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Consensus Over Activity-Driven Networks
Lorenzo Zino , Alessandro Rizzo , Senior Member, IEEE, and Maurizio Porfiri , Fellow, IEEE

Abstract—The problem of self-coordination of a network
of dynamical systems toward a common state is often re-
ferred to as the consensus problem. In view of its wide
range of applications, the consensus problem has been ex-
tensively studied in the past few decades. However, most
of the available results focus on static networks, chal-
lenging our mathematical understanding of coordination in
temporal networks. In this article, we study discrete-time
stochastic consensus over temporal networks, modeled as
activity-driven networks. In this paradigm, each node has a
specific tendency to create links in the network, measured
through an activity potential. Differences in the activity po-
tential of nodes favor the evolution of heterogeneous net-
works, in which some nodes are more involved in the pro-
cess of information sharing than others. Through stochas-
tic stability theory, we characterize the expected consensus
state, which is found to be dominated by low-activity nodes.
By further leveraging eigenvalue perturbation techniques,
we derive a closed-form expression for the convergence
rate in a mean-square sense, which points at a detrimen-
tal effect of moderate levels of heterogeneity for large net-
works. Simulations are conducted to support and illustrate
our analytical findings.

Index Terms—Consensus, convergence rate, heterogene-
ity, mean-square, stability of linear systems, time-varying
networks.

I. INTRODUCTION

CONSENSUS protocols are a class of distributed algo-
rithms, whose goal is to coordinate the units of a network
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of dynamical systems toward a common state. These protocols
find applications in an impressively wide range of research do-
mains, including opinion formation, distributed estimation, and
multivehicle coordination [1]–[3].

Because of this wide range of applications, consensus has
received extensive attention in the past 15 years. However, most
of the research has focused on time-invariant networks [4], and
limited efforts have been devoted to time-varying stochastic net-
works. Criteria for almost sure convergence of consensus pro-
tocols over Erdős–Rényi graphs have been originally presented
in [5] and later extended to arbitrary weighted graphs [6]–[9].

Building on these early studies, the literature has brought
forward a powerful toolbox of analytical tools that can help elu-
cidate stochastic consensus. For example, criteria for exponen-
tial convergence and a detailed quantification of the asymptotic
consensus state are presented in [10], approximate consensus is
examined in [11], convergence bounds are established in [12],
and systems resilience is studied in [13]. Several authors have
investigated criteria for the computation of convergence rates to
consensus [14]–[20].

For specific network models, closed-form results have been
established. We mention the gossip communication, where
the units asynchronously establish pairwise interactions to ex-
change information and average their state, and the broadcast
gossip communication, where units asynchronously activate and
transmit information to the whole network. For the case of bidi-
rectional gossip communication, Boyd et al. [21] examine expo-
nential convergence of the consensus problem and of the specific
case of average consensus. Unidirectional gossip communica-
tion is addressed in [22], where the authors prove asymptotic
convergence of the average consensus algorithm using an eigen-
value perturbation argument, and in [23], where exponential
convergence is established through a direct computation of the
second moment matrix. Exponential and almost sure conver-
gence for the broadcast gossip average consensus are studied
in [23] and [24], respectively. Other network models that have
been extensively studied, and for which necessary and sufficient
conditions for mean-square convergence are available, include
numerosity-constrained networks [25] and networks of conspe-
cific agents [26], [27]. Here, we seek to extend the rigorous
analysis of networks of conspecific agents in [26] to heteroge-
neous networks of interactions.

We focus on the paradigm of activity-driven networks
(ADNs), which has emerged as a potent tool to faithfully de-
scribe the evolution of several networks of interactions [28].
In ADNs, each node is assigned a fixed parameter, called ac-
tivity potential, which encapsulates its propensity to commu-
nicate with its peers. Selecting a range of activity potentials
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for the nodes in the network allows for elegantly modeling
heterogeneity. In the simplest incarnation of ADNs, the activity
potential is the probability that a node is activated in a time
unit. The key advantages of ADNs are that: 1) they allow for
reproducing networks with a desired level of heterogeneity, in
contrast with existing models of time-varying stochastic net-
works [28], [29]; and 2) they yield an analytically tractable for-
mulation, which has afforded unprecedented analytical insight
into complex problems.

Through the lens of ADNs, researchers have recently es-
tablished mathematical models for epidemic spreading [30],
[31], voting dynamics [32], opinion formation [33], random
walks [34], and percolation problems [35]. The ADN paradigm
allows for including many features of real-world networks, such
as the presence of communities and higher order structures [36],
heterogeneous nodes’ propensity to attract connections [37], and
state-dependent behavioral changes [38], thereby yielding real-
istic models of social, technical, and sociotechnical systems.

Preliminary results on consensus in ADNs, mostly based on
computational methods and time-scale separation between the
network evolution and the nodes’ dynamics, can be found in [39]
and [40]. Here, we build on these endeavors toward a rigor-
ous mathematical treatment of consensus problems over ADNs.
Through stochastic stability theory and eigenvalue perturbation
methods, we establish closed-form results for the rate of conver-
gence of the mean-square error dynamics and for the expected
consensus state of the network. From the analysis of these ex-
pressions, we bring forward surprising evidence on the role of
heterogeneity on consensus. Our first result, based on a pertur-
bation argument, suggests that the speed of convergence could
be hindered by the heterogeneity of the nodes’ activity, at least
for moderate levels of heterogeneity. Our second result is an
exact finding, which holds for any level of heterogeneity, and
establishes that low-activity nodes are the most influential in
shaping the final state of the network.

The main technical contributions of this article are as follows.
1) We extend the analysis of [25] to analytically study the

error dynamics in a mean-square sense for consensus
problems over ADNs, where the activities of all the units
are generally heterogeneous.

2) We demonstrate the application of perturbation tech-
niques to compute a closed-form expression for the con-
vergence rate to consensus, which helps understanding
how even modest heterogeneities in the system could im-
pact the effectiveness of the consensus protocol.

