

 University of Groningen

Continuous Security Testing
Rangnau, Thorsten; Buijtenen, Remco v.; Fransen, Frank; Turkmen, Fatih

Published in:
EDOC Conference

DOI:
10.1109/edoc49727.2020.00026

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rangnau, T., Buijtenen, R. V., Fransen, F., & Turkmen, F. (2020). Continuous Security Testing: A Case
Study on Integrating Dynamic Security Testing Tools in CI/CD Pipelines. In EDOC Conference (pp. 145-
154). [9233212] (Proceedings - 2020 IEEE 24th International Enterprise Distributed Object Computing
Conference, EDOC 2020). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/edoc49727.2020.00026

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1109/edoc49727.2020.00026
https://research.rug.nl/en/publications/6a60ba5c-0d5c-4d58-9465-f3979785df14
https://doi.org/10.1109/edoc49727.2020.00026

Continuous Security Testing: A Case Study on
Integrating Dynamic Security Testing Tools in

CI/CD Pipelines

Thorsten Rangnau
University of Groningen
t.rangnau@student.rug.nl

Remco v. Buijtenen
University of Groningen

r.m.van.buijtenen@student.rug.nl

Frank Fransen
TNO

frank.fransen@tno.nl

Fatih Turkmen
University of Groningen

0000-0002-6262-4869

Abstract—Continuous Integration (CI) and Continuous Deliv-
ery (CD) have become a well-known practice in DevOps to ensure
fast delivery of new features. This is achieved by automatically
testing and releasing new software versions, e.g. multiple times
per day. However, classical security management techniques
cannot keep up with this quick Software Development Life
Cycle (SDLC). Nonetheless, guaranteeing high security quality
of software systems has become increasingly important. The new
trend of DevSecOps aims to integrate security techniques into
existing DevOps practices. Especially, the automation of security
testing is an important area of research in this trend. Although
plenty of literature discusses security testing and CI/CD practices,
only a few deal with both topics together. Additionally, most of the
existing works cover only static code analysis and neglect dynamic
testing methods. In this paper, we present an approach to inte-
grate three automated dynamic testing techniques into a CI/CD
pipeline and provide an empirical analysis of the introduced
overhead. We then go on to identify unique research/technology
challenges the DevSecOps communities will face and propose
preliminary solutions to these challenges. Our findings will enable
informed decisions when employing DevSecOps practices in
agile enterprise applications engineering processes and enterprise
security.

Index Terms—DevSecOps, Dynamic Security Web Testing,
Continuous Security, Continuous Integration

I. INTRODUCTION

In the past decade, a great shift occurred in software

development from creating Software as a Product (SaaP),

that is executed as a single instance on customers’ machines,

towards providing Software as a Service (SaaS) where many

users share instances that run on cloud infrastructure [1].

Such cloud services provide software practitioners with

the ability to continuously improve their product quality by

releasing frequent updates [2]. In order to manage these

improvements efficiently, classical development (Dev) and

operation (Ops) tasks were combined which resulted in a

development concept termed DevOps [3], [2]. This concept

is based on collaboration between the two former fields in

all development stages and achieved by solving problems

together, automating processes, and agree on mutual metrics

to use when evaluating a system. DevOps defines four pillars

that guide teamwork in modern software development: culture,

automation, measurement and sharing (CAMS) [4], [5]. This

agile development method enables software practitioners to

test and deploy software versions in a much more frequent

pace and hence respond to customers’ demands rapidly. A

prime example of this is Amazon, where a new version was

released more than once per second [6].

While fast releases are considered to be beneficial to the

quality of a product, they may also increase pressure on

developers to finish their tasks more quickly. Studies such

as Kraemer [7] revealed that tight schedules or high work

load can lead to the accidental introduction of security vul-

nerabilities into software systems. Kraemer also states that

the reason for the presence of vulnerabilities is a lack of

security knowledge in DevOps teams. This affects the quality

of security tests and hence diminishes the security of a system.

In addition to this, cybercrime is increasing in recent years.

For instance, the number of stolen or compromised records

has been estimated to be increased by 133% from 2017 to

2018 [8]. Furthermore, security and privacy regulations such

as the General Data Protection Regulation (GDPR) have been

implemented in the EU in order to enforce security standards

and punish companies harshly if these regulations are violated

(e.g. [9]). All of these aspects show that the security concerns

have become increasingly important.

This increased focus on security introduced a new field

called DevSecOps, which attempts to integrate security (Sec)

practices into DevOps [2]. Traditionally, security experts were

organized into separate silos and security concerns were ad-

dressed after the actual design and development stages [8].

Similar to the inception of DevOps, DevSecOps attempts to

promote collaboration between development, operations and

security teams. DevSecOps establishes a proactive approach

to limit the attack surface of the application [6] and entails

considering security from the very beginning of the project [2].

However, the integration of security practices into modern soft-

ware engineering creates several problems. Firstly, traditional

security methods are not applicable because they cannot keep

up with the agility and speed of DevOps. Secondly, very little

is known about DevSecOps so far, as only a few studies were

conducted on this topic [2]. Especially the lack of knowledge

of when and where to use (existing) tools in automation is

a considerable problem that prevents software practitioners

from integrating security into their DevOps activities such

as continuous integration and continuous deployment (CI/CD)

[8].

145

2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)

2325-6362/20/$31.00 ©2020 IEEE
DOI 10.1109/EDOC49727.2020.00026

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

Until now, most research papers describe the principles,

priorities and practices in DevSecOps. It appears that the

automation principle is equally significant in DevSecOps as

it is in DevOps. One key practice is continuously testing

security. This enables security teams to keep up with DevOps

and establishes fast, scalable and effective security tests [2].

