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Injury Prediction in Competitive Runners With Machine Learning
S. Sofie Lövdal, Ruud J.R. Den Hartigh, and George Azzopardi

Purpose: Staying injury free is a major factor for success in sports. Although injuries are difficult to forecast, novel
technologies and data-science applications could provide important insights. Our purpose was to use machine learning for the
prediction of injuries in runners, based on detailed training logs.Methods: Prediction of injuries was evaluated on a new data
set of 74 high-level middle- and long-distance runners, over a period of 7 years. Two analytic approaches were applied. First,
the training load from the previous 7 days was expressed as a time series, with each day’s training being described by 10
features. These features were a combination of objective data from a global positioning system watch (eg, duration, distance),
together with subjective data about the exertion and success of the training. Second, a training week was summarized by 22
aggregate features, and a time window of 3 weeks before the injury was considered. Results: A predictive system based on
bagged XGBoost machine-learning models resulted in receiver operating characteristic curves with average areas under the
curves of 0.724 and 0.678 for the day and week approaches, respectively. The results of the day approach especially reflect a
reasonably high probability that our system makes correct injury predictions. Conclusions: Our machine-learning-based
approach predicts a sizable portion of the injuries, in particular when the model is based on training-load data in the days
preceding an injury. Overall, these results demonstrate the possible merits of using machine learning to predict injuries and
tailor training programs for athletes.

Keywords: data science, distance running, training load, predictive modeling, XGBoost

Staying healthy and injury free is one of the most important
factors for optimal performance in sports.1,2 Therefore, for decades,
researchers and practitioners across different sports have collected
data on training loads of athletes and the occurrence of injuries.3–7

Recent years have witnessed a growth in technologies and machine
learning applications, which can be employed to make predictions
about future performance, injuries, and thereby improve data-
driven guidance in sports.8–10

In the current study, we use a supervised machine learning
approach, which relies principally on presenting numerous examples
of data points from each group of interest. In the case of predicting
injuries, this means feeding the learning algorithm examples of, for
instance, training weeks that lead to injury as well as examples of
training weeks that do not lead to injury. Contrary to traditional
techniques such as linear regression, supervised machine learning can
model complex patterns between many variables.11 Furthermore, it
does not make any assumptions about the type or degree of nonline-
arity between the independent and dependent variables, or the under-
lying distributions of independent variables. The resulting predictive
model, therefore, fits itself to the available data, and does not use a
predefined model to evaluate how well the data fits to it.

So far, the majority of research applied simple or advanced
statistical (regression) methods to predict injuries, with mixed
results.4,5,12 For instance, Raya-Gonzalez et al12 conducted gener-
alized estimating equation analysis to examine the associations
between different load-markers and noncontact injuries in the
subsequent week for soccer players. They achieved an area under
the curve (AUCI) below 0.50, based on which they concluded that

internal load markers have poor predictive capacity of injuries.
Interestingly, the few machine learning attempts in the past years
have been more successful in predicting injuries. Most of these
studies were conducted in team sports in which data on workloads
and injuries are collected on a daily basis.13–15 For example, Rossi
et al13 created an injury predictor for soccer players. Specifically,
using player global positioning system data to extract details from
training, the researchers considered both current and previous
external training load to forecast whether or not a player would
get injured. Their decision tree-based classifier could predict 80%
of the injuries with a precision of 50%, resulting in an AUC of 0.76.
This result is in line with recent research on Australian rules
football players, which found AUC scores varying between 0.75
and 0.80 across a season.15

While promising first steps are made on the application of
machine learning to predict injuries several challenges remain to be
acknowledged and addressed. First, acute injuries are often unpre-
dictable by definition. Such injuries occur relatively frequently in
team sports like soccer, meaning that a portion of injuries will
always remain unpredictable. Related to this, individual endurance
sports such as running, in which overuse injuries are the most
prevalent, may be most suited for accurate injury prediction.16

Furthermore, from an analytic perspective, methods applied so far
expressed workload as some form of aggregation, such as the
duration of training expressed over a longer time window.
Although such aggregations may well capture the accumulated
external load put on the body of an athlete, the very important
sequence property of a time series that the training of an athlete
represents is lost. In other words, the sequence and time lag of the
exercises done in the days or weeks prior to an injury are not taken
into account, which may be crucial for explaining the occurrence of
an injury.17,18 Finally, to the best of our knowledge, studies so far
have used relatively small data sets (covering between one season
and 2 y, often including relatively few injury events). For instance,
the data set by Rossi et al13 included only 23 injuries. In general,
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fewer events go at the expense of the reliability and generalizability
of the machine learning model.

