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RESEARCH ARTICLE Open Access

Variance constraints strongly influenced
model performance in growth mixture
modeling: a simulation and empirical study
Jitske J. Sijbrandij1* , Tialda Hoekstra1, Josué Almansa1, Margot Peeters2, Ute Bültmann1 and Sijmen A. Reijneveld1

Abstract

Background: Growth Mixture Modeling (GMM) is commonly used to group individuals on their development over
time, but convergence issues and impossible values are common. This can result in unreliable model estimates.
Constraining variance parameters across classes or over time can solve these issues, but can also seriously bias
estimates if variances differ. We aimed to determine which variance parameters can best be constrained in Growth
Mixture Modeling.

Methods: To identify the variance constraints that lead to the best performance for different sample sizes, we
conducted a simulation study and next verified our results with the TRacking Adolescent Individuals’ Lives Survey
(TRAILS) cohort.

Results: If variance parameters differed across classes and over time, fitting a model without constraints led to the
best results. No constrained model consistently performed well. However, the model that constrained the random
effect variance and residual variances across classes consistently performed very poorly. For a small sample size
(N = 100) all models showed issues. In TRAILS, the same model showed substantially different results from the other
models and performed poorly in terms of model fit.

Conclusions: If possible, a Growth Mixture Model should be fit without any constraints on variance parameters. If
not, we recommend to try different variance specifications and to not solely rely on the default model, which
constrains random effect variances and residual variances across classes. The variance structure must always be
reported Researchers should carefully follow the GRoLTS-Checklist when analyzing and reporting trajectory analyses.

Keywords: Simulation studies, Longitudinal studies, Developmental trajectories, Growth mixture model, Variance
misspecification, Model selection
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Background
Growth Mixture Modeling (GMM) has become a stand-
ard statistical approach in grouping people from heteroge-
neous populations based on their development over time
(e.g. mental health during adolescence [1, 2] or antisocial
behavior [3]). Several simulation studies have shown that
GMM outperforms other statistical methods, such as la-
tent class analysis and latent class growth analysis [4–6].
However, GMMSs are complex models, i.e. many different
parameters are estimated: mean trend of trajectories, class
sizes, residual variances over time and across classes and
random effects across classes. Recently, the Guidelines for
Reporting on Latent Trajectory Studies (GRoLTS-Check-
list) have been published, with criteria for reporting the
complexity of latent trajectory analyses [7]. When the
most unrestricted GMM is estimated, convergence issues
may arise, especially for smaller sample sizes (e.g. inadmis-
sible values such as negative variances) [1, 8] Convergence
issues are common in GMM, and if the models do not
properly converge or yield to inadmissible values, their
results are not reliable.
Convergence issues regarding variances can be

addressed by limiting the number of estimated variance
parameters, i.e. by constraining certain parameters as be-
ing equal over time or across classes. But when these
variance parameters are unequal, this can lead to consid-
erable bias in the entire model. For instance, constrain-
ing residual variances to be equal over time leads to
lower classification accuracy and less frequent detection
of the correct number of classes [9, 10]. The same holds
for constraining residual variance across classes [5] and
of random effects across classes [10–12].
Difference in variances across trajectory classes or over

time are a common scenario in empirical applications.
For example, Moffit coined the developmental taxonomy
of classes of antisocial behavior [13]. In Moffit’s tax-
onomy, classes can differ in the level of antisocial behav-
ior and in the variability of this behavior. One class,
labeled as abstainers, may show no behavioral problems
with almost no within-class variation [3]. A second class,
the adolescent-limited group, may show a decline in be-
havioral problems over time, with large variability in
early adolescence but more homogeneity in late adoles-
cence. A third class, labeled as the life-course persistent
group, may show consistently high antisocial behavior
with constant variability over time.
Even though the GRoLTS -Checklist emphasizes the

importance of reporting variance constraints, these are
rarely reported in the literature [7, 14], which hinders
transparency and replicability. For instance, none of the
38 papers which were included in the GRoLTS review
reported on constraints of variance parameters. The au-
thors of the GRoLTS Checklist warned that “researchers
should be aware that findings might be altered if the

variance–covariance matrix is redefined”. The lack of
reported details regarding variance structure and conver-
gence issues related to variance parameters makes us
suspect that many researchers apply the simpler default
GMM settings in their software, without considering the
alternatives. To the best of our knowledge, no study has
assessed which parameter constraints are least likely to
induce bias. Thus, to date, it is unclear which type of vari-
ance constraints leads to the best outcomes [5, 10, 15].
The aim of this paper is to determine which variance

parameters can best be constrained in GMMs of differ-
ent samples sizes for best recovery of simulated classes,
least biased estimates, and most accurate class assign-
ment. This may help researchers to estimate a GMM,
when convergence issues arise, which is as close to the
population values as possible.

