the evolution of the
activity rate distribution and its effect on the epidemic threshold of a Susceptible--Infected--
Susceptible (SIS) model [28]. This analysis offers an example where the self-excitement mech-D
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anism influences the evolution of the overall network dynamics, thereby emphasizing the ne-
cessity of including self-excitement mechanisms in realistic mathematical models of temporal
networks.

The interest in the study of epidemic models is not limited to the epidemiological field.
In fact, epidemic-like models find several applications in various areas of research that deal
with spreading processes [66]. For instance, the inclusion of social phenomena in epidemic-like
models can serve to study some aspects of the spread of innovation [23, 76], opinions [53], and
false news [84] in social networks, or to predict and control the spread of mutant species in
geographical networks [88].

In our analysis, we hypothesize that self-excitement causes nonnegligible jumps (i.e.,
Jv > 0 \forall v \in \scrV ) and that the involved Hawkes processes are in the subcritical regime (i.e.,
Jv < \gamma v \forall v \in \scrV ). Under these premises, following Remark 2.3, the moments of the intensity
of the Hawkes processes rapidly converge to their asymptotic values, according to Lemma 2.2.
Toward an analytical treatment of the problem, we also assume that self-excitement and for-
getting mechanisms act homogeneously on the whole population. More formally, all the nodes
activate according to Hawkes processes with the same jump and forgetting rate, i.e., Jv = J
and \gamma v = \gamma \forall v \in \scrV , and, possibly, different initial and background activity rates av(0) and \^av.
The heterogeneity among individuals is treated through the initial and background activity
rates, thereby yielding 2n free parameters to calibrate the model and fit real-world parameters.
The effect of further heterogeneity factors is numerically analyzed in subsection 5.1.

4.1. Evolution of the activity rate distribution. We investigate the effect of self-excitement
in the evolution of the activity rate distribution in ADNs+HP. Specifically, we show that the
self-excitement mechanism produces broader activity rate distributions than the distribution
of the background activity rates.

To study the evolution of the activity rate distribution, we define its moments as

(4.1) Mai(t) :=
1

n

\sum 
v\in \scrV 

aiv(t)

for i \geq 1. In general, given an n-dimensional vector x, we define Mx as its statistical mean.
We assert the following lemma.

Lemma 4.1. Consider n nodes connected through a temporal network evolving according
to an ADN+HP with initial activity rate vector a(0) and background activity rate vector \^a.
Then, in the thermodynamic limit, the following equalities hold almost surely:

lim
t\rightarrow \infty 

Ma(t) =
M\^a

1 - J
\gamma 

,(4.2a)

lim
t\rightarrow \infty 

Ma2(t) =
M\^a2\Bigl( 

1 - J
\gamma 

\Bigr) 2 +
J2M\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2 .(4.2b)

Proof. In the thermodynamic limit, under the hypothesis J < \gamma , the Kolmogorov strongD
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law of large numbers [15] implies that, almost surely,

(4.3) Mai(t) =
1

n

\sum 
v\in \scrV 

aiv(t) =
1

n

\sum 
v\in \scrV 

\BbbE [aiv(t)] = M\BbbE [ai(t)].

Using Lemma 2.2, and specifically (2.9), we write

(4.4) Ma(t) =
M\^a

1 - J
\gamma 

+

\Biggl( 
Ma(0)  - Ma(0)

M\^a

1 - J
\gamma 

\Biggr) 
e - (\gamma  - J)t.

Then, using (2.10), we obtain

(4.5)

Ma2(t) =
M\^a2\Bigl( 

1 - J
\gamma 

\Bigr) 2 +
J2M\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2 +Ma2(0)e
 - 2(\gamma  - J)t

+

\left[   M\^a2\Bigl( 
1 - J

\gamma 

\Bigr) 2  - 
2M\^aa(0)

1 - J
\gamma 

 - 
J2Ma(0)

\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) +
J2M\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2
\right]   e - 2(\gamma  - J)t

+

\left[   2 Ma(0)\^a\Bigl( 
1 - J

\gamma 

\Bigr)  - M\^a2\Bigl( 
1 - J

\gamma 

\Bigr) +
J2Ma(0)

\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr)  - J2M\^a

\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2
\right]   e - (\gamma  - J)t.

The computation of the limit for t \rightarrow \infty of (4.4) and (4.5) yields the claim.