Our study addresses the challenges above, and aims to model
the prediction of injuries in runners with data collected across
several years, thereby including many injury events. To test the
relevance of predictions on lower levels of aggregation, we devel-
oped a model in which the focus lies on the training load data in the
days before the injury (microlevel), and another one in which the
focus lies on load data in the weeks before the injury (macrolevel).
We tested these models to answer the research question: How
accurately can we predict whether the next training session will
result in an injury? Furthermore, we provide insights on the factors
that contribute the most in each of the 2 predictive models.

Methods
Subjects

The data set consists of a detailed training log from a Dutch high-
level running team over a period of 7 years (2012–2019). We
included the middle- and long-distance runners of the team, that
is, those competing on distances between the 800 m and the
marathon. This design decision is motivated by the fact that these
groups have strong endurance-based components in their training,
making their training regimes comparable. The head coach of the
team did not change during the years of data collection. The data

set contains samples from 77 runners, of whom 27 are women
and 50 are men. At the moment of data collection, they had been
in the team for an average of 3.7 years. Most athletes competed
on a national level, and some also on an international level. The
study was conducted according to the requirements of the Decla-
ration of Helsinki and was approved by the ethics committee
of the second author’s institution (research code: PSY-1920-
S-0007).

Design

The training log contains detailed information about each training
session filled in by each athlete. Running training is expressed in
terms of the number of kilometers covered in different intensity
zones, and alternative training (cross-training) is logged together
with the type (such as cycling or swimming) and duration. This data
are collected by global positioning system watches with heart rate
monitors that log the training duration, distance covered, and heart
rate. The last type of training logged is strength training, and every
session also contains subjective information about how well the
athlete felt before the start of the session (perceived recovery), how
exhausted the athlete felt upon completion of the training (per-
ceived exertion), and howwell the athlete thought the training went
(perceived training success) (Table 1).

Injuries can be extracted from the so-called “flags” in the
training log. These flags are defined as “unable to complete the

Table 1 Features Used for the Day (Left) and Week (Right) Approaches, Together With Their Typical Value Range