3) We analyze the expected consensus state for arbitrary
ADNs and perform once more a perturbation analysis to
highlight the sensitivity of consensus to heterogeneities
in the nodes’ activity.

4) With an eye toward applications of ADNs in real-world
problems, we derive a toolbox of asymptotic results for
consensus over large networks.

The rest of this article is organized as follows. In Section II,
we introduce the problem statement. In Section III, we recall
basic notions of stochastic stability theory for consensus pro-
tocols. In Section IV, we analyze the consensus protocol on
ADNs and present our main results. In Section V, we perform

an asymptotic analysis of the system for large-scale networks.
Section VI concludes this article and outlines potential avenues
of future research.

II. PROBLEM STATEMENT

A. Notation

We gather here the notational convention used throughout this
article. R, R+ , and Z+ are the sets of real, nonnegative real, and
nonnegative integer numbers, respectively. 1 is the vector of all
ones, ei is a vector with all zeroes but a one in the ith position.
Given a vector x, xT denotes its transpose, ||x|| its Euclidean
norm, and diag(x) the diagonal matrix with the elements of x on
its diagonal. Given a matrix M , we denote its spectral radius as
ρ(M). I is the identity matrix. Matrices and vectors’ dimensions
are omitted when not necessary. The operations ⊗ and ⊕ denote
Kronecker product and sum, respectively. The use of Kronecker
algebra will often lead us to work with n2 × n2 matrices , where
n is the number of nodes. We write these matrices in n2 blocks
of n × n matrices. More specifically, given an n2 × n2 matrix
M , we use four labels to denote the blocks (superscript) and the
position of the entry in the block (subscript), as follows:

M =

⎡
⎢⎢⎢⎣

M 11 . . . M 1n

M 21 . . . M 2n

...
. . .

...
Mn1 . . . Mnn

⎤
⎥⎥⎥⎦ , Mjh =

⎡
⎢⎢⎢⎣

Mjh
11 . . . Mjh

1n

Mjh
21 . . . Mjh

2n
...

. . .
...

Mjh
n1 . . . Mjh

nn

⎤
⎥⎥⎥⎦ .

Thus, Mjh
ik is the entry in the ith row and kth column of the block

in the jth row and hth column of M . Similarly, we write n2-
dimensional vectors as v = [v1

1 , v1
2 , . . . , v1

n , . . . , vn
n ]. Expected

values of random variables are denoted as E[·].

B. ADNs’ Time Evolution

Let V = {1, . . . , n} be a set of n ≥ 3 nodes connected
through a time-varying directed graph Gk = (V, Ek ), where Ek

is the time-varying link set, and k ∈ Z+ is the discrete time
index. The graph Gk is generated according to a (direct) discrete
time ADN [28] with unit time step and nodes’ activity potential
given by the vector a ∈ (0, 1]n . Specifically, at each time step,
every node i ∈ V is activated with probability equal to ai , in-
dependent of others and the past history of the process. A node
that is activated generates m ≤ n − 1 directed links, connect-
ing it with an m-tuple of nodes, selected uniformly among the
remaining n − 1 nodes. Links are oriented from the activated
node toward the selected nodes, and they last for a unit time
step. Then, connections are deleted, the time index updated, and
the whole process resumes. Should we remove the link direc-
tionality, the process would lead to undirected ADNs, typically
used in epidemiology [28].

Fig. 1 depicts the formation of an ADN. The figure is help-
ful in illustrating the richness of the ADN paradigm and its
main differences with respect to the other models of temporal
networks. Differently from gossip models [21], more than one
node can connect with others in one time step, and more than
one link can be established in one time step (m for each node
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Fig. 1. Exemplary evolution of an ADN. At time k = 0, node 1 is acti-
vated and generates m = 3 directed links. At time k = 1, nodes 3 and
5 are activated, generating three links each. At time k = 2, none of the
nodes is activated. (a) k = 0, (b) k = 1, (c) k = 2.

that is activated), yielding a rich dynamics for the evolving
network. In contrast with the broadcast gossip algorithm [24],
nodes are allowed to simultaneously update their state and share
information with m other nodes. Compared to numerosity-
constrained networks [25], only a random fraction of nodes
is stochastically activated at each time step. The presence of
heterogeneity marks the key difference with respect to networks
of conspecific agents [26].

We define the average activity potential and the standard de-
viation of the activity potential as

ā :=
1
n

n∑
i=1

ai, σ :=

√
1
n

∑n

i=1
(ai − ā)2 . (1)

The standard deviation σ measures the heterogeneity in the
nodes’ activity potentials. When σ = 0, the ADN reduces to the
model of conspecific agents proposed in [26]. An alternative
way of describing such a heterogeneity consists of separating
the average activity, as follows:

ai = ā + σhi (2)

where h ∈ Rn measures the deviation of each node from the
average. Note that, by definition, 1T h = 0 and ||h|| =

√
n.

For any discrete time k ∈ Z+ , we define the adjacency
matrix of the time-varying network as Ak ∈ {0, 1}n×n ,
where (Ak )ij = 1 ⇐⇒ (i, j) ∈ Ek , and the Laplacian matrix
Lk := diag (Ak1) − Ak , such that

(Lk )ij =

{
−(Ak )ij , if i 
= j∑

h 
=i(Ak )ih , if i = j.
(3)

By construction, matrices Lk s are a sequence of independent
and identically distributed (i.i.d.) random variables. To improve
the readability of this article, we denote by L a random variable
distributed as Lk , for any k ∈ Z+ , so that we can compute the
moments of each of the random variables Lk s by referring to
the common random variable L.