While the effect of the initial distribution vanishes exponentially fast in time, the asymp-
totic distribution of the activity rates is influenced by the background activity and by the two
parameters of the Hawkes process J and \gamma . The effect of self-excitement resides in the increase
of the dispersion of the activity rates with respect to the background activity rate distribu-
tion. This feature is typically measured through the coefficient of variation (also known as
the relative standard deviation), which is the ratio between the standard deviation and the
mean [59],

(4.6) cV [a] :=

\sqrt{} 
Ma2  - M2

a

Ma
 - \rightarrow 

\sqrt{} 
c2V [\^a] +

J2

2\gamma M\^a
.

From (4.6), we note that the asymptotic distribution of the activity rates of an ADN+HP
process consistently exhibits a more increased dispersion than the background distribution.
Moreover, (4.6) highlights the effect of the model parameters. Large values of the jump J tend
to drive the activity rates to a broader distribution. On the other hand, an increase in the
forgetting rate \gamma and/or in the mean background activity M\^a yields a narrower distribution.

Figure 2 illustrates an instance of the evolution of the activity rate distribution in an
ADN+HP, supporting our analytical findings. For the case presented therein, we start from a
homogeneous initial configuration (coinciding with the background one), where all the nodes
have the same activity rate av(0) = 0.5. Then, self-excitement tends to promote the variability
in the activity rate distribution of the system, producing a broader asymptotic distribution.D
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Ma = 0.50

Ma2 = 0.00

cV [a] = 0.00

(a) t = 0

Ma \approx 0.64

Ma2 \approx 0.45

cV [a] \approx 0.32

(b) t = 1

Ma \approx 0.75

Ma2 \approx 0.64

cV [a] \approx 0.38

(c) t = 2

Ma \approx 0.84

Ma2 \approx 0.82

cV [a] \approx 0.40

(d) t = 3

Ma \approx 0.92

Ma2 \approx 0.98

cV [a] \approx 0.41

(e) t = 4

Ma \approx 0.98

Ma2 \approx 1.12

cV [a] \approx 0.41

(f) t = 5

Figure 2. Simulation of the evolution of the activity rate distribution for an ADN+HP model with
n = 100, 000 nodes, starting from a homogeneous initial condition a(0) = 0.5, which also coincides with the
background activity rate. Model parameters are J = 0.3 and \gamma = 0.5. From simulations, we observe that the
distribution becomes broader and more disperse, which supports our theoretical predictions.

From Lemma 4.1, we analytically compute Ma(\infty ) = 1.25, Ma2(\infty ) = 1.875, and cV [a(\infty )] \approx 
0.4472. These results are consistent with our numerical simulations, where at t = 200 we
determine Ma(200) \approx 1.2514, Ma2(200) \approx 1.8706, and cV [a(200)] \approx 0.441.

The results in Lemma 4.1 hold true only in the thermodynamic limit n \rightarrow \infty . However,
the numerical simulations in Figure 3 suggest that the asymptotic values of the moments of the
activity rate distribution and their corresponding rates of convergence in the thermodynamic
limit are valid approximations for relatively small population sizes. Specifically, the accuracy
of the approximations is within 2\% for n > 1000.

4.2. Epidemic threshold for the SIS epidemic model. We investigate the role of self-
excitement on the inception of an epidemic outbreak. In particular, we focus on the analytical
computation of the epidemic threshold of an SIS epidemic process.

As we embed an SIS epidemic model in the network, a variety of modeling choices are
available, depending on the specific properties of the network and on the underlying SIS
mechanisms [60]. Consistently with [89], we define an SIS model on an ADN+HP as follows.
Each node v \in \scrV represents an individual of a population and is given a binary state Yv(t) \in 
\{ 0, 1\} to describe whether individual v at time t is susceptible to the epidemic (Yv(t) = 0) or
infected (Yv(t) = 1). The state of the nodes is updated as the dynamics evolve according to
two competing mechanisms:

\bullet Spreading. When a link is generated by the ADN+HP mechanism, an epidemic can
spread through it. Specifically, if the undirected link (v, w) is generated, Yv(t) = 0,
and Yw(t) = 1, then v contracts the infection and instantaneously changes its state toD
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10 20 30 40

0.5

1

0
0

t

Ma(t)

ODE
n = 100
n = 1000
n = 10000

(a) First moment (uniform)

10 20 30 40

1

2

0
0

t

Ma2(t)

ODE
n = 100
n = 1000
n = 10000

(b) Second moment (uniform)

