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1  | INTRODUC TION

The development of new powerful Bayesian phylogenetic infer-
ence tools, such as BEAST (Drummond & Rambaut, 2007), MrBayes 
(Huelsenbeck & Ronquist, 2001) or RevBayes (Höhna, Landis, et al., 
2016) has been a major advance in constructing phylogenetic trees from 
character data (usually nucleotide sequences) extracted from organ-
isms (usually extant, but extinction events and/or time-stamped  

data can also be added), and hence in our understanding of the main 
drivers and modes of diversification.

BEAST (Drummond & Rambaut, 2007) is a typical Bayesian phy-
logenetics tool that needs both character data and priors to infer a 
posterior distribution of phylogenies. Specifically, for the species tree 
prior—which describes the process of diversification—BEAST has 
built-in priors such as the Yule (1925) and (constant-rate) birth–death 
(BD) (Nee et  al.,  1994) models as well as coalescent priors. These 
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Abstract
1.	 Phylogenetic trees are currently routinely reconstructed from an alignment 

of character sequences (usually nucleotide sequences). Bayesian tools, such as 
MrBayes, RevBayes and BEAST2, have gained much popularity over the last dec-
ade, as they allow joint estimation of the posterior distribution of the phyloge-
netic trees and the parameters of the underlying inference model. An important 
ingredient of these Bayesian approaches is the species tree prior. In principle, the 
Bayesian framework allows for comparing different tree priors, which may elu-
cidate the macroevolutionary processes underlying the species tree. In practice, 
however, only macroevolutionary models that allow for fast computation of the 
prior probability are used. The question is how accurate the tree estimation is 
when the real macroevolutionary processes are substantially different from those 
assumed in the tree prior.

2.	 Here we present pirouette, a free and open-source r package that assesses the 
inference error made by Bayesian phylogenetics for a given macroevolutionary 
diversification model. pirouette makes use of BEAST2, but its philosophy applies 
to any Bayesian phylogenetic inference tool.

3.	 We describe pirouette’s usage providing full examples in which we interrogate a 
model for its power to describe another.

4.	 Last, we discuss the results obtained by the examples and their interpretation.
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simple tree priors are among the most commonly used, as they repre-
sent some biologically realistic processes (e.g. viewing diversification 
as a branching process), while being computationally fast.

To allow users to extend the functionalities of BEAST using plug-
ins, BEAST2 was written (Bouckaert et  al.,  2019) (with BEAST and 
BEAST2 still independently being developed further). For example, one 
can add novel diversification models by writing a BEAST2 plugin that 
contains the likelihood formula of a phylogeny under the novel diver-
sification model, that is, the prior probability of a species tree. Plugins 
have been provided, for instance, for the calibrated Yule model (Heled 
& Drummond, 2015), the BD model with incomplete sampling (Stadler, 
2009), the BD model with serial sampling (Stadler et al., 2012), the BD 
serial skyline model (Stadler et  al.,  2013), the fossilized BD process 
(Gavryushkina et al., 2014) and the BD SIR model (Kühnert et al., 2014).

Many other diversification models (and their associated likelihood 
algorithms) have been developed, for example, models in which diversifi-
cation is time-dependent (Nee et al., 1994; Rabosky & Lovette, 2008), or 
diversity-dependent (Etienne et al., 2012) or where diversification rates 
change for specific lineages and their descendants (Alfaro et al., 2009; 
Etienne & Haegeman,  2012; Laudanno et  al.,  2020; Rabosky,  2014). 
Other models treat speciation as a process that takes time (Etienne & 
Rosindell, 2012; Lambert et al., 2015; Rosindell et al., 2010), or where 
diversification rates depends on one or more traits (FitzJohn,  2012; 
Herrera-Alsina et al., 2019; Maddison et al., 2007).

These are, however, not yet available as tree priors in BEAST2, 
for reasons explained below. In this paper, we present methodol-
ogy to determine whether such new plug-ins are needed, or whether 
currently available plug-ins are sufficient. We show this using the 
Yule and BD species tree priors, but our methods can be used with 
other built-in tree priors as well.