However, most literature focuses on automatic security testing

through static scans of source code (e.g. [10]). Although

important, static tests cannot detect all security vulnerabilities

in a system. In fact, static analysis is only able to find

those vulnerabilities that can be derived directly from source

code. These vulnerabilities are only a small subset of the

ten most common vulnerabilities in web applications [11],

such as Components with Known Vulnerabilities. Dynamic

security testing on the other hand, where a system is attacked

in a similar way as actual hackers would, is able to cover

a much broader range of vulnerabilities. Literature such as

[12], [13] describes how to execute these dynamic tests in a

consistent, reproducible way. However, little is known about

how to integrate this into the CI/CD pipelines commonly used

in DevOps.

In this paper we conduct a case study where we apply three

different testing techniques in CI/CD. This will enable us to

identify pitfalls, challenges and shortcomings DevOps teams

may encounter while automating security tests. The three

dynamic application security testing techniques we integrated

into a CI/CD pipeline are: Web Application Security Scan-

ning (WAST) using Zed Attack Proxy (ZAP)1, Security API

Scanning (SAS) with JMeter 2 and Behaviour Driven Security

Testing (BDST) using SeleniumBase automation framework.

The remainder of this paper is structured as follows: Section

II provides an overview on automated security testing tech-

niques and testing in CI/CD. The setup of the case studies

is described in Section III, whereas Section IV depicts our

results. In Section V we discuss our findings including a

list of requirements for security testing in CI/CD and a

description of challenges one encounters while addressing

these requirements. We conclude in Section VII and provide

an overview of future work.

II. BACKGROUND

This section provides an overview on the background of

continuous dynamic security testing. To this end, we will first

address security testing techniques. Subsequently, we provide

information on testing in CI/CD pipelines.

A. Security Testing Techniques

Most modern Web/Cloud applications can be tested for

security flaws at the service, infrastructure, and platform levels

[14]. We focus on the testing performed at the service layer.

Dynamic application security testing (DAST) focuses on tests

to determine how a running application responds to malicious

requests. More specifically, attack scenarios are defined as

test cases that consist of (crafted) requests and are sent to

1https://www.zaproxy.org/
2https://jmeter.apache.org

the system [13]. The challenge here is to send the correct

(attack) requests and to identify the information within the

response that indicates the presence of a vulnerability. DAST

can be performed in a white-box setting where the application

code is accessible or a black-box setting where the application

code is unavailable. We assume the CI/CD pipeline is owned

by the application owner and thus consider mostly the white-

box case. In what follows, we summarize the dynamic testing

methods considered in our study.

Inspired from [13], we consider three DAST techniques that

can be automated: Web Application Security Testing (WAST),

Security API Scanning (SAS), and Behaviour Driven Security

Testing (BDST).

Web Application Security Testing (WAST): This testing

technique is an automated web security test that attacks a

web application through its user interface. It includes three

steps performed by the WAST component: spider scan, active

scan, and result reporting. The spider scan explores the whole

application in order to determine all URLs/resources available.

The active scan then performs malicious requests against

every identified resource and evaluates every response of the

application in order to determine possible security issues on

the targeted URL. Once the active scan is completed, the

results are aggregated into a report. Figure 1 illustrates the

WAST technique. Usually, the scope of the scans and the

attack scenarios can be configured. In addition, the security

vulnerabilities can be categorized into different risk levels.

Fig. 1. Overview of WAST security testing technique: The spider scan
determines all available components and the active scan attacks them.

Security API Scanning (SAS): The WAST technique scans

the entire web application but may not detect flaws of the

underlying back-end (web) services. Therefore it is highly

recommended to test the web service through its APIs with

SAS. This technique allows testing of every endpoint in great

detail and can cover multiple security relevant cases such as

authentication, input validation, or error handling. Figure 2

provides an overview of the SAS testing technique. In SAS, a

parameterized request is generated and sent to the API of the

web service that is under test through a request component.
The input data can vary from credentials for authentication

to malicious payloads such as SQL injection (SQLi). All the

requests go through a proxy component that intercepts traffic

between the request component and the target application.

The proxy component evaluates all the intercepted traffic for

any security issues. After the test is performed, the proxy

component reports the result of the evaluation. SAS testing

is especially useful when generated fuzz data is used as input.

Fuzz data can be a list of the most common passwords, a bulk

146

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

of random data in order trigger unexpected behavior of the

system, or malicious input for SQLi.

Fig. 2. Overview of SAS testing technique: Request component sends request
through proxy component to target application. Proxy component evaluates
traffic and generates report.

Behaviour Driven Security Testing (BDST): Behaviour

Driven Development(BDD) is an extension of Test Driven

Development (TDD) and follows the idea of integrating busi-

ness insights into testing [15]. BDD uses a natural language

approach in order to define behaviour and expected outcome of

test cases. Behaviour Driven Security Testing (BDST) applies

the idea of BDD to the domain of security testing for the added

benefit that non-security experts can understand the security

tests, further improving the collaboration between security

experts and DevOps teams [12]. Additionally, BDST provides

a dynamic security documentation of the whole software

system due to the GWT (Given, When, Then) format of the

test specifications. In UI testing, BDD frameworks are used

to automate standard UI tests that mimic the user behavior

[15]. This approach can be used to automate the execution

of attack scenarios from the hacker’s perspective. Because

this technique is executed against the system as a whole, it

enables the identification of vulnerabilities that target multiple

entrypoints to the system. BDST combines several security

testing techniques such as SAS or WAST in order to mimic

attack scenarios by a hacker, as well as to find security issues

during normal system usage [13]. An example of a BDST

setup is shown in Figure 3.

Fig. 3. Overview of BDST testing technique: The BDST framework sends
behavior driven requests to the target application through the proxy component
which then scans for security flaws.

B. CI/CD Pipelines

Continuous Integration (CI) and Continuous Delivery (CD)

are software engineering processes used in DevOps in order to

improve the efficiency of projects [16]. The CI/CD processes

can be implemented at one of three overarching degrees

of automation. The first covering development and testing

(Continuous Integration), the second extending this with auto-

mated integration testing (Continuous Delivery) and the third

adding continuous deployment to a production environment

(Continuous Deployment). Figure 4 shows a CI/CD pipeline

that has been extended with dynamic security testing. A more

typical CI/CD pipeline only consists of stages 0 through 7 that

are shown in the upper 2 rows of the figure. Later on in section

IV-B a more detailed explanation is given on the addition of

security testing.

