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1 I N T R O D U C T I O N

Mathematical models are ubiquitous in science and engineering. They lie at the
heart of most physical theories and play a fundamental role in systems biology
and quantitative finance. A mathematical model is a simplified (quantitative)
description of a real-world system or process. Such descriptions help to under-
stand the most prominent features of the modeled phenomenon, and to make
predictions about its future behavior. Although the ability of mathematics to
describe reality may be puzzling to the philosophically inclined1, many of us
make use of models without much thought; for instance, when relying on the
weather forecast or when browsing a playlist of recommended songs.

Clearly, the usefulness of a model is dependent on its ability to portray reality
in a good way. The meaning of “good", in turn, depends on the intended use of
the model. For example, crude mathematical models may not be able to make
fully accurate predictions of a modeled system, but can still be useful for shaping
the system’s behavior by means of control [64].

In the field of systems and control, mathematical models are typically dyna-
mical systems that are intended for analysis and control of the modeled process.
Control theory has seen several remarkable developments, of which we mention
the celebrated Kalman filter, Lyapunov stability analysis, and H∞ optimal control.
All of these techniques are based on mathematical models of the considered
system. However, obtaining a suitable model is far from a simple task in practice.
In fact, it is widely recognized that obtaining a process model is the single most
time-consuming task in the application of model-based control [84, 156].

The difficulty of obtaining good models has multiple reasons. One of these is
that modern control systems are becoming increasingly complex, which compli-
cates (physical) modeling from first principles. In some cases, there is no clear
physics underlying the system, for example, in the modeling of stock prices. Even
in scenarios in which physical modeling is possible, the obtained model may be
too complex for its intended purpose.

Systems complexity also manifests itself in the sheer size and interconnected
nature of modern systems. There is a general trend in science and technology
to study and design systems comprised of multiple interconnected subsystems.
Such networks appear in an impressively wide variety of domains, ranging from
social dynamics and neural networks to power grids and robotic systems. A trait
of these systems is that their collective behavior is not only determined by the
behavior of the individual subsystems, but is also influenced by the way these
systems are coupled. Networks bring their own unique set of modeling challenges.
One of such challenges stems from the fact that the network structure, or topology,

1 See “The Unreasonable Effectiveness of Mathematics in the Natural Sciences" by E. P. Wigner [239].
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is often unavailable; this is for instance the case in neural networks. Even in
situations where we know the network topology, using this prior information
effectively is a must, and a major challenge by itself.

In situations where a (precise) mathematical model is unavailable, this missing
information about the system must be accounted for by something else. In this
thesis, knowledge of mathematical models is substituted by two other ingredients,
namely data and structure. By data, we mean measurements of a dynamical
system, typically of its inputs and outputs. By structure, we generally refer to
a zero/nonzero structure on the system parameters, for example induced by a
network topology. The purpose of this thesis is to perform modeling, analysis
and control of dynamical systems using data and structure. In particular, we
will focus on four problems, namely data-driven control, topology identification,
network identifiability analysis, and structural controllability analysis.

1.1 from data to controllers

Data-driven control refers to the problem of constructing control laws for an
unknown dynamical system from data. The problem can be approached via
different angles, for example using combined modeling (system identification)
and model-based control, or by computing control laws from data without the
intermediate modeling step. We will contribute to the second category of methods,
aiming at analysis and control design directly from data.

The literature on data-driven control is expanding rapidly. We mention contri-
butions to data-driven optimal control [1, 4, 10, 50, 56, 62, 71, 150, 162, 193, 197, 222],
PID control [59, 99], predictive control [6, 55, 83, 90, 183], and nonlinear con-
trol [21, 44, 75, 203, 204]. Some of these techniques are iterative in nature: the
controller is updated online when new data are presented. Examples of this
include policy iteration methods [23] and iterative feedback tuning [85]. Other
methods are one-shot in the sense that the controller is constructed offline from a
batch of data. We mention, for instance, virtual reference feedback tuning [26]
and methods based on Willems’ fundamental lemma [241] (see also [220]). The
latter line of work has been quite fruitful, with contributions ranging from output
matching [125] and control by interconnection [132], to data-enabled predic-
tive control [40] and data-based closed-loop system parameterizations [17, 47]
amenable for control. Additional recent research directions include data-driven
control of networks [5, 9] and the interplay between data-guided control and
model reduction [140].

In addition to control problems, also analysis problems have been studied
within a data-based framework. The authors of [164] analyze the stability of an
input/output system using time series data. The papers [111, 155, 232, 248] deal
with data-based controllability and observability analysis. Moreover, the problem
of verifying dissipativity on the basis of measured system trajectories has been
studied in several recent contributions, see [16, 100, 101, 131, 178, 179].
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In this thesis, we will approach data-driven analysis and control from the
angle of data informativity. Essentially, this means that we want to understand
when the data contain sufficient information for the analysis of system properties
and the design of controllers of the (unknown) system. Informative data are
essential for control: without such data it is impossible to guarantee stability
and performance of the system in interconnection with the data-driven controller.
Although there are several methods for data-driven control with guaranteed
stability and performance (c.f. [47, 125, 132]), a general definition of informative
data and a characterization for different analysis and control problems is still
largely missing. Therefore, in Chapter 3 we will define a general notion of data
informativity for data-driven analysis and control. The basic idea is as follows.
We will assume that the true data-generating system is contained in a known
model class, for example a class of linear time-invariant systems. The measured
data give rise to a subset of systems within the model class that all could have
generated the data; a set that is reminiscent of the feasible systems set in set
membership identification [138]. Roughly speaking, the data are then called
informative if this set of systems explaining the data is “sufficiently small", so that
we can analyze and control the true system using the given data.

In Chapters 3, 4, 5 and 6, we will put forward a fairly complete theory for data-
guided analysis and control for model classes of linear time-invariant systems. We
will consider both exact data (Chapters 3 and 4) and noisy data (Chapters 5 and
6). In Chapter 3 we focus on stability, stabilizability and controllability analysis,
as well as stabilization and optimal control. For each of the problems, we provide
necessary and sufficient conditions for data informativity, and for the control
problems we also establish data-driven control design methods. In Chapter 4 we
continue to study data-driven control, with a focus towards suboptimal linear
quadratic regulation (LQR) and H2 control. Thereafter, we switch to a setting
of noisy data in Chapter 5, where we study quadratic stabilization, H2 and H∞
control. Here, we will make the assumption that the noise has bounded energy
on a finite time interval. Finally, in Chapter 6 we establish methods to determine
dissipativity of linear systems from measured data, both in an exact and a noisy
data setting.

Our results lead to multiple interesting conclusions. In the noiseless setup
of Chapters 3 and 4 we conclude that the data informativity conditions for
stabilization and suboptimal control are generally weaker than those for system
identification. The interpretation is that it is generally easier to learn a stabilizing
controller than it is to learn a system model from data. However, for the LQR
problem, we show that the data informativity conditions are practically the same
as for identification. The conditions for data informativity are thus dependent
on the control problem. In the noisy setup of Chapters 5 and 6 our analysis
also leads to new types of robust control results that are interesting in their
own right. For example, in Chapter 5 we derive a generalization of the classical
S-lemma [243] to matrix variables. In addition, in Chapter 6 we provide a variant
of the dualization lemma to prove the equivalence of different noise models and
to establish data-driven tests for dissipativity.
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Some parts of this thesis (namely, the motivation of Chapter 3 and the identifi-
cation approach of Chapter 7) are based on the notion of persistency of excitation,
which is discussed in detail in Chapter 2. Chapter 2 studies Willems et al.’s funda-
mental lemma [241]. This result asserts that under controllability and persistency
of excitation conditions, all trajectories of a linear system are parameterized in
terms of a single given one. As we will see, the result has implications for both
system identification and data-driven control. In fact, the conditions of Willems’
lemma can be interpreted as experiment design conditions, enabling the generation
of informative data for modeling and control in a noiseless data setup. The main
purpose of Chapter 2 is to establish a generalization of Willems’ lemma to the
situation in which multiple trajectories are given instead of a single one. This
result aids the identification from data sets with missing samples, and is also
shown to be beneficial in the data-guided control of unstable systems.

1.2 from data to network topology

Topology identification entails the problem of identifying the structure of a
networked system from data. The problem is not only important in the systems
and control community, but has also received attention in physics [206] and
biology [213]. The interest in topology identification is motivated by the fact that
many real-world networks have a network topology that is either completely
unavailable or uncertain. Some examples include neural networks [213], genetic
networks [97], and networks of interconnected stock prices [129]. In the case
that one is only interested in control of the networked system, we envision the
possibility of applying direct methods in the spirit of Chapters 3, 4, 5 and 6.
However, there are many situations in which one is interested in the network
topology an sich, rather than control of the networked system. For instance, in
the examples mentioned above, the main problem is to understand the different
interactions between subsystems. The network topology also plays a fundamental
role in the success of distributed algorithms [158], and can be used to make
predictions about their rate of convergence. Therefore, we consider the problem
of topology identification in Chapters 7 and 8.

There are several existing methods for topology reconstruction from data. The
paper [70] studies dynamical structure function reconstruction, see also [246]. A
node-knockout scheme for topology identification was introduced in [153] and
further investigated in [202]. Moreover, the paper [184] studies topology identifi-
cation using compressed sensing, while [130] considers network reconstruction
using Wiener filtering. A distributed algorithm for network reconstruction has
also been studied [145]. The paper [190] studies topology identification using
power spectral analysis. A Bayesian approach to the network identification prob-
lem was investigated in [32]. The network topology was inferred from multiple
independent observations of consensus dynamics in [189]. The paper [41] studies
topology identification via subspace methods. There are also several results for
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topology reconstruction of nonlinear systems, see e.g., [192, 206, 231] albeit in this
case few guarantees on the accuracy of identification can be given.

Most existing work on topology identification emphasizes the role of the
network topology by considering relatively simple node dynamics. For example,
networks of single integrators have been studied in [79, 145, 153, 226]. In addition,
the papers [202] and [190] consider homogeneous networks comprised of identical
single-input single-output systems.

The goal of Chapter 7 is to provide a comprehensive treatment of topology iden-
tification for linear multi-input multi-output (MIMO) heterogeneous networks.
We will consider both the problem of identifiability, as well as reconstruction of
the network topology. The study of identifiability of the network topology deals
with the question whether there exists a data set from which the topology can
be uniquely identified. Identifiability of the topology is hence a property of the
node systems and the network graph, and is independent of any data. Topological
identifiability is an important property. Indeed, if it is not satisfied, then it is im-
possible to uniquely identify the network topology, regardless of the amount and
richness of the data. After studying topological identifiability, we will turn our
attention towards reconstruction, which involves the development of algorithms
that identify the network graph from data.

Our identifiability results recover and generalize a result for the special case
of networks of single integrators [163, 226]. We will also see that homogeneous
networks of single-input single-output systems have quite special identifiability
properties that do not extend to the general case of heterogeneous networks.
Our topology identification scheme makes use of Willems’ lemma (Chapter 2).
Willems’ lemma can be leveraged to identify the network’s Markov parameters.
Then, the idea is to reconstruct the network interconnection matrix by solving
a generalized Sylvester equation involving the Markov parameters. We prove that
the network topology can be uniquely reconstructed in this way, under the
assumptions of topological identifiability and persistently exciting inputs.

In Chapter 8 we investigate a more specific network setup, where the dynamics
of each node is a single integrator, and the network is autonomous. In this case,
excitation has to be secured through the initial conditions of the network. The
more specialized setting of Chapter 8 allows us to come up with more specific
reconstruction methods, in terms of Lyapunov equations.

1.3 from structure to identifiability

As we have explained in the previous section, there are several examples of
networks with unknown topology. Nevertheless, the assumption that the network
topology is known is reasonable for other systems, in particular for engineering
systems such as water distribution networks.

In the case that the network structure is known, we need new techniques
to exploit this prior information. In Chapters 9 and 10 we will utilize the
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known graph structure of the network in order to characterize a notion of global
identifiability. In the setting of these chapters, identifiability is a property of
the network model set that guarantees that a unique model can be identified,
given informative data and prior knowledge of the network topology. There
are multiple reasons why understanding identifiability from a graph-theoretic
perspective is interesting. First, conditions based on the network topology are
desirable since they give insight on the types of network structures that allow
identification. Secondly, as demonstrated in [31], graph-theoretic conditions may
aid in the selection of excited and measured nodes guaranteeing identifiability.

Identifiability of dynamical networks is an active research area, see e.g., [3, 80,
81, 152, 223, 224, 233–235] and the references therein. However, considerably less
results are available on the connections between identifiability and graph structure
[81, 152, 233]. In [152], sufficient graph-theoretic conditions for identifiability
have been presented for a class of consensus networks. In [81], graph-theoretic
conditions have been established for generic identifiability. That is, conditions
were given under which transfer functions in the network can be identified for
“almost all" network matrices associated with the graph. The authors of [81] show
that generic identifiability is equivalent to the existence of certain vertex-disjoint
paths, which yields elegant conditions for generic identifiability. Similar results
were also presented in a “dual" setup in [233].

Inspired by the work on generic identifiability [81, 233], in Chapter 9 we are in-
terested in graph-theoretic conditions for a stronger notion, namely identifiability
for all network matrices associated with the graph. This notion is referred to as
global identifiability of the model set. We will study a network model, introduced
in [214], where relations between nodes are modeled by proper transfer functions.