10 20 30 40

1.2

1.4

1.6

0
1

t

Ma(t) ODE
n = 100
n = 1000
n = 10000

(c) First moment (random)

20 40 60 80

1.8

2

2.2

2.4

0
1.6

t

M2
a(t) ODE

n = 100
n = 1000
n = 10000

(d) Second moment (random)

Figure 3. Convergence of the first two moments of the activity rate distribution for an ADN+HP model
with increasing numbers of nodes, n = 100 (violet dashed), n = 1000 (green dotted), and n = 10, 000 (red dash-
dotted), compared with analytical predictions in the asymptotic limit (solid blue), with homogeneous background
activity rate \^a = 0.5, starting from (a)--(b) a uniform initial condition a(0) = \^a, and (c)--(d) a heterogeneous
initial condition, distributed uniformly at random in [1, 2]. Model parameters are J = 0.3 and \gamma = 0.5.

1 with a fixed probability \lambda \in [0, 1].
\bullet Recovery. Infected nodes recover according to independent homogeneous Poisson pro-
cesses with rate \mu > 0, updating their state from 1 to 0 and becoming susceptible to
the epidemic again.

This SIS model exhibits a phase transition between two regimes: one where the epidemic
quickly extinguishes, and another where the disease spreads over the population, becoming
endemic [6]. The phase transition between these two regimes occurs when passing a specific
value of the ratio between the two model parameters \sigma = \lambda /\mu . This value is called the epi-
demic threshold and depends on specific properties of the network of interactions among the
individuals of the population [65, 67], degree-correlations [10], structures [22], and seasonal-
ity [4]. The precise definition of the two regimes changes according to the modeling choices. In
the thermodynamic limit considered in this paper, the fast extinction regime is characterized
by trajectories that converge to the disease-free equilibrium, while in the endemic regime, tra-
jectories with an initial condition different from the disease-free equilibrium do not convergeD

ow
nl

oa
de

d 
12

/0
5/

20
 to

 1
29

.1
25

.5
8.

21
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2842 L. ZINO, A. RIZZO, AND M. PORFIRI

to it. Other definitions of the two regimes involving the time to extinction can be adopted
when studying finite-size populations [21].

The evolution of the system (i.e., the dynamics of the health state of each individual) is
governed by an n-dimensional Markov process on the state space \{ 0, 1\} n, whose size grows ex-
ponentially with n, challenging its direct analysis for large-scale systems. Hence, the problem
is often solved by studying a continuous relaxation of the dynamics, whose analysis is exact
in the thermodynamic limit. Specifically, we compute the epidemic threshold by studying the
local linear stability of the origin for the following system of ODEs:

(4.7) \.yv :=
d

dt
\BbbE [Yv] =  - \mu yv + (1 - yv)

\Biggl( 
av(t)

1

n

\sum 
v\in \scrV 

yw +
1

n

\sum 
v\in \scrV 

aw(t)yw

\Biggr) 
, v \in \scrV .

System (4.7) models the evolution of the probability of each individual of being infected,
rather than the evolution of his/her health state [44, 45, 57, 90].

The analysis of (4.7) is not trivial, due to the presence of the time-varying parameter av(t)
governed by the SDEs in (3.1). However, in the thermodynamic limit, the analysis can be
carried out by means of the law of large numbers and leveraging the asymptotic results for
Hawkes processes proved in Lemma 4.1. The following theorem summarizes our results.

Theorem 4.2. Consider an SIS epidemic model on an ADN+HP. Then, if J < \gamma , the
epidemic threshold is

(4.8) \sigma HP =
1 - J

\gamma 

M\^a +
\sqrt{} 
M\^a2 +

J2

2\gamma M\^a

.

Specifically, for \sigma < \sigma HP , the system is in the fast extinction regime and the epidemic reaches
the disease-free equilibrium. On the contrary, for \sigma > \sigma HP , the system is in the endemic
regime and the epidemic spreads over the population.

Proof. In order to study the linear stability of the origin of the system (4.7), we define a
reparametrization of the system through the following macroscopic variables:

(4.9) xi(t) =
1

n

\sum 
v\in \scrV 

ai - 1
v (t)yv(t),

for i \in \BbbZ +, which is the set of positive integer numbers. The first two macroscopic variables
have a straightforward physical interpretation. Quantity x1 counts the fraction of overall
infected individuals, while x2 measures the arithmetic average of the activity rates of infected
individuals.