Methods
We conducted a simulation study and verified the results
with an empirical example. In this example, we used
data on aggressive behavior from the TRacking Adoles-
cent Individuals’ Lives Survey (TRAILS) cohort.

Simulation study
GMM, random effects and residual variances
GMM (Fig. 1) is an extension of latent curve modeling
(also known as growth curve modeling) that does not re-
quire the assumption that all individuals stem from one
population [16]. GMM allows to identify unobserved
classes of individuals based on their development over
time, estimated by means of an intercept and slopes
parameters. GMM includes random effects (i.e. the vari-
ation around that mean trajectory within the classes)
and residual variances (i.e. the variance of the difference
between the observed and estimate value for each indi-
vidual at each time point). Comprehensive introductions
to GMM are available (e.g. [7]).

Data generation
The population values in the simulation study were
based on a review of GMM studies [3]. Our largest sam-
ple size was between the median and first quartile of the
findings in the review (1000 individuals). We added two
smaller sample sizes, since convergence issues are most
common for smaller samples (100 and 300, both close to
the minimum values in the review). The number of time
points (5) corresponds to the median value in this re-
view. The degree of separation between classes (inter-
cepts of adjacent classes were either 1 (low separation)
or 2 (high separation) standard deviations apart), based
on the three studies identified in the review in which
this was reported. The number of classes (3) was based
on the first quartile of the reported number of classes in
the review [3] (Supplementary Figure 1). See further
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https://osf.io/68ptf/?view_only=4e3bd94405b342749844
9208d02a7b88 for all R code used to simulate and
analyze the data.
We based the specification of the variance parameters

on two empirical studies, by Kooken et al. (2018) and
Morin et al. (2011) [1, 17], since variance parameters are
rarely reported in GMM studies [7, 14]. We varied the
size of residual variances over time and across classes,
and the size of random effects over classes, resulting in
eight different scenarios. In the least extreme scenario,
the ratio of all parameters was 1:2:3 and in the most ex-
treme scenario, the ratio was 1:5:10 (see Table 1). As an
example: In Scenario 2, Class 3 had three times larger
standard deviations of the residual variances and three
times larger random effects than Class 1. Moreover, for
all classes, the standard deviations were ten times larger
at T5 than at T1.

Evaluation criteria
We evaluated three criteria: (1) class recovery, (2) rela-
tive bias and (3) classification accuracy. Class recovery
concerned whether the simulated and estimated classes
could be linked. Non-recovery means that most individ-
uals are identified as being dispersed across several esti-
mated classes, whereas they were simulated as belonging
to one class. Class recovery was calculated as the pro-
portion of replications in which simulated and estimated
classes could be linked. Relative bias concerned the dif-
ference between the simulated and estimated parame-
ters, divided by the simulated parameter (population
value) and was calculated for the intercept and for the
slope parameters, for all three classes. For the intercept
of the first class, the bias was not relative, since the sim-
ulated parameter value was 0. Classification accuracy
concerns the percentage of individuals correctly assigned
to a certain class (within those simulations where the
original classes were recovered). It should be noted that
in case of non-recovery, relative bias and classification
accuracy could not be computed. As a secondary out-
come, we reported the proportions of replications in
which each model was found to be the most appropriate
model based on the BIC, AIC, aBIC and entropy. The
BIC, AIC and aBIC are commonly used to assess the
best fitting models in GMM. Previous studies have indi-
cated that the BIC and aBIC were able to detect the cor-
rect GMM more often than the AIC [4, 5, 18], but all fit
indices tend to identify models with a higher number of
classes than present in the population as best fitting.
The entropy does not indicate the fit of the model, but
indicates how well classes are separated and how well in-
dividuals fit in their respective class Although entropy is
not a formal model fit index, it is often used as a meas-
ure for fit and therefore we have reported the entropy as
well.

Analytical procedure
The simulated data were analyzed with increasingly con-
strained GMMs, starting with the unconstrained model
(Model 0). Thereafter, the models with one constraint
were estimated: a model with residual variance con-
strained over time (1A), a model with residual variances
constrained across classes (1B) and model with random
effects constrained across classes (1C). We ended with
models with two constraints: a model with residual vari-
ance constrained over time and across classes (2A), a
model with random effects constrained and residual vari-
ance constrained over time (2B) and a model with random
effects constrained and residual variances constrained
across classes (2C). We calculated the BIC (Bayesian In-
formation Criterion), aBIC (Sample-size Adjusted BIC),
AIC (Akaike Information Criterion) and entropy to aid
model selection. R 3.4.0 [19] was used to simulate the data

Fig. 1 Diagram of Growth Mixture Modeling. The circular arrows
above the epsilons represent the residual variances (which can be
let free/constrained over time and over classes). The circular arrows
accompanied with the letter psi represent the random effects
(which can be let free/constrained over classes)
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Table 1 Parameter specification in the data generation of the scenarios with low separation between classes in the simulation study