Our goal of studying global identifiability is motivated by the fact that generic
identifiability provides an indication of identifiability, rather than guarantees. In-
deed, although generic identifiability guarantees identifiability for almost all
network matrices, there are meaningful examples of network matrices that are
not contained in this set of almost all systems. As a consequence, a situation may
arise in which the unknown system under consideration is not identifiable, even
though the conditions for generic identifiability are satisfied. For an example
of such a situation, we refer to Section 9.3. On the other hand, if the conditions
derived in Chapter 9 are satisfied, then it is guaranteed that the network is iden-
tifiable for all network matrices associated with the graph. It turns out that in
order to characterize global identifiability, we need a new graph-theoretic concept
called the graph simplification process. We will provide necessary and sufficient
conditions for identifiability in terms of this concept in Chapter 9. An interesting
outcome of our results is that identifiability can often be achieved with relatively
few measured nodes. This shows the effectiveness of using prior knowledge
of the topology. In comparison, in case that the topology is unknown it can be
shown that all network nodes (except for one) need to be measured.

In Chapter 10 we are interested in a similar notion of global identifiability, but
for a different class of undirected networks described by state-space systems. In
this case we provide sufficient conditions for identifiability in terms of so-called
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zero forcing sets. Zero forcing sets have been studied in relation to structural
controllability [142], but the connection to identifiability has not been studied
before. The results of Chapter 10 reveal that in the more specialized (undirected)
setup, identifiability can be achieved not only with a limited number of measured
nodes, but also with a limited number of excited nodes.

1.4 from structure to controllability

Global identifiability, as studied in Chapters 9 and 10, is a structural property: it
can be completely characterized in terms of the graph structure and locations of
excited/measured nodes. Another example of a structural property (and arguably,
the prime example) is structural controllability. Structural controllability has a rich
history that started with the classical paper by Lin [110]. The concept involves
a pair of matrices (A, B), where each entry of these matrices is either a fixed
zero or a free parameter. (Weak) structural controllability then requires almost
all realizations of (A, B) to be controllable. That is, for almost all parameter
settings of the free entries of A and B, the resulting numerical pair of matrices
is controllable in the classical sense by Kalman. Lin provided a graph-theoretic
condition under which (A, B) is weakly structurally controllable in the single-
input case. The extension to multiple inputs was also studied in [67] and [194].

Later on, Mayeda and Yamada introduced the notion of strong structural
controllability [133]. They considered a zero/nonzero structure on the matrices
A and B, meaning that each entry of these matrices is either a fixed zero or a
nonzero free parameter. Strong structural controllability then requires all numerical
realizations of (A, B) to be controllable.

There has been a renewed surge of interest in structural controllability that was
initiated by the publication of the Nature paper [113] studying structural controlla-
bility of networks. Several contributions followed, both for the weak [42, 134, 147]
and strong [29, 142, 207] variants of controllability. In the context of networks,
the structure of the matrix A results from a given graph structure. In addition,
the matrix B often has a specific structure reflecting the fact that each input of
the network directly affects only one network node (called a leader). Structural
controllability of networks is therefore not essentially different from “classical"
structural controllability studied by Lin; the differences mostly lie in the inter-
pretation of A and the special structure of B. The contributions to controllability
of networks therefore mainly involved new graph-theoretic characterizations of
controllability in terms of maximal matchings [113], constrained matchings [29]
and zero forcing sets [142]. These new graph-theoretic conditions were also
shown to be amenable from a design point of view, in the sense that they enable
the selection of a set of leaders guaranteeing (strong) structural controllability.

Nowadays, structural controllability is still an active research area. Some new
research lines involve structural output controllability [39, 63, 141, 219], structural
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controllability with dependencies amongst entries in A and B [94, 112, 134] and
the study of controllability of networks with higher order node dynamics [35, 36].

We recall that Mayeda and Yamada [133] studied strong structural control-
lability for (A, B) pairs having zero/nonzero structure. This basic assumption is
predominant in the literature. Nonetheless, as we demonstrate in Chapter 11, this
assumption is not always realistic in the sense that there are many examples in
which we do not know whether an entry of the system matrices is zero or nonzero.
Therefore, in Chapter 11 we extend the zero/nonzero structure to a more general
zero/nonzero/arbitrary structure, and we study strong structural controllability
in this framework. We will provide both algebraic and graph-theoretic conditions
for strong structural controllability. We also find that seemingly incomparable
results of [207] and [142] follow from our main results, which reveals an overar-
ching theory. For this reason, Chapter 11 can be seen as a unifying approach to
strong structural controllability of linear time-invariant systems.

We continue our study of the zero/nonzero/arbitrary structure in Chapter 12.
In this chapter, we take a closer look at properties of so-called pattern matrices.
A pattern matrix is an array of symbols, where each symbol captures some
structural information. The pattern matrices that we consider thus contain
three different symbols: 0 (zero), ∗ (nonzero) and ? (arbitrary). We will define
notions of addition and multiplication of such pattern matrices, and study the
properties of pattern matrices that are either the sum or the product of two
pattern matrices. Subsequently, we will apply these results to assess strong
structural input-state observability, output controllability, and controllability of
linear differential algebraic equations.

We follow up in Chapter 13 by studying strong structural output controllability
in a network setting. Here, the output of the network consists of the states
of a subset of network nodes, called target nodes. The goal is to understand
under which conditions the target nodes can be controlled by applying inputs
to the leader nodes. Due to the specific form of the network output, output
controllability is often referred to as targeted controllability in this context. Strong
structural targeted controllability has been considered before in the paper [141].
We will follow up on this work by studying targeted controllability for a subclass
of A-matrices, called distance-information preserving matrices. For this subclass,
we are able to come up with more powerful sufficient conditions for strong
structural targeted controllability. We also provide necessary conditions for
targeted controllability, as well as a strategy for the selection of leader nodes.
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1.5 outline and relations between chapters

To summarize, Chapter 2 studies Willems’ fundamental lemma, and Chapters 3, 4,
5 and 6 treat data-driven analysis and control. Topology identification is the main
topic of Chapters 7 and 8, while Chapters 9 and 10 consider network identifiability
from a graph-theoretic perspective. We study strong structural controllability,
input-state observability and output controllability in Chapters 11, 12 and 13.
Finally, our conclusions are provided in Chapter 14. A graph of relations between
the chapters of this thesis is displayed in Figure 1.1.

Ch. 2

Ch. 3Ch. 4

Ch. 5Ch. 6

Ch. 7

Ch. 8

Ch. 9

Ch. 10

Ch. 11 Ch. 12

Ch. 13

Data-driven
control

Network
identifiability

Topology
identification

Structural
controllability

Figure 1.1: Graph of relations between chapters. Solid links represent strong relations,
e.g., Chapter 5 directly extends results from Chapters 3 and 4 to noisy data.
Dashed links indicate weaker relations, e.g., Willems’ lemma (Chapter 2) is
applied in the topology identification approach of Chapter 7.
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erties of pattern matrices with applications to structured systems", under
preparation, 2020 (Ch. 12).

1.7 general notation
In this section we define some notation that we will use throughout the thesis.
More specific notation that is used in one or only a few chapters will be defined
within the chapters themselves.

Sets

We denote the set of natural, real, and complex numbers by N, R, and C re-
spectively. Let Rn (Cn) denote the linear space of vectors with n real (complex)
components. Moreover, the set of real (complex) m× n matrices is denoted by
Rm×n (Cm×n).

The image of a matrix A ∈ Rn×m is denoted by im A and defined as

im A := {Av ∈ Rn | v ∈ Rm}.
The kernel of A is denoted by ker A and defined as

ker A := {v ∈ Rm | Av = 0}.
The left kernel of A is defined as ker A>, where A> denotes the transpose of
A. The spectrum of a square matrix A ∈ Cn×n is the set of its eigenvalues and
denoted by σ(A). The cardinality of a set S is denoted by |S|.

Matrices and vectors

The n× n identity matrix is denoted by In. The zero vector of dimension n is
denoted by 0n, and the zero matrix of dimension n×m is denoted by 0n×m. We
denote the n-dimensional vector of ones by 1n. If the dimensions of In, 0n, 0n×m
and 1n are clear from the context, we simply write I, 0 and 1.

The real and imaginary parts of a vector v ∈ Cn are denoted by Re v and Im v,
respectively. Its conjugate transpose is denoted by v∗. A matrix A ∈ Rn×n is
called positive definite, denoted by A > 0, if v>Av > 0 for all nonzero v ∈ Rn.
It is called positive semidefinite, denoted by A > 0, if v>Av > 0 for all v ∈ Rn.
Negative definite and negative semidefinite matrices are defined analogously,
and denoted by A < 0 and A 6 0, respectively. The trace tr A of a square
matrix A is the sum of its diagonal entries. We denote the Kronecker product
of A ∈ Cn×m and B ∈ Cp×q by A⊗ B ∈ Cnp×mq. Finally, the concatenation of
matrices A1, A2, . . . , Ak of compatible dimensions is defined as

col(A1, A2, . . . , Ak) :=
(

A>1 A>2 · · · A>k
)> .



2 W I L L E M S ’ F U N DA M E N TA L L E M M A
F O R M U LT I P L E DATA S E T S

In this chapter we revisit a result by Willems, Rapisarda, Markovsky and De Moor.
The result is often referred to as the fundamental lemma. Essentially, this lemma
gives a condition under which a measured trajectory of a linear system can be used
to parameterize all trajectories that the system can produce. The measured trajectory
thereby implicitly serves as a non-parametric system model. Here, we provide an
alternative proof of the fundamental lemma. We will also prove an extension of the
lemma that applies to the scenario in which multiple system trajectories are measured.

2.1 introduction

In the seminal work by Willems and coauthors [241], it was shown that a single,
sufficiently exciting trajectory of a linear system can be used to parameterize all
trajectories that the system can produce. This result has later been named the
fundamental lemma [125, 128], and plays an important role in the learning and
control of dynamical systems on the basis of measured data.

An immediate consequence of the fundamental lemma is that a sufficiently long,
persistently exciting trajectory captures the entire behavior of the data-generating
system, thus allowing successful identification of a system model using, e.g.,
subspace methods [227]. The lemma also enables data-driven simulation [125],
which involves the computation of the system’s response to a given reference
input. In addition, Willems’ lemma is instrumental in the design of controllers
from data. The result has been applied to tackle several control problems, ranging
from output matching [125] to control by interconnection [132], predictive control
[18,40,90], optimal and robust control [47], linear quadratic regulation [47,125,181]
as well as set-invariance control [20].

All of the above examples show the value of the fundamental lemma in model-
ing, simulation and control using a single measured system trajectory. Nonethe-
less, there are many scenarios in which multiple system trajectories are measured
instead of a single one. For example, performing multiple short experiments be-
comes desirable when the data-generating system has unstable dynamics. Also, as
pointed out in [88], a single system trajectory collected during normal operations
may be too poorly excited to reveal the system dynamics. In contrast, multiple
archival data may collectively provide a well-excited experiment. Another situation
is when a single trajectory is measured but some of the samples are corrupted or
missing. In this case, we have access to multiple system trajectories consisting of
the remaining, uncorrupted, data samples. System identification from multiple
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experiments [120, 123] and from data with missing samples [121, 122, 126] has
been studied. However, a proof of Willems’ lemma for multiple trajectories is still
missing. Therefore, in this chapter we aim at extending Willems’ fundamental
lemma to the case where multiple trajectories, possibly of different lengths, are
given instead of a single one.

Originally, the fundamental lemma was formulated and proven in a behavioral
context. The starting point in this chapter, however, is a reformulation of the
lemma in terms of state-space systems. Such a version of Willems’ fundamental
lemma has appeared before in [47, Lem. 2] and [16, Thm. 3] but no proof of the
statement was given in this context. Our first contribution is to provide a complete
and self-contained proof of the lemma for state-space systems. Strictly speaking,
such an alternative proof is not necessary since the original proof of [241] applies
to state-space systems as a special case. Nonetheless, we believe that our proof
can be of interest to researchers who want to apply Willems’ lemma to state-space
systems. In fact, the proof is elementary in the sense that it only makes use of basic
concepts such as the Cayley-Hamilton theorem and Kalman controllability test.
The proof is also direct, and in contrast to [241] does not rely on a contradiction
argument.

Our second contribution involves the extension of the fundamental lemma to
the case of multiple trajectories. To this end, we first introduce a notion of collective
persistency of excitation. Then, analogous to Willems’ lemma, we show that a
finite number of given trajectories can be used to parameterize all trajectories
of the system, assuming that collective persistency of excitation holds. We will
illustrate this result by two examples. First, we will show that the extended
fundamental lemma enables the identification of linear systems from data sets
with missing samples. Next, we will show how the result can be used to compute
controllers of unstable systems from multiple short system trajectories, even when
this is problematic from a single long trajectory.

The chapter is organized as follows: in Section 2.2 we formulate and prove
Willems’ fundamental lemma. Section 2.3 extends the lemma to multiple trajec-
tories. In Section 2.4 we provide applications of this result. Finally, Section 2.5
contains our conclusions.