The Continuous Integration stage starts with a commit,

followed by a build of the modified application which is then

verified using unit tests. When all test cases pass, the tested

application is deployed to a testing environment. If Continuous

Delivery is implemented, a set of automated acceptance tests is

executed to verify that there are no regressions in the system’s

features. This step also helps to identify any errors that may

occur due to a difference in run-time environment because the

testing environment is usually a server with similar configu-

ration to the production environment. Depending on the level

of automation, this step can also involve manual testing and

approval before the pipeline advances to the next stage. When

all previous stages have passed, the system is automatically

deployed to the production environment in the Continuous

Deployment stage, where the users will have access to the

new version. If a test fails, or when an error occurs during

build or deployment, the pipeline is automatically stopped

and developers are notified of the error. When a fix has been

committed the pipeline will start all over again in order to test

the entire application.

III. CASE STUDY METHODOLOGY

This section aims to provide an overview of our goals and

research question that we want to answer with the case study

conducted in this paper. Next an outline of our approach is

provided.

A. Goal and Research Question

The primary goal of this study is to identify the challenges

and pitfalls of applying security testing of web applications

and services in CI/CD pipelines. Moreover, the focus lies on

dynamic testing techniques since this topic is only addressed

in theoretical research. With this we provide guidance for

development teams that are trying to shift more towards De-

vSecOps. In addition to this, we aim to shift research towards

the practical challenges involved with continuous security.

RQ How can we integrate DAST into CI/CD and ensure that
DevOps requirements are met?

With answering this research question we can shed light onto

the hidden complexities of the practical workload required

to achieve this integration. Through practical examples we

illustrate the scale of these complexities, as well as preliminary

solutions that aim to overcome them.

B. Approach

This section provides an overview of the approach used

in our case study. In order to conduct this case study we

(1) identify the requirements for successful integration of

security testing tools, (2) describe the tools that were chosen

for the integration and discuss their integration into CI/CD, (3)

147

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

investigate the performance of our implementation in a CI/CD

pipeline and (4) provide an overview of the challenges that

were encountered during implementation.

1) The requirements are determined using an iterative pro-

cess. As a starting-point we use common requirements

for DevOps. After creating an initial version of the CI/CD

pipelines, the requirements were extended to reflect the

changes needed to meet the DevSecOps goals. The final

list of requirements is presented in section IV-A. Later on

in section V, these requirements will be used to evaluate

the implementation.

2) Three different methods for DAST were listed in section

II. A number of tools are chosen in order to implement the

three testing techniques in such a way that they satisfy our

requirements. Later on in this section we provide a short

description of each of the chosen tools. Furthermore, in

Section IV more details are provided on how each tool is

adapted in such a way that they can be executed inside a

CI/CD pipeline.

3) With the implementation of our CI/CD pipelines in place,

we evaluate the different cases on their performance.

Because the focus of this case study lies on the integration

process of DAST techniques and not on the accuracy or

detection rates of the individual tools, we only provide

an overview of the execution times of each pipeline.

4) Finally, challenges that we encountered during the in-

tegration process are listed in the results (Section IV).

The goal of listing these challenges is to provide insights

to DevOps teams to prepare them for what they can

expect when they want to automate DAST using CI/CD.

In Section V we provide solutions to the aforementioned

challenges.

C. Tool Selection

This section describes the tools that we used in our case

study. The main functional requirement for the selection of

the tools is a command line interface (CLI), as a minimum,

that can be used to control testing activities such as triggering

attacks or to configure testing components. More beneficial

are tools that can be directly addressed through code via an

API using HTTP requests or client libraries. User Interfaces

(UIs) are not required, but may be beneficial for creating test

cases during development.

Automation of WAST: For WAST, we employ OWASP ZAP
web security scanner, a versatile open source tool that can

be configured for multiple types of security tests. It is also

recommended by the Open Web Application Security Project

(OWASP) foundation[17]. ZAP is a standalone application that

is accessible via GUI, CLI, REST API and various client

libraries. It comes with pre-installed known attack scenarios

that are executed during its active scan. This is complemented

by a spider scan that attempts to automatically discover

entrypoints in a web application that these attacks can be

performed against. The result is a highly automated test that

requires little configuration. However, these basic scans are

rather limited because customized HTTP POST requests are

not supported by ZAP in this configuration.

Automation of SAS: Besides the execution of predefined

attack scenarios, ZAP can also be configured to act as a

proxy between a testing tool and the target application. In

this proxy configuration ZAP will not make its own requests

so an additional tool is needed to perform the actual attacks.

We employ JMeter, a command-line tool that can perform

parameterized requests against an API, as the testing tool.

Using JMeter’s GUI, one can easily generate the XML files

that define a test case. JMeter cannot detect vulnerabilities and

therefore ZAP is inserted as a proxy between JMeter and the

target application. If required, JMeter can be configured to

include malicious payloads or to perform fuzz testing.

Automation of BDST: ZAP can be used in combination

with a BDD framework in order to perform high level use

cases such as signing up, uploading files or filling in multi-

stage forms. An example of such a framework is SeleniumBase
[18], a wrapper for Selenium, which mimics user behavior to

automate security testing for the aforementioned use cases.

A convenient way for developers to define the test cases for

BDST is the Selenium IDE Katalon. It allows the recording of

user activities on the web application (e.g clicking a button)

and converts them into an executable Python file. Seleni-
umBase executes these tests through the Pytest framework

[19]. Similar to SAS, ZAP is inserted as a proxy between

SeleniumBase and the target application.