The rationale of our paper is as follows. When a novel diversifi-
cation model is introduced, its performance in inference should be 
tested. Part of a model's performance is its ability to recover param-
eters from simulated data with known parameters (e.g. Etienne et al., 
2014), where ideally the estimated parameter values closely match the 
known/true values. Even when a diversification model passes this test, 
it is not necessarily used as tree prior in Bayesian inference. Bayesian 
phylogenetic inference often requires that the prior probability of the 
phylogeny according to the diversification model has to be computed 
millions of times. Therefore, biologically interesting but computation-
ally expensive tree priors are often not implemented, and simpler 
priors are used instead. This is not necessarily problematic, when the 
data are very informative or when the prior is truly uninformative, as 
this will reduce the influence of the tree prior. However, the assump-
tion that tree prior choice is of low impact must first be verified.

There have been multiple attempts to investigate the impact of 
tree prior choice. For example, Sarver et al. (2019) showed that the 
choice of tree prior does not substantially affect phylogenetic infer-
ences of diversification rates. However, they only compared current 
diversification models to one another, and thus this does not inform 
us on the impact of a new tree prior.

Similarly, Ritchie et al.  (2016) showed that inference was accu-
rate when birth–death or skyline coalescent priors were used, but 

they simulated their trees with a Yule process only, as their focus 
was not so much on the diversification process but on the influence 
of inter- and intraspecific sampling.

Another way to benchmark a diversification model, is by doing a 
model comparison, in which the best model is determined from a set 
of models. A good early example is Goldman (1993) in which Goldman 
compared DNA substitution models. A recent approach to test the 
impact of tree prior choice, proposed by Duchene et al.  (2018), al-
lows to measure model adequacy for phylodynamic models that are 
mathematically described (i.e. have a known likelihood equation).

Here we introduce a method to quantify the impact of a novel tree 
prior, that is, a tree model, for which we can simulate phylogenies, but 
not yet calculate their likelihoods. This new method simultaneously as-
sesses the substitution, clock and tree models (Duchêne et al., 2015). 
The method starts with a phylogeny generated by the new model. Next, 
nucleotide sequences are simulated that follow the evolutionary his-
tory of the given phylogeny. Then, using BEAST2's built-in tree priors, 
a Bayesian posterior distribution of phylogenies is inferred. We then 
compare the inferred with the original phylogenies. How to properly 
perform this comparison forms the heart of our method. Only new di-
versification models that result in a large discrepancy between inferred 
and simulated phylogenies will be worth the effort and computational 
burden to implement as a species tree prior for in a Bayesian framework.

Our method is programmed as an r package (R Core Team, 2013) 
called pirouette. pirouette is built on babette (Bilderbeek & Etienne, 
2018), which calls BEAST2 (Bouckaert et al., 2019).

2  | DESCRIPTION

The goal of pirouette is to quantify the impact of a new tree prior. 
It does so by measuring the inference error made for a given recon-
structed phylogeny, simulated under a (usually novel) diversification 
model. We refer to the model that has generated the given tree as the 
‘generative tree model’ pG. A ‘generative tree model’, in this paper, 
can be either the novel diversification model for which we are testing 
the impact of choosing standard tree priors for, or it is the model with 
which we generate the twin tree that is needed for comparison (see 
below). In the latter case, we also refer to it as the actual generative 
tree model, and it thus serves as a baseline model. This is is done in 
the example, where the Yule model is the generative model.