We note that av(t) > 0 for any t \geq 0, since \^av > 0 and av(0) > 0. Therefore, the
origin in (4.7) coincides with the one in the system of macroscopic variables. In addition,
this origin is an asymptotically stable equilibrium of (4.7) if and only if it is asymptotically
stable for (4.10a). We also notice that the condition x1 = 0 implies that all the macroscopic
variables xj = 0, for any j \geq 1. Hence, it is sufficient to study the linear stability of x1 = 0 to
ensure the stability of the origin. Following [89] and neglecting second-order terms (which doD
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not influence the stability of the origin), the evolution of the first two macroscopic variables
about the origin is governed by the following ODEs:

\.x1 = (\lambda Ma(t)  - \mu )x1 + \lambda x2,(4.10a)

\.x2 = \lambda Ma2(t)x1 + (\lambda Ma(t)  - \mu )x2,(4.10b)

coupled with the 2n equations in (2.7a) and (2.7b) for the evolution of \BbbE [av] and \BbbE [a2v], v \in \scrV .
These equations determine the evolution of Ma(t) and Ma2(t), shown in (4.4) and (4.5).

Hence, we linearize (4.10a) and (4.10b) about the origin, and the 2n equations for \BbbE [av]
and \BbbE [a2v] about the (unique stable) equilibrium computed in Lemma 2.2. The obtained
linearized system is block-triangular, since the blocks corresponding to the equations derived
from (2.7a) and (2.7b) are independent of the macroscopic variables. The stability of these
blocks has already been shown in Lemma 2.2. Hence, the stability of the origin is driven by
the 2\times 2 block related to the variables x1 and x2, i.e.,

(4.11) J =

\left[       
 - \mu + \lambda 

Ma

1 - J
\lambda 

\lambda 

\lambda 

\left(   M\^a2\Bigl( 
1 - J

\gamma 

\Bigr) 2 +
J2M\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2
\right)    - \mu + \lambda 

Ma

1 - J
\lambda 

\right]       .

The largest eigenvalue of J is equal to

(4.12) x =  - \mu + \lambda 

\left[   Ma

1 - J
\lambda 

+

\sqrt{}    M\^a2\Bigl( 
1 - J

\gamma 

\Bigr) 2 +
J2M\^a

2\gamma 
\Bigl( 
1 - J

\gamma 

\Bigr) 2
\right]   .

This quantity is negative if

(4.13)
\lambda 

\mu 
<

1 - J
\gamma 

M\^a +
\sqrt{} 
M\^a2 +

J2

2\gamma M\^a

,

which provides the linear stability condition for the origin.
Before concluding the proof, we remark that this approach cannot fully determine the

evolution of the system, since second-order terms cannot be neglected when the system tra-
jectories are away from the origin. Following [89], specific ODEs for the evolution of the
macroscopic variables xj with j \geq 3 should be considered.

Remark 4.3. In the absence of self-excitement (i.e., J = 0), the epidemic threshold for the
SIS model in (4.8) coincides with the one found for ADNs in their original formulation [69].

We conclude this section by comparing the epidemic threshold determined in Theorem 4.2
with the threshold for ADNs with time-invariant activity rates that can be found in [69, 89].
This comparison allows for an improved understanding of the effect of self-excitement on the
network propensity to the inception of an outbreak. To perform a fair comparison, we set
the parameters of the two models such that the two activity rate distributions are consistent,
in the sense that each node i \in \scrV has the same expected activity rate in the two models.
Specifically, we compare the SIS model defined above onD
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1. an ADN+HP with parameters J, \gamma , and \^a and initial activity rate distribution a(0)
coinciding (entrywise) with the expected asymptotic activity rate distribution, that is,

(4.14) av(0) = \BbbE [av(\infty )] =
\^av

1 - J/\gamma 
, v \in \scrV ; and

2. a (continuous-time) ADN [89] with time-invariant activity rates bv = av(0) \forall v \in \scrV ,
equal (entrywise) to the initial and the expected asymptotic values of the ADN+HP
model.

From here on, we will refer to two temporal network models with these characteristics as an
ADN+HP and its corresponding ADN with time-invariant rates (or standard ADN).

Remark 4.4. By way of construction, the ADN+HP and its corresponding ADN with
time-invariant rates are such that, for any node v \in \scrV and any time t \in \BbbR +, the expected
activity rate in the ADN+HP model coincides with the time-invariant activity rate of the
same node for the standard ADN.