2.1.1 Notation

Consider a signal f : Z → R• and let i, j ∈ Z be integers such that i 6 j. We
denote by f[i,j] the restriction of f to the interval [i, j], that is,

f[i,j] :=
[

f (i)> f (i + 1)> · · · f (j)>
]> .
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With slight abuse of notation, we will also use the notation f[i,j] to refer to the
sequence f (i), f (i + 1), . . . , f (j). Let k be a positive integer such that k 6 j− i + 1
and define the Hankel matrix of depth k, associated with f[i,j], as

Hk( f[i,j]) :=


f (i) f (i + 1) · · · f (j− k + 1)

f (i + 1) f (i + 2) · · · f (j− k + 2)
...

...
...

f (i + k− 1) f (i + k) · · · f (j)

 .

Note that the subscript k refers to the number of block rows of the Hankel matrix.

Definition 2.1. The sequence f[i,j] is said to be persistently exciting of order k if
Hk( f[i,j]) has full row rank.

2.2 willems et al. ’s fundamental lemma
In this section we explain the fundamental lemma [241] in a state-space setting.
Our goal is to provide a simple and self-contained proof of the result within this
context. Consider the linear time-invariant (LTI) system

x(t + 1) = Ax(t) + Bu(t) (2.1a)

y(t) = Cx(t) + Du(t), (2.1b)

where x ∈ Rn denotes the state, u ∈ Rm is the input and y ∈ Rp is the output.
Let (u[0,T−1], y[0,T−1]) be a given input/output trajectory1 of (2.1). We consider
the Hankel matrices of these inputs and outputs, given by:

[HL(u[0,T−1])

HL(y[0,T−1])

]
=



u(0) u(1) · · · u(T − L)
...

...
...

u(L− 1) u(L) · · · u(T − 1)
y(0) y(1) · · · y(T − L)

...
...

...
y(L− 1) y(L) · · · y(T − 1)


, (2.2)

where L > 1. Clearly, each column of (2.2) contains a length L input/output
trajectory of (2.1). By linearity of the system, every linear combination of the
columns of (2.2) is also a trajectory of (2.1). In other words,[

ū[0,L−1]
ȳ[0,L−1]

]
:=
[HL(u[0,T−1])

HL(y[0,T−1])

]
g (2.3)

1 Throughout this chapter, we denote variables such as u and y by bold font characters, and specific
instances of such variables in normal font, e.g., u(0), u(1), ... and y(0), y(1), ....



28 willems’ fundamental lemma for multiple datasets

is an input/output trajectory of (2.1) for any real vector g.
The powerful crux of Willems et al.’s fundamental lemma is that every length L

input/output trajectory of (2.1) can be expressed in terms of (u[0,T−1], y[0,T−1]) as
in (2.3), assuming that u[0,T−1] is persistently exciting. The result has appeared
first in a behavioral context in [241, Thm. 1]. In Theorem 2.1, we will formulate
the fundamental lemma for systems of the form (2.1). The theorem consists of
two statements. First, under controllability and excitation assumptions, a rank
condition on the state and input Hankel matrices (2.4) is satisfied. Second, under
the same conditions, all length L input/output trajectories of (2.1) can be written
as a linear combination of the columns of the matrix (2.2).

Theorem 2.1. Consider the system (2.1) and assume that the pair (A, B) is con-
trollable. Let (u[0,T−1], x[0,T−1], y[0,T−1]) be an input/state/output trajectory of
(2.1). Assume that the input u[0,T−1] is persistently exciting of order n + L. Then
the following statements hold:

(i) The matrix

[H1(x[0,T−L])

HL(u[0,T−1])

]
=


x(0) x(1) · · · x(T − L)
u(0) u(1) · · · u(T − L)

...
...

...
u(L− 1) u(L) · · · u(T − 1)

 (2.4)

has full row rank.

(ii) Every length L input/output trajectory of (2.1) can be expressed in terms
of u[0,T−1] and y[0,T−1] as follows: (ū[0,L−1], ȳ[0,L−1]) is an input/output
trajectory of (2.1) if and only if[

ū[0,L−1]
ȳ[0,L−1]

]
=

[HL(u[0,T−1])

HL(y[0,T−1])

]
g, (2.5)

for some real vector g.

Statement (i) has appeared first in the original paper by Willems and coworkers,
c.f. [241, Cor. 2(iii)]. The result is intriguing since a rank condition on both
input and state matrices can be inposed by injecting a sufficiently exciting input
sequence. This rank condition is important from a design perspective and plays a
fundamental role in MOESP type subspace algorithms, c.f. [227, Sec. 3.3]. Also,
in the case that L = 1, full row rank of (2.4) has been shown to be instrumental
for the construction of state feedback controllers from data [47]. In our work,
statement (i) is used to prove the second statement of Theorem 2.1. Statement (ii)
is a reformulation of [241, Thm. 1]. In what follows, we provide a self-contained
and elementary proof of the fundamental lemma in a state-space context.

Proof. Statement (ii) has been proven assuming statement (i) in [47, Lem. 2]. It
therefore remains to be shown that (2.4) has full row rank. Let

[
ξ η

]
be a vector
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in the left kernel of (2.4), where ξ> ∈ Rn and η> ∈ RmL. We will first show that
ξ and η can be used to construct n + 1 vectors in the left kernel of the “deeper"
Hankel matrix [H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]
. (2.6)

First, by definition of ξ and η, it is clear that

[
ξ η 0nm

] [H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]
= 0.

Next, by the laws of system (2.1a) we have

H1(x[1,T−n−L+1]) =
[
A B

] [H1(x[0,T−n−L])

H1(u[0,T−n−L])

]
.

Using this fact, we see that

[
ξA ξB η 0(n−1)m

] [H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]
=
[
ξ η

] [H1(x[1,T−n−L+1])

HL(u[1,T−n])

]
= 0,

where the latter equality holds by definition of ξ and η. Now, by repeatedly
exploiting the laws of (2.1a) and using the same arguments we find that the n + 1
vectors

w0 :=
[
ξ η 0nm

]
w1 :=

[
ξ A ξB η 0(n−1)m

]
w2 :=

[
ξ A2 ξ AB ξB η 0(n−2)m

]
...

wn :=
[
ξAn ξ An−1B · · · ξB η

]
(2.7)

are all contained in the left kernel of the matrix (2.6). By persistency of ex-
citation, Hn+L(u[0,T−1]) has full row rank, and hence the left kernel of (2.6)
has dimension at most n. Therefore, the n + 1 vectors in (2.7) are linearly de-
pendent. We claim that this implies η = 0. To prove this claim, partition
η =

[
η1 η2 · · · ηL

]
, where η>1 , η>2 , . . . , η>L ∈ Rm. Since the last m entries of

the vectors w0, w1, . . . , wn−1 are zero, the linear dependence of the vectors (2.7)
implies ηL = 0 by inspection of wn. We substitute this equation in η and conclude
that the last 2m entries of w0, w1, . . . , wn−1 are zero. As such, also ηL−1 = 0. We
can proceed with these substitutions to show that η1 = η2 = · · · ηL = 0, i.e.,
η = 0. Next, by Cayley-Hamilton theorem, ∑n

i=0 αi Ai = 0 where αi ∈ R for all
i = 0, 1, . . . , n, and αn = 1. Define the linear combination v := ∑n

i=0 αiwi. By (2.7)
and by substitution of η = 0, the vector v is equal to[

0n ∑n
i=1 αiξAi−1B ∑n

i=2 αiξ Ai−2B · · · αnξB 0mL
]

.

This implies that the vector[
∑n

i=1 αiξ Ai−1B ∑n
i=2 αiξ Ai−2B · · · αnξB

]
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is contained in the left kernel of Hn(u[0,T−L−1]), which is zero by persistency of
excitation. In other words,

0 = α1ξB + · · ·+ αnξAn−1B

0 = α2ξB + · · ·+ αnξAn−2B
...

0 = αn−1ξB + αnξ AB

0 = αnξB.

Since αn = 1 it follows from the last equation that ξB = 0. Substitution in the
second to last equation then results in ξAB = 0. We continue by backward
substitution to obtain ξB = ξ AB = · · · = ξAn−1B = 0. Controllability of (A, B)
hence results in ξ = 0. We therefore conclude that (2.4) has full row rank, which
proves the theorem.

2.3 extension to multiple trajectories
In this section we propose an extension of the fundamental lemma that is applica-
ble to the case in which multiple system trajectories are given. Our approach will
require the notion of collective persistency of excitation.

Definition 2.2. Consider the input sequences ui
[0,Ti−1] for i = 1, 2, . . . , q, where q

is the number of data sets. Let k be a positive integer such that k 6 Ti for all i.
The input sequences ui

[0,Ti−1] for i = 1, 2, . . . , q are called collectively persistently
exciting of order k if the mosaic-Hankel matrix[

Hk(u1
[0,T1−1]) Hk(u2

[0,T2−1]) · · · Hk(u
q
[0,Tq−1])

]
(2.8)

has full row rank.

Collective persistency of excitation is more flexible than the persistency of
excitation of a single input sequence. Indeed, for the input sequences ui

[0,Ti ]
to

be collectively persistently exciting, it is sufficient that at least one of them is
persistently exciting. However, this is clearly not necessary: the sequences ui

[0,Ti ]

may be collectively persistently exciting even when none of the individual input
sequences is persistently exciting. The added flexibility of collective persistency
of excitation is also apparent from the length of the input sequences. Indeed, a
single u[0,T−1] can only be persistently exciting of order k if T > k(m + 1)− 1. In
comparison, for collective persistency of excitation of order k it is necessary that
∑

q
i=1 Ti > k(m + q)− q. This means that collective persistency of excitation can be

achieved by input sequences having length Ti as short as k, assuming the number
of data sets q is sufficiently large. In the next theorem we extend the fundamental
lemma to the case of multiple data sets.
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Theorem 2.2. Consider system (2.1) and assume that the pair (A, B) is control-
lable. Let (ui

[0,Ti−1], xi
[0,Ti−1], yi

[0,Ti−1]) be an input/state/output trajectory of (2.1)

for i = 1, 2, . . . , q. Assume that the inputs ui
[0,Ti−1] are collectively persistently

exciting of order n + L. Then the following statements hold:

(i) The matrix [H1(x1
[0,T1−L]) H1(x2

[0,T2−L]) · · · H1(xq
[0,Tq−L])

HL(u1
[0,T1−1]) HL(u2

[0,T2−1]) · · · HL(u
q
[0,Tq−1])

]
(2.9)

has full row rank.

(ii) Every length L input/output trajectory of (2.1) can be expressed in terms
of ui

[0,Ti−1] and yi
[0,Ti−1] (i = 1, 2, . . . , q) as follows: (ū[0,L−1], ȳ[0,L−1]) is an

input/output trajectory of (2.1) if and only if[
ū[0,L−1]
ȳ[0,L−1]

]
=

[HL(u1
[0,T1−1]) · · · HL(u

q
[0,Tq−1])

HL(y1
[0,T1−1]) · · · HL(y

q
[0,Tq−1])

]
g, (2.10)

for some real vector g.

Note that if q = 1 and T1 = T we deal with a single experiment, and in this
case Theorem 2.2 recovers Theorem 2.1.

Proof. We first prove that (2.9) has full row rank. Let
[
ξ η

]
be a vector in the

left kernel of (2.9), where ξ> ∈ Rn and η> ∈ RmL. By exploiting the laws of the
system (2.1a) we see that the vectors

w0 :=
[
ξ η 0nm

]
w1 :=

[
ξ A ξB η 0(n−1)m

]
w2 :=

[
ξ A2 ξAB ξB η 0(n−2)m

]
...

wn :=
[
ξAn ξ An−1B · · · ξB η

]
(2.11)

are contained in the left kernel of the matrix[H1(x1
[0,T1−n−L]) · · · H1(xq

[0,Tq−n−L])

Hn+L(u1
[0,T1−1]) · · · Hn+L(u

q
[0,Tq−1])

]
. (2.12)

By the persistency of excitation assumption, the matrix[
Hn+L(u1

[0,T1−1]) · · · Hn+L(u
q
[0,Tq−1])

]
has full row rank, and hence the left kernel of (2.12) has dimension at most n.
Therefore, the n + 1 vectors in (2.11) are linearly dependent. This yields η = 0
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following the same argument as in the proof of Theorem 2.1. Next, by Cayley-
Hamilton theorem, ∑n

i=0 αi Ai = 0 where αi ∈ R for i = 0, 1, . . . , n and αn = 1. We
define the linear combination v := ∑n

i=0 αiwi. Clearly, the vector v is equal to[
0n ∑n

i=1 αiξAi−1B ∑n
i=2 αiξ Ai−2B · · · αnξB 0mL

]
.

Hence, the vector[
∑n

i=1 αiξAi−1B ∑n
i=2 αiξ Ai−2B · · · αnξB

]
is contained in the left kernel of[

Hn(u1
[0,T1−L−1]) · · · Hn(u

q
[0,Tq−L−1])

]
,

which is zero by collective persistency of excitation. Following the same steps
as in the proof of Theorem 2.1 we conclude by backward substitution that ξB =
ξ AB = · · · = ξ An−1B = 0. By controllability of (A, B) we have ξ = 0, proving
statement (i).