The inference error we aim to quantify is not of stochastic nature. 
Stochastic errors are usually non-directional. We, instead, aim to ex-
pose the bias due to the mismatch between a generative model (that 
has generated the phylogeny) and the model(s) used in the actual in-
ference. We define the birth–death (BD) model (Nee et al., 1994) as 
the standard tree model, as many (non-standard) tree models have a 
parameter setting such that it reduces to this model. One such exam-
ple is the diversity-dependent (DD) diversification model (Etienne & 
Haegeman, 2020; Etienne et al., 2012) in which speciation or extinc-
tion rate depends on the number of species and a clade-level carrying 
capacity. The BD model can be seen as a special case of the DD model, 
because for an infinite carrying capacity, the DD model reduces to the 
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BD model. When benchmarking a novel tree model, one will typically 
construct phylogenies for different combinations of the diversifica-
tion model's parameters, to assess under which scenarios the infer-
ence error cannot be neglected. While we recommend many replicate 
simulations when assessing a novel tree prior, our example contains 
only one replicate, as the goal is to show the workings of pirouette, 
instead of doing an extensive analysis. The Supporting Information 
includes results of replicated runs under multiple settings.

pirouette allows the user to specify a wide variety of custom set-
tings. These settings can be grouped in macro-sections, according 
to how they operate in the pipeline. We summarize them in Tables 1 
and 2.

2.1 | Pirouette's pipeline

The pipeline to assess the error BEAST2 makes in inferring this phy-
logeny contains the following steps:

1.	 The user supplies one or (ideally) more phylogenies from a new  
diversification model.

2.	 From the given phylogeny an alignment is simulated under a known  
alignment model A.

3.	 From this alignment, according to the specified inference condi-
tions C, an inference model I is chosen (which may or may not 
differ from the model that generated the tree).

Sub-argument Description Possible values

tree_prior Macroevolutionary diversification model BD, CBS, CCP, CEP, Yule

clock_model Clock for the DNA mutation rates RLN, strict

site_model Nucleotide substitution model GTR, HKY, JC, TN

mutation_rate Pace at which substitutions occur mutation_rate ∈ R > 0

root_sequence DNA sequence at the root of the tree any combination of a, c, g, t

model_type Criterion to select an inference model Generative, Candidate

run_if Condition under which an inference model 
is used

Always, Best candidate

do_measure_
evidence

Sets whether or not the evidence of the 
model must be computed

TRUE, FALSE

error_fun Specifies how to measure the error nLTT, |γ|

burn_in_fraction Specifies the percentage of initial posterior 
trees to discard

burn_in_fraction ∈ [0, 1]

Abbreviations: BD, birth–death (Nee et al., 1994); CBS, coalescent Bayesian skyline (Drummond 
et al., 2005); CCP, coalescent constant population; CEP, coalescent exponential population; Yule, 
pure birth model (Yule, 1925); RLN, relaxed log-normal clock model (Drummond et al., 2006); strict, 
strict clock model (Zuckerkandl & Pauling, 1965); GTR, Generalized time-reversible model (Tavaré, 
1986); HKY, Hasegawa, Kishino and Yano (Hasegawa et al., 1985); JC, Jukes and Cantor (Jukes 
et al., 1969); TN, Tamura and Nei (Tamura & Nei, 1993); nLTT, normalized lineage-through-time 
(Janzen et al., 2015); |γ|, absolute value of the gamma statistic (Pybus & Harvey, 2000).

TA B L E  1   Most important parameter 
options

Symbol Macro-argument Description

G Generative model The full setting to produce BEAST2 input data. Its core 
features are the tree

sG Site model prior pG, the clock model cG and the site model sG

A Alignment model Both the substitution model and rate variation across sites

Xi i-th candidate 
experiment

Specifies the alignment generation, such as the clock model 
cG, site model sG and root sequence

I Inference model Full setting for a Bayesian inference. It is made by a candidate 
inference model Ii and its inference conditions Ci

C Inference 
conditions

The assumed phylogenetic inference model, of which the 
main components are the tree prior pI, assumed clock model 
Ci and assumed site model sI. Conditions under which I is 
used in the inference. They are composed of the model 
type, run condition and whether to measure the evidence

E Error measure 
parameters

Errors measurement setup that can be specified providing 
an error function to measure the difference between the 
original phylogeny and the inferred posterior. The first 
iterations of the MCMC chain of the posterior may not be 
representative and can be discarded using a burn-in fraction

TA B L E  2   Definitions of terms and 
relative symbols used in the main text and 
in Figure 1. To run the pipeline A, X and E 
must be specified
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4.	 The inference model and the alignment are used to infer a poste-
rior distribution of phylogenies.