The epidemic threshold of the SIS model for the ADN+HP is denoted by \sigma HP , while
\sigma ADN is the one of the corresponding standard ADN. According to Theorem 4.2, their ratio
is

(4.15)
\sigma HP

\sigma ADN
=

M\^a +
\surd 
M\^a2

M\^a +
\sqrt{} 
M\^a2 +

J2

2\gamma M\^a

< 1.

Thus, the ADN+HP has a higher propensity toward the inception of epidemic outbreaks
than the corresponding standard ADN. From (4.15), we can explicitly quantify this increased
propensity as a function of the model parameters. Specifically, while the epidemic threshold
has a nontrivial dependence on the background activity rate distribution through its first two
moments, the dependence on the self-excitement mechanism is clear and strictly related to the
ratio J2/\gamma . The larger this ratio, the more prone the system is to the inception of epidemic
outbreaks. Figure 4 illustrates this behavior for two significant cases of background activity
rate distributions: power-law and homogeneous.

An increase in the network propensity toward the inception of the SIS epidemic has already
been documented through numerical simulations that account for memory in the process of
link generation [41, 83]. For homogeneous self-excitement parameters and under reasonable
assumptions, we have analytically demonstrated this phenomenon. We have been successful
in explicitly quantifying the increase of the network propensity to the inception of epidemics
as a function of model parameters.

Based on the results on the epidemic threshold discussed above, we stress the importance of
including self-excitement into the network dynamics through an explanatory example. Imagine
that, after a few cases of a disease have been reported, we had developed a mathematical model
to predict its spread. Suppose also that, in order to formulate this model, we had adopted
a standard ADN with time-invariant activity rates, thereby neglecting any self-excitement
effect. As a consequence, we would overestimate the epidemic threshold, and consequently
underestimate the danger of the outbreak, with potential catastrophic consequences for the
whole population. Figure 5 illustrates this hypothetical scenario. The simulation of the SISD
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0
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J2/\gamma 

\sigma HP /\sigma ADN
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Power-law

Figure 4. Ratio between the epidemic thresholds for an SIS model on an ADN+HP and on the corre-
sponding ADN with time-invariant rates for increasing values of J2/\gamma and different background activity rates:
homogeneous with \^a = 0.225 (light blue solid), and power-law distributed with exponent 2.09 and lower cut-off
0.15 (red dashed).

20 40 60 80 100 120 140 160 180

0.05

0.1

0
0

t

x1(t)

ADN+HP
Time-invariant

Figure 5. Sample paths of an SIS model (fraction of infected individuals) on an ADN+HP (light blue
solid) and the corresponding ADN with time-invariant activity rates (red dashed) with homogeneous background
activity rates \^a = 0.225. Model parameters are n = 10, 000, \lambda = 0.43, \mu = 0.4, J = 0.4, \gamma = 0.8, and the
initial fraction of infected individuals x1(0) = 0.005. The ADN with time-invariant activity rates is in the fast
extinction regime, since \lambda /\mu < \sigma \approx 1.1111, while the ADN+HP is the endemic regime, since \lambda /\mu > \sigma HP \approx 
1.1054 (computed according to Theorem 4.2).

model on a standard ADN (blue curve) suggests a fast extinction of the disease (being the
parameters below the epidemic threshold \sigma ), while the one performed with self-excitement
yields to the inception of an outbreak.

5. Numerical simulations. Here, we deepen our analysis of ADNs+HP through Monte
Carlo numerical simulations, toward an improved understanding of the effects of self-excitation.
The simulation of Hawkes processes is performed using the algorithm proposed in [18], whereas
the continuous-time ADNs (for both the simulated models) are generated using a Gillespie
algorithm [26]. Unless otherwise specified, the parameters used in epidemic models are those
estimated for the real-world case study of an influenza outbreak in [89].

Our numerical computations pursue three objectives. First, we investigate the effect of
heterogeneity and noise in the two parameters J and \gamma . Then, we strengthen the analysis of
the SIS model by estimating the evolution of the epidemic prevalence through Monte CarloD
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simulations and comparing it with the one without self-excitement. Finally, we discuss the
effect of immunization combined with self-excitement by analyzing a Susceptible--Infected--
Recovered (SIR) model [11].