No Day feature Range No Week feature Range

1 Number of sessions [0, 2] 1 Number of sessions [0, 14]

2 Total distance [0.0, 25.0] 2 Number of rest days [0, 7]

3 Sum of distance in Z3–Z4 [0.0, 15.0] 3 Total distance [0.0, 150.0]

4 Sum of distance in Z5, T1, and T2 [0.0, 10.0] 4 Max distance (1 day) [0.0, 30.0]

5 Distance sprinting [0.0, 1.5] 5 Total distance Z3–5, T1–T2 [0.0, 30.0]

6 Number of strength sessions [0, 1] 6 Sessions in Z5–T1–T2 [0, 3]

7 Hours alternative training [0.0, 3.0] 7 Sessions in Z3 or faster [0, 4]

8 Perceived exertion [0.0, 1.0] 8 Total distance Z3–Z4 [0.0, 20.0]

9 Perceived training success [0.0, 1.0] 9 Max distance Z3–Z4 (1 day) [0.0, 15.0]

10 Perceived recovery [0.0, 1.0] 10 Total distance Z5–T1–T2 [0.0, 20.0]

11 Max distance Z5–T1–T2 [0.0, 10.0]

12 Hours alternative training [0.0, 20.0]

13 Number of strength training sessions [0, 7]

14 Average exertion [0.0, 1.0]

15 Minimum exertion [0.0, 1.0]

16 Maximum exertion [0.0, 1.0]

17 Average training success [0.0, 1.0]

18 Minimum training success [0.0, 1.0]

19 Maximum training success [0.0, 1.0]

20 Average recovery [0.0, 1.0]

21 Minimum recovery [0.0, 1.0]

22 Maximum recovery [0.0, 1.0]

67 Total distance week 1/week 2 [0.0, 3.0]

68 Total distance week 0/week 1 [0.0, 3.0]

69 Total distance week 0/week 2 [0.0, 3.0]

Note: Z1–Z5 represent different heart-rate zones where Z1 is easy aerobic effort and Z5 is close to maximum heart rate. T1 and T2 are long and short track intervals, which
are typically done at high intensity. The day approach uses a set of 10 features per day, and the week approach uses a set of 22 aggregated features per week along with the
bottom 3 features that describe relative increase in volume.
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scheduled session due to injury.” They cover both cases where an
athlete starts a session but interrupts it due to injury, and cases
where the athlete skips the session due to injury.

In our data set, injuries are reflected by all records flagged
with injury from the training log, whereby it was required that
the athletes were training injury free 3 weeks prior to the session
flagged with injury. For the healthy events, we demanded that
the athlete is fully fit 3 weeks before and 3 weeks after the event
day. Moreover, events that contained missing or anomalous data
were removed from our data set.

Finally, injury events shortly following (within 3 wk of) a new
injury have been filtered out, as they are considered to correspond to
the same injury. This leaves us with a total of 74 athletes (27 women
and 47 men) who have 42,183 healthy and 583 injury events for the
microlevel model and 42,223 healthy and 575 injury events for the
macrolevel model (see next section for the details about these models,
which we refer to as the day approach and week approach, respec-
tively). In both cases, the fraction of injury events is approximately
1.4%. The number of injuries per athlete varies between 0 and 35.

Feature Construction

The machine learning algorithm that we use takes as input a set of
feature vectors (data describing a training setup) and the corre-
sponding label (injury or healthy). In an iterative approach, the
algorithm determines a predictive model that best maps the input
feature vectors to the corresponding labels.

We investigate 2 different approaches to capture the training
load leading up to an injury. The day approach considers 1 week
before the event (injury or healthy) and considers each day
individually. The week approach considers 3 weeks before the
event and aggregates each training week by a set of features. For
both approaches, we normalize the independent variables using the
z score transform for each athlete individually, based on the mean
and SD of the healthy events of that athlete.

In the day approach, a feature vector is constructed by
expressing the week before the injury or healthy event as a series

of days described by ten features per day (ie, 70 features in total,
Table 1). We count the days starting from 0, so the day before the
event is seen as day 0, 2 days before the event as day 1 and 7 days
before the event is day 6 (Figure 1A).

The week approach considers 3 weeks before the injury or
healthy event, where we summarize the training load on week level.
Each week leading up to an event is described by 22 features, listed
in Table 1. Furthermore, as illustrated in Figure 1B, 3 features were
added describing change in weekly mileage (total distance covered
by running per week19), leading to 69 features per data point.

Data-Driven Model

The machine learning algorithm chosen for this research is called
Extreme Gradient Boosting, or XGBoost,20 having provided the
algorithm behind many top-ranking machine learning classifiers
over the past few years.21–23 For more technical details on
XGBoost, we refer to the work of Chen and Guestrin.20

As our data set is highly unbalanced (ie, many more healthy
events than injury events), and a machine learning classifier
typically needs to be trained on a balanced data set in order to
avoid bias toward the majority class, we implement a bagging
approach. Here, multiple models are trained on balanced subsets of
the training data. For a given test event (injury or healthy), the
prediction is then calculated as the mean of all predictions by the
participating models. In this way, we can get a larger representation
of healthy examples included than when training a single model.
We do not fine tune the participating models. In practice, we use a
standard small value for the learning rate, we choose between 2
random values for 2 of the hyperparameters (Table 2), and use
default values for the remaining ones.24

Each balanced subset is determined by randomly selecting,
with replacement, the same number of injury and healthy events
from all athletes in the training set. This is to avoid having the
events of a few high-risk athletes dominating the others. More
specifically, each model is trained and calibrated using a sample
size of 2048 injury and 2048 healthy events. We train 9 models

Figure 1 — Structure of the feature vectors. Day approach: A data point is described by the training-defining features over the 7 days before the day of
prediction. Given that each day is described by 10 elements, in the day approach, a data point is defined as a 70-element feature vector. Week approach:
Each week is described as a summary of 22 features. The final feature vector is a sequence of 3 sets of such features over 3 weeks along with 3 features
describing the change in total distance covered from week to week.