Scenario Class 1 Class 2 Class 3

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

1 Intercept 3.00 0.3 4.00 0.60 5.00 0.90

Slope 0.00 0.1 −0.30 0.20 0.30 0.30

Residual variance T1, T2 0.25 0.50 0.75

Residual variance T3 0.5 1.00 1.50

Residual variance T4, T5 0.5 1.00 1.50

2 Intercept 3.00 0.3 4.00 0.60 5.00 0.90

Slope 0.00 0.1 −0.30 0.20 0.30 0.30

Residual variance T1, T2 0.1 0.20 0.30

Residual variance T3 0.5 1.00 1.50

Residual variance T4, T5 0.5 1.00 1.50

3 Intercept 3.00 0.12 4.00 0.60 5.00 1.20

Slope 0.00 0.04 −0.30 0.20 0.30 0.40

Residual variance T1, T2 0.25 0.50 0.75

Residual variance T3 0.5 1.00 1.50

Residual variance T4, T5 0.5 1.00 1.50

4 Intercept 3.00 0.12 4.00 0.60 5.00 1.20

Slope 0.00 0.04 −0.30 0.20 0.30 0.40

Residual variance T1, T2 0.1 0.20 0.30

Residual variance T3 0.5 1.00 1.50

Residual variance T4, T5 0.5 1.00 1.50

5 Intercept 3.00 0.3 4.00 0.60 5.00 0.90

Slope 0.00 0.1 −0.30 0.20 0.30 0.30

Residual variance T1, T2 0.1 0.50 1.00

Residual variance T3 0.2 1.00 2.00

Residual variance T4, T5 0.2 1.00 2.00

6 Intercept 3.00 0.12 4.00 0.60 5.00 1.20

Slope 0.00 0.04 −0.30 0.20 0.30 0.40

Residual variance T1, T2 0.10 0.50 1.00

Residual variance T3 0.20 1.00 2.00

Residual variance T4, T5 0.20 1.00 2.00

7 Intercept 3.00 0.30 4 0.60 5.00 0.90

Slope 0.00 010 −.3 0.20 0.30 0.30

Residual variance T1, T2 0.04 0.20 0.40

Residual variance T3 0.20 1.00 2.00

Residual variance T4, T5 0.20 1.00 2.00

8 Intercept 3.00 0.12 4 0.60 5.00 1.20

Slope 0.00 0.04 −.03 0.20 0.30 0.40

Residual variance T1, T2 0.04 0.20 0.40

Residual variance T3 0.20 1.00 2.00

Residual variance T4, T5 0.20 1.00 2.00
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and analyze the Mplus output, Mplus 8 [20] to fit the
GMMs, and MplusAutomation [21] to communicate be-
tween R and Mplus.

Verification of simulation results with empirical data: the
TRacking adolescents’ individual lives survey
The influence of the specification of random effect vari-
ances and residual variances in GMM was verified with
the Tracking Adolescents’ Individual Lives Survey (TRAI
LS) cohort. TRAILS is a population-based cohort in the
Netherlands including young adolescents followed into
early adulthood. Assessment took place every 2 to 3 years,
from the age of 11.1 years (SD 0.56) in 2000 up to the age
of 25.7 years (SD 0.60) in 2016 [22], and is still ongoing.

Problem definition
We chose aggressive behavior as trajectory variable as
we aimed to investigate the effect of constraining certain
parameters which differ over time or classes. Aggression
is expected to decrease over time, as behavioral control
of adolescents increases when they get older [23]. In line
with previous research, we expected at least two groups
to emerge: a group with low aggression at the first meas-
urement, which decreases over time, and at least one
other group, which starts with a higher level of aggres-
sion [24]. An additional trajectory with a higher initial
aggression level might emerge (e.g. [24–26]). We expect
smaller variance in the first group than in the latter
group(s) and the residual variance to decrease over time
(i.e. overall aggressive behavior and variation in aggres-
sive behavior decrease over time [24]).

Measures
Aggressive behavior is a syndrome scale measured by 17
items of the Youth Self-report (YSR) [27] in the first
three measurement waves, and 15 items in the Adult
Self-report (ASR) [28] in the next three measurement
waves. The response categories were 0 (not true), 1
(somewhat or sometimes true) or 2 (very true or often
true). We used mean values for all analyses.