5.1. Effect of heterogeneity and noise in the parameters. In subsection 4.1, we have
analytically studied the effect of self-excitement on the activity rate distribution under the
assumption that all the individuals in the population generate connections according to inde-
pendent Hawkes processes with the same parameters J and \gamma for each individual. Under this
assumption, we have been able to prove that self-excitement leads to broad and more disperse
activity rate distributions, with a consequent increase of the network vulnerability to epidemic
inception. We extend this analysis through a numerical study of the effect of heterogeneity
and noise in the individuals' parameters.

We set the parameters

Jv = J + \xi v, \xi v \sim \scrN (0, \sigma 2
\scrN ), v \in \scrV ;(5.1a)

\gamma v = \gamma + \eta v, \eta v \sim \scrN (0, \sigma 2
\scrN ), v \in \scrV ,(5.1b)

where all the \xi v's and \eta v's, v \in \scrV , are independent and identically distributed Gaussian RVs
with mean equal to 0 and variance to \sigma 2

\scrN . Then, we let the ADN+HP evolve and converge
to its asymptotic distribution, which, in our setup, requires running the simulation until
t = 200. From our simulation results, illustrated in Figure 6, we observe that heterogeneity
in the individual parameters causes a further increase of all the examined quantities (mean,
square mean, and coefficient of variation of the activity rate distribution), compared with the
corresponding homogeneous case. In agreement with our expectations, for the homogeneous
case, all these quantities are accurately predicted by our analytical results (the blue dotted
lines) in Lemma 4.1.

By comparing the results in the three top panels (obtained for a homogeneous background
distribution) with those in the bottom panels (obtained adopting a power-law background
distribution) of Figure 6, it is evident that the effect of heterogeneity in the self-excitement
mechanisms becomes less significant when the background activity rate distribution is hetero-
geneous. In fact, from Figure 6c, we observe that when the background activity is homoge-
neous, the dispersion of the activity rate distribution increases by more than 45\%. By contrast,
the dispersion increases by less than 20\% when the background activity rates are power-law
distributed. Hence, numerical results support the proposition that uniform values of J and
\gamma in the population can still lead to heterogeneity at the population level, provided that the
background activity rate distribution is selected as a heavy-tailed distribution, following [1].

5.2. Epidemic prevalence for the SIS model. While most of the results on the SIS
model pertain to the computation of its epidemic threshold, the analysis and prediction of
the transient evolution of the process when the disease is above the epidemic threshold and
becomes endemic are still open problems, with significant applications in public health [14, 39].
Through Monte Carlo simulations, we seek to offer an improved understanding of the effect
of self-excitement on the endemic state of the disease.

In Figure 7, we compare the epidemic prevalence of an SIS model on an ADN+HP and on
the corresponding ADN with time-invariant activity rates. We identify two opposite behaviorsD

ow
nl

oa
de

d 
12

/0
5/

20
 to

 1
29

.1
25

.5
8.

21
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEMORY EFFECTS IN ACTIVITY-DRIVEN NETWORKS 2847

0 0.1 0.2

0.44

0.46

0.48

\sigma 2
\scrN 

Ma

(a) Homogeneous: Ma

0 0.1 0.2

0.25

0.3

\sigma 2
\scrN 

Ma2

(b) Homogeneous: Ma2

0 0.1 0.2
0.3

0.4

0.5

\sigma 2
\scrN 

cV [a]

(c) Homogeneous: cV

0 0.1 0.2

0.44

0.46

0.48

\sigma 2
\scrN 

Ma

(d) Power-law: Ma

0 0.1 0.2

0.25

0.3

0.35

\sigma 2
\scrN 

Ma2

(e) Power-law: Ma2

0 0.1 0.2

0.6

0.65

0.7

0.75

\sigma 2
\scrN 

cV [a]

(f) Power-law: cV

Figure 6. Estimated (a), (d) mean, (b), (e) mean square, and (c), (f) coefficient of variation of the activity
rate distribution in asymptotic conditions for homogeneous values of J and \gamma (red squares) and for increasing
heterogeneity (light and dark green circles, respectively). Model parameters are n = 100, 000, J = 0.1, and \gamma =
0.2. An asymptotic condition is attained for t = 200. In (a)--(c), the background activity rates are homogeneous
with \^a = 0.225, and in (d)--(f) they are power-law distributed with exponent 2.09 and lower cut-off 0.15. Both
the moment of the activity rate distribution and the coefficient of variation increase with the heterogeneity of the
parameters J and \gamma . Results obtained over 200 independent Monte Carlo simulations. Markers are estimated
values, while error bars represent the 95\% confidence intervals for the estimated quantities.

in the transient phase, immediately after the inception of the disease, and at the endemic
equilibrium, arising from a balance between new transmissions of the infection and recoveries.
Specifically, we find that the presence of self-excitement tends to speed up the spread of the
epidemic in the transient phase, consistently with the decreased epidemic threshold, but the
fraction of infected individuals at the endemic equilibrium appears to be slightly reduced.