Table 2 Key Parameters Used When Training the XGBoost Model24

Parameter Value Function

learning_rate 0.01 Step size for correcting the model

max_depth {2, 3} Maximum depth of a tree

n_estimators {256, 512} Total number of trees that are built for the model

IJSPP Vol. 16, No. 10, 2021
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using the data of the first 64 athletes that joined the team.
Calibration is a technique that transforms the output of a machine
learning model, such that the transformed output matches the
observed distribution of a class in the training set. This means
that the calibrated output will be able to indicate the fraction of
injuries, which have a lower (or higher) score than what is
outputted by the model. For example, if the calibrated model
outputs a score of 0.80, we know that 80% of the injuries have
a lower score than the event under consideration, and therefore the
given event has a very high risk of being an injury.25 In particular,
we use Platt scaling to calibrate all involved XGBoost models.

We use temporal evaluation by holding out the data of the 10
athletes that most recently joined the team as a test set. We then test
the model by applying the predictive model on all events of the test
athletes. In order to test the generalizability of our approach, we also
create a validation set by randomly selecting (without replacement) a
subset from the training data with the same distribution as the test set,
namely 50 injury and 2994 healthy events.

A prediction using our calibrated bagging approach is reported
as a real value in the range [0, 1]. We set the threshold for injury as
the one that leads to the minimum difference between the specific-
ity and sensitivity on the validation set. Then, the test events that
achieve a score equal to or above the threshold are labeled as injury,
otherwise they are considered healthy. A receiving operator char-
acteristic (ROC) curve describes the fraction of true positives
(injuries detected) versus the corresponding rate of false positives,
as the decision threshold is varied. Moreover, the AUC of the ROC
describes the performance of the model by a single value. The
higher the AUC the higher is the degree of separability between
instances that lead to injury or not. An AUC of 1.0 would describe a
perfect prediction model, and 0.5 corresponds to random guessing.
Hence, the closer the AUC is to 1 the better the prediction model,
and AUC scores of 0.7 and above are considered as having strong
effects in the field of sports sciences.15,26

Results
In this section, we present the average results across 5 experiments
that we conducted.II Figure 2 shows the average reliability curves
of the bagging models before and after calibrating the involved
XGBoost classifiers of the day and week approaches. The roughly
straight diagonal lines obtained by the bagging models with cali-
brated classifiers indicate the reliability of their results, in that they
neither underestimate nor overestimate the risks. In Figure 3, we
present the validation and test ROC curves of the calibrated day and
week approaches. These are generated based on the mean score
determined by the 9 participating XGBoost models, with the pairs of
true and false positive rates plotted along the curves. We obtain the
average AUC scores of 0.729 and 0.724 for the validation and test
sets of the day approach, and AUCs of 0.783 and 0.678 for the
validation and test sets of the week approach, respectively. The

Figure 2 — Averaged reliability curves, across 5 experiments, before
and after calibrating the bagged XGBoost models of the day and week
approaches. The black solid diagonal line indicates a perfectly calibrated
model and is used as a reference to compare the other curves.

Figure 3 — Averaged receiver operating characteristic curves for the validation and test sets for (A) the day approach and (B) the week approach. The
dashed line corresponds to random guessing between injury and noninjury (AUC = 0.5). AUC indicates area under the curve.

IJSPP Vol. 16, No. 10, 2021

Injury Prediction With Machine Learning 1525

Brought to you by UNIVERSITY OF GRONINGEN | Unauthenticated | Downloaded 10/15/21 12:20 PM UTC



consistent AUCs obtained for the validation and test sets demonstrate
the ability of our approach to generalize what is learned from the
training athletes to the events of new (unseen) test athletes within the
same running team.