Next, we prove statement (ii). Let ū[0,L−1] and ȳ[0,L−1] be vectors such that (2.10)
is satisfied for some g. Then [

ū[0,L−1]
ȳ[0,L−1]

]
is a linear combination of length L trajectories of (2.1) and hence, by linearity,
itself an input/output trajectory of (2.1). Conversely, let (ū[0,L−1], ȳ[0,L−1]) be an
input/output trajectory of (2.1) and denote by x̄0 a corresponding initial state at
time 0. We have the relation[

ū[0,L−1]
ȳ[0,L−1]

]
=

[
0 I
OL TL

] [
x̄0

ū[0,L−1]

]
, (2.13)

where TL and OL are defined as

TL :=


D 0 0 · · · 0

CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAL−2B CAL−3B CAL−4B · · · D

 , (2.14)

OL :=
[
C> (CA)> (CA2)> · · · (CAL−1)>

]> . (2.15)

Since (2.9) has full row rank, there exists a vector g such that[
x̄0

ū[0,L−1]

]
=

[H1(x1
[0,T1−L]) · · · H1(xq

[0,Tq−L])

HL(u1
[0,T1−1]) · · · HL(u

q
[0,Tq−1])

]
g.

Substitution of the latter expression into (2.13) and using the fact that[
0 I
OL TL

] [H1(xi
[0,Ti−L])

HL(ui
[0,Ti−1])

]
=

[
HL(ui

[0,Ti−1])

HL(yi
[0,Ti−1])

]
for all i = 1, 2, . . . , q yields (2.10), as desired.
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2.4 examples

2.4.1 Identification with missing data samples

In this section we treat an example in which we want to identify a system model
from a measured trajectory with missing data samples. As we will see, it is
possible to apply Theorem 2.2(ii) in this context.

Suppose that we have access to the following, partially corrupted, input/output
trajectory of length T = 20:

t 0 1 2 3 4 5 6 7 8 9
u(t) 1 0 2 −1 0 × 1 1 −1 −5
y(t) 3 3 7 6 11 × 18 21 23 24

t 10 11 12 13 14 15 16 17 18 19
u(t) 0 −1 × 1 −6 2 −2 0 1 ×
y(t) 33 31 × 30 20 26 14 10 3 ×

The data are generated by a minimal LTI system of (unknown) state-space
dimension n = 2. Note that some of the samples are missing, which we indicate
by ×. Our goal is to identify an LTI system that is compatible with the observed
data.

In this problem, we have access to three input/output system trajectories,
namely (u[0,4], y[0,4]), (u[6,11], y[6,11]) and (u[13,18], y[13,18]). It is not difficult to
verify that the input sequences u[0,4], u[6,11] and u[13,18] are collectively persistently
exciting of order 5. It can be easily verified that no LTI system of dimension 0
or 1 can explain the data. Thus we consider LTI systems of dimension 2. Since
the inputs are collectively persistently exciting of order 5, and since the data-
generating system has dimension n = 2, by Theorem 2.2(ii) every length L = 3
input/output trajectory of the system can be written as linear combination of the
columns of

D :=
[H3(u[0,4]) H3(u[6,11]) H3(u[13,18])

H3(y[0,4]) H3(y[6,11]) H3(y[13,18])

]
. (2.16)

We exploit this result by computing, as a function of D, the length 7 system
trajectory

ū[−2,4] =
[
0 0 1 0 0 0 0

]> (2.17)

ȳ[−2,4] =
[
0 0 ? ? ? ? ?

]> , (2.18)

where question marks denote to-be-computed values. The idea is as follows: if the
“past" inputs ū(−2), ū(−1) and “past" outputs ȳ(−2), ȳ(−1) are zero, the state
x̄(0) ∈ R2 corresponding to (ū[−2,4], ȳ[−2,4]) is unique, and equal to zero. This
means that ū[0,4] is an impulse, applied to a system of the form (2.1) with zero
initial state. Consequently, the output ȳ[0,4] simply consists of the first Markov
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parameters of (2.1), that is, ȳ[0,4] =
[
D CB CAB CA2B CA3B

]
. From these

Markov parameters it is straightforward to compute a state-space realization, e.g.,
using the Ho-Kalman algorithm [228, Sec. 3.4.4].

Therefore, our remaining task is to compute ȳ[0,4]. Inspired by [127], we will
compute this trajectory iteratively by computing multiple length 3 trajectories as
linear combinations of the columns of (2.16). To begin with, we compute the first
unknown in (2.18), which is ȳ(0). To do so, we have to solve the system of linear
equations2

Dg =
[
0 0 1 0 0 ȳ(0)

]> (2.19)

in the unknowns g and ȳ(0). One possible approach [125, Alg. 1] is to obtain a
solution ḡ to the first five linear equations in (2.19). Subsequently, ȳ(0) is obtained
by multiplication of the last row of D with ḡ. We do this to find ȳ(0) = 1. Next,
to find ȳ(1) we complete the length 3 trajectory (ū[−1,1], ȳ[−1,1]) by solving the
system of equations

Dg =
[
0 1 0 0 1 ȳ(1)

]> ,

which results in ȳ(1) = 0. Repeating this process, we obtain ȳ(2) = 1, ȳ(3) = 2
and ȳ(4) = 3, meaning that

D = 1, CB = 0, CAB = 1, CA2B = 2, CA3B = 3.

Finally, it is not difficult to obtain a state-space realization of these Markov
parameters as

A =

[
1 0
1 1

]
, B =

[
1
0

]
, C =

[
0 1

]
, D = 1.

The approach outlined in this section is generally also applicable in the case
that multiple consecutive data samples are missing. Even in the case that the
number of consecutive missing samples is unknown, we can apply Theorem 2.2
to the partial trajectories. Note that we require a sufficient number of partial
trajectories of length at least 5 to guarantee collective persistency of excitation of
order 5. In the case of missing data with larger frequency, it may still be possible
to identify the system by computation of the left kernels of submatrices of the
Hankel matrix [121].

2 Note that the the solution g is not unique in general, but ȳ(0) is unique. The reason is that the initial
state x̄(0) = 0 is uniquely specified by the “past" inputs ū(−2), ū(−1) and outputs ȳ(−2), ȳ(−1). In
turn, the initial state x̄(0) and input ū(0) uniquely specify the output ȳ(0). Also see [125, Prop. 1].
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2.4.2 Data-driven LQR of an unstable system

Consider the unstable batch reactor system [230], which we have discretized
using a sampling time of 0.5s to obtain a system of the form (2.1a) with

A =


2.622 0.320 1.834 −1.066
−0.238 0.187 −0.136 0.202
0.161 0.789 0.286 0.606
−0.104 0.764 0.089 0.736

 , B =


0.465 −1.550
1.314 0.085
2.055 −0.673
2.023 −0.160

 .

The goal of this example is the data-based design of an optimal control input u∗

that minimizes the cost functional

J :=
∞

∑
t=0

x>(t)Qx(t) + u>(t)Ru(t)

under the zero endpoint constraint limt→∞ x(t) = 0. Here Q and R are state and
input weight matrices, respectively. Under standard assumptions on A, B, Q and
R [221, Thm. 23], the optimal input exists, is unique, and is generated by the
feedback law u∗ = Kx, where

K = −(R + B>P+B)−1B>P+A

and where P+ is the largest real symmetric solution to the algebraic Riccati
equation

P = A>PA− A>PB(R + B>PB)−1B>PA + Q.

In [47, Thm. 4] an attractive design procedure is introduced to obtain K directly
from input/state data. The idea is to inject an input sequence u[0,T−1] that is
persistently exciting of order n + 1 such that the matrix3

[
X−
U−

]
:=
[

x(0) x(1) · · · x(T − 1)
u(0) u(1) · · · u(T − 1)

]
(2.20)

has full row rank by Theorem 2.1(i). Subsequently, K is found by solving a
semidefinite program involving the data x[0,T] and u[0,T−1] alone; see [47, Eq.
27]. It was shown in [221, Thm. 26] that full row rank of (2.20) is actually also
necessary for obtaining K from input/state data. In addition, another semidefinite
program was introduced [221, Thm. 29] to obtain P+ and K from input/state
data. Both semidefinite programs of [47] and [221] are applicable to this example,
but we will follow the method of [221] since it involves less decision variables,
c.f. [221, Rem. 31]. We will compare the approach based on a single measured
trajectory of the system with the one based on multiple trajectories. In both the
approaches, we take Q and R as the identity matrices of appropriate dimensions.

First, we compute K on the basis of a single measured trajectory of (2.1a). We
choose a random initial state and random input sequence of length T = 20,

3 Note that X− := H1(x[0,T−1]) and U− := H1(u[0,T−1]).
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generated using the Matlab command rand. This input is persistently exciting
of order 5. Finally, we let X− and U− as in (2.20), and define X+ := H1(x[1,T]).
By [221, Thm. 29] (see also Chapter 3), the largest solution P+ to the algebraic
Riccati equation is the unique solution to the optimization problem

maximize tr P

subject to P = P> > 0 and L(P) 6 0,
(2.21)

where L(P) := X>−PX− − X>+PX+ − X>−QX− −U>−RU−. We use Yalmip with
Sedumi 1.3 as LMI solver. Because of the large magnitude of the data samples
(reaching ||x(19)|| = 1.049 · 108), the solver runs into numerical problems and
returns a matrix Psing that does not resemble P+. In fact, comparing Psing with
the “true" matrix P+ obtained via the (model-based) Matlab command dare, we
see

Psing =


0.002 0.013 −0.005 0.015
0.013 0.075 0.017 0.067
−0.005 0.017 0.823 0.066
0.015 0.067 0.066 0.010



P+ =


3.604 0.049 1.762 −1.306
0.049 1.170 0.072 0.142
1.762 0.072 2.202 −0.845
−1.306 0.142 −0.845 1.823

 .

To overcome this problem, we consider multiple short experiments, demonstrating
the effectiveness of this second approach. We collect q = 5 data sets of length
Ti = 6 for i = 1, 2, 3, 4, 5. The input sequences ui

[0,Ti−1] of these sets are again
chosen randomly, and are verified to be collectively persistently exciting of order
5. Similar as before, we use the notation Xi

− := H1(xi
[0,Ti−1]), Xi

+ := H1(xi
[1,Ti ]

)

and Ui
− := H1(ui

[0,Ti−1]) for all i. In addition, we concatenate these data matrices
and define

X− :=
[
X1
− X2

− · · · X5
−
]

X+ :=
[
X1
+ X2

+ · · · X5
+

]
U− :=

[
U1
− U2

− · · · U5
−
]

.

With these data matrices, we solve again (2.21). This result in the solution Pmult
with ||Pmult − P+|| = 7.849 · 10−10. Next, we continue the design procedure of
[221, Thm. 29] by computing a right inverse X†

− of X− such that L(Pmult)X†
− = 0.

The optimal control gain is then computed as

Kmult := U−X†
− =

[
0.163 −0.292 0.046 −0.328
1.418 0.116 0.984 −0.625

]
.
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The error between between Kmult and the true optimal gain K obtained via the
command dare is small. In fact, we have ||Kmult − K|| = 7.083 · 10−11. The
closed-loop matrix A + BKmult is stable and its spectral radius is 0.188.

The approach that uses multiple trajectories overall requires more samples than
the one using a single trajectory. Indeed, as explained in Section 2.3, a necessary
condition for collective persistency of excitation of order k is that

q

∑
i=1

Ti > k(m + q)− q.

This means that ∑5
i=1 Ti > 30 in our example. In comparison, a necessary

condition for persistency of excitation of order 5 of a single trajectory is T > 14.
Nonetheless, as shown in this example, the use of multiple short trajectories
enables the accurate computation of feedback gains even for unstable systems
while this may be problematic when using a single long trajectory.

2.5 conclusions
Willems et al.’s fundamental lemma is a beautiful result that asserts that all
trajectories of a linear system can be parameterized by a single, persistently
exciting one. In this chapter we have extended the fundamental lemma to the
scenario where multiple trajectories are given instead of a single one. To this end,
we have introduced a notion of collective persistency of excitation. Subsequently,
we have shown that all trajectories of a linear system can be parameterized by a
finite number of them, assuming these are collectively persistently exciting. We
have shown that this result enables the identification of linear systems from data
sets with missing data samples. We have also shown that the result can be used
to construct controllers of unstable systems from multiple measured trajectories,
even when this is not possible from a single trajectory.





3 DATA I N F O R M AT I V I T Y F O R
A N A LY S I S A N D C O N T R O L

In the previous chapter we saw that persistently exciting trajectories can be used
to parameterize all trajectories that a linear system can produce. This also means
that a system model can be obtained from persistently exciting (and sufficiently long)
system trajectories. The current chapter focuses on identifying system properties and
controllers -rather than models- from measured trajectories. A natural question is
whether a system model (and the ability to obtain one from data) is still necessary if
one is interested only in an aspect of the underlying system, such as a property or
a controller. To get a grip on this question, we introduce a general notion of “data
informativity" for data-driven analysis and control.

3.1 introduction

One of the main paradigms in the field of systems and control is that of model-
based control. Indeed, many control design techniques rely on a system model,
represented by e.g. a state-space system or transfer function. In practice, system
models are rarely known a priori and have to be identified from measured data
using system identification methods such as prediction error [114] or subspace
identification [217]. As a consequence, the use of model-based control techniques
inherently leads to a two-step control procedure consisting of system identification
followed by control design.