IV. RESULTS

In this section we present the results that are derived

from our research process as described in Section III. The

results are divided into the requirements for security testing

in CI/CD (Section IV-A), a description of the concept of

implementing dynamic security testing into CI/CD (Section

IV-B), the performance of our approach (Section IV-C, and

the challenges that we encountered (Section IV-D).

A. Requirements for DAST in CI/CD

Before discussing the integration of the dynamic testing

techniques into automated CI/CD pipelines, we define the

following requirements. The requirements are based on the

commonly known DevOps requirements such as the ones

described in [20], [8], [21] with certain extensions to meet

DevSecOps goals.

R.1 Quick build times - Ensures that dynamic security

testing is practical and every commit build takes no longer

than 10 minutes to allow quick build fixes.

R.2 Parallel pipeline jobs - The pipeline should be able

to run unit, functional, integration, security, etc. tests in

separate jobs such that they can be run in parallel. This

will speed up pipeline execution. This should include

security tests at multiple abstraction levels.

R.3 Testing of multiple versions - The pipeline should be

able to test multiple versions simultaneously (i.e. different

branches or commits) without these pipelines interfering.

148

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

R.4 Test every Commit - Every commit to the remote

repository should trigger a pipeline process. This ensures

together with R.1 that vulnerabilities are detected early

such that broken builds can be fixed quickly.

R.5 Only build what is necessary - Ensure that pre-built

images for pipeline and testing components can be used

for components that do not require frequent updates. This

reduces overall run-time of the pipeline because slow

builds do not have to be repeated every time the pipeline

is started.

R.6 Flexible deployment strategies - The pipeline should

provide a method to configure the deployment strategy

being used. For some systems it may be desirable to

deploy even with some minor vulnerabilities, whereas

other systems should definitely not be deployed if any

vulnerabilities are found. This allows DevOps teams to

customize the pipeline to their project’s needs. Other

deployment strategies include selecting which tests are

being executed at specific stages of the CI/CD process

through the use of test scopes. It may for example be

desirable to run a larger but slower set of tests before a

system is deployed to production.

R.7 Report vulnerabilities - The system should not only

report whether a pipeline job passes, but also provide

clear test results in case of a pipeline failure. Specifically,

security tests should report about detected vulnerabilities

during testing. Clear reporting helps developers to quickly

locate and fix the issues.

R.8 Flexibility of testing technology - The system should

allow flexible integration of DAST tools or frameworks

that are best suited for security testing of the specific

application. Having the ability to select different tools

for different projects allows DevOps teams to reuse the

knowledge that has already been acquired by the team.

B. Concept & Implementation of DAST in CI/CD

In this section, we provide the details of our implementation

of the dynamic security testing approach presented in the

previous section. In addition to the tools that help to automate

security testing, several other technologies were used in order

to provide a test environment that can be executed on any

CI platform. In order to build, execute and share the required

applications involved in the particular test cases, we used the

virtualization software Docker3. Docker enables us to con-

tainerize every application and run it e.g. locally or remotely in

the CI environment. Further, the Docker Compose tool allows

to create and combine multiple containers which is important

to connect the different testing tools with the test application.

For the CI environment we decided to use GitLab CI. The

usage of this cloud platform is not only free but also provides

CI/CD pipelines as a service4.

Finding a way to test the integration of automated DAST

in CI/CD is challenging because it requires an adequately

3https://www.docker.com
4https://docs.gitlab.com/ee/ci

sized web application in order to make statements about the

different security tests. Since it is out of scope of this study

to develop such an application with specific vulnerabilities,

OWASP WebGoat was chosen as a target application. Web-

Goat is a deliberately insecure application that was designed

for educational reasons on the one hand and for testing security

tools on the other hand. We decided to use this open source

project because its 89.100 lines of code represent a reasonably

sized web application. In addition, the WebGoat community

already provides a WebGoat docker image which can be

pulled directly from the public repository. Furthermore, the

documentation of WebGoat includes information about its

vulnerabilities, such as SQL injection (SQLi) vulnerabilities,

and how to exploit them.

In order to integrate DAST into CI/CD, a requirements

first approach is used to identify where in the pipeline it

would be beneficial to perform automated security testing. As

was discussed in section II-B, the first stage is Continuous

Integration. Unit tests are executed following the build of a

new version in order to verify its implementation. From R.4

it follows that security tests should be run in addition to this.

Therefore, the build stage is extended to also build the tools

required for security testing. Because this step is executed after

every commit that is made by developers, it is important that

this stage is fast. Both SAS and BDST tests can be distributed

among multiple jobs, while WAST testing is sequential due to

limitations in ZAP and therefore WAST is excluded from this

stage. Only running these faster tests contribute to satisfying

R.1 and R.6.

When the pipeline advances to the continuous delivery

stage, the system is deployed to a testing server. New vul-

nerabilities can be present due to a change of the environment

and infrastructure, and therefore it is desired to run all prior

tests again. Because the continuous delivery stage is only

reached after the development team considers a version as

complete, we can run the slower WAST tests here for better

test coverage. This coverage is improved because each tool

has its own strengths and weaknesses, thus running multiple

of them has a better chance of catching vulnerabilities that

were missed by earlier tests.

As a final step, the system is deployed to a production

environment. Because DAST is able to test a live system, it is

possible to do one final sanity check by running all security

tests against the live system. If any vulnerabilities are detected,

this is reported back to the development team which can then

revert the changes quickly through gitlab its interface.

In order to satisfy R.2 and R.3 it is necessary to split each

set of tests into separate jobs. This allows the testing jobs

to be distributed among multiple runners. This then leads to

more flexibility because more testing methods can be added

in parallel jobs without affecting pipeline performance, also

contributing to R.8. Gitlab-ci only provides a single docker-

registry to use when transferring images between jobs. This

limitation requires the use of tags in order to safely store

multiple docker images. In order to ensure a unique tag for

each image, a mnemonic name for a job is concatenated with

149

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The different stages of a CI/CD pipeline with the emphasis on parallel test execution of the various security testing techniques.

the unique commit hash that is made available to each instance

of the pipeline, thus creating a unique identifier for each testing

method.