5.	 The phylogenies in the posterior are compared with the given 
phylogeny to estimate the error made, according to the error 
measure E specified by the user.

The pipeline is visualized in Figure 1. There is also the option to 
generate a ‘twin tree’, that goes through the same pipeline (see sup-
plementary subsection 9.5).

The first step simulates an alignment from the given phylogeny 
(Figure 1, 1a → 2a). For the sake of clarity, here, we will assume the 

alignment consists of DNA sequences, but one can also use other 
heritable materials such as amino acids. The user must specify a 
root sequence (i.e. the DNA sequence of the shared common an-
cestor of all species), a mutation rate and a site model.

The second step (Figure  1, 3a) selects one or more inference 
model(s) I from a set of standard inference models I1, ..., In. For ex-
ample, if the generative model is known and standard (which it is for 
the twin tree, see below), one can specify the inference model to 
be the same as the generative model. If the tree model is unknown 
or non-standard—which is the primary motivation for this paper—
one can pick a standard inference model which is considered to be 

F I G U R E  1   pirouette pipeline. The pipeline starts from a phylogeny (1a) simulated by the generative tree model pG. The phylogeny is 
converted to an alignment (2a) using the generative alignment model A = (cG, sG), composed of a clock model and a site model. The user 
defines one or more experiments. For each candidate experiment Xi (a combination of inference model Ii and condition Ci), if its condition 
Ci is satisfied (which can depend on the alignment), the corresponding inference model I = Ii is selected to be used in the next step. The 
inference models (3a) of the selected experiments use the alignment (2a) to each create a Bayesian posterior of (parameter estimates 
and) phylogenies (4a). Each of the posterior trees is compared to the true phylogeny (1a) using the error measure E, resulting in an error 
distribution (5a). Optionally, for each selected inference model a twin pipeline can be run. A twin phylogeny (1b) can be generated from the 
original phylogeny (1a) using the twin tree model pt, selected among standard diversification models; the default option is the standard BD 
model, with parameters estimated from the original phylogeny. A twin alignment (2b) is then simulated from the twin phylogeny using clock 
model cG and site model sG used with the generative tree model (the novel tree model). The twin pipeline follows the procedure of the main 
pipeline, resulting in a twin error distribution (5b)
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closest to the true tree model. Alternatively, if we want to run only 
the inference model that fits best to an alignment from a set of can-
didates (regardless of whether these generated the alignments), one 
can specify these inference models (see section 9.6).

The third step infers the posterior distributions, using the sim-
ulated alignment (Figure  1, 2a  →  4a), and the inference models 
that were selected in the previous step (3a). For each selected ex-
periment, a posterior distribution is inferred, using the babette 
(Bilderbeek & Etienne, 2018) r package which makes use of BEAST2.

The fourth step quantifies the new impact of choosing standard 
models for inference, that is, the inference error made. First the 
burn-in fraction is removed, that is, the first phase of the Markov 
chain Monte Carlo (MCMC) run, which samples an unrepresenta-
tive part of parameter and tree space. From the remaining posterior, 
pirouette creates an error distribution, by measuring the difference 
between the true tree and each of the posterior trees (Figure  1, 
4a → 5a). The user can specify a function to quantify the differences 
between the true and posterior trees.

2.2 | Controls

pirouette allows for two types of control measurements. The first 
type of control is called ‘twinning’, which results in an error distribu-
tion that is the baseline error of the inference pipeline (see Supporting 
Information, subsection 9.5 for more details). This the error that 
arises when the models used in inference are identical to the ones 
used in generating the alignments. The second type of control is the 
use of candidate models, which result in an error distribution for a 
generative model that is determined to be the best fit to the tree (see 
Supporting Information, section 9.6 for more details). The underlying 
idea is that using a substitution model in inference other than the one 
used in generating the alignment may partly compensate for choosing 
a standard tree model instead of the generative tree model as tree 
prior in inference, just because allowing more flexibility anywhere in 
the inference model, even if at the wrong place, may provide a bet-
ter fit. This can happen if the effects of the models are similar; for 
example, allowing variation in diversification rates between branches 
or allowing variation in the clock rate between branches may result 
in similar inference of the phylogeny. Additionally, multiple pirou-
ette runs are needed to reduce the influence of stochasticity (see 
Supporting Information, section 9.7 for more details).