Direct data-driven control aims to bypass this two-step procedure by construct-
ing controllers directly from data, without (explicitly) identifying a system model.
This approach is not only attractive from a conceptual point of view but can also
be useful in situations where system identification is difficult or even impossible
because the data do not give sufficient information.

The first contribution to data-driven control is often attributed to Ziegler
and Nichols for their work on tuning PID controllers [251]. Adaptive control
[7], iterative feedback tuning [85, 86] and unfalsified control [182] can also be
regarded as classical data-driven control techniques. More recently, the problem
of finding optimal controllers from data has received considerable attention
[1,4,10,23,56,62,71,125,150,162,193,197]. The proposed solutions to this problem
are quite varied, ranging from the use of batch-form Riccati equations [197] to
approaches that apply reinforcement learning [23]. Additional noteworthy data-
driven control problems include predictive control [40, 55, 183], model reference
control [25, 60] and (intelligent) PID control [59, 99]. For more references and
classifications of data-driven control techniques, we refer to the survey [89].
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In addition to control problems, also analysis problems have been studied
within a data-based framework. The authors of [164] analyze the stability of an
input/output system using time series data. The papers [111, 155, 232, 248] deal
with data-based controllability and observability analysis. Moreover, the problem
of verifying dissipativity on the basis of measured system trajectories has been
studied in [16, 131, 178, 179].

A result that is becoming increasingly popular in the study of data-driven
problems is the fundamental lemma by Willems and coworkers [241], see also
Chapter 2. This result roughly states that all possible trajectories of a linear
time-invariant system can be obtained from any given trajectory whose input
component is persistently exciting. The fundamental lemma has clear implications
for system identification. Indeed, it provides criteria under which the data are
sufficiently informative to uniquely identify the system model within a given
model class. In addition, the result has also been applied to data-driven control
problems. The idea is that control laws can be obtained directly from data, with
the underlying mechanism that the system is represented implicitly by the Hankel
matrix of a measured trajectory. This framework has led to several interesting
control strategies, first in a behavioral setting [124, 125, 132], and more recently in
the context of state-space systems [16, 18, 40, 47, 90, 178].

The above approaches all use persistently exciting data in the control design,
meaning that one could (hypothetically) identify the system model from the
same data. An intriguing question is therefore the following: is it possible
to obtain a controller from data that are not informative enough to uniquely
identify the system? An affirmative answer would be remarkable, since it would
highlight situations in which direct data-driven control is more powerful than
the combination of system identification and model-based control. On the other
hand, a negative answer would also be significant, as it would give a theoretic
justification for the use of persistently exciting data for data-driven analysis and
control.

To address the above question, this chapter introduces a general framework to
study data informativity problems for data-driven analysis and control. Specifi-
cally, our contributions are the following:

1. Inspired by the concept of data informativity in system identification [65,66,
114], we introduce a general notion of informativity for data-driven analysis
and control.

2. We study the data-driven analysis of several system theoretic properties like
stability, stabilizability and controllability. For each of these problems, we
provide necessary and sufficient conditions under which the data are infor-
mative for this property, i.e., conditions required to ascertain the system’s
property from data.

3. We study data-driven control problems such as stabilization by state feed-
back, stabilization by dynamic measurement feedback, deadbeat control
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and linear quadratic regulation. In each of the cases, we give conditions
under which the data are informative for controller design.

4. For each of the studied control problems, we develop methods to compute
a controller from data, assuming that the informativity conditions are
satisfied.

Our work has multiple noteworthy implications. First of all, we show that for
problems like stabilization by state feedback, the corresponding informativity
conditions on the data are weaker than those for system identification. This implies
that a stabilizing feedback can be obtained from data that are not sufficiently
informative to uniquely identify the system.

Moreover, for problems such as linear quadratic regulation (LQR), we show that
the informativity conditions are essentially the same as for system identification.
Therefore, our results provide a theoretic justification for imposing the strong
persistency of excitation conditions in prior work on the LQR problem, such
as [124] and [47].

The chapter is organized as follows. In Section 3.2 we introduce the problem
at a conceptual level. Subsequently, in Section 3.3 we provide data informativity
conditions for controllability and stabilizability. Section 3.4 deals with data-
driven control problems with input/state data. Next, Section 3.5 discusses
control problems where ouput data plays a role. Finally, Section 3.6 contains our
conclusions and suggestions for future work.

3.2 problem formulation
In this section we will first introduce the informativity framework for data-driven
analysis and control in a fairly abstract manner.

LetM be a model class, i.e. a given set of systems containing the “true" system
denoted by S . We assume that the true system S is not known but that we have
access to a set of data, D, which is generated by this system. In this chapter we
are interested in assessing system-theoretic properties of S and designing control
laws for it from the data D.

Given the data D, we define ΣD ⊆ M to be the set of all systems that are
consistent with the data D, i.e., that could also have generated these data.

We first focus on data-driven analysis. Let P be a system-theoretic property.
We will denote the set of all systems withinM having this property by ΣP .

Now suppose we are interested in the question whether our true system S has
the property P . As the only information we have to base our answer on are the
data D obtained from the system, we can only conclude that the true system has
property P if all systems consistent with the data D have the property P . This
leads to the following definition:

Definition 3.1 (Informativity). We say that the data D are informative for property
P if ΣD ⊆ ΣP .
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Example 3.1. For given n and m, let M be the set of all discrete-time linear
input/state systems of the form

x(t + 1) = Ax(t) + Bu(t)

where x is the n-dimensional state and u is the m-dimensional input. Let the true
system S be represented by the matrices (As, Bs).

An example of a data set D arises when considering data-driven problems on
the basis of input and state measurements. Suppose that we collect input/state
data on q time intervals {0, 1, . . . , Ti} for i = 1, 2, . . . , q. Let

Ui
− :=

[
ui(0) ui(1) · · · ui(Ti − 1)

]
, (3.1a)

Xi :=
[
xi(0) xi(1) · · · xi(Ti)

]
(3.1b)

denote the input and state data on the i-th interval. By defining

Xi
− :=

[
xi(0) xi(1) · · · xi(Ti − 1)

]
, (3.2a)

Xi
+ :=

[
xi(1) xi(2) · · · xi(Ti)

]
, (3.2b)

we clearly have Xi
+ = AsXi

−+ BsUi
− for each i because the true system is assumed

to generate the data. Now, introduce the notation

U− :=
[
U1
− · · · Uq

−
]

, X :=
[
X1 · · · Xq] , (3.3a)

X− :=
[
X1
− · · · Xq

−
]

, X+ :=
[
X1
+ · · · Xq

+

]
. (3.3b)

We then define the data as D := (U−, X). In this case, the set ΣD is equal to
Σ(U− ,X) defined by

Σ(U− ,X) :=
{
(A, B) | X+ =

[
A B

] [X−
U−

]}
. (3.4)

Clearly, we have (As, Bs) ∈ ΣD .
Suppose that we are interested in the system-theoretic property P of stabiliz-

ability. The corresponding set ΣP is then equal to Σstab defined by

Σstab := {(A, B) | (A, B) is stabilizable}.

Then, the data (U−, X) are informative for stabilizability if Σ(U− ,X) ⊆ Σstab. That
is, if all systems consistent with the input/state measurements are stabilizable.

In general, if the true system S can be uniquely determined from the data D,
that is ΣD = {S} and S has the property P , then it is evident that the data D
are informative for P . However, the converse may not be true: ΣD might contain
many systems, all of which have property P . In this chapter, we are interested in
necessary and sufficient conditions for informativity of the data. Such conditions
reveal the minimal amount of information required to assess the property P . A
natural problem statement is therefore the following:
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Problem 3.1 (Informativity problem). Provide necessary and sufficient conditions
on D under which the data are informative for property P .

The above gives us a general framework to deal with data-driven analysis
problems. Such analysis problems will be the main focus of Section 3.3.

This chapter also deals with data-driven control problems. The objective in
such problems is the data-based design of controllers such that the closed loop
system, obtained from the interconnection of the true system S and the controller,
has a specified property.

As for the analysis problem, we have only the information from the data to
base our design on. Therefore, we can only guarantee our control objective if the
designed controller imposes the specified property when interconnected with any
system from the set ΣD .

For the framework to allow for data-driven control problems, we will consider
a system-theoretic property P(K) that depends on a given controller K. For
properties such as these, we have the following variant of informativity:

Definition 3.2 (Informativity for control). We say that the data D are informative
for the property P(·) if there exists a controller K such that ΣD ⊆ ΣP(K).

Example 3.2. For systems and data like in Example 3.1, we can take the controller
K = K ∈ Rm×n and the property P(K) : “interconnection with the state feedback
K yields a stable closed loop system". The corresponding set of systems ΣP(K) is
equal to ΣK defined by

ΣK = {(A, B) | A + BK is stable1}.

The first step in any data-driven control problem is to determine whether it is
possible to obtain a suitable controller from given data. This leads to the following
informativity problem:

Problem 3.2 (Informativity problem for control). Provide necessary and sufficient
conditions on D under which there exists a controller K such that the data are
informative for property P(K).

The second step of data-driven control involves the design of a suitable con-
troller. In terms of our framework, this can be stated as:

Problem 3.3 (Control design problem). Under the assumption that the data D
are informative for property P(·), find a controller K such that ΣD ⊆ ΣP(K).

As stated in the introduction, we will highlight the strength of this framework
by solving multiple problems. We stress that throughout the chapter it is assumed
that the data are given and are not corrupted by noise.

1 We say that a matrix is stable if all its eigenvalues are contained in the open unit disk.
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3.3 data-driven analysis
In this section, we will study data-driven analysis of controllability and stabi-
lizability given input and state measurements. As in Example 3.1, consider the
discrete-time linear system

x(t + 1) = Asx(t) + Bsu(t). (3.5)

We will consider data consisting of input and state measurements. We define the
matrices U− and X as in (3.3a) and define X− and X+ as in (3.3b). The set of all
systems compatible with these data was introduced in (3.4). In order to stress
that we deal with input/state data, we define

Σi/s :=
{
(A, B) | X+ =

[
A B

] [X−
U−

]}
. (3.6)

Note that the defining equation of (3.6) is a system of linear equations in the
unknowns A and B. The solution space of the corresponding homogeneous
equations is denoted by Σ0

i/s and is equal to

Σ0
i/s :=

{
(A0, B0) | 0 =

[
A0 B0

] [X−
U−

]}
. (3.7)

We consider the problem of data-driven analysis for systems of the form (3.5).
If (As, Bs) is the only system that explains the data, data-driven analysis could be
performed by first identifying this system and then analyzing its properties. It is
therefore of interest to know under which conditions there is only one system
that explains the data.

Definition 3.3. We say that the data (U−, X) are informative for system identification
if Σi/s = {(As, Bs)}.

It is straightforward to derive the following result:

Proposition 3.1. The data (U−, X) are informative for system identification if
and only if

rank
[

X−
U−

]
= n + m. (3.8)

Furthermore, if (3.8) holds, there exists a right inverse2
[
V1 V2

]
such that[

X−
U−

] [
V1 V2

]
=

[
I 0
0 I

]
, (3.9)

and for any such right inverse As = X+V1 and Bs = X+V2.

2 Note that
[
V1 V2

]
is not unique whenever T > n + m.
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As we will show in this section, the condition (3.8) is not necessary for data-
driven analysis in general. We now proceed by studying data-driven analysis
of controllability and stabilizability. Recall the Hautus test [208, Thm. 3.13] for
controllability: a system (A, B) is controllable if and only if

rank
[
A− λI B

]
= n (3.10)

for all λ ∈ C. For stabilizability, we require that (3.10) holds for all λ outside the
open unit disc.

Now, we introduce the following sets of systems:

Σcont := {(A, B) | (A, B) is controllable}
Σstab := {(A, B) | (A, B) is stabilizable}.

Using Definition 3.1, we obtain the notions of informativity for controllability and
stabilizability. To be precise:

Definition 3.4. We say that the data (U−, X) are informative for controllability if
Σi/s ⊆ Σcont and informative for stabilizability if Σi/s ⊆ Σstab.

In the following theorem, we give necessary and sufficient conditions for the
above notions of informativity. The result is remarkable as only data matrices are
used to assess controllability and stabilizability.

Theorem 3.1 (Data-driven Hautus tests). The data (U−, X) are informative for
controllability if and only if

rank(X+ − λX−) = n ∀λ ∈ C. (3.11)

Similarly, the data (U−, X) are informative for stabilizability if and only if

rank(X+ − λX−) = n ∀λ ∈ C with |λ| > 1. (3.12)

Before proving the theorem, we will discuss some of its implications. We begin
with computational issues.

Remark 3.1. Similar to the classical Hautus test, (3.11) and (3.12) can be verified
by checking the rank for finitely many complex numbers λ. Indeed, (3.11) is
equivalent to rank(X+) = n and

rank(X+ − λX−) = n

for all λ 6= 0 with λ−1 ∈ σ(X−X†
+), where X†

+ is any right inverse of X+. Here,
σ(M) denotes the spectrum, i.e. set of eigenvalues of the matrix M. Similarly,
(3.12) is equivalent to rank(X+ − X−) = n and

rank(X+ − λX−) = n

for all λ 6= 1 with (λ− 1)−1 ∈ σ(X−(X+−X−)†), where (X+−X−)† is any right
inverse of X+ − X−.
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A noteworthy point to mention is that there are situations in which we can con-
clude controllability/stabilizability from the data without being able to identify
the true system uniquely, as illustrated next.