C. Consensus Over ADNs

The nodes’ dynamics are defined as follows. Each node i ∈ V
has a continuous state xi(k) ∈ R, which evolves according to
a discrete-time consensus protocol (see [3, Sec. 3]), starting
from an initial condition x0 ∈ Rn . At each time step, every
node updates its state by averaging with the nodes, with which
it is temporarily connected. Specifically, a generic node i ∈ V

updates its state to

xi(k + 1) = (1 − εm)xi(k) + ε
∑
j∈V

(Ak )ij xj (k) (4)

if (Lk )ii = m, while it remains xi(k + 1) = xi(k), if (Lk )ii =
0. The parameter ε > 0 is used to capture the nodes’ tendency
to compromise. Specifically, ε is the weight that each node
assigns to the state of its neighbors during the update process:
the larger is ε, the more a node will favor the average state of the
neighbors against its own during the updating process. Hence,
consensus dynamics is described by the following time-varying
linear system:

x(k + 1) = (I − εLk )x(k) := Pkx(k) (5)

with initial condition x(0) = x0 , where the consensus matri-
ces Pk s are a sequence of i.i.d. random variables. In general,
Pk s are nonsymmetric, and their entries are not required to be
nonnegative. In fact, if εm > 1, then the diagonal of Pk may
include negative entries. We say that the consensus protocol
converges to a consensus state x̄ if limk→∞ x(k) = x̄1, that is,
all nodes asymptotically attain the same state. Given that (5) is a
stochastic system, convergence must be defined in a stochastic
sense [41].

From the literature, almost sure convergence (that is, con-
vergence with probability 1) can be established for slowly up-
dating nodes, that is, ε < 1/m. In this case, matrices Pk s are
non-negative and, thus, stochastic (see, for example, [3, Sec. 3]).
Here, we focus on mean-square convergence, which places no
constraint on the selection of ε and guarantees almost sure con-
vergence in our setting (see, for example, [12], [41], and [42]).
Through the lens of mean-square convergence, one can aim at an
analytical study of the convergence rate of the protocol, which
is known to be unfeasible in an almost sure sense, beyond a
few low-dimensional toy problems, where one can compute the
largest sample-path Lyapunov exponent (see, for example, [43]
and [44]).

III. PRELIMINARY RESULTS

Here, we review some basic notions of stochastic stability and
key properties of stochastic consensus protocols. First, we intro-
duce the agreement subspace A = {v ∈ Rn : v = μ1, μ ∈ R}
and its orthogonal complement A⊥ = {v ∈ Rn : vT u = 0,
∀u ∈ A}, called the disagreement subspace. To study the con-
vergence of the consensus protocol to a consensus state, the
dynamics x(k) is projected onto the disagreement subspace,
by means of a matrix Q ∈ Rn×(n−1) , such that QT 1 = 0 and
QT Q = I (see, for example, [25]). The dynamics of the dis-
agreement vector ξ(k) = QT x(k) is

ξ(k + 1) = QT PkQξ(k) = P̃k ξ(k) (6)

with initial condition ξ(0) = ξ0 = QT x0 . The mean-square sta-
bility analysis of the disagreement vector permits to formalize a
necessary and sufficient condition for mean-square consentabil-
ity for a consensus protocol, which is defined as follows.
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Definition 1 (see [45, Def. 2]): Consensus protocol (5) is
said to be mean-square consentable if for any i 
= j, |xi(k) −
xj (k)| → 0 in a mean-square sense, ∀ ξ0 ∈ Rn−1 .

The necessary and sufficient condition for mean-square con-
sentability based on the disagreement vector is the following.

Proposition 1 (see [25, Sec. III.B]): Consensus protocol (5)
is mean-square consentable if and only if the disagreement
dynamics (6) is mean-square asymptotically stable, that is,
limk→∞ E[||ξ(k)||2 ] = 0, ∀ ξ0 ∈ Rn−1 .

For a linear system like (5), whose matrices Pk s are i.i.d.,
mean-square convergence implies almost sure convergence; de-
tails can be found in [42, Proposition 4.3] and [41, Sec. 2], for
the more general case of state matrices from an ergodic Markov
chain. Hence, in our setting, mean-square consentability implies
almost sure convergence to consensus. In order to quantify the
speed of convergence of the protocol toward consensus, we use
the asymptotic convergence factor of the disagreement dynam-
ics [12], that is,

r := sup||ξ0 ||
=0 lim
k→∞

(
E[||ξ(k)||2 ]

||ξ0 ||2
)1/k

. (7)

The smaller the convergence factor, the faster the convergence
of the dynamics is. In [46] and [54], it is proved that r < 1 is a
necessary and sufficient condition for mean-square consentabil-
ity. The following result establishes an easy-to-use expression
for the convergence factor.

Proposition 2 (see [25, Proposition 1 and Th. 1]): Proto-
col (5) is mean-square consentable if and only if its convergence
factor r < 1. The convergence factor is equal to the spectral ra-
dius ρ(G) of the second moment consensus matrix

G = (R ⊗ R)
(
I − εE[L] ⊕ E[L] + ε2E[L ⊗ L]

)
(8)

where R = QQT = I − 1
n 11

T .
For a mean-square consentable protocol, where convergence

to a consensus state x̄ is guaranteed almost surely, the expected
consensus state E[x̄] can be computed using the following result,
which is indeed valid for the less restrictive case of almost sure
convergence.

Proposition 3: Let protocol (5) be mean-square con-
sentable. Then, the expected consensus state is E[x̄] = πT x0 ,
where π is the left eigenvector associated with the null eigen-
value of E[L].

Proof: By using (5) recursively and computing the expected
value, we obtain

E[x(k)] = E

[
k−1∏
h=0

Pk

]
x(0) = E[P ]kx0 (9)

where P is a random variable distributed as a generic element of
the sequence of i.i.d. random variables Pk s, that is, P =I−εL.
Hence, E[x(k)] evolves as a time-invariant deterministic
protocol with consensus matrix E[P ]. According to [3, Th. 2.2],
since E[x(k)] → x̄1, then E[P ]k → 1μT . By expressing E[P ]
in terms of its Jordan canonical form, we conclude that μ is the
left eigenvector associated with the unit eigenvalue of E[P ],
which, in turn, coincides with the left eigenvector associated
with the null eigenvalue of E[L]. �

We note that the same result is proven in [10] and [21],
under the assumption that all the Pk s are non-negative. However,
the findings in [10] and [21] cannot be directly applied to our
setting, unless restricting our analysis to the slowly updating
scenario ε < 1/m, in which almost sure convergence is always
guaranteed.