To provide a closer look at the performance of our predictive
model, we report additional results in Table 3. The day approach
outperforms the week approach on all measures. Sensitivity (recall)
or true positive rate describes the fraction of injury samples that is
detected in the test set. For each approach, we report results for a
particular threshold, which we determine as the mean of all thresh-
olds that yield the minimum differences between the sensitivity and
specificity across the 5 experiments on the validation data. For such
thresholds, which are 0.448 and 0.476 for the day and week
approach, respectively, our model achieves an average sensitivity
of 58.4% for the day approach and 50.4% for the week approach.
The respective average specificities, or true negative rates, are
74.1% and 74.6%.

The XGBoost algorithm also determines various measure-
ments about the relevance or importance of each input feature with
respect to the output label. Figure 4 shows the 20 most important
features based on the feature importance indicator “total gain” for
the day and week approach, respectively. They are averaged across
the 9 participating models and across the 5 experiments. “Total
gain” is a quantity that describes how often a feature is considered
in the model together with how distinctive it is in separating
noninjury from injury data points.24 In other words, variables
with high feature importance are queried often in the model,
and the queries made on these features result in a relatively clear
separation between injury and noninjury data points.

Figures 5A and 5B display the correlations between the
individual features (after z score normalization) and the dependent
variable (injury or healthy). The correlations can be considered low
for both the day and week approaches, as they vary between r =
−.01 and r = .07 or r = −.04 and r = .07, respectively. It should be
noted that the correlations are not necessarily reflective of total gain
reported in the feature importance plots, which becomes visible
when comparing the correlation results (Figures 5A and 5B) with
the results on the feature importance (Figure 4).

Discussion
The current study is among the first to propose data-driven
predictive models of injuries in running. The models are configured
with a well-founded machine learning algorithm: XGBoost.20,21

The results, in particular those of the day approach, demon-
strate the effectiveness of the proposed approach to predict
injuries.

The finding that the day approach performs best, suggests
that our model with load indicators from the previous week has
the highest predictive capacity of an injury. Hence, the sequence
and time lag of the exercises done in the days before the injury
seem to provide important input, which is in line with previous

literature demonstrating the relevance of acute training load in
predicting sports injuries.27 This suggests that the monitoring and
analysis of daily training loads are important to include in the
machine learning pipeline, and need to be taken into account
when modeling injury occurrences and establishing (weekly)
training programs.18

In order to gain insight into the features that mostly affect the
prediction of injuries, we analyzed the “total gain” of each feature,
which is determined by the learning process of the XGBoost
models. This is a measurement based on how often the XGBoost
models use the concerned feature to come to a decision, and it is
determined by taking the interactions between all involved fea-
tures into account. For comparison purposes, we also determined
the Pearson correlation between each individual feature and the
injury label. It can be noted that the individual correlations are
weak (Figures 5A and 5B), which suggests that the build up to an
injury cannot be reduced to one or a few independent variables.
Instead, it is likely due to a complex interaction among various
variables as determined by the XGBoost model.28,29 For instance,
as can be observed in Figure 4, the feature “km Z5-T1-T2.6” is the
most important feature in our model of the day approach. This
feature would be overlooked when using a classical technique,
because the correlation between “km Z5-T1-T2.6,” and the injury
label is almost neutral (r = .01; Figure 5A). This demonstrates the
ability of our model to discover complex relationships between
features.

Taken together, our machine learning-based system generated
relatively good predictions of injuries in running athletes. A major
strength of our study is that we used a rich data set that covers a
period of 7 years, including almost 600 injuries. Such a high number
of injury events allowed for learning a robust model, which showed
high generalizability to unseen athletes within the same running
team, as manifested by very similar validation and test AUCs. This
is in contrast to previous studies in sports that often trained the
models on smaller data sets.10,13,15

For future research, possibilities to further improve the perfor-
mance of the model may be explored. For instance, other supposedly
relevant factors such as footwear and biomechanics of the athletes,
could be included in the data set and thereby the resulting model.