This phenomenon has an intuitive explanation: immediately after the inception of the epi-
demic outbreak, the first disease spreaders become active, tending to increase their activities
and boosting the spread. After this first phase, the forgetting process tends to reduce the in-
dividuals' activities, specifically of those who have been activated few times (and consequently
are less likely to be infected), further decreasing the probability they can be infected.

5.3. Epidemic threshold for the SIR model. Finally, we discuss the combined effect of
immunization and self-excitement by analyzing an SIR epidemic model [11] on an ADN+HP.D
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Figure 7. Monte Carlo estimation (over 500 independent simulations) of the epidemic prevalence for an SIS
model on an ADN+HP (light blue solid) and on the corresponding ADN with time-invariant activity rates (red
dashed) for different background activity rates: (a) homogeneous with \^a = 0.15, and (b) power-law distributed
with exponent 2.09 and lower cut-off 0.1. For both panels, the parameters are \lambda = 0.43, \mu = 1/7, n = 2000,
J = 0.4, \gamma = 0.8, and the initial fraction of infected individuals x1(0) = 0.04.

Similar to the SIS model, a variety of modeling choices are available when embedding an SIR
epidemic model in a network. Here, we define an SIR model on an ADN+HP similar to the
SIS model in subsection 4.2, except for the recovery mechanism. When infected individuals
recover, they become immune and cannot contract the epidemic again.

In [83], the characteristics of the epidemic spreading under SIS and SIR models have been
numerically studied for the ADN model with the inclusion of memory processes in the link
formation mechanism, as already discussed in the introduction. In these numerical simulations,
an effect similar to that caused by self-excitement has been observed, whereby the epidemic
threshold of the SIS model has been found to decrease due to memory on the link formation.
On the other hand, when immunization is present, the epidemic threshold increases, making
the network less prone to epidemic inception. Here, we observe a different behavior for the
ADN+HP model.

In order to estimate the threshold for the SIR model, we adopt the method proposed
in [59], where Monte Carlo simulations of the dynamics are performed for different choices of
the ratio \lambda /\mu . For the sake of simplicity, we fix \lambda = 0.5 and we let the parameter \mu vary---the
assumption \lambda = 0.5 does not reduce the generality of the SIR model, for which different values
of \lambda can be interpreted as a time rescaling. Since the SIR model almost surely extinguishes
in a finite time [20], we let the simulation evolve until no infected individual is present. Then,
the threshold is estimated as the ratio \lambda /\mu that maximizes the coefficient of variation of the
fraction of individuals attained by the epidemic.

We determine that the combination of immunization with self-excitement has the opposite
effect of its combination with memory in the link formation proposed in [83]. Results in Fig-
ure 8 suggest that immunization increases the network vulnerability, rather than hindering
the inception of the disease spreading. In fact, while the threshold for the SIS model and the
one for the SIR model coincide for a standard ADN model (the red dashed line and peak of
the red curve in Figure 8a, respectively) [90], the estimated epidemic threshold for the SIRD
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Figure 8. Monte Carlo estimation (over 200 independent simulations) of the epidemic threshold for an
SIR model on an ADN+HP (light blue squares) and the corresponding ADN with time-invariant activity rates
(red circles). In panel (a), the threshold is estimated by identifying the peak of the coefficient of variation
cV [R\infty ]. Vertical lines correspond to the analytical thresholds for the SIS model in the presence of self-excitement
computed using Theorem 4.2 (light blue dotted) and in the absence of it (red dashed). In panel (b), the average
epidemic size (fraction of individuals reached by the epidemic) R\infty on the two network models is compared.
Simulation parameters are n = 2, 000, J = 0.4, \lambda = 0.5, and \gamma = 0.8, the background activity rates are
homogeneous with \^a = 0.225, and the spreading process starts from a single infected node, randomly selected in
the population.

model on an ADN+HP (peak of the light blue curve in Figure 8a) registers a larger shift
than the threshold analytically computed for the SIS model (light blue dotted line). Finally,
in Figure 8b we observe that, along with the decreased threshold, self-excitement leads to an
increased size of the epidemic, measured as the fraction of individuals reached by the disease
during the outbreak.