IV. ANALYSIS OF THE CONSENSUS PROTOCOL

The analysis of the consensus protocol on ADNs is carried out
with two objectives. First, we compute the convergence factor of
the consensus protocol by using an eigenvalue perturbation ar-
gument. This closed-form result enables us to derive a sufficient
condition for almost sure convergence, and it unveils a poten-
tially adversary effect of heterogeneity on the convergence speed
of the protocol. Then, we study the effect of the nodes’ activity
on the formation of the consensus state, under the premise of
mean-square consentability. Specifically, we demonstrate that
the nodes with low activity influence the expected consensus
state the most.

A. Convergence Speed to Consensus

We examine consentability of (5) by computing the conver-
gence factor r, which is equal to the spectral radius of matrix
G in (8), according to Proposition 2. The exact computation of
ρ(G) for an arbitrary set of activities ais does not seem feasible
when the activity potentials are heterogeneous, due to the non-
trivial structure of the two matrices E[L] ⊕ E[L] and E[L ⊗ L]
in Proposition 2.

To address this issue, we study the effect of heterogeneity
through a perturbation argument. Specifically, the expression
for the activity potentials in (2) enables us to separate the effect
of the average activity potential (which is studied through the
paradigm of conspecific agents [25]) from the heterogeneity
in the activity potential (which acts as a perturbation factor).
Hence, we write matrix G = G0 + σG1 + O(σ2), where G0
is the second moment matrix for an ADN with homogeneous
activity potentials equal to ā, which is computed using [26,
Proposition 3], as

G0 =
(

1 − n

n − 1
εmā

)2

(R ⊗ R) + (I ⊗ R)F (10)

with

F =
ε2 m2 ā2

(n − 1)2 F1 +
ε2 m2 ā

n − 2
F2 +

ε2 mā

(n − 1)(n − 2)
F3 (11)

where matrices F1 , F2 , and F3 are defined blockwise as

F ii
1 = − I − n(n − 2)ei(Rei)T

F ii
2 =

1
n

I +
n2 − 3n + 1

n − 1
ei(Rei)T

F ii
3 = − 1

n
I + ei(Rei)T (12)
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for the diagonal blocks and, for j 
= i,

F ij
1 = − I + nei(Rei)T + nej (Rej )T

F ij
2 =

1
n

I +
1

n − 1
ei(ei − ej )T

− n

n − 1
ei(Rei)T − ej (Rej )T

F ij
3 = − 1

n
I + ei(ei − ej )T + (nei + ej )(Rej )T . (13)

Such a perturbation analysis allows for computing the conver-
gence rate of consensus on ADNs in closed form, up to an error
of the order of σ2 , shedding light on how a modest heterogeneity
in the activity of the nodes influences the consensus dynamics.

To prove our main result, the following intermediate steps are
carried out. In Lemma 1, we report the spectral radius of the
unperturbed component of matrix G, that is, ρ(G0), which is
computed by specializing the result for networks of conspecific
agents in [26]. Then, the first-order perturbation G1 is evaluated
in Lemma 2. In Lemma 3, we reckon that the first-order per-
turbation of the spectral radius is null. This evidence calls for
the evaluation of the first-order perturbation of the associated
eigenvector, in Lemma 4, which allows for the computation of
the second-order perturbation of the spectral radius. Theorem 1
consolidates these findings into our main result.

Lemma 1 (see [26, Th. 1]): Under the assumptions m ≥ 1,
ā ∈ (0, 1], and ε > 0, the spectral radius ρ0 := ρ(G0) is associ-
ated with a simple eigenvalue, equal to

ρ0 = 1 − ε
2āmn

n − 1
+ ε2 ām

[
nmā

(n − 1)2 + m + 1
]

(14)

and its corresponding eigenvector is

u0 =
1√

n − 1
vec(R). (15)

Matrix G0 has at most three other real eigenvalues

λ(1) = 0

λ(2) = 1 − ε
2āmn

n − 1
+ ε2 ām

[
2

nmā

(n − 1)2 + m − 1
n − 1

]

λ(3) =
(

1 − εmān

n − 1

)2

(16)

whose corresponding eigenspaces are, respectively,

Γ(1) =
{

v ∈ Rn2
: v = w ⊗ 1, or v = 1⊗ w, w ∈ Rn

}

Γ(2) =
{

v ∈ Rn2
: vi = biRei − 1

n

∑
j∈V bjRej

1T b = 0, b ∈ Rn
}

Γ(3) =
{

v ∈ Rn2
:
∑

i∈V vi = 0, vT
i 1 = 0, eT

i vi = 0
}

(17)

where the notation vT = [vT
1 , . . . , vT

n ] is used. The dimensions
of Γ(1) , Γ(2) , and Γ(3) are 2n + 1, n − 1, and n2 − 3n − 1,

respectively, and these spaces are mutually orthogonal and to
the span of u0 .

Lemma 2: The first-order perturbation associated with the
activity’s heterogeneity is G1 = (R ⊗ R)M , where

Mjj = −ε

[
n

n − 1
m diag (h)R + mhjI

]

+ ε2 nm2

n − 1
hj

[
ā(R − ej (Rej )T ) + ej (Rej )T

]

+ ε2 nm2

n − 1
ā
[
diag (h)(R − ej (Rej )T )

]

Mjh = ε
m

n − 1
hj I + ε2 m

n − 1
hjej [eT

h − meT
j ]

− ε2 nm2

(n − 1)2 ā
[
diag (h)(R − ej (Rej )T )

]

+ ε2 m(m − 1)
(n − 1)(n − 2)

hjej

[
1T − eT

h − eT
j

]

− ε2 nm2

(n − 1)2 āhj (R − ej (Rej )T ), for h 
= j. (18)

Proof: With respect to its ith row, the random variable L is
defined as follows.

1) With probability ai , Lii = m, and m off-diagonal entries,
chosen uniformly at random, are equal to −1, while the
others are equal to 0.

