

University of Groningen

Topography-mediated Control of Cellular Response: Migration, Intracellular Crowding, and **Gene-delivery**

Ge, Lu

DOI: 10.33612/diss.146106454

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Ge, L. (2020). Topography-mediated Control of Cellular Response: Migration, Intracellular Crowding, and Gene-delivery. University of Groningen. https://doi.org/10.33612/diss.146106454

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Topography-mediated Control of Cellular Response: Migration, Intracellular Crowding, and Gene-delivery

Lu Ge

Topography-mediated Control of Cellular Response: Migration, Intracellular Crowding, and Gene-delivery

By Lu Ge

University Medical Center Groningen, University of Groningen Groningen, The Netherlands

Copyright © 2020 by Lu Ge

Cover designed by Lu Ge

Printed by Ridderprint

Topography-mediated Control of Cellular Response: Migration, Intracellular Crowding, and Gene-delivery

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. C. Wijmenga and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Monday 7 December 2020, at 12.45 hours

by

Lu Ge

born on 06 March 1988 in Hebei, China

Supervisor

Dr. P. van Rijn

Co-supervisor Dr. T.G. van Kooten

Assessment Committee

Prof. A. Salvati Prof. B.N. Melgert Prof. P.Y.W. Dankers **Paranymphs:** Torben A.B. van der Boon Valentina Vignali

Contents	
Chapter 1 1.1 Cell and ma 1.2 Aim of this 1.3 Outline of t 1.4 References	General Introduction and Aim of this Thesis1terial interfaces2thesis8his thesis9
Chapter 2 2.1 Introduction 2.2 Physicoche 2.3 Cell migratio 2.4 References	Gradients Allow for Efficiently Studying Cell Behaviors171818emical influences on macroscopic cell behaviors18on on gradients2429
Chapter 3 Wavelength, an 3.1 Introduction 3.2 Methods 3.3 Results 3.4 Discussion 3.5 Conclusion 3.6 Supporting i 3.7 References	Topography-mediated Fibroblast Cell Migration is Influenced by Direction,and Amplitude39414242445557nformation5859
Chapter 4	Topography Induced Macromolecular Crowding Alteration in Living Cells
4.1 Introduction4.2 Methods4.3 Results4.4 Discussion4.5 Conclusion4.6 Supporting i4.7 References	n 65 66 68 77 79 nformation 80 82
Chapter 5	Topography-mediated Enhancement of Non-viral Gene Delivery in Stem Cells
5.1 Introduction5.2 Methods5.3 Results5.4 Discussion5.5 Conclusion5.6 References	n 89 90 93 102 103 104
Chapter 6 6.1 Discussion & 6.2 References	General Discussion & Future Perspective109& Future perspective110116116
Summary Samenvatting	121 125