Because ZAP acts as a proxy between the testing tool and

the service under attack, it cannot simply return a test result

to the testing tool. Instead, ZAP aggregates these results while

analyzing traffic, and exposes these through its API. Therefore,

after testing is done an evaluation stage is added to the pipeline

that retrieves these results and uses them to decide whether

the pipeline should pass or fail. Vulnerability thresholds can

be configured in a strategy.json file. If any vulnerabilities were

found, the evaluation component will print the test results

to the standard output of the pipeline, thus contributing to

satisfying R.7.

Because the primary focus of this paper lies on dynamic

testing, no implementation for Static Application Security

Testing (SAST) has been added, but it is still added for

completeness to the pipeline in Figure 4 indicated in light-

blue. The benefit of SAST is that the testing process is fast

and easily integrated and can therefore be added in parallel to

DAST and unit tests.

Finally, a novel idea is introduced to speed up the overall

execution time of the pipeline. Because ZAP is an external

component that does not get updated frequently, we can sep-

arate it from the rest of the pipeline and host it as an external

service. This requires two-way communication between ZAP

and the the pipeline, which is not natively supported by gitlab-

ci. It is however possible to add a container to gitlabs runner

that acts as a router to facilitate this communication. With the

ability to run ZAP as an external service, it does not have to

be rebuilt for every instance of the pipeline and thus we only

build what is necessary, contributing to R.5.

Building of docker images is executed in the build stage

of the pipeline. Each testing approach requires two docker

images to be built, resulting in a total of 6 images being built.

In order to speed up this process, each build is executed as a

separate parallel job. A build job consists of three steps: First,

a login to a remote docker repository is required. Secondly, the

docker images are built and and tagged using the commit hash

of the current branch. This allows us to push images multiple

branches to the same repository without them interfering with

each other. Finally, the images are pushed to the remote

repository so they can be used in the next stage.

The second stage is testing, where the images from the

previous stage are pulled from the remote docker repository

and security tests are then executed. This stage uses a docker-

compose in docker image5, allowing us to run the test setup

exactly as one would do on a local machine. Because the

images must be pulled from a remote repository, a custom

python script is used to update the build section of the compose

file with an image entry pointing to the remote repository.

Results are written into a volume that is shared with the CI

pipeline. The contents of this directory are exported as GitLab

CI artifacts.

Tools such as PyTest and JMeter require a running appli-

cation to test. Since docker-compose’s container dependency

feature does not wait for a web server to be ready, this had to

be implemented manually. For this the wait-for-it.sh6 was used

to delay starting the testing process until all dependencies are

ready to respond to requests.

ZAP and WebGoat are web services that keep running until

they are explicitly stopped. This means that without sending

a shutdown signal, the CI/CD pipeline will never terminate.

Therefore, at the end of the testing step a shutdown command

5https://hub.docker.com/r/docker/compose/
6https://github.com/vishnubob/wait-for-it

150

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

is sent to ZAP through its API. This results in a graceful

termination of ZAP. However, WebGoat does not provide such

an endpoint and therefore a different approach is needed. In

order to ensure that WebGoat terminates after testing, the

testing tool’s image has been constructed using the same

docker-compose in docker image as the CI pipeline itself. In

order to make this work, a volume must be mounted into this

image to make the pipeline’s docker daemon socket available

to docker inside the testing tool’s image. After test execution

the testing tool is then able to call the docker kill command.

This will cause WebGoat to terminate once testing is complete.

The aforementioned artifacts that were exported in the

previous stage are imported into an evaluation step. This last

step then executes a python script that reads the JSON output

from ZAP, and uses this to decide whether the pipeline should

pass or fail. If a pipeline should fail, it is sufficient to exit the

script with a non-zero status code. For an actual production

setup, this step would then be followed by a deploy step. This

deploy step will only be executed if the evaluation script exits

with a zero as status code.

Integration of WAST in CI/CD: For the WAST integration

we used the containerized ZAP and WebGoat containers.

In order to control the tests, we added another container

containing a simple script written in Python. The script makes

use of the Python ZAP client library. With this library, one can

easily control pro-active scans of ZAP. It receives the URL

address of the WebGoat application as an argument to trigger

spider and active scans in ZAP. This setup allows a complete

scan of the WebGoat application. After the scans are finished,

the aforementioned methods are used in order to terminate the

docker-compose setup and evaluate the test results.

Integration of SAS in CI/CD: For the SAS test scenario

we used again the containerized ZAP application for detect-

ing malicious HTTP traffic. However, ZAP is now used in

proxy mode and hence only forwards all traffic to the target

application and analyses the responses. As was explained

in Section II-A, we used JMeter to perform specific API

scans. Therefore, we installed JMeter and the .jmx files in a

docker container. In order to execute the tests one has to add

entrypoints to the container that takes arguments and forwards

them to the JMeter CLI inside the container. Thus, we can

dynamically specify test files and setups ZAP as the proxy.

This is important to detect security issues within the HTTP

communication initiated by JMeter.

Integration of BDST in CI/CD: For the BDST technique

we applied the SeleniumBase framework, which is installed

in its own docker container together with two test cases. The

first test case registers in the WebGoat application and the

second uses the credentials created to log in and perform

an SQLi attack. Similar to the JMeter docker container we

needed to add an extra docker entrypoint in order to start

SeleniumBase via the docker-compose command section. Be-

cause the SeleniumBase configuration refuses to accept the

default docker-compose generated host names to configure

ZAP as proxy (docker-compose gives random IP addresses to

each container which can then be accessed using a mnemonic

host name), we had to add a customized docker network

to assign static IP addresses to each container to configure

scanning for vulnerabilities. Through these static IP addresses,

SeleniumBase is able to communicate with WebGoat using

ZAP as a proxy.