2) With probability 1 − ai , all the entries are equal to 0.
Therefore, we find E[L] = n

n−1 m diag(a)R. Through a cum-
bersome counting argument, we can compute the two matrices
E[L] ⊕ E[L] and E[L ⊗ L]. Their expressions, blockwise, are

(E[L] ⊕ E[L])jj =
n

n − 1
m diag(a)R + majI

(E[L] ⊕ E[L])jh = − 1
n − 1

majI (19)

(E[L ⊗ L])jj =
nm2

n − 1
aj

[
diag(a)(R − ej (Rej )T )

+ ej (Rej )T
]

(E[L ⊗ L])jh = − nm2

(n − 1)2 aj

[
diag(a)(R − ej (Rej )T )

]

+
m(m − 1)

(n − 1)(n − 2)
aj ej

[
1T − eT

h − eT
j

]

+
m

n − 1
aj ej [eT

h − meT
j ]. (20)

The expression for M is obtained by combining the matri-
ces above according to (8), expressing the activity potentials
through (2), and collecting all the terms in σ. �

Remark 1: While the unperturbed matrix G0 is symmet-
ric, the first-order perturbation matrix G1 is in general not
symmetric.

Next, we recall the following result from second-order per-
turbation theory of simple eigenvalues, which is often used in
quantum mechanics [47], applied to the spectral radius of G.
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Proposition 4 (see [47, Ch. 6.1]): The spectral radius
ρ(G) can be written as ρ(G) = ρ0 + σρ1 + σ2ρ2 + O(σ3). The
first-order perturbation is given in terms of u0 and G1 as

ρ1 = uT
0 G1u0 . (21)

The second-order correction requires knowledge of the first-
order perturbation to the eigenvector associated with the spectral
radius. Specifically, we have

ρ2 = uT
0 G1u1 , with u1 =

n2∑
i=2

vT
i G1u0

ρ0 − λi
vi (22)

where λ2 , . . . , λn2 are the n2 − 1 eigenvalues of G0 in (16),
counted with their multiplicity, and v2 , . . . , vn2 are their corre-
sponding eigenvectors in the eigenspaces in (17).

Vector u1 represents the first-order perturbation to the
eigenvector associated with the spectral radius of G, that is,
u = u0 + σu1 + O(σ2), with u0 defined in (15). While in many
practical applications, it is sufficient to retain a first-order per-
turbation to gain insight into the role of a critical parameter [48],
consensus over ADNs requires the study of second-order cor-
rections. In fact, the next claim shows that ρ1 = 0.

Lemma 3: Under the assumptions m ≥ 1, ā > 0, and ε > 0,
the first-order perturbation correction to the spectral radius ρ(G)
is ρ1 = 0.

Proof: Based on Proposition 4, we compute ρ1 = uT
0 G1u0 .

First, recalling (15), we define the vector ỹ := Mu0 , that is,

ỹj
i =

∑
h,k∈V

Mjh
ik (u0)kh =

1√
n − 1

∑
h,k∈V

Mjh
ik Rkh

=
1√

n − 1

⎡
⎣n − 1

n

∑
h∈V

Mjh
ih − 1

n

∑
h∈V,k 
=h

Mjh
ik

⎤
⎦ (23)

which can be computed using the explicit expression of M in
Lemma 2. Details can be found in the Appendix. Then, we
evaluate y = (R ⊗ R)ỹ entrywise as

yi
i =

(n − 1)2

n2 ỹi
i −

n − 1
n2

⎛
⎝∑

h 
=i

ỹh
i +
∑
k 
=i

ỹi
k

⎞
⎠+

1
n2

∑
h,k 
=i

ỹh
k

(24)
and, similarly, for the off-diagonal elements. Explicit compu-
tations of vectors ỹ and y are cumbersome, but they follow
directly from the expression of M . Details are summarized in
the Appendix. Here, we present the final result, that is

yj
i =

⎧
⎪⎪⎨
⎪⎪⎩

n − 2
n

1√
n − 1

εmγhi, if i = j

− 1
n
√

(n − 1)
εmγ(hi + hj ), if i 
= j

(25)

with

γ :=
2n

(n − 1)2 εmā − 2n

n − 1
+ εm + ε. (26)

In a more compact form, we write

y =

√
n − 2
n − 1

εmγq (27)

where the unit-norm vector qT = [qT
1 , . . . , qT

n ] is

qi :=
√

n

n − 2
hiRei − 1√

n(n − 2)

∑
j∈V

hjRej . (28)

From (17), we note that y ∈ Γ(2) . Since eigenspaces are mu-
tually orthogonal, y is orthogonal to u0 . Hence, (21) implies
ρ1 = uT

0 G1u0 = uT
0 y = 0. �

Thus, a first-order perturbation is not sufficient to elucidate
the role of heterogeneity in the nodes’ activity on the rate of
convergence of the protocol. We use the spectral characterization
of G0 in Lemma 1 to prove the following statement.

Lemma 4: Under the assumptions m ≥ 1, ā > 0, and ε > 0,
the first-order perturbation correction to the eigenvector of G
associated with its spectral radius is

u1 =

√
(n − 2)(n − 1)

εān

(
1 − mā

n − 1

)γq (29)

where vector q is defined in (28) and parameter γ in (26).
Proof: We split the summation of u1 in (22) into three terms,

one for each eigenspace of G0 , such that

u1 =
[

1
ρ0

Π1 +
1

ρ0 − λ(2) Π2 +
1

ρ0 − λ(3) Π3

]
y (30)

where Πi is the matrix associated with the orthogonal projection
onto the eigenspace Γi , and the vector y = G1u0 is computed
in (27). Since q ∈ Γ2 , the projections Π1y = Π3y = 0, while
Π2y = y. Using Lemma 1, we obtain

u1 =
1

ρ0 − λ(2)

√
n − 2
n − 1

γq =

√
(n − 2)(n − 1)

εān

(
1 − mā

(n − 1)

)γq (31)

which concludes the proof. �
We consolidate our claims in the following theorem, which

is the main result of this article.
Theorem 1: Given a consensus protocol over an ADN with

activity potentials given by (2), m ≥ 1, ā > 0, and ε > 0, the
convergence factor is

r = 1 − ε
2āmn

n − 1
+ ε2 ām

[
nmā

(n − 1)2 + m + 1
]

+ σ2 (n − 2)m

ān

(
1 − mā

n − 1

)γβ + O(σ3) (32)

where γ is defined in (26), and

β :=
2n

(n − 1)2 εmā − 2n

n − 1
+

n − 1
n − 2

εm − ε

n − 2
. (33)

Proof: We compute the vector zT := uT
0 G1 as follows.