Analytical procedure and model specification
The TRAILS data were analyzed with increasingly con-
strained models, starting with the unconstrained model
and ending with the “classes-constrained model”. For
each model, first a 1-class solution was fitted and the
number of classes was increased until the model no lon-
ger converged properly or the fit indices indicated that
the model no longer improved by adding an additional
class. The model accounted for cubic growth over time.
No random quadratic or cubic slopes were estimated,
since these are rare in empirical data [14].
The final models were selected based on the BIC, aBIC

and the Lo-Mendell-Rubin likelihood ratio test. Solutions

were considered suboptimal if very small classes (i.e. < 5%
of the sample) or very similar classes emerged. We
followed the steps for analyzing GMMs according to the
Ram & Grimm procedure and reported these according to
the GRoLTS checklist, where possible [7, 29].
Since we were particularly interested in performance

within smaller sample sizes, three subsamples of TRAI
LS of each 300 individuals were analyzed, to investigate
the performance of the models for smaller samples. Only
individuals with a maximum of one missing measure-
ment point were sampled.

Results
We consecutively present the results of the simulation
study and of the empirical example.

Simulation study
Overall results
For a sample size of 1000, the unconstrained model
mostly outperformed all other models, but for smaller
sample sizes this was not the always the case. Irrespective
of sample size, the model which constrained residual vari-
ance and random effect variance across classes (Model 2C,
from now on referred to as ‘classes-constrained model’)
performed very poorly in terms of all evaluation criteria.

Sample size of 1000 and large separation between classes
For a sample size of 1000 and a high separation between
classes, the unconstrained model performed best. All
models performed well under all variance ratio scenarios
except for the ‘classes-constrained model’ (Table 2, Sup-
plementary Table 2 and Supplementary Table 3, illus-
trated for Scenario 1 in Fig. 2a). Negative variances
occurred less often for the unconstrained model than for
other models. The AIC, BIC and aBIC indicated that the
unconstrained model was best fitting in all replications;
the entropy was highest for the model which constrained
residual variance over time and across classes (2A)
and the “classes-constrained model” (Supplementary
Table 1).

Sample size of 1000 and small separation between classes
The unconstrained model performed best in terms of
classification accuracy and relative bias (Fig. 2b). For a
sample size of 1000 and a small separation between
classes, class recovery was 100% for all models under all
scenarios, except for the “classes-constrained model”
(Fig. 2b, Supplementary Table 2). All models but the
classes constrained model performed well in terms of
relative bias. The BIC, aBIC and AIC indicated that the
unconstrained model was the best fitting model, while
the entropy was highest for model 2A and the” classes-
constrained model” (Supplementary Table 1).
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Sample size of 300 and small separation between classes
For a sample size of 300 and a small separation between
classes, the unconstrained model performed best, except
in Scenario 1 (Fig. 2c, Table 3, Supplementary Table 3C).
In Scenario 1, no model performed best for all evalu-
ation criteria: i.e. class recovery was highest in Models
1A, 1C and 2B, while classification accuracy was highest
in the unconstrained model (Fig. 2c, Supplementary
Table 2). In all scenarios, class recovery was close to 0%
for the “classes-constrained model”. For the other
models, class recovery ranged from 76.2–100%. In three
scenarios (4, 7 and 8), classification accuracy was always
highest for the unconstrained model and equally high
for the model with random effects constrained (1C). In
scenarios 2–8, the aBIC and AIC indicated the uncon-
strained model as best fitting in 96.8–100% of the repli-
cations (Supplementary Table 1). The BIC yielded
similar results, except for Scenario 5.

Sample size of 100 and small separation between classes
For a sample size of 100 and a small separation between
classes, no model consistently performed best (Fig. 2d,
Table 3). Class recovery was highest for the model with
constrained random effects across classes and residual
variance over time (2B), while classification accuracy was
highest for the unconstrained model. Regarding fit,

findings were more homogenous, as the BIC, aBIC and
AIC indicated that either the unconstrained model or
the model with random effects constrained (1C) fitted
the data best. The “classes-constrained” model per-
formed poorly, with class recovery ranging from 6.1–
21.4% (Supplementary Table 2, Fig. 2d).

Verification of simulation results with empirical data: the
TRacking adolescents’ individual lives survey
Main analyses
Of all fitted models, the 5-class solution of the model
which constrained the residual variances over time (Model
1A) showed the lowest BIC, AIC and aBIC (Table 4, Sup-
plementary Table 4), followed by the 3-class solution of the
unconstrained model. The 4 and 5-class solutions did not
converge for the unconstrained model, the model with
constrained residual variances across classes (1B) and the
model with constrained random effects (1C). Overall, the
fit indices indicated that the 3-class models provide a better
fit than the 2-class models. Since not all 4-class and 5-class
models converged, we focused on the 3-class solutions, to
be able to compare all models. The LMR-LRT and VLMR-
LRT were significant (p < .05) for almost all models and
number of classes (except for the 3-class solution for
model 1B and the 4-class solution for model 2A).