3  | USAGE

We show the usage of pirouette on a tree generated by the 
non-standard diversity-dependent (DD) tree model (Etienne & 
Haegeman, 2020; Etienne et al., 2012), which is a BD model with a 
speciation rate that depends on the number of species.

The code to reproduce our results can be found at https://github.
com/riche​lbild​erbee​k/pirou​ette_examp​le_30 and a simplified ver-
sion is shown here for convenience:

library(pirouette)

# Create a DD phylogeny with 5 taxa and a crown age of 10 
phylogeny <- create_exemplary_dd_tree()

# Use standard pirouette setup. This creates a list object with all  
      settings for generating the alignment, the inference using  
      BEAST2, the twinning parameters to generate the twin tree and  
      infer it using BEAST2, and the error measure 
pir_params <- create_std_pir_params()

# Do the runs 
pir_out <- pir_run( 
      phylogeny = phylogeny, 
      pir_params = pir_params 
)

# Plot 
pir_plot(pir_out)

The DD tree generated by this code is shown in Figure 2.
The error distribution shown in Figure 3 is produced, which uses 

the nLTT statistic (Janzen et al., 2015) to compare phylogenies (see 
section 9.8 for details regarding the nLTT statistic and its caveats).

In the upper panel of Figure 3, we can see that the error distribu-
tions of the (assumed) generative model (i.e. the known generative 
substitution and clock models, and the tree model that is assumed in 
inference of the true tree, and the tree model that is used for gen-
erating and inferring the twin tree) differ substantially between the 
true and twin tree. This difference shows the extent of the mismatch 
between the true tree model (which is DD) and the (Yule) tree prior 
used in inference. Because these distributions are distinctively dif-
ferent, the inference error made when using an incorrect tree prior 
on a DD tree is quite profound.

Comparing the upper and lower panel of Figure 3, we can see 
that the best candidate model is slightly worse at inferring the true 

F I G U R E  2   The example tree resulting from a diversity-
dependent (DD) simulation

https://github.com/richelbilderbeek/pirouette_example_30
https://github.com/richelbilderbeek/pirouette_example_30
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tree, than the (assumed) generative model, indicating that the gen-
erative inference model we selected is a good choice.

The candidate model that had highest evidence given the sim-
ulated alignment, was JC, RLN and BD (see Table 1 for the mean-
ing of these abbreviations). The RLN clock model is a surprising 
result: it assumes nucleotide substitutions occur at different rates 
between the taxa. The JC nucleotide substitution model matches 
the model used to simulate the alignment. The BD model is per-
haps somewhat surprising for the true tree because the other al-
ternative standard tree prior, Yule, is probably closest to the true 
DD model because it shows no pull-of-the-present (but also no 
slowdown).

4  | DISCUSSION

We showed how to use pirouette to quantify the impact of a tree 
prior in Bayesian phylogenetics, assuming—for illustrative purposes—
the simplest standard substitution, clock and tree models, but also 
the models that would be selected among many different standard 
tree priors according to the highest marginal likelihood, as this would 
be a likely strategy for an empiricist. We recommend exploring dif-
ferent candidate models, but note that this is computationally highly 
demanding, particularly for large trees.