Example 3.3. Suppose that n = 2, m = 1, q = 1, T1 = 2 and we obtain the data

X =

[
0 1 0
0 0 1

]
and U− =

[
1 0

]
.

This implies that

X+ =

[
1 0
0 1

]
and X− =

[
0 1
0 0

]
.

Clearly, by Theorem 3.1 we see that these data are informative for controllability,
as

rank
[

1 −λ
0 1

]
= 2 ∀λ ∈ C.

As therefore all systems explaining the data are controllable, we conclude that
the true system is controllable. Note that the data are not informative for system
identification, as

Σi/s =

{([
0 a1
1 a2

]
,
[

1
0

])
| a1, a2 ∈ R

}
. (3.13)

Proof of Theorem 3.1. We will only prove the characterization of informativity for
controllability. The proof for stabilizability uses very similar arguments, and is
hence omitted.

Note that the condition (3.11) is equivalent to the implication:

z ∈ Cn, λ ∈ C and z∗X+ = λz∗X− =⇒ z = 0. (3.14)

Suppose that the implication (3.14) holds. Let (A, B) ∈ Σi/s and suppose that
z∗
[
A− λI B

]
= 0. We want to prove that z = 0. Note that z∗

[
A− λI B

]
= 0

implies that

z∗
[
A− λI B

] [X−
U−

]
= 0,

or equivalently z∗X+ = λz∗X−. This means that z = 0 by (3.14). We conclude
that (A, B) is controllable, i.e., (U−, X) are informative for controllability.

Conversely, suppose that (U−, X) are informative for controllability. Let z ∈ Cn

and λ ∈ C be such that z∗X+ = λz∗X−. This implies that for all (A, B) ∈ Σi/s,

we have z∗
[
A B

] [X−
U−

]
= λz∗X−. In other words,

z∗
[
A− λI B

] [X−
U−

]
= 0. (3.15)

We now distinguish two cases, namely the case that λ is real, and the case that
λ is complex. First suppose that λ is real. Without loss of generality, z is real. We
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want to prove that z = 0. Suppose on the contrary that z 6= 0 and z>z = 1. We
define the (real) matrices

Ā := A− zz>(A− λI) and B̄ := B− zz>B.

In view of (3.15), we find that (Ā, B̄) ∈ Σi/s. Moreover,

z> Ā = z>A− z>(A− λI) = λz>

and
z>B̄ = z>B− z>B = 0.

This means that
z>
[
Ā− λI B̄

]
= 0.

However, this is a contradiction as (Ā, B̄) is controllable by the hypothesis that
(U−, X) are informative for controllability. We conclude that z = 0 which shows
that (3.14) holds for the case that λ is real.

Secondly, consider the case that λ is complex. We write z as z = p + iq, where
p, q ∈ Rn and i denotes the imaginary unit. If p and q are linearly dependent,
then p = αq or q = βp for α, β ∈ R. If p = αq then substitution of z = (α + i)q
into z∗X+ = λz∗X− yields

(α− i)q>X+ = λ(α− i)q>X−,

that is, q>X+ = λq>X−. As q>X+ is real and λ is complex, we must have
q>X+ = 0 and q>X− = 0. This means that z∗X+ = z∗X− = 0, hence z∗X+ =
µz∗X− for any real µ, which means that z = 0 by case 1. Using the same
arguments, we can show that z = 0 if q = βp.

Now, it suffices to prove that p and q are linearly dependent. Suppose on
the contrary that p and q are linearly independent. Since λ is complex, n > 2.
Therefore, by linear independence of p and q there exist η, ζ ∈ Rn such that[

p>

q>

] [
η ζ

]
=

[
1 0
0 −1

]
.

We now define the real matrices Ā and B̄ as[
Ā B̄

]
:=
[
A B

]
−
[
η ζ

] [Re
(
z∗
[
A− λI B

])
Im
(
z∗
[
A− λI B

])] .

By (3.15) we have (Ā, B̄) ∈ Σi/s. Next, we compute

z∗
[
Ā B̄

]
= z∗

[
A B

]
−
[
1 i

] [Re
(
z∗
[
A− λI B

])
Im
(
z∗
[
A− λI B

])]
= z∗

[
A B

]
− z∗

[
A− λI B

]
= z∗

[
λI 0

]
.
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This implies that z∗
[
Ā− λI B̄

]
= 0. Using the fact that (Ā, B̄) is controllable, we

conclude that z = 0. This is a contradiction with the fact that p and q are linearly
independent. Thus p and q are linearly dependent and therefore implication
(3.14) holds. This proves the theorem.

In addition to controllability and stabilizability, we can also study the stability
of an autonomous system of the form

x(t + 1) = Asx(t). (3.16)

To this end, let X denote the matrix of state measurements obtained from (3.16),
as defined in (3.3a). The set of all autonomous systems compatible with these
data is

Σs := {A | X+ = AX−} .

Then, we say the data X are informative for stability if any matrix A ∈ Σs is
stable, i.e. Schur. Using Theorem 3.1 we can show that stability can only be
concluded if the true system can be uniquely identified.

Corollary 3.1. The data X are informative for stability if and only if X− has full
row rank and X+X†

− is stable for any right inverse X†
−, equivalently Σs = {As}

and As = X+X†
− is stable.

Proof. Since the “if" part is evident, we only prove the “only if" part. By taking
B = 0, it follows from Theorem 3.1 that the data X are informative for stability if
and only if

rank(X+ − λX−) = n ∀λ ∈ C with |λ| > 1. (3.17)

Let z be such that z>X− = 0. Take A ∈ Σs and λ > 1 such that λ is not an
eigenvalue of A. Note that

z>(A− λI)−1(X+ − λX−) = z>X− = 0.

Since rank(X+ − λX−) = n, we may conclude that z = 0. Hence, X− has full row
rank. Therefore, Σs = {As} where As = X+X†

− for any right inverse X†
− and As

is stable.

Note that there is a subtle but important difference between the characteri-
zations (3.12) and (3.17). For the first the data X are assumed to be generated
by a system with inputs, whereas the data for the second characterization are
generated by an autonomous system.

3.4 control using input and state data
In this section we will consider various state feedback control problems on the
basis of input/state measurements. First, we will consider the problem of data-
driven stabilization by static state feedback, where the data consist of input and
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state measurements. As described in the problem statement we will look at the
informativity and design problems separately as special cases of Problem 3.2 and
Problem 3.3. We will then use similar techniques to obtain a result for deadbeat
control.

After this, we will shift towards the linear quadratic regulator problem, where
we wish to find a stabilizing feedback that additionally minimizes a specified
quadratic cost.

3.4.1 Stabilization by state feedback

In what follows, we will consider the problem of finding a stabilizing controller
for the system (3.5), using only the data (U−, X). To this end, we define the set of
systems (A, B) that are stabilized by a given K:

ΣK := {(A, B) | A + BK is stable}.

In addition, recall the set Σi/s as defined in (3.6) and Σ0
i/s from (3.7). In line with

Definition 3.2 we obtain the following notion of informativity for stabilization by
state feedback.

Definition 3.5. We say that the data (U−, X) are informative for stabilization by
state feedback if there exists a feedback gain K such that Σi/s ⊆ ΣK.

Remark 3.2. At this point, one may wonder about the relation between informa-
tivity for stabilizability (as in Section 3.3) and informativity for stabilization. It is
clear that (U−, X) are informative for stabilizability if (U−, X) are informative for
stabilization by state feedback. However, the reverse statement does not hold in
general. This is due to the fact that all systems (A, B) in Σi/s may be stabilizable,
but there may not be a common feedback gain K such that A + BK is stable for
all of these systems. Note that the existence of a common stabilizing K for all
systems in Σi/s is essential, since there is no way to distinguish between the
systems in Σi/s based on the given data (U−, X).

The following example further illustrates the difference between informativity
for stabilizability and informativity for stabilization.

Example 3.4. Consider the scalar system

x(t + 1) = u(t),

where x, u ∈ R. Suppose that q = 1, T1 = 1 and x(0) = 0, u(0) = 1 and
x(1) = 1. This means that U− =

[
1
]

and X =
[
0 1

]
. It can be shown that Σi/s =

{(a, 1) | a ∈ R}. Clearly, all systems in Σi/s are stabilizable, i.e., Σi/s ⊆ Σstab.
Nonetheless, the data are not informative for stabilization. This is because the
systems (−1, 1) and (1, 1) in Σi/s cannot be stabilized by the same controller of the
form u(t) = Kx(t). We conclude that informativity of the data for stabilizability
does not imply informativity for stabilization by state feedback.
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The notion of informativity for stabilization by state feedback is a specific
example of informativity for control. As described in Problem 3.2, we will first
find necessary and sufficient conditions for informativity for stabilization by state
feedback. After this, we will design a corresponding controller, as described in
Problem 3.3.

In order to be able to characterize informativity for stabilization, we first state
the following lemma.

Lemma 3.1. Suppose that the data (U−, X) are informative for stabilization
by state feedback, and let K be a feedback gain such that Σi/s ⊆ ΣK. Then
A0 + B0K = 0 for all (A0, B0) ∈ Σ0

i/s. Equivalently,

im
[

I
K

]
⊆ im

[
X−
U−

]
.

Proof. We first prove that A0 + B0K is nilpotent for all (A0, B0) ∈ Σ0
i/s. By hypoth-

esis, A + BK is stable for all (A, B) ∈ Σi/s. Let (A, B) ∈ Σi/s and (A0, B0) ∈ Σ0
i/s

and define the matrices F := A + BK and F0 := A0 + B0K. Then, the matrix
F + αF0 is stable for all α > 0. By dividing by α, it follows that, for all α > 1, the
spectral radius of the matrix

Mα :=
1
α

F + F0

is smaller than 1/α. From the continuity of the spectral radius by taking the limit
as α tends to infinity, we see that F0 = A0 + B0K is nilpotent for all (A0, B0) ∈ Σ0

i/s.
Note that we have

((A0 + B0K)T A0, (A0 + B0K)T B0) ∈ Σ0
i/s

whenever (A0, B0) ∈ Σ0
i/s. This means that (A0 + B0K)T(A0 + B0K) is nilpotent.

Since the only symmetric nilpotent matrix is the zero matrix, we see that A0 +
B0K = 0 for all (A0, B0) ∈ Σ0

i/s. This is equivalent to

ker
[
X>− U>−

]
⊆ ker

[
I K>

]
which is equivalent to im

[
I
K

]
⊆ im

[
X−
U−

]
.

The previous lemma is instrumental in proving the following theorem that
gives necessary and sufficient conditions for informativity for stabilization by
state feedback.

Theorem 3.2. The data (U−, X) are informative for stabilization by state feedback
if and only if the matrix X− has full row rank and there exists a right inverse X†

−
of X− such that X+X†

− is stable.
Moreover, K is such that Σi/s ⊆ ΣK if and only if K = U−X†

−, where X†
−

satisfies the above properties.
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Proof. To prove the “if" part of the first statement, suppose that X− has full row
rank and there exists a right inverse X†

− of X− such that X+X†
− is stable. We

define K := U−X†
−. Next, we see that

X+X†
− =

[
A B

] [X−
U−

]
X†
− = A + BK, (3.18)

for all (A, B) ∈ Σi/s. Therefore, A + BK is stable for all (A, B) ∈ Σi/s, i.e.,
Σi/s ⊆ ΣK. We conclude that the data (U−, X) are informative for stabilization by
state feedback, proving the “if" part of the first statement. Since K = U−X†

− is
such that Σi/s ⊆ ΣK, we have also proven the “if" part of the second statement as
a byproduct.

Next, to prove the “only if" part of the first statement, suppose that the data
(U−, X) are informative for stabilization by state feedback. Let K be such that
A + BK is stable for all (A, B) ∈ Σi/s. By Lemma 3.1 we know that

im
[

I
K

]
⊆ im

[
X−
U−

]
.

This implies that X− has full row rank and there exists a right inverse X†
− such

that [
I
K

]
=

[
X−
U−

]
X†
−. (3.19)

By (3.18), we obtain A + BK = X+X†
−, which shows that X+X†

− is stable. This
proves the “only if" part of the first statement. Finally, by (3.19), the stabilizing
feedback gain K is indeed of the form K = U−X†

−, which also proves the “only
if" part of the second statement.

Theorem 3.2 gives a characterization of all data that are informative for stabi-
lization by state feedback and provides a stabilizing controller. Nonetheless, the
procedure to compute this controller might not be entirely satisfactory since it is
not clear how to find a right inverse of X− that makes X+X†

− stable. In general,
X− has many right inverses, and X+X†

− can be stable or unstable depending on
the particular right inverse X†

−. To deal with this problem and to solve the design
problem, we give a characterization of informativity for stabilization in terms of
linear matrix inequalities (LMI’s). The feasibility of such LMI’s can be verified
using standard tools.