Practical Applications
The proposed system can be considered as a computer-aided tool
that may be used to assist coaches in regulating the training load for
athletes. More specifically, the system is capable of determining a
risk score between 0 and 1, which the coach can then use together
with previous injury history of an athlete to assess the effect of the
training load. In doing so, a coach could take extra caution with the
training setup of an athlete when the system gives a high injury risk
score. For instance, the coach could prescribe extra rest to let the
athlete in question recover, or assign resources to further investi-
gate their (pre)injury status.

Table 3 Mean (SD) Test Scores Obtained by 5 Experiments, With a Threshold
of 0.448 for the Day Approach and 0.476 for the Week Approach

Approach Specificity Sensitivity AUC

Day 0.741 (0.02) 0.584 (0.05) 0.724 (0.01)

Week 0.746 (0.04) 0.504 (0.05) 0.678 (0.01)

Note: These thresholds are the average values that correspond to the minimum difference between the specificity and
sensitivity across the 5 experiments on the validation data. Abbreviation: AUC, area under the curve.
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Figure 5A — Pearson correlation between every feature in the day approach and the injury label. The number after each feature name indicates which
day it represents, with no number being the day before the injury, number 1 being 2 days before the injury, and so on.
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Figure 5B — Pearson correlation between every feature in the week approach and the injury label. The number after each feature name indicates which
day it represents, with no number being the day before the injury, number 1 being 2 days before the injury, and so on.
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When using the system, the number of correctly detected
injuries (ie, sensitivity) can be increased at the cost of obtaining
more false positives, hence reducing the specificity. This can be
accomplished by varying the decision threshold that can be chosen
based on the user requirements. Looking at the ROC curve of the
day approach (Figure 3), it can be noted that, theoretically, around
30% of the injuries can be detected with a false positive rate of only
10%. This means that the system could indicate when the training
load should be considered with caution, since obtaining an injury
generally has a much longer recovery time than what you lose from
taking a rest day. However, even when the athlete takes a rest day in
case of a high injury risk score, it does not mean that the athlete is
immediately in the safe zone, especially considering the sneaky
build-up of overuse injuries.17,18 Choosing a threshold is, therefore,
up to the athletes and coaches to do. Selecting a low threshold
could, for example, be desirable close to a main competition event
of the season.

The difference in practical applications between the day and
the week approach is that the latter represents accumulated
(chronic) strain on the body over a longer period (3 wk), with
features being a summary of the workload. The day approach, on
the other hand, considers more detail but on a shorter period (1 wk)
with each day being represented individually. Note that, as shown
in Figure 4, the most important features of the day approach
primarily relate to activities 4 to 7 days before the injury, whereas
the most important features for the week approach primarily relate
to 2 or 3 weeks before the injury. Hence, signs of an injury may be
extracted days-to-weeks before it occurs. In this regard, future work
may investigate further early signs for the prediction of injury with
more than one training day in advance.

Finally, our proposed pipeline can be adapted by other running
teams that collect comparable data. More generally, we hope that
our work can serve as an example of how data-driven modeling
could contribute to sports science. This discipline is benefiting from
the rapid development of wearables, which enable the collection of
abundance of data with different types of sensors and with high
frequency.8,9,31

Conclusions
Our predictive model based on the XGBoost algorithm and bag-
ging is effective in predicting injuries based on training load data of
middle- and long-distance runners. The day approach outperforms
the week approach, which suggests that injuries can largely be
predicted based on our model with load indicators in the days
before the injury. As a byproduct, the proposed approach indicates
the relevance of all independent variables in the decision-making
process.

To conclude, the data-driven approach that we propose is
general, which means that it can also be adapted to other sports.
This may contribute to novel and improved ways of data-driven
guidance in the sports field.

Notes

I. AUC indicates the tradeoff between the true and false positive rates as
one changes the decision criteria. The closer the AUC is to 1 the better the
system is. A value of .50 corresponds to no discriminating ability.30

II. The data set used in this study and the Python code to replicate our
results are available through the following link: https://doi.org/10.34894/
UWU9PV
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