First, we observe that uT
0 (R ⊗ R) = uT

0 , since u0 is an eigen-
vector associated with the eigenvalue 1 of matrix R ⊗ R. Then,
zT = uT

0 M is computed by applying the technique used in the
proof of Lemma 3. Details can be found in the Appendix. We
report the final expression recalling the definition of q in (28),
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Fig. 2. Variation of the convergence factor Δr with respect to the case
of nodes with the same activity, for increasing values of σ, for four choices
of the model parameters with increasing network sizes. Vector h is gener-
ated uniformly at random under the constraints 1T h = 0 and ||h|| =

√
n.

Consequently, the activity potential of node i is ai = ā + σhi , for any
i ∈ V. Red circles are Monte Carlo estimations (over 100 realizations of
h) with the corresponding 95% confidence intervals, marked by whiskers,
and the blue curve is our analytical prediction, up to the second-order
power in σ. (a) n = 30, m = 4, and ε = 0.15. (b) n = 50, m = 10, and
ε = 0.05. (c) n = 100, m = 12, and ε = 0.04. (d) n = 200, m = 15, and
ε = 0.03.

that is,

z =

√
n − 2
n − 1

εmβq (34)

where β is defined in (33). Using Lemma 4 to evaluate u1 and
applying Proposition 4, we conclude that

ρ2 =

√
(n − 2)(n − 1)

εān

(
1 − mā

(n − 1)

)γ

√
n − 2
n − 1

εmβqT q

=
(n − 2)m

ān

(
1 − mā

n − 1

)γβ (35)

which yields the claim. �
The numerical estimations in Fig. 2 support our analytical

predictions and suggest that the accuracy of a parabolic repre-
sentation for the convergence rate extends beyond the limit of
small values of σ, upon which the perturbation analysis rests,
to networks with a moderate level of heterogeneity, including
small-world networks [49] and many nonscale-free networks,
identified from real-world datasets [50].

Remark 2: The estimation in Theorem 1 can inform a qual-
itative analysis on the effect of the heterogeneity of the nodes’
activity on the convergence factor of the consensus protocol. For
σ = 0, the convergence rate is exactly given by the first three
summands on the right-hand side of (32), analogously to the con-
sensus protocol over conspecific agents in [26]. By introducing
heterogeneity through the ADN paradigm, the convergence fac-

Fig. 3. Sample path of the process and comparison of the evolution of
the state variables with the predicted consensus state (red-dashed line).
The arithmetic average of the initial conditions, which is the expected
steady-state value for homogeneous systems, is shown as a blue-dotted
line. Parameters are n = 50, ε = 0.05, and m = 10. Following [28],
activity potentials are distributed according to a rescaled power law with
exponent γ = −2.2 and a lower cutoff am in = 0.01.

tor will vary, so that small values of σ will cause a change of the
order of σ2 in the convergence factor. Whether this change will
increase or decrease the value of r depends on the parameters
of the ADN (that is, n, m, and ā) and the parameter ε of the con-
sensus protocol. The scenario of large networks, with n → ∞,
will be extensively analyzed in Section V, and explicit closed-
form results will be derived therein.

B. Expected Consensus State

Assuming that r < 1, x(k) converges almost surely to a con-
sensus state x̄. Such a state can be characterized through Propo-
sition 3, leading to the following result.

Theorem 2: Given a mean-square consentable proto-
col (5) over an ADN with activity potentials ai , i ∈ V , then
limk→∞ x(k) = x̄1 almost surely, with

E[x̄] = πT x0 , πi =
a−1

i∑
j∈V a−1

j

. (36)

Proof: By applying Proposition 3, we compute the
left eigenvector of E[L] associated with the null eigen-
value. From the computations in Lemma 2, we recall that
E[L] = n

n−1 diag(a)R. Observing that 1T R = 0, we conclude

πT E[L] = 0 ⇐⇒ πT diag(a) ∝ 1T ⇐⇒ πi ∝ a−1
i . (37)

The normalization of the eigenvector concludes the proof. �
Remark 3: The consensus protocol over an ADN leads to a

consensus state that is not the arithmetic average of the initial
states. The initial condition of each node is weighted by the
inverse of its activity potential, which can be associated with
its resistance to compromise. Nodes with low activity are less
inclined to create connections, thus, they will be less prone to
compromise their state.

Figs. 3 and 4 illustrate the outcome of numerical simulations
that support our findings in Theorem 2. Fig. 3 presents a sample
path of the consensus protocol, illustrating that heterogeneity in
the nodes’ activity causes a shift of the consensus value away
from the arithmetic average of initial conditions, which would
be expected for a homogeneous systems. Fig. 4 shows results
from Monte Carlo simulations that indicate very good agreement
between the empirical distribution and analytical predictions of
the consensus value.
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Fig. 4. Empirical distribution of the consensus values for set of Monte
Carlo simulations over 50 000 independent runs starting from the same
initial condition. The 95% confidence interval of the consensus state from
Monte Carlo simulations is [0.6448, 0.6454]. The predicted consensus
value from (36), E[x̄] = 0.6453, is plotted as a red line. Parameters are
n = 50, ε = 0.05, and m = 10, and activity potentials are distributed
according to a rescaled power law with exponent γ = −2.2 and a lower
cutoff am in = 0.01.