Theorem 3.3. The data (U−, X) are informative for stabilization by state feedback
if and only if there exists a matrix Θ ∈ RT×n satisfying

X−Θ = (X−Θ)> and
[

X−Θ X+Θ
Θ>X>+ X−Θ

]
> 0. (3.20)

Moreover, K satisfies Σi/s ⊆ ΣK if and only if K = U−Θ(X−Θ)−1 for some matrix
Θ satisfying (3.20).
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Remark 3.3. To the best of our knowledge, LMI conditions for data-driven
stabilization were first studied in [47]. In fact, the linear matrix inequality (3.20)
is the same as that of [47, Thm. 3]. However, an important difference is that
the results in [47] assume that the input u is persistently exciting of sufficiently
high order. In contrast, Theorem 3.3, as well as Theorem 3.2, do not require such
conditions. The characterization (3.20) provides the minimal conditions on the
data under which it is possible to obtain a stabilizing controller.

Example 3.5. Consider an unstable system of the form (3.5), where As and Bs are
given by

As =

[
1.5 0
1 0.5

]
, Bs =

[
1
0

]
.

We collect data from this system on a single time interval from t = 0 until t = 2,
which results in the data matrices

X =

[
1 0.5 −0.25
0 1 1

]
, U− =

[
−1 −1

]
.

Clearly, the matrix X− is square and invertible, and it can be verified that

X+X−1
− =

[
0.5 −0.5
1 0.5

]
is stable, since its eigenvalues are 1

2 (1±
√

2i). We conclude by Theorem 3.2 that
the data (U−, X) are informative for stabilization by state feedback. The same
conclusion can be drawn from Theorem 3.3 since

Θ =

[
1 −1
0 2

]
solves (3.20). Next, we can conclude from either Theorem 3.2 or Theorem 3.3
that the stabilizing feedback gain in this example is unique, and given by K =
U−X−1

− =
[
−1 −0.5

]
. Finally, it is worth noting that the data are not informative

for system identification. In fact, (A, B) ∈ Σi/s if and only if

A =

[
1.5 + a1 0.5a1
1 + a2 0.5 + 0.5a2

]
, B =

[
1 + a1

a2

]
for some a1, a2 ∈ R.

Proof of Theorem 3.3. To prove the “if" part of the first statement, suppose that
there exists a Θ satisfying (3.20). In particular, this implies that X−Θ is symmetric
positive definite. Therefore, X− has full row rank. By taking a Schur complement
and multiplying by −1, we obtain

X+Θ(X−Θ)−1(X−Θ)(X−Θ)−1Θ>X>+ − X−Θ < 0.

Since X−Θ is positive definite, this implies that X+Θ(X−Θ)−1 is stable. In other
words, there exists a right inverse X†

− := Θ(X−Θ)−1 of X− such that X+X†
− is
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stable. By Theorem 3.2, we conclude that (U−, X) are informative for stabilization
by state feedback, proving the “if" part of the first statement. Using Theorem 3.2
once more, we see that K := U−Θ(X−Θ)−1 stabilizes all systems in Σi/s, which
in turn proves the “if" part of the second statement.

Subsequently, to prove the “only if" part of the first statement, suppose that
the data (U−, X) are informative for stabilization by state feedback. Let K be any
feedback gain such that Σi/s ⊆ ΣK. By Theorem 3.2, X− has full row rank and
K is of the form K = U−X†

−, where X†
− is a right inverse of X− such that X+X†

−
is stable. The stability of X+X†

− implies the existence of a symmetric positive
definite matrix P such that

(X+X†
−)P(X+X†

−)
> − P < 0.

Next, we define Θ := X†
−P and note that

X+ΘP−1(X+Θ)> − P < 0.

Via the Schur complement we conclude that[
P X+Θ

Θ>X>+ P

]
> 0.

Since X−X†
− = I, we see that P = X−Θ, which proves the “only if" part of the

first statement. Finally, by definition of Θ, we have X†
− = ΘP−1 = Θ(X−Θ)−1.

Recall that K = U−X†
−, which shows that K is of the form K = U−Θ(X−Θ)−1 for

Θ satisfying (3.20). This proves the “only if" part of the second statement and
hence the proof is complete.

In addition to the stabilizing controllers discussed in Theorems 3.2 and 3.3, we
may also look for a controller of the form u(t) = Kx(t) that stabilizes the system
in finite time. Such a controller is called a deadbeat controller and is characterized
by the property that (As + BsK)tx0 = 0 for all t > n and all x0 ∈ Rn. Thus, K is a
deadbeat controller if and only if As + BsK is nilpotent. Now, for a given matrix
K define

Σnil
K := {(A, B) | A + BK is nilpotent}.

Then, analogous to the definition of informativity for stabilization by state feed-
back, we have the following definition of informativity for deadbeat control.

Definition 3.6. We say that the data (U−, X) are informative for deadbeat control if
there exists a feedback gain K such that Σi/s ⊆ Σnil

K .

Similarly to Theorem 3.2, we obtain the following necessary and sufficient
conditions for informativity for deadbeat control.

Theorem 3.4. The data (U−, X) are informative for deadbeat control if and only
if the matrix X− has full row rank and there exists a right inverse X†

− of X− such
that X+X†

− is nilpotent.
Moreover, if this condition is satisfied then the feedback gain K := U−X†

−
yields a deadbeat controller, that is, Σi/s ⊆ Σnil

K .
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Remark 3.4. In order to compute a suitable right inverse X†
− such that X+X†

−
is nilpotent, we can proceed as follows. Since X− has full row rank, we have
T > n. We now distinguish two cases: T = n and T > n. In the former case,
X− is nonsingular and hence X+X−1

− is nilpotent. In the latter case, there exist
matrices F ∈ RT×n and G ∈ RT×(T−n) such that

[
F G

]
is nonsingular and

X−
[
F G

]
=
[
In 0n×(T−n)

]
. Note that X†

− is a right inverse of X− if and only
if X†

− = F + GH for some H ∈ R(T−n)×n. Finding a right inverse X†
− such that

X+X†
− is nilpotent, therefore, amounts to finding H such that X+F + X+GH is

nilpotent, i.e. has only zero eigenvalues. Such a matrix H can be computed
by invoking [208, Thm. 3.29 and Thm. 3.32] for the pair (X+F, X+G) and the
stability domain Cg = {0}.

3.4.2 Informativity for linear quadratic regulation

Consider the discrete-time linear system (3.5). Let xx0,u(·) be the state sequence
of (3.5) resulting from the input u(·) and initial condition x(0) = x0. We omit the
subscript and simply write x(·) whenever the dependence on x0 and u is clear
from the context.

Associated to system (3.5), we define the quadratic cost functional

J(x0, u) =
∞

∑
t=0

x>(t)Qx(t) + u>(t)Ru(t), (3.21)

where Q = Q> is positive semidefinite and R = R> is positive definite. Then, the
linear quadratic regulator (LQR) problem is the following:

Problem 3.4 (LQR). Determine for every initial condition x0 an input u∗, such
that limt→∞ xx0,u∗(t) = 0, and the cost functional J(x0, u) is minimized under this
constraint.

Such an input u∗ is called optimal for the given x0. Of course, an optimal input
does not necessarily exist for all x0. We say that the linear quadratic regulator
problem is solvable for (A, B, Q, R) if for every x0 there exists an input u∗ such
that

1. The cost J(x0, u∗) is finite.

2. The limit limt→∞ xx0,u∗(t) = 0.

3. The input u∗ minimizes the cost functional, i.e.,

J(x0, u∗) 6 J(x0, ū)

for all ū such that limt→∞ xx0,ū(t) = 0.

In the sequel, we will require the notion of observable eigenvalues. Recall from
e.g. [208, Sec. 3.5] that an eigenvalue λ of A is (Q, A)-observable if

rank
(

A− λI
Q

)
= n.
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The following theorem provides necessary and sufficient conditions for the
solvability of the linear quadratic regulator problem for (A, B, Q, R). This theorem
is the discrete-time analogue to the continuous-time case stated in [208, Thm.
10.18].

Theorem 3.5. Let Q = Q> be positive semidefinite and R = R> be positive
definite. Then the following statements hold:

(i) If (A, B) is stabilizable, there exists a unique largest real symmetric solution
P+ to the discrete-time algebraic Riccati equation (DARE)

P = A>PA− A>PB(R + B>PB)−1B>PA + Q, (3.22)

in the sense that P+ > P for every real symmetric P satisfying (3.22). The
matrix P+ is positive semidefinite.

(ii) If, in addition to stabilizability of (A, B), every eigenvalue of A on the unit
circle is (Q, A)-observable then for every x0 a unique optimal input u∗ exists.
Furthermore, this input sequence is generated by the feedback law u = Kx,
where

K := −(R + B>P+B)−1B>P+A. (3.23)

Moreover, the matrix A + BK is stable.

(iii) In fact, the linear quadratic regulator problem is solvable for (A, B, Q, R) if
and only if (A, B) is stabilizable and every eigenvalue of A on the unit circle
is (Q, A)-observable.

If the LQR problem is solvable for (A, B, Q, R), we say that K given by (3.23) is
the optimal feedback gain for (A, B, Q, R).

Now, for any given K we define ΣQ,R
K as the set of all systems of the form (3.5)

for which K is the optimal feedback gain corresponding to Q and R, that is,

ΣQ,R
K := {(A, B) | K is the optimal gain for (A, B, Q, R)}.

This gives rise to another notion of informativity in line with Definition 3.2. Again,
let Σi/s be given by (3.6).

Definition 3.7. Given matrices Q and R, we say that the data (U−, X) are infor-
mative for linear quadratic regulation if there exists K such that Σi/s ⊆ ΣQ,R

K .

In order to provide necessary and sufficient conditions for the corresponding
informativity problem, we need the following auxiliary lemma.

Lemma 3.2. Let Q = Q> be positive semidefinite and R = R> be positive definite.
Suppose the data (U−, X) are informative for linear quadratic regulation. Let K



56 data informativity for analysis and control

be such that Σi/s ⊆ ΣQ,R
K . Then, there exist a square matrix M and a symmetric

positive semidefinite matrix P+ such that for all (A, B) ∈ Σi/s

M = A + BK, (3.24)

P+= A>P+A−A>P+B(R + B>P+B)−1B>P+A + Q, (3.25)

P+ −M>P+M = K>RK + Q, (3.26)

K = −(R + B>P+B)−1B>P+A. (3.27)

Proof. Since the data (U−, X) are informative for linear quadratic regulation,
A + BK is stable for every (A, B) ∈ Σi/s. By Lemma 3.1, this implies that
A0 + B0K = 0 for all (A0, B0) ∈ Σ0

i/s. Thus, there exists M such that M = A + BK
for all (A, B) ∈ Σi/s. For the rest, note that Theorem 3.5 implies that for every
(A, B) ∈ Σi/s there exists P+

(A,B) satisfying the DARE

P+
(A,B) = A>P+

(A,B)A− A>P+
(A,B)B(R + B>P+

(A,B)B)
−1B>P+

(A,B)A + Q (3.28)

such that
K = −(R + B>P+

(A,B)B)
−1B>P+

(A,B)A. (3.29)

It is important to note that, although K is independent of the choice of (A, B), the
matrix P+

(A,B) might depend on (A, B). We will, however, show that also P+
(A,B) is

independent of the choice of (A, B).
By rewriting (3.28), we see that

P+
(A,B) −M>P+

(A,B)M = K>RK + Q. (3.30)

Since M is stable, P+
(A,B) is the unique solution to the discrete-time Lyapunov

equation (3.30), see e.g. [196, Sec. 6]. Moreover, since M and K do not depend
on the choice of (A, B) ∈ Σi/s, it indeed follows that P+

(A,B) does not depend on

(A, B). It follows from (3.28)–(3.30) that P+ := P+
(A,B) satisfies (3.25)–(3.27).

The following theorem solves the informativity problem for linear quadratic
regulation.

Theorem 3.6. Let Q = Q> be positive semidefinite and R = R> be positive
definite. Then, the data (U−, X) are informative for linear quadratic regulation if
and only if at least one of the following two conditions hold:

(i) The data (U−, X) are informative for system identification, that is, Σi/s =
{(As, Bs)}, and the linear quadratic regulator problem is solvable for the
tuple (As, Bs, Q, R). In this case, the optimal feedback gain K is of the form
(3.23) where P+ is the largest real symmetric solution to (3.22).

(ii) For all (A, B) ∈ Σi/s we have A = As. Moreover, As is stable, QAs = 0, and
the optimal feedback gain is given by K = 0.
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Remark 3.5. Condition (ii) of Theorem 3.6 is a pathological case in which A is
stable and QA = 0 for all matrices A that are compatible with the data. Since
x(t) ∈ im A for all t > 0, we have Qx(t) = 0 for all t > 0 if the input function is
chosen as u = 0. Additionally, since A is stable, this shows that the optimal input
is equal to u∗ = 0. If we set aside condition (ii), the implication of Theorem 3.6 is
the following: if the data are informative for linear quadratic regulation they are
also informative for system identification.

At first sight, this might seem like a negative result in the sense that data-driven
LQR is only possible with data that are also informative enough to uniquely
identify the system. However, at the same time, Theorem 3.6 can be viewed
as a positive result in the sense that it provides fundamental justification for
the data conditions imposed in e.g. [47]. Indeed, in [47] the data-driven infinite
horizon LQR problem3 is solved using input/state data under the assumption
that the input is persistently exciting of sufficiently high order. Under the latter
assumption, the input/state data are informative for system identification, i.e.,
the matrices As and Bs can be uniquely determined from data. Theorem 3.6
justifies such a strong assumption on the richness of data in data-driven linear
quadratic regulation.