Table 2 Absolute values of relative bias of intercept (int) and slope per analysis model: findings over 1000 replications in the
simulation for a sample size of 1000 and a high and low degree of separation between classes in Scenario 1

Model Intercepts Slopes

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

High separation and N = 1000

0 Nothing constrained .00 .00 .00 .00 .00 .00

1A Residual variance time constrained .00 .01 .00 .00 .02 .00

1B Residual variance classes constrained .00 .00 .00 .00 .00 .00

1C Random effects constrained .02 .02 .01 .00 .01 .02

2A Residual variance constrained time and classes .00 .00 .00 .00 .00 .00

2B Random effects and residual variance time constrained .00 .01 .00 .00 .04 .07

2C Random effects and residual variance classes constrained .23 .17 .01 .10 .17 .29

Low separation and N = 1000

0 Nothing constrained .00 .00 .00 .00 .01 .01

1A Residual variance time constrained .00 .01 .00 .00 .08 .08

1B Residual variance classes constrained .00 .01 .00 .00 .04 .00

1C Random effects constrained .01 .01 .02 .01 .01 .05

2A Residual variance constrained time and classes .00 .01 .00 .00 .06 .00

2B Random effects and residual variance time constrained .01 .01 .01 .01 .03 .21

2C Random effects and residual variance classes constrained -a – – – – –

Relative bias: bias divided by true population value
Codes for relative bias: Bold ≥ .1
The variance ratio in Scenario 1 is 1:3 across classes and over time points, which means that the variance in the first class/time-point is three times smaller
compared to the last class/time-point
aThe bias could not be calculated, since the simulated classes were not recovered
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The unconstrained 3-class solution consisted of a high
variety stable class (47.4%), a class with decreasing
means over time (35.8%) and a low decreasing class
(16.8%) (Fig. 3, Table 5). The optimal solution for the
model with constrained residual variances over time
(1A), constrained random effects (1C) and constrained
random effects and residual variances over time (2B)
showed a similar structure to the unconstrained model,
with a stable class with little variation instead of the de-
creasing class. The optimal solution for the model with
constrained residual variance across classes (1B) showed
a similar increasing and decreasing class, but the last
class was different: increasing with a peak around age
19. The optimal solution for the model with residual
variance constrained over time and across classes
(2A) also had a different last class: characterized by a
high intercept and strongly decreasing over time. The

optimal solution for the “classes-constrained model”
showed a substantially different class structure, with
one class peaking around age 14 (9.4%) and another
around age 22 (11.3%) and a third class being stable
over time (79.3%).

Sensitivity analyses
Overall, the 2-class and 3-class results of the 3 subsam-
ples of 300 individuals were similar to the results for the
whole dataset, while the class sizes differed from those
in the whole dataset. For all 3-class models, except the
model with residual variance constrained over time and
classes (2A) and the “classes-constrained model”, the
same class structure was found. Among the 2-class
models, only Model 2A showed a different class struc-
ture. Like in the main analyses, the BIC, AIC and aBIC

Fig. 2 a Outcomes over 1000 replications in simulation study for a sample size of 1000 and a high degree of separation between classes,
Scenario 1. b Outcomes over 1000 replications in simulation study for a sample size of 1000 and a low degree of separation between classes,
Scenario 1. c Outcomes over 1000 replications in simulation study for a sample size of 300 and a low degree of separation between classes,
Scenario 1. d Outcomes over 1000 replications in simulation study for a sample size of 100 a low degree of separation between classes, Scenario
1. Negative variances and classification accuracy are conditional on class recovery: Only if the simulated classes. Are recovered, the other two
outcomes can be calculated. Class recovery: proportion of replications in which simulated and estimated classes could be linked, No negative
variances: proportion of replications in which no negative variances occurred, classification accuracy: proportion of individuals correctly assigned
to a certain class. A value of 1.00 indicates the best possible performance
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indicated that the unconstrained 3-class model fitted the
data best.

Discussion
This simulation study showed that the unconstrained
model performed best in terms of class recovery, bias
and class assignment, if the variation across classes and
over time differs and the sample size is sufficient (N =
1000). In all scenarios and for all sample sizes, the model
with both random variances and residual variances con-
strained to be equal across classes (“classes-constrained
model”) performed the poorest. For smaller sample sizes
(100 or 300), no model consistently performed best.
Analyses of the TRAILS cohort confirmed that the “clas-
ses-constrained model” tended to result in classes that
substantially differed from the classes resulting from the
other models.
This study showed that constraining variance parame-

ters to be equal, when they are not, induces bias and
reduces class recovery and classification accuracy, espe-
cially for the “classes-constrained model”. These findings
are in accordance with recent studies which focused on

residual variances [5, 14, 15] or random effects [30].
More specifically, we confirmed the finding by Davies
and Glonek that the unconstrained model performs best
and the classes constrained model performs the poorest
[10]. Contrary to our findings, some authors found no
[9] or a positive effect [31] of residual variance con-
straints on model performance. This difference might be
due to different evaluation criteria: while we focused on
class recovery, bias and class assignment, these studies
focused on the BIC indicating the correct number of
classes. Finding the correct number of classes might not
always be affected by model misspecification, but param-
eter estimates usually are [32]. Selecting the correct
number of classes is a suboptimal evaluation criterion,
since a model with correct number of classes can still be
a poor representation of the simulated classes, for in-
stance when almost empty classes are estimated.
For all sample sizes and in all scenarios, the “classes-

constrained” model performed poorly. This may be ex-
plained by the fact that this is the only model that con-
strained both types of variances across classes, resulting
in a model which assumes the overall variance to be