C. Performance

We made a preliminary analysis of the extended CI/CD

pipeline. The results for every test for each CI job can be

downloaded from the GitLab CI interface. All three security

tests have detected vulnerabilities 7. The detection of these

vulnerabilities causes the evaluation step of the pipeline to fail

as intended. A single CI job, covering all three test scenarios,

takes 14 minutes and 6 seconds. This run-time includes build-

ing of all components, starting the applications, performing

the tests, evaluating the results of all tests, and exporting the

artifacts containing the detected vulnerabilities. Subsequently,

the three test techniques will be discussed individually. All

setups used the WebGoat application as a service under attack,

which is deployed using an already existing docker image.

Therefore, it has no building time.

WAST included three docker containers. The building

time for ZAP container is 6 minutes and 52 seconds and

the container used to control ZAP requires 1 minute and

32 seconds. The execution of WAST takes 6 minutes and 4

seconds in total. The spider scan identified 13 resources along

the path http://webgoat:8080/WebGoat/ and the

active scan detected 15 vulnerabilities. ZAP categorized those

vulnerabilities by risk which results into 7 “Informational”,

6 “Low”, 1 “Medium”, and 1 “High” risk. The

vulnerability with the high risk was detected on the address

http://webgoat:8080/WebGoat/register.mvc
and denotes this resource to be vulnerable against a SQLi

attack. Finally, the evaluation of this test technique took 1

minute and 8 seconds.

The SAS test setup also requires three components.

The build time for its two build components are: ZAP

in 6 minutes and 9 seconds and JMeter in 2 minute

and 2 seconds. The run-time of the test takes 2 min-

utes and 31 seconds. The test was performed against

http://webgoat:8080/WebGoat/login and ZAP de-

tected two addresses that are vulnerable. The first address

is exposed to a two “Low” risk vulnerability and one “In-

formational” risk. The second address is liable against 1

vulnerability which is a “Low”risk.

The BDST setup needs to build two containers, namely ZAP

and SeleniumBase. The first component takes 6 minutes and 8

seconds to build and the second 4 minutes and 31 seconds. The

duration of the test stage is 3 minutes and 45 seconds. During

the two performed behaviour driven tests, ZAP detected 32

vulnerabilities, composed by 28 “Informational” and 4 “Low”

risk security issues. Interesting is that one of the test cases

included an SQLi attack where user passwords were exposed

7All results are derived analysing this CI job are available at:
https://gitlab.com/rvbuijtenen/continuous-security/pipelines/128935397

151

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I
VULNERABILITIES DETECTED FOR EACH AUTOMATED DAST TECHNIQUE

Test Type # Tests Inform. Low Medium High Total

WAST 13 URLs 7 6 1 1 15

SAS 1 URL 1 3 0 0 4

BDST 2 UCs 32 28 0 0 50

inserting SQL commands into the username field. This attack

was not detected by ZAP. The evaluation of the test results

took 1 minute and 5 seconds. An overview of these results

can be found in Figure 5 and Table I.

Fig. 5. Build-, test-, and evaluation-time for all pipeline stages

D. Challenges

In contrast to the quantified results of the case studies, we

also present qualitative results because they are important to

identify challenges in the integration of automated DAST into

CI/CD. Solutions to the problems that are discussed here are

presented in Section V.

a) Synchronization: In the docker-compose setup of all

three testing techniques, we encountered the problem that all

containers were marked as ready but the application inside

the container was still starting. This resulted in tests being

triggered while e.g. WebGoat or ZAP were not yet ready. For

SAS this caused the program to exit without any test results,

while for BDST this caused the SeleniumBase container to

crash with an error.

b) Pipeline Termination: Another recurring problem was

pipeline termination. Despite the tests finishing as intended,

the remaining docker containers were still running. This is

not a surprise because ZAP and WebGoat are standalone

software systems that are designed to run until they are stopped

explicitly. If this is not done the CI job will never finish and

one could never determine if the dynamic security test has

passed or failed.

A similar problem related to containerization was to get

the results form ZAP. Since zap provides its results through

a web UI, there was no clear way to extract these from the

container. However, it is possible to make an HTTP request

that downloads the test results in JSON or HTML format.

c) Configuration Issues: Another problem occurred with

using SeleniumBase as a BDD framework. SeleniumBase can

be configured to redirect requests through a proxy which

works fine in native installations. However, SeleniumBase only

accepts an IP address as a proxy target. Because docker-

compose assigns a dynamic IP to a container when it is

started, it is not possible to refer to this IP using the default

configuration, hence further customization is required.

Using SeleniumBase we defined a test case that performed

an SQLi against the WebGoat application. However, it turns

out that the testing configuration is setup between the testing

application and WebGoat’s UI, rather than between WebGoat

and its (backend) API. This resulted in ZAP not detecting the

presence of leaked information because the leak is outside of

the scope of what SeleniumBase is able to test.

V. DISCUSSION

As the results in Section IV show, all three testing methods

can be performed in our setup and vulnerabilities are detected

by employing the existing tools for test automation in a

feasible way. The evaluation of the results stops the pipeline

and thereby prevent the undesired deployment of security flaws

to a production system.

One can easily see that the tests detected several security

issues that were categorized on a low or even informal risk

level (Table I). Depending on the scope of the system, the

evaluation of the ZAP results can be configured in such a way

that those alerts are ignored or only reported but do not lead to

a pipeline failure. Finally, we could show that our approach is

capable of satisfying the requirements which were defined in

Section IV-A. In what follows, we will discuss the challenges

that we encountered in our case study.

One demanding challenge is to keep the run-time of a

pipeline to a minimum. In our case study we were initially not

able to achieve the maximum execution time of 10 minutes.