Remark 4: Conducting a Taylor expansion on (36) with
respect to σ, we discover that the consensus state is influenced
by σ at the very first order, so that

E[x̄] =
1
n

∑
i∈V

x0i − σ
1
nā

∑
i∈V

hix0i

+ σ2 1
nā2

∑
i∈V

(h2
i − 1)x0i + O(σ3) (38)

where x0i denotes the ith entry of the initial condition vector
x0 ∈ Rn . For the problem analyzed in Fig. 3, the first-order ap-
proximation in (38) would predict a consensus value of 0.6505,
while retaining a parabolic expansion would yield 0.6435, with
an error less than 0.3%.

Remark 5: Consensus protocols may be implemented over
undirected ADNs to model scenarios where information flows
along both link directions, similar to epidemics [28]. The ad-
jacency matrix of an undirected ADN at time step k is given
by Ak + AT

k , yielding a symmetric Laplacian matrix. Hence,
the consensus state coincides with the arithmetic average of
the initial conditions [3]. The speed of convergence could be
examined by following a perturbation argument similar to the
one presented in this article, by leveraging the symmetry of the
expected Laplacian to ease the algebraic calculations.

V. APPLICATION TO LARGE NETWORKS

We conclude this article by performing an asymptotic analysis
for large networks, in the limit n → ∞. In this practically rel-
evant case, the numerical computation of the spectral radius of
G in Proposition 2 would be unfeasible, strengthening the merit
of our closed-form solution in Theorem 1 based on perturbation
theory. In the homogeneous case, that is, σ = 0, mean-square
consentablility is attained for ε(m + 1) < 2, and given m and
ā, selecting ε = ε∗ = 1/(m + 1) yields the fastest convergence
rate [26]. In the presence of heterogeneity in the activity of the
nodes, we obtain the following asymptotic expressions.1

1Although n → ∞, r is bounded since m is finite. In fact, a trivial bound on
the spectral radius of matrix G can be obtained from (8), based on the fact that
ρ(L) ≤ ||L|| ≤ 2 m. Hence, r ≤ (1 + 2εm)2 , for any value of n.

Corollary 1: In the limit n → ∞, the convergence factor of
the consensus protocol (5) has the asymptotic expression

r = 1 − 2εām + ε2 ām(m + 1)

+ σ2 m(2 − ε(m + 1))(2 − εm)
ā

+ O(σ3). (39)

Proof: For large n, the prediction of Theorem 1 reduces to

r = 1 − 2εām + ε2 ām(m + 1) + σ2 m

ā
γβ + O(σ3) (40)

and the expressions for γ and β in (26) and (33), respectively,
yields γ = εm + ε − 2 and β = εm − 2. The proof is com-
pleted by substituting these asymptotic expressions in (40). �

Remark 6: Small heterogeneities have always a detrimen-
tal effect on the convergence factor. For n → ∞, the coeffi-
cient of σ2 in (39) is strictly positive for any choice of the
parameters such that ε(m + 1) < 2. Thus, heterogeneity in the
nodes’ activities decreases the convergence speed, potentially
hindering consensus. Given ε(m + 1) < 2, so that r < 1 when
σ = 0, the largest level of heterogeneities that can be tolerated
by the protocol before losing convergence can be estimated as
σ = ā

√
ε

2−εm . As one might anticipate, the critical value of σ
scales with the average activity in the network, such that for
ADNs with large values of ā, one may tolerate more severe het-
erogeneities. Interestingly, the larger is the value of ε, the more
the protocol is sensitive to heterogeneities, since the nodes will
tend to compromise more with their neighbors, thereby enhanc-
ing the overall effect of heterogeneities in the network. Finally,
increasing m mitigates the effect of heterogenities.

Remark 7: From (39), we may seek to determine the fastest
convergence rate that can be attained by the protocol on a given
ADN and determine the value of ε that is conducive to optimal
consensus. Toward this aim, we determine

ε∗ =
1

m + 1
+ σ2 1

ā2 + O(σ3) (41)

which yields the optimal asymptotic convergence factor

r∗ =
1

n + 1
+ σ2 m(m + 2)

ā(m + 1)
+ O(σ3). (42)

Predictably, the fastest attainable rate of convergence decreases
with σ2 .

Remark 8: In the limit n → ∞, one may offer a probabilistic
interpretation of (36). Specifically, let us assume that the initial
conditions are drawn from a given scalar distribution X0 and
the activity potentials are also drawn from another, independent,
distribution A. This asymptotic result indicates that, when initial
conditions and activity potentials are independent, the expected
consensus state tends to the average of the initial conditions.

VI. CONCLUSION

In this article, we have analytically studied a discrete-time
consensus protocol over ADNs. The ADN paradigm constitutes
a powerful viewpoint to examine dynamical systems, in which
the time scales of network formation and the node dynamics are
comparable. Using stochastic stability theory and eigenvalue
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perturbation analysis, we have established closed-form expres-
sions for the rate of convergence to consensus and the expected
consensus state, in terms of the distribution of the activity po-
tentials in the network.

Our analytical results suggest that: 1) even a modest amount
of heterogeneity in the nodes’ activity could affect the consen-
sus protocol by slowing down convergence to the consensus
state, and 2) nodes that are less active in generating connections
dominate the consensus state of the network. Finally, we have
focused on large networks, for which, in the absence of ana-
lytical results, the consensus dynamics is difficult to examine
because of its computational complexity. In this scenario, we
derived the asymptotic expressions for the expected consensus
state and for the convergence rate to consensus, demonstrating
that heterogeneity is always detrimental to the coordination of
large-scale systems.

The main limitation of this study is the lack of an analytical
bound for the accuracy of the estimations of the convergence rate
and the expected consensus state. Such a limitation is inherent to
the perturbation theory, which does not offer a direct way to esti-
mate the residuals in the expansions. Our numerical simulations
support that the perturbation analysis is valid for a relatively
wide range of parameter values, spanning from low to moder-
ate levels of heterogeneity, whereby a parabolic dependence on
the perturbation parameter is in excellent agreement with nu-
merical simulations based on the complete ADN model. In this
vein, this work constitutes the first step toward the mathematical
treatment of heterogeneity in consensus protocols over temporal
networks with rich dynamics. Future efforts should be placed to
better elucidate the implication of high levels of heterogeneity.
Unlikely, this could be addressed through higher order pertur-
bation arguments, which would yield extremely cumbersome
algebraic computations. Matrix inequalities and eigenvalue lo-
calization techniques [51] might offer a more viable approach,
although it is tenable that only conservative estimates could be
obtained.