The increased vulnerability in the presence of immunization has the following explanation.
Similar to the SIS model, immediately after an individual activates and contracts the disease,
he/she increases its activity due to self-excitement, thereby boosting the spread in the transient
phase. Then, in an SIS model, the forgetting process compensates for this increase, as can be
seen when the disease becomes endemic from Figure 7. On the contrary, in the SIR model the
system evolution is limited to the transient phase, after which the disease-free equilibrium is
reached [20]. Therefore, the presence of immunization tends to amplify the boost produced
by self-excitement and to weaken the slow-down effect of the forgetting process. Besides
applications in epidemiology, we believe that these observations could be of broad interest
in opinion dynamics, e.g., to model the spread of information and hoaxes, for which self-
excitement mechanisms might explain unexpected spreading [84].

6. Conclusion. In this paper, we have developed an analytically tractable model of time-
varying networks that generalizes the paradigm of ADNs by including dynamics in the indi-
viduals' social activity. These temporal variations are ruled by Hawkes processes, which only
rely on two parameters that control a self-excitement mechanism and a forgetting process.
Despite its simplicity, this model is able to reproduce the presence of phenomena that are
often observed in empirical data, such as burstiness of human behaviors and proneness of theD
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events to cluster.
We have shown the possibility of analytically tackling this model by leveraging standard

techniques used in networks science (i.e., mean-field theory and thermodynamic considera-
tions) and methods from the field of SDEs (i.e., Ito's lemma and Dynkin's formula). Specifi-
cally, under some reasonable assumptions, we have been able to analyze the long-run behavior
of the individual's activity and to estimate the epidemic threshold of an SIS model.

From these results and Monte Carlo numerical simulations, we have shown that the main
effect of self-excitement is to increase the variability of the individual's social activity. In turn,
in our settings, this decreases the epidemic threshold of the system, thereby increasing the net-
work vulnerability to epidemic outbreaks, both in the presence of reinfection mechanisms (SIS
model) and with immunization dynamics (SIR model). These claims could be consolidated
into a main conclusive message: neglecting self-excitement might have dramatic consequences
for the society, leading to the underestimation of the risk of an epidemic outbreak.

Several future research lines arise from the development of this model and the analysis we
have performed. First, further efforts are required to deepen our analytical investigation and
understand, e.g., how the falloff of the tail distribution depends on the background activity
and on the model parameters. We also seek to extend the analytical approach to study the
effect of heterogeneous self-excitement mechanisms in the population, which in this paper has
been tackled only numerically. Second, in [90], a framework based on the discretization of the
activity rate distribution has been established to analytically study the transient evolution
of epidemic processes on ADNs. We believe that this framework could be similarly extended
to ADNs+HP by dividing nodes into classes of background activity rates. Third, our model
is very flexible and allows for the inclusion of real-world phenomena, such as memory pro-
cesses and communities in the connection pattern, behavioral changes due to the individuals'
state, spatial locality, and communication delays. The analysis of their effect and the study
of different network dynamics including synchronization and state-dependent spreading pro-
cesses [77, 78] will be part of our future work. For example, when modeling the outbreak of
an epidemic disease, one should also consider that infected individuals tend to decrease their
activity, after the disease becomes symptomatic. The contrasting effects of self-excitement
when the disease is asymptomatic and the following activity reduction due to the illness will
be analyzed in our future research and might lead to interesting insights into the epidemic
process. Fourth, the analytical treatment in this paper is limited to the thermodynamic limit.
In our future research, we will seek to extend our theory to networks of finite size, by leverag-
ing techniques from the stochastic Lyapunov theory. Finally, the identification from empirical
data of the two new model parameters, i.e., the jump J and the forgetting rate \gamma , is yet to be
discussed. Consequently, the transition of our model to real-world scenarios will be the object
of future research.

Pursuing these lines of inquiry would lead to a definition of a model of temporal networks
with the capability of describing evolving networks with a strong potential for explaining and
predicting critical real-world phenomena.

Acknowledgment. The authors would like to thank Matthieu Nadini for productive dis-
cussions about the mathematical model and the methods for numerical simulations.
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