Table 3 Absolute values of relative bias of intercept (int) and slope per analysis model: findings over 1000 replications in the
simulation for a sample size of 300 and 100 and low degree of separation between classes in Scenario 1

Model Intercept class
1

Intercept class
2

Intercept class
3

Slope class
1

Slope class
2

Slope class
3

Low separation and N = 300

0 Nothing constrained .00 .01 .00 .00 .03 .01

1A Residual variance time constrained .00 .01 .00 .00 .10 .08

1B Residual variance classes constrained .01 .03 .00 .00 .10 .00

1C Random effects constrained .01 .01 .02 .01 .00 .04

2A Residual variance constrained time and
classes

.01 .04 .00 .00 .22 .03

2B Random effects and residual variance time
constrained

.01 .02 .01 .01 .03 .20

2C Random effects and residual variance classes
constrained

.13 .29 .03 .08 1.23 .37

Low separation and N = 100

0 Nothing constrained .01 .05 .01 .01 .04 .18

1A Residual variance time constrained .01 .02 .01 .01 .08 0

1B Residual variance classes constrained .01 .05 .01 0 .07 .18

1C Random effects constrained .02 .02 .02 .01 .06 .07

2A Residual variance constrained time and
classes

.02 .07 .01 .02 .37 .02

2B Random effects and residual variance time
constrained

.01 .03 .01 .01 .08 .26

2C Random effects and residual variance classes
constrained

.13 .19 .01 .03 1.06 .47

Relative bias: bias divided by true population value
Codes for relative bias: Bold ≥ .1
The variance ratio in Scenario 1 is 1:3 across classes and over time points, which means that the variance in the first class/time-point is three times smaller
compared to the last class/time-point
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equal across classes. Therefore, spurious classes, which
are equal in terms of variance, might be found when var-
iances differ across classes. Classes can be based not just
on the trajectories themselves, but also on the variation
around the trajectory [1]. For instance in school per-
formance, a class of high achievers might show less vari-
ation than a class of lower achieving students which
differ more between measurements [17].
Model performance by variance misspecification was

substantially influenced by sample size, with a sample
size of 1000 leading to good performance and sample
size of 300 or less leading to relatively poor performance.
In most scenarios, the unconstrained model still per-
formed best for a sample size of 300. For a sample size
of 100, there was no model that performed consistently
best. Negative variances and low class recovery were

omnipresent for sample sizes of 100 and 300. Our re-
sults do not indicate that a sample size of 1000 is always
sufficient. We aimed to mimic empirical data as closely
as possible, by basing our population values on an earlier
review of empirical studies applying GMM. However, we
based our variance ratios on findings in 2 empirical
studies, since variance estimates are rarely reported in
GMM.
To the best of our knowledge this is the first study

that focused on all possible variance parameter
constraints within GMM. The findings may help re-
searchers decide which variance constrains should be
avoided. We combined simulated and empirical data
and used a literature review to specify the simulated
data to make it resemble empirical data. Another
possible limitation is the focus in the simulation study

Table 4 Model fit Indices for growth mixture models of aggressive behavior in the TRacking Adolescent Individuals’ Lives Survey
(TRAILS), The Netherlands, 2001–2017: text bolded for the best fitting model for each number of classes