Figure 3 illustrates the primary result of our pipeline: it shows 
the error distributions for the true tree and the twin tree when 

either the generative model (for substitution and clock models 
these are known, for the tree model, it must be assumed for the 
true tree and it is known for the twin tree) or the best-fitting set 
candidate model (i.e. combination of tree model, substitution 
model and clock model) is used in inference. The clear difference 
between the error distributions for the true tree and the twin 
tree suggests that the choice of tree prior matters. We note, how-
ever, that only one tree from a novel tree model is not enough to 
determine the impact of using an incorrect tree prior. Instead, a 
distribution of multiple trees, generated by the novel tree model, 
should be used. In the Supporting Information, we have provided 
some examples.

Like most phylogenetic experiments, the setup of pirouette in-
volves many choices. A prime example is the length of the simulated 
DNA sequence. One expects that the inference error decreases for 
longer DNA sequences. We investigated this superficially and con-
firmed this prediction (see the Supporting Information). However, 
we note that for longer DNA sequences, the assumption of the same 
substitution rates across the entire sequence may become less re-
alistic (different genes may experience different substitution rates) 
and hence longer sequences may require more parameters. Hence, 
simply getting longer sequences will not always lead to a drastic re-
duction of the influence of the species tree prior. Fortunately, pirou-
ette provides a pipeline that works for all choices.

Interpreting the results of pirouette is up to the user; pirouette 
does not answer the question whether the inference error is too 

F I G U R E  3   The impact of the tree 
prior for the example tree in Figure 2. The 
alignment for this true tree was generated 
using a JC substitution model and strict 
clock model. For inferring the tree from 
this alignment in the ‘generative’ scenario, 
the same substitution and clock models 
were used, and a Yule tree prior (this is 
the assumed generative model, because 
the real generative model is assumed 
to be unknown). For the twin tree, the 
same inference models were used. In 
the ‘best’ scenario, for the true tree, the 
best-fitting candidate models were JC 
substitution model, RLN clock model and 
BD tree prior, while for the twin tree, 
the best-fitting candidate models were 
JC substitution model, RLN clock model 
and Yule tree prior. The twin distributions 
show the baseline inference error. Vertical 
dashed lines show the median error value 
per distribution
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large to trust the inferred tree. The user is encouraged to use differ-
ent statistics to measure the error.

The nLTT statistic is a promising starting point, as it can compare 
any two trees and results in an error distribution of known range, 
but one may also explore other statistics, for example, statistics that 
depend on the topology of the tree, While pirouette allows for this 
in principle, in our example we used a diversification model (DD) that 
only deviates from the Yule and BD models in the temporal branch-
ing pattern, not in the topology. For models that make different pre-
dictions on topology, the twinning process should be modified.

As noted in the introduction, Duchene et al.  (2018) also devel-
oped a method to assess the adequacy of a tree model on empirical 
trees. They simulated trees from the posterior distribution of the 
parameters and then compared this to the originally inferred tree 
using tree statistics, to determine whether the assumed tree model 
in inference indeed generates the tree as inferred. This is useful if 
these trees match, but when they do not, this does not mean that the 
inferred tree is incorrect; if sufficient data are available the species 
tree prior may not be important, and hence inference may be ade-
quate even though the assumed species tree prior is not. In short, 
the approach is applied to empirical trees and compares the poste-
rior and prior distribution of trees (with the latter generated with the 
posterior parameters!). By contrast, pirouette aims to expose when 
assuming standard priors for the species tree are a mis- or underpa-
rameterization. Hence, our approach applies to simulated trees and 
compares the posterior distributions of trees generated with a stan-
dard and non-standard model, but inferred with a standard one. The 
two methods therefore complement one another.

Furthermore, we note that the pirouette pipeline is not restricted 
to exploring the effects of a new species tree model. The pipeline 
can also be used to explore the effects of non-standard clock or site 
models, such as relaxed clock models with a non-standard distribu-
tion, correlated substitutions on sister lineages or elevated substitu-
tion rates during speciation events. It is, however, beyond the scope 
of this paper to discuss all these options in more detail.

In conclusion, pirouette can show the errors in phylogenetic 
reconstruction expected when the model assumed in inference is 
different from the actual generative model. The user can then judge 
whether or not this new model should be implemented in a Bayesian 
phylogenetic tool.
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