In contrast with [39], our claims are not based on a time-
scale separation between the network evolution and the nodes’
dynamics. At each time step, we execute both the averaging
process and the network formation, which coevolve within a
complex stochastic dynamics. The generality of the framework
should be amenable for extension to nonlinear dynamics, critical
to shedding light on synchronization phenomena [52]. A master
stability function can be likely formulated by extending the line
of arguments of [53] to tackle the role of heterogeneity on the
linear stability of the synchronization manifold. Another avenue
of future research is the study of real-world network features,
such as a heterogeneous nodes attractiveness [32], burstiness
[55], and leadership [56], toward the analysis of time-resolved
datasets of sociotechnical systems.

APPENDIX

We present here the explicit computations of vectors y and
z used in Lemma 3 and Theorem 1, respectively. To keep the
notation simple, all the summations are to be intended over the
set of nodes V , and

∑
k 
=i means

∑
k∈V\{i}. When possible, we

omit indices for summations. We start by noticing that

∑
k 
=i

hi = hi

∑
k 
=i

1 = (n − 1)hi

while
∑
k 
=i

hk =
∑

hk − hi = 0 − hi = −hi.

For the diagonal elements, we compute

ỹi
i =

∑
h,k∈V

Mih
ik (u0)kh =

1√
n − 1

∑
h,k∈V

Mih
ik Rkh

=
1√

n − 1

⎡
⎣n − 1

n

∑
h∈V

Mih
ih − 1

n

∑
h∈V,k 
=h

Mih
ik

⎤
⎦

=
1√

n − 1

⎡
⎣n − 1

n

⎛
⎝Mii

ii +
∑
h 
=i

Mih
ih

⎞
⎠

− 1
n

⎛
⎝∑

k 
=i

Mii
ik +

∑
h 
=i

Mih
ii +

∑
h 
=i

∑
k 
=i,h

Mih
ik

⎞
⎠
⎤
⎦

=
1√

n − 1

⎡
⎣n − 1

n

⎛
⎝εmhi(εm − 2) + ε2 m

n − 1

∑
h 
=i

hi

⎞
⎠

− 1
n

⎛
⎝−ε

m

n − 1
(εm − 1)

∑
k 
=i

hi − ε
m

n − 1
(εm − 1)

×
∑
h 
=i

hi + ε2 m(m − 1)
(n − 1)(n − 2)

∑
h 
=i

∑
k 
=i,h

hi

⎞
⎠
⎤
⎦

=
εmhi

n
√

n − 1
[(n − 1)(εm − 1) + 2(εm − 1) − ε(m − 1)]

=
1√

n − 1
εmhi(εm − 2 + ε)

while, following a similar argument, off-diagonal elements are

ỹj
i =

1√
n − 1

⎡
⎣n − 1

n

⎛
⎝Mji

ii + Mjj
ii +

∑
h 
=i,j

Mjh
ih

⎞
⎠

− 1
n

⎛
⎝Mjj

ii +
∑
h 
=j

Mjh
ii +

∑
k 
=i

Mjj
ik +

∑
h 
=j

∑
k 
=i,j

Mjh
ik

⎞
⎠
⎤
⎦

=
1√

n − 1

[
n − 1

n

(
−ε

m

n − 1
[εmā(hi + hj ) − hj ]

)

− ε
m

n − 1
[εmā(hi + hj ) − hi ] + ε2 m2

(n − 1)2

×
∑

h 
=i,j

(hi + hj )
)
− 1

n

(
εm(hi + hj )(εmā − 1)
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− ε
m

n − 1

∑
h 
=j

[εmā(hi + hj ) − hj ]

− ε
m

n − 1

∑
k 
=i

[εmā(hi + hj ) − hi ]

+ ε2 m2

(n − 1)2 ā
∑
h 
=j

∑
k 
=i,j

(hi + hj )
)]

=
1√

n − 1
εm(hi + hj )

1
n − 1

(
− n

n − 1
εmā + 1

)
.

Now, we introduce

α := (εm − 2 + ε), δ :=
1

n − 1

(
− n

n − 1
εmā + 1

)

so that

ȳi
i =

1√
n − 1

εmαhi, ȳj
i =

1√
n − 1

εmδ(hi + hj ).

With this notation, we compute

yi
i =

(n − 1)2

n2 ỹi
i −

n − 1
n2

⎛
⎝∑

h 
=i

ỹh
i +
∑
k 
=i

ỹi
k

⎞
⎠+

1
n2

∑
h,k 
=i

ỹh
k

= εm
1√

n − 1

[
(n − 1)2

n2 αhi − n − 1
n2 δ

∑
h 
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1
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∑
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∑
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+
1
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∑
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]
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n − 1

[
(n − 1)2

n2 αhi − 2
(n − 1)2

n2 δhi

+ 2
n − 1
n2 δhi +

1
n2 δ
(− (n − 2)hi +

∑
h 
=i

(−hi − hh)
)

− 1
n2 αhi

]

= εm
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n − 1

[
n − 2

n
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(n − 1)(n − 2)
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+
2(n − 2)
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]
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(
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n
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n − 2
n

δ

)
hi

= εm
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n − 1
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n
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where we have used the relation
∑

k 
=i,h

hk = −hi − hh

and

yj
i = εm

1√
n − 1

[
(n − 1)2

n2 δ(hi + hj ) − n − 1
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− n − 1
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∑
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∑
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1
n2 α

∑
h 
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+
1
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∑
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∑
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1
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∑
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∑
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hh

]
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[
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+
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n2 α(hi + hj )
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]
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(
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n
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2
n

δ

)
(hi + hj )
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1

n
√
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Finally, introducing γ := α − 2δ, we obtain the expression for
y in (27).

Similarly, vector z is computed as follows:
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+ ε2 m2
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n
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