However, in our approach we suggest means to resolve this

problem to a certain extent. Building the security testing

component is the slowest part of our CI/CD pipeline. As

already mentioned, we excluded this component from our

pipeline and deployed it separately. This results in the desired

reduction of the overall run-time and derives to a result that we

consider to be adequate as it meets our requirement for quick

build times. Another solution is to execute different testing

types but also individual test cases in parallel. Note however

that this applies only to SAS and BDST. Our WAST setup

provides no built-in functionality that allows for distributed

testing. Furthermore, the run-time depends heavily on the scale

and complexity of the system that is being tested. If a WAST

scan takes longer than what is considered as an acceptable

waiting time for regular development, we recommend to only

execute this type of testing for the continuous delivery and

continuous deployment stages of the project.

The second and most challenging part that we encountered

was the advanced expertise in containerizing all components

involved in the test environment. Generally speaking, we found

that many pitfalls in this area come from the isolated nature

152

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

of containerized applications and therefore a fair amount of

knowledge of tools like Docker and GitLab CI are required.

This included long starting times of components, termination

of endless running containers, extracting test results, and

mismatches of dynamic IP addresses. Development Teams

should therefore consider to invest into advanced training for

developers regarding containerization. The four problems of

the containerization challenge are listed as follows:

1) Several services are executed before other required ser-

vices or even the system under test are started. One can

address this issue with adding synchronization means to

the affected containers (mostly waiting for all services

to be properly started). The result is that the testing

container is paused until all services are available which

solves this issue.

2) The CI/CD pipeline does not terminate due to web

services that wait for an explicit shutdown. This can

be solved by adding several shut down mechanisms.

Solutions for this depend on whether a certain service

already provides such a mechanism that merely has to

be triggered or whether terminating an entire container

needs to be forced.

3) Storing test results of stand alone tools in a CI/CD

pipeline before a certain container is terminated is an-

other problem related to containerization. We solved

this problem by storing the test reports temporarily to

disc. Subsequently, one needs to export those to the

corresponding CI tool (artifacts in GitLab CI) in order

to make them available to the development team.

4) The last problem is the default absence of IP addresses in

container orchestration (e.g. docker-compose). Nonethe-

less, several tools require these addresses in order to prop-

erly perform their tasks. Therefore, one needs to introduce

fixed IP addresses in their container orchestration.

The third challenge is to deal with increasing complexity

of security tests. Especially for those techniques where the

developer has to create a test case manually as it is in SAS

and BDST, the number of tests will grow rapidly over time.

Therefore, we suggest to consider SAS already in the API

design. The team should fall back to the experience of a

security expert in order to determine possible attack scenarios

against this API. The experts should then be included in the

test design as well. Subsequently, the API development should

follow test driven development (TDD) and start with creating

the SAS test case. This ensures that no API is forgotten and

no vulnerabilities remain undetected.

Finally, no single testing technique is a silver bullet for

detecting all security flaws. Hence, development teams have

to tackle the challenge of using different testing techniques

to cover as much vulnerabilities as possible. For example,

the WAST technique requires the least amount of integration

effort. The default setup of ZAP is however not capable of

finding all resources since the spider scan is a.o. not capable

of detecting resources that require authorization [13]. On the

other hand, BDST allows testing from the perspective of a

TABLE II
OVERVIEW ON INTEGRATION CHALLENGES

4 Challenges and proposed solutions of integrating DAST into CICD

1. Challenge - keeping the run-time at a minimum

• parallelize different testing types and if possible also individual tests
• deploy testing tools such as ZAP outside the CI/CD pipeline
• exclude testing techniques with longer run-time from CI stage

2. Challenge - lack of containerization expertise testing tools

• provide team training in containerization techniques

3. Challenge - test complexity

• apply TDD techniques for API design
• integrate security experts in all development stages

(follows sharing pillar of CAMS)

4. Challenge - vulnerability coverage

• combine testing techniques to achieve a higher coverage of vulnerabilities

hacker. The setup that is suggested is capable of performing

these scenarios as our two test cases show. However, we

were not able to detect the SQLi attack scenario. This is

not a surprise because ZAP is only a proxy between the

BDD framework and the web application. The malicious

request however is sent between the web application and

its underlying web service. In order to detect those security

flaws we suggest to use SAS in addition to BDST to analyse

the requests sent to the web service’s API. The SAS testing

technique is the most flexible because it allows to test every

single endpoint individually. This is important as was shown

by the previous example of BDST. However, creating and

managing tests for every single endpoint of an API can become

increasingly complex for large applications. Furthermore, the

flexibility of the tests can easily lead to forgetting certain

aspects in the tests. Unfortunately, the solution to cover as

much vulnerabilities as possible exacerbates the challenges

of the test complexity. Furthermore, increased test complexity

and maintenance for larger systems is already a known issue in

DevOps, and therefore not a challenge unique to DevSecOps.

VI. RELATED WORK

With the increased adoption of CI/CD pipelines in software

development, the concept of DevSecOps has gained popularity

in the research community. Many of the recent works have

been in the form of surveys that try to define the core

concepts in DevSecOps and provide perspectives of different

stakeholders.

Myrbakken and Colomo-Palacios aim to provide a definition

for DevSecOps, what its main benefits are and how the

need for DevSecOps emerged from DevOps [2]. The authors

found that DevSecOps is defined as the integration of security

processes and practices that are meant to shift the mindset of

all participants in the SDLC to get everyone to do what they

can to ensure security of a system. Our work investigates the

pitfalls of integrating security processes into the SDLC.

[8] presents a study in which six software developers were

interviewed in order to get a better understanding of their

view on the four pillars of DevOps: culture, automation,

measurement and sharing. We concentrate mainly on the

153

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

automation pillar. In addition, our work provides preliminary

solutions on how to increase the automation level in security

testing.

Yasar and Kontostathis provide the 8 best practices on how

to ensure sufficient security in DevOps [6]. These practices

aim to deal with the negative feelings that developers have

towards information security while being easily integratable

into the rapid release cycles that are enabled by modern

DevOps. This is achieved by shifting security from following

a set of rules and guidelines to a proactive approach where

security can be tackled by using creative solutions to solve

though security problems at an early stage in the SDLC.