Model # Classes BIC aBIC AIC Entropy

0: Unconstrained 1a − 2326 − 2367 − 2400 –

2 − 4393 − 4475 − 4541 0.69

3 − 4885 − 5009 −5107 0.67

1A: Residual variance time constrained 1b − 2300 − 2325 − 2345 –

2 − 4090 − 4141 − 4182 0.7

3 − 4553 − 4630 − 4690 0.65

4 − 4738 − 4840 − 4921 0.66

5 − 4929 − 5056 − 5157 0.68

1B: Residual variance classes constrained 2 − 3421 − 3506 − 3575 0.56

3 − 3149 − 3235 − 3303 0.54

4 − 3261 − 3369 − 3455 0.54

1C: Random effects constrained 2 − 4143 − 4219 − 4280 0.67

3 − 4791 − 4902 − 4991 0.66

2A: Residual variance constrained time
and classes

2 − 2873 − 2921 − 2959 0.46

3 − 3029 − 3099 − 3154 0.58

4 − 3186 − 3278 − 3352 0.55

5 − 3360 − 3474 − 3565 0.59

2B: Random effects and residual variance
time constrained

2 − 3843 − 3888 − 3923 0.66

3 − 4459 − 4522 − 4573 0.7

4 − 4685 − 4768 − 4833 0.71

5 − 4889 −4991 − 5072 0.71

2C: Random effects and residual variance
classes constrained

2 − 2705 − 2763 − 2808 0.79

3 − 2916 − 2989 − 3047 0.78

4 − 3032 − 3121 − 3192 0.76

5 − 3155 − 3260 − 3344 0.73

For some models, solutions are not shown for all number of classes because in those instances no solutions could be computed: In Model 0 and 1C for 4 and 5
classes, and in Model 1B for 5 classes
BIC Bayesian Information Criterion, aBIC Adjusted BIC, AIC Aikake Information Criterion
aThis model is the same as the 1-class models 1B, 1C and 2C,
bThis model is the same as the 1-class models 2A and 2B
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on linear models only, which are relatively simple.
Therefore, the results of our simulation study might
be more positive than in empirical data. Future work
could focus on variance specification of more complex
GMMs, such as cubic growth GMMs and second order
GMMs [33]. This research paper focused on GMM, but
our results also apply to Latent Class Growth Analysis
(LCGA) [34]. LCGA could be considered to be a special
case of GMM, without random effects. Residual variance
specification across time and classes will potentially mod-
ify the estimations of LCGA.
Based on the current study, we provide four recom-

mendations for analyzing GMMs in general and for
constraining variance parameters in GMM, which are
also summarized in the flow-chart as depicted in Fig. 4.
First, our study confirmed that if residual variances dif-
fer over time and classes and random effect variances
over classes, the unconstrained model is usually pre-
ferred. Therefore, in case of adequate sample sizes, we
recommend to start with the unconstrained model.

Second, the model which constrains both the random
effects and residual variances across classes (the classes
constrained model) rarely recovered the simulated
classes and led to substantially different results for the
TRAILS sample. Therefore, we discourage the use of
this model. It should be noted that in the Mplus soft-
ware package [20], the default settings correspond to
this model. The researcher should determine which
model(s) should be estimated, and should not rely on
default values in software packages. Defaults are only
created for writing syntax parsimoniously, and are not
to be considered the most suitable statistical model
specifications. Third, we advise to always try different
variance specifications, especially if the unconstrained
model does not converge without issues. Knowledge of
the theory and data may suggest which variance re-
strictions should be applied. Selection of the final
model and the optimal number of classes should be
based on fit indices (e.g. BIC, aBIC), separation be-
tween classes, the LMR-LRT and bootstrapped LRT,

Fig. 3 Estimated (red/thick line) and observed (thin/grey lines) trajectories for restricted and freely estimated models of Aggressive Behavior in
TRacking Adolescent Individuals’ Lives Survey (TRAILS). The percentages represent the relative class sizes per model
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Table 5 Parameter Estimates of the 3-Class Solution in the TRacking Adolescent Individuals’ Lives Survey (TRAILS), The Netherlands,
2001–2017

Model Parameter Class 1 Class 2 Class 3

Mean Variance Mean Variance Mean Variance

0: Unconstrained Intercept 0.358 0.024 0.325 0.008 0.145 0.009

Linear Slope 0.087 0.001 0.008 0.001 0.005 0.001

Quadratic Slope −0.033 0a −0.048 0a −0.024 0a

Cubic slope 0.003 0a 0.008 0a 0.004 0a

T1 – 0.038 – 0.049 – 0.01

T2 – 0.04 – 0.03 – 0.008

T3 – 0.041 – 0.019 – 0.01

T4 – 0.059 – 0.01 – 0.002

T5 – 0.05 – 0.006 – 0.001

T6 – 0.049 – 0.011 – 0.001

1A: Residual variance time constrained Intercept 0.460 0.012 0.283 0.008 0.136 0.011

Linear Slope 0.078 0.003 0.039 0.001 0.024 0.001

Quadratic Slope −0.039 0a − 0.042 0a − 0.03 0a

Cubic slope 0.004 0a 0.006 0a 0.004 0a

T1 – 0.058 – 0.023 – 0.005

T2 – 0.058 – 0.023 – 0.005

T3 – 0.058 – 0.023 – 0.005

T4 – 0.058 – 0.023 – 0.005

T5 – 0.058 – 0.023 – 0.005

T6 – 0.058 – 0.023 – 0.005

1B: Residual variance classes constrained Intercept 0.352 0.026 0.265 0.022 0.369 0.037