However, none of these works present an implementation level

case study and discuss technical challenges as described in this

paper.

[22] presents an industrial case study to identify the chal-

lenges and best practices in adopting DevSecOps. Their work

considers the challenges at the business process level (as

opposed to implementation level) and is mostly tailored to

separation of duties in performing tasks. Although we also

identify challenges in adopting DevSecOps, our work focuses

on integrating technical solutions into the SDLC.

Perhaps one of the most relevant work in terms of automated

security testing in CI/CD is [13]. The author lists the scope

and challenges found in the automation of security testing. Dy-

namic penetration testing and fuzz testing are discussed using

practical examples with a number o tools such as OWASP

ZAP, JMeter and Selenium. These tools are evaluated in three

case studies on the security of web applications. Although

interesting, the information provided are often incomplete and

failure prone. In addition, the author discusses various security

testing techniques in the context of CI/CD. However, he misses

to identify relevant challenges one need to tackle to properly

integrate DAST techniques in CI/CD pipelines.

In this paper, we define general requirements for dynamic

security testing in CI/CD, identify challenges and provide

solutions for addressing these requirements and challenges.

VII. CONCLUSION & FUTURE WORK

In this paper, we studied the integration of continuous

(dynamic) security testing into CI/CD pipelines. To our knowl-

edge, our work provides the first academic view on the topic.

We defined eight requirements for a proper adaptation of

automated dynamic application security testing for DevSecOps

teams. These requirements ensure practical and agile develop-

ment of web applications, web services and alike. In order to

identify the practical challenges in meeting these requirements,

we performed a case study by integrating three commonly

known security testing tools into a CI/CD pipeline. We believe

that the interested DevSecOps teams can benefit from our

work as they can use our approach as a reference architecture

for dynamic testing in CI/CD pipelines and learn from the

challenges/solutions we outlined.

As future work, we want to focus our research on auto-

matically patching detected vulnerabilities and automated test

generation in case of behavioral changes in the application.

First promising approach for the latter challenge is described

by Shoshitaishvili et al. in [23]. We are planning to apply their

methodology into our framework.

REFERENCES

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” Gaithersburg, MD, USA, Tech. Rep., 2011.

[2] H. Myrbakken and R. Colomo-Palacios, “Devsecops: A multivocal
literature review,” 09 2017, pp. 17–29.

[3] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 25, 07
2015.

[4] J. Willis, “What devops means to me,” https://blog.chef.io/
what-devops-means-to-me/, 07 2010, accessed: 26-02-2020.

[5] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable
continuous delivery,” vol. 24, pp. 6–12, 08 2011.

[6] H. Yasar and K. Kontostathis, “Where to integrate security practices on
devops platform,” International Journal of Secure Software Engineering,
vol. 7, pp. 39–50, 10 2016.

[7] S. Kraemer, P. Carayon, and J. Clem, “Human and organizational factors
in computer and information security: Pathways to vulnerabilities,”
Computers & Security, vol. 28, pp. 509–520, 10 2009.

[8] N. Tomas, J. Li, and H. Huang, “An empirical study on culture,
automation, measurement, and sharing of devsecops,” 06 2019, pp. 1–8.

[9] O. J. of the European Union, “Regulation (eu) 2016/679 - general data
protection regulation,” https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:32016R0679#d1e1374-1-1, accessed: 05-09-2020.

[10] M. Kreitz, “Security by design in software engineering,” SIGSOFT
Softw. Eng. Notes, vol. 44, no. 3, p. 23, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3356773.3356798

[11] “Owasp top ten,” https://owasp.org/www-project-top-ten/, accessed: 27-
02-2020.

[12] T. Hsu, Hands-On Security in DevOps: Ensure Continuous Security,
Deployment, and Delivery with DevSecOps. Packt Publishing, 2018.

[13] T. H.-C. Hsu, “Practical security automation and testing: tools and
techniques for automated security scanning and testing in devsecops,”
2019.

[14] P. Zech, “Risk-based security testing in cloud computing environments,”
in 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, March 2011, pp. 411–414.

[15] R. K. Lenka, S. Kumar, and S. Mamgain, “Behavior driven development:
Tools and challenges,” in 2018 International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN), Oct
2018, pp. 1032–1037.

[16] S. A. I. B. S. Arachchi and I. Perera, “Continuous integration and
continuous delivery pipeline automation for agile software project
management,” in 2018 Moratuwa Engineering Research Conference
(MERCon), May 2018, pp. 156–161.

[17] “Free for open source application security tools,” https://owasp.org/
www-community/Free for Open Source Application Security Tools,
accessed: 10-06-2020.

[18] “Seleniumbase (https://seleniumbase.com/),” accessed: 16-03-2020.
[19] “Pytest (https://docs.pytest.org/en/latest/contents.html),” accessed: 22-

03-2020.
[20] M. Fowler. (2017) Continuousintegrationcertification. [Online]. Avail-

able: https://martinfowler.com/bliki/ContinuousIntegrationCertification.
html

[21] ——. (2006) Continuous integration. [Online]. Available: https:
//martinfowler.com/articles/continuousIntegration.html

[22] V. Mohan, L. B. Othmane, and A. Kres, “BP: security concerns and best
practices for automation of software deployment processes: An industrial
case study,” in 2018 IEEE Cybersecurity Development, SecDev 2018,
Cambridge, MA, USA, September 30 - October 2, 2018. IEEE Computer
Society, 2018, pp. 21–28.

[23] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the hacrs: Augmenting
autonomous cyber reasoning systems with human assistance,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 347–362. [Online].
Available: https://doi.org/10.1145/3133956.3134105

154

Authorized licensed use limited to: University of Groningen. Downloaded on December 03,2020 at 07:20:38 UTC from IEEE Xplore. Restrictions apply.