Linear Slope 0.078 0.003 0.019 0.001 0.089 0.003

Quadratic Slope −0.07 0a −0.033 0a 0.023 0a

Cubic slope 0.012 0a 0.004 0a − 0.008 0a

T1 – 0.034 – 0.034 – 0.034

T2 – 0.029 – 0.029 – 0.029

T3 – 0.028 – 0.028 – 0.028

T4 – 0.027 – 0.027 – 0.027

T5 – 0.026 – 0.026 – 0.026

T6 – 0.005 – 0.005 – 0.005

1C: Random effects constrained Intercept 0.282 0.013 0.466 0.013 0.234 0.013

Linear Slope 0.073 0.001 0.091 0.001 −0.023 0.001

Quadratic Slope −0.048 0a −0.033 0a − 0.025 0a

Cubic slope 0.006 0a 0.004 0a 0.005 0*

T1 – 0.027 – 0.067 – 0.031

T2 – 0.029 – 0.061 – 0.013

T3 – 0.027 – 0.057 – 0.011

T4 – 0.028 – 0.094 – 0.003

T5 – 0.023 – 0.09 – 0.001

T6 – 0.03 – 0.075 – 0.004
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and the interpretation (sensibility and distinctiveness)
of the classes. Fourth, it is of utmost importance to re-
port which variances were constrained or let free to
aid transparency and replicability. The fact that vari-
ances structures are hardly reported makes us suspect
that the default (most-restricted) variance specifica-
tion has been used, while this model consistently
shows the poorest results in terms of fit and bias.
Inadequate or incomplete reporting of the results for
latent trajectory analysis hampers interpretation and
critical appraisal of results, as well as comparison of

results between studies [7]. We reemphasize the im-
portance of following the GRoLTS-Checklist when
conducting and reporting GMM analyses, especially
regarding variance specifications.

Conclusions
We conclude that it is best to not constrain any variance
parameters in GMM. But if convergence issues arise,
one might constrain one variance parameter (see Fig. 4
for a flowchart to aid the decision process). No
generalizable conclusions can be drawn about which are

Table 5 Parameter Estimates of the 3-Class Solution in the TRacking Adolescent Individuals’ Lives Survey (TRAILS), The Netherlands,
2001–2017 (Continued)

Model Parameter Class 1 Class 2 Class 3

Model 2A:
Residual variance Constrained time
and classes

Intercept 0.302 0.021 0.223 0.006 0.715 0.021

Linear Slope 0.105 0.001 0.043 0.000b −0.142 0.000b

Quadratic Slope −0.034 0a −0.045 0a −0.029 0a

Cubic slope 0.004 0a 0.006 0a 0.007 0a

T1 – 0.028 – 0.028 – 0.028

T2 – 0.028 – 0.028 – 0.028

T3 – 0.028 – 0.028 – 0.028

T4 – 0.028 – 0.028 – 0.028

T5 – 0.028 – 0.028 – 0.028

T6 – 0.028 – 0.028 – 0.028

2B: Random effects and residual variance
time constrained

Intercept 0.463 0.01 0.323 0.01 0.148 0.01

Linear Slope 0.094 0.001 0.04 0.001 0.026 0.001

Quadratic Slope −0.033 0a −0.044 0a −0.032 0a

Cubic slope 0.003 0a 0.006 0a 0.005 0a

T1 – 0.073 – 0.029 – 0.006

T2 – 0.073 – 0.029 – 0.006

T3 – 0.073 – 0.029 – 0.006

T4 – 0.073 – 0.029 – 0.006

T5 – 0.073 – 0.029 – 0.006

T6 – 0.073 – 0.029 – 0.006

2C: Random effects and residual variance
classes constrained

Intercept 0.273 0.018 0.491 0.018 0.397 0.018

Linear Slope 0.019 0.001 0.469 0.001 −0.074 0.001

Quadratic Slope −0.032 0a −0.261 0a 0.099 0a

Cubic slope 0.005 0a 0.032 0a −0.015 0a

T1 – 0.037 – 0.037 – 0.037

T2 – 0.023 – 0.023 – 0.023

T3 – 0.026 – 0.026 – 0.026

T4 – 0.033 – 0.033 – 0.033

T5 – 0.017 – 0.017 – 0.017

T6 – 0.027 – 0.027 – 0.027
aThese variances were manually set to be equal to zero
bThese variances were estimated to be very close to zero, which led to a warning that the covariance matrix was not positive definite. Nevertheless, the variances
were not set to be equal to zero, in order to keep the model comparable to other models
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the best variance parameters to be constrained when the
unconstrained model does not converge properly. The-
ories, previous conceptual knowledge and fit information
should guide the decision process. Researchers are en-
couraged to try different variance specifications and to
report these all clearly. However, constraining the re-
sidual variances and the random effect variances to be
equal across classes simultaneously, could seriously bias
the results, when they are different. Therefore, con-
straining both random effect variances and residual vari-
ances across classes is discouraged.
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