The data-driven finite horizon LQR problem was solved under a persistency
of excitation assumption in [124]. Our results suggest that also in this case
informativity for system identification is necessary for data-driven LQR, although
further analysis is required to prove this claim.

Proof of Theorem 3.6. We first prove the “if" part. Sufficiency of the condition (i)
readily follows from Theorem 3.5. To prove the sufficiency of the condition (ii),
assume that the matrix A is stable and QA = 0 for all (A, B) ∈ Σi/s. By the
discussion following Theorem 3.6, this implies that u∗ = 0 for all (A, B) ∈ Σi/s.
Hence, for K = 0 we have Σi/s ⊆ ΣQ,R

K , i.e., the data are informative for linear
quadratic regulation.

To prove the “only if" part, suppose that the data (U−, X) are informative for
linear quadratic regulation. From Lemma 3.2, we know that there exist M and P+

satisfying (3.24)–(3.27) for all (A, B) ∈ Σi/s. By substituting (3.27) into (3.25) and
using (3.24), we obtain

A>P+M = P+ −Q. (3.31)

In addition, it follows from (3.27) that −(R + B>P+B)K = B>P+A. By using
(3.24), we have

B>P+M = −RK. (3.32)

Since (3.31) and (3.32) hold for all (A, B) ∈ Σi/s, we have that[
A>0
B>0

]
P+M = 0

3 Note that the authors of [47] formulate this problem as the minimization of the H2-norm of a certain
transfer matrix.
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for all (A0, B0) ∈ Σ0
i/s. Note that (FA0, FB0) ∈ Σ0

i/s for all F ∈ Rn×n whenever
(A0, B0) ∈ Σ0

i/s. This means that[
A>0
B>0

]
F>P+M = 0

for all F ∈ Rn×n. Therefore, either
[
A0 B0

]
= 0 for all (A0, B0) ∈ Σ0

i/s or P+M =

0. The former is equivalent to Σ0
i/s = {0}. In this case, we see that the data (U−, X)

are informative for system identification, equivalently Σi/s = {(As, Bs)}, and the
LQR problem is solvable for (As, Bs, Q, R). Therefore, condition (i) holds. On the
other hand, if P+M = 0 then we have

0 = P+M = P+(A + BK)

= P+
(

A− B(R + B>P+B)−1B>P+A
)

=
(

I − P+B(R + B>P+B)−1B>
)

P+A.

for all (A, B) ∈ Σi/s. From the identity

(I + P+BR−1B>)−1 = I − P+B(R + B>P+B)−1B>,

we see that P+A = 0 for all (A, B) ∈ Σi/s. Then, it follows from (3.27) that K = 0.
Since A0 + B0K = 0 for all (A0, B0) ∈ Σ0

i/s due to Lemma 3.1, we see that A0 must
be zero. Hence, we have A = As for all (A, B) ∈ Σi/s and As is stable. Moreover,
it follows from (3.31) that P+ = Q. Therefore, QAs = 0. In other words, condition
(ii) is satisfied, which proves the theorem.

Theorem 3.6 gives necessary and sufficient conditions under which the data
are informative for linear quadratic regulation. However, it might not be directly
clear how these conditions can be verified given input/state data. Therefore, in
what follows we rephrase the conditions of Theorem 3.6 in terms of the data
matrices X and U−.

Theorem 3.7. Let Q = Q> be positive semidefinite and R = R> be positive
definite. Then, the data (U−, X) are informative for linear quadratic regulation if
and only if at least one of the following two conditions hold:

(i) The data (U−, X) are informative for system identification. Equivalently,
there exists

[
V1 V2

]
such that (3.9) holds. Moreover, the linear quadratic

regulator problem is solvable for (As, Bs, Q, R), where As = X+V1 and
Bs = X+V2.

(ii) There exists Θ ∈ RT×n such that X−Θ = (X−Θ)>, U−Θ = 0,[
X−Θ X+Θ

Θ>X>+ X−Θ

]
> 0. (3.33)

and QX+Θ = 0.
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Proof. The equivalence of condition (i) of Theorem 3.6 and condition (i) of Theo-
rem 3.7 is obvious. It remains to be shown that condition (ii) of Theorem 3.6 and
condition (ii) of Theorem 3.7 are equivalent as well. To this end, suppose that
there exists a matrix Θ ∈ RT×n such that the conditions of (ii) holds. By Theorem
3.3, we have Σi/s ⊆ ΣK for K = 0, that is, A is stable for all (A, B) ∈ Σi/s. In
addition, note that

QX+Θ(X−Θ)−1 = Q
[
A B

] [X−
U−

]
Θ(X−Θ)−1 = QA (3.34)

for all (A, B) ∈ Σi/s. This shows that QA = 0 and therefore that condition
(ii) of Theorem 3.6 holds. Conversely, suppose that A is stable and QA = 0
for all (A, B) ∈ Σi/s. This implies that K = 0 is a stabilizing controller for all
(A, B) ∈ Σi/s. By Theorem 3.3, there exists a matrix Θ ∈ RT×n satisfying the first
three conditions of (ii). Finally, it follows from QA = 0 and (3.34) that Θ also
satisfies the fourth equation of (ii). This proves the theorem.

3.4.3 From data to LQ gain

In this section our goal is to devise a method in order to compute the optimal
feedback gain K directly from the data. For this, we will employ ideas from the
study of Riccati inequalities (see e.g [173]).

The following theorem asserts that P+ as in Lemma 3.2 can be found as the
unique solution to an optimization problem involving only the data. Furthermore,
the optimal feedback gain K can subsequently be found by solving a set of linear
equations.

Theorem 3.8. Let Q = Q> > 0 and R = R> > 0. Suppose that the data (U−, X)
are informative for linear quadratic regulation. Consider the linear operator
P 7→ L(P) defined by

L(P) := X>−PX− − X>+PX+ − X>−QX− −U>−RU−.

Let P+ be as in Lemma 3.2. The following statements hold:

(i) The matrix P+ is equal to the unique solution to the optimization problem

maximize tr P

subject to P = P> > 0 and L(P) 6 0.

(ii) There exists a right inverse X†
− of X− such that

L(P+)X†
− = 0. (3.35)

Moreover, if X†
− satisfies (3.35), then the optimal feedback gain is given by

K = U−X†
−.
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Remark 3.6. From a design viewpoint, the optimal feedback gain K can be found
in the following way. First solve the semidefinite program in Theorem 3.8(i).
Subsequently, compute a solution X†

− to the linear equations X−X†
− = I and

(3.35). Then, the optimal feedback gain is given by K = U−X†
−.

Remark 3.7. The data-driven LQR problem was also solved using semidefinite
programming in [47, Thm. 4]. There, the optimal feedback gain was found by
minimizing the trace of a weighted sum of two matrix variables, subject to two
LMI constraints. The semidefinite program in Theorem 3.8 is attractive since the
dimension of the unknown P is (only) n× n. In comparison, the dimensions of
the two unknowns in [47, Thm. 4] are T × n and m×m, respectively. In general,
the number of samples T is much larger4 than n. An additional attractive feature
of Theorem 3.8 is that P+ is obtained from the data. This is useful since the
minimal cost associated to any initial condition x0 can be computed as x>0 P+x0.

The data-driven LQR approach in [71] is quite different from Theorem 3.8 since
the solution to the Riccati equation is approximated using a batch-form solution
to the Riccati difference equation. A similar approach was used in [1, 62, 193, 197]
for the finite horizon data-driven LQR/LQG problem. In the setup of [71], the
approximate solution to the Riccati equation is exact only if the number of data
points tends to infinity. The main difference between our approach and the one
in [71] is hence that the solution P+ to the Riccati equation can be obtained exactly
from finite data via Theorem 3.8.

Proof of Theorem 3.8. We begin with proving the first statement. Note that

L(P) =
[

X−
U−

]>[P− A>PA−Q −A>PB
−B>PA −(R + B>PB)

] [
X−
U−

]
for all (A, B) ∈ Σi/s. We claim that the following implication holds:

P = P> > 0 and L(P) 6 0 =⇒ P+ > P. (3.36)

To prove this claim, let P be such that P = P> > 0 and L(P) 6 0. Since the
data are informative for linear quadratic regulation, they are also informative for
stabilization by state feedback. Therefore, the optimal feedback gain K satisfies

im
[

I
K

]
⊆ im

[
X−
U−

]
due to Lemma 3.1. Therefore, the above expression for L(P) implies that[

I
K

]>[P− A>PA−Q −A>PB
−B>PA −(R + B>PB)

] [
I
K

]
6 0

for all (A, B) ∈ Σi/s. This yields

P−M>PM 6 K>RK + Q

4 In fact, this is always the case under the persistency of excitation conditions imposed in [47] as such
conditions can only be satisfied provided that T > nm + n + m.
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where M is as in Lemma 3.2. By subtracting this from (3.26), we obtain

(P+ − P)−M>(P+ − P)M > 0.

Since M is stable, this discrete-time Lyapunov inequality implies that P+ − P > 0
and hence P+ > P. This proves the claim (3.36).

Note that R + B>P+B is positive definite. Then, it follows from (3.25) that[
P+ − A>P+A−Q −A>P+B
−B>P+A −(R + B>P+B)

]
6 0

via a Schur complement argument. Therefore, L(P+) 6 0. Since P+ > P, we
have tr P+ > tr P. Together with (3.36), this shows that P+ is a solution to the
optimization problem stated in the theorem.

Next, we prove uniqueness. Let P̄ be another solution of the optimization
problem. Then, we have that P̄ = P̄> > 0, L(P̄) 6 0, and tr P̄ = tr P+. From
(3.36), we see that P+ > P̄. In particular, this implies that (P+)ii > P̄ii for all i.
Together with tr P̄ = tr P+, this implies that (P+)ii = P̄ii for all i. Now, for any i
and j, we have

(ei − ej)
>P+(ei − ej) > (ei − ej)

> P̄(ei − ej) and

(ei + ej)
>P+(ei + ej) > (ei + ej)

>P̄(ei + ej),

where ei denotes the i-th standard basis vector. This leads to (P+)ij 6 P̄ij and
(P+)ij > P̄ij, respectively. We conclude that (P+)ij = P̄ij for all i, j. This proves
uniqueness.

Finally, we prove the second statement. It follows from (3.25) and (3.27) that

L(P+) = − (U− − KX−)
> (R + B>P+B) (U− − KX−) . (3.37)

The optimal feedback K is stabilizing, therefore it follows from Theorem 3.2 that
K can be written as K = U−Γ, where Γ is some right inverse of X−. Note that
this implies the existence of a right inverse X†

− of X− satisfying (3.35). Indeed,
X†
− := Γ is such a matrix by (3.37). Moreover, if X†

− is a right inverse of X−
satisfying (3.35) then (U− − KX−)X†

− = 0 by (3.37) and positive definiteness of R.
We conclude that the optimal feedback gain is equal to K = U−X†

−, which proves
the second statement.

3.5 control using input and output data
In this section, we will consider problems where system outputs play a role. In
particular, we will consider the problem of stabilization by dynamic measure-
ment feedback. We will first consider this problem based on input, state and
output measurements. Subsequently, we will turn our attention to the case of
input/output data.
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Consider the true system

x(t + 1) = Asx(t) + Bsu(t) (3.38a)

y(t) = Csx(t) + Dsu(t). (3.38b)

We want to design a stabilizing dynamic controller of the form

w(t + 1) = Kw(t) + Ly(t) (3.39a)

u(t) = Mw(t) (3.39b)

such that the closed-loop system, given by[
x(t + 1)
w(t + 1)

]
=

[
As Bs M

LCs K + LDs M

] [
x(t)
w(t)

]
,

is stable. This is equivalent to the condition that[
As Bs M

LCs K + LDs M

]
(3.40)

is a stable matrix.

3.5.1 Stabilization using input, state and output data

Suppose that we collect input/state/output data on ` time intervals {0, 1, . . . , Ti}
for i = 1, 2, . . . , q. Let U−, X, X−, and X+ be defined as in (3.3) and let Y− be
defined in a similar way as U−. Then, we have[

X+

Y−

]
=

[
As Bs
Cs Ds

] [
X−
U−

]
(3.41)

relating the data and the true system (3.38). The set of all systems that are
consistent with these data is then given by:

Σi/s/o :=
{
(A, B, C, D) |

[
X+

Y−

]
=

[
A B
C D

] [
X−
U−

]}
. (3.42)

In addition, for given K, L and M, we define the set of systems that are stabilized
by the dynamic controller (3.39) by

ΣK,L,M :=
{
(A, B, C, D) |

[
A BM

LC K + LDM

]
is stable

}
.

Subsequently, in line with Definition 3.2, we consider the following notion of
informativity:

Definition 3.8. We say the data (U−, X, Y−) are informative for stabilization by
dynamic measurement feedback if there exist matrices K, L and M such that Σi/s/o ⊆
ΣK,L,M.
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As in the general case of informativity for control, we consider two consequent
problems: First, to characterize informativity for stabilization in terms of necessary
and sufficient conditions on the data and next to design a controller based on
these data. To aid in solving these problems, we will first investigate the case
where U− does not have full row rank. In this case, we will show that the problem
can be “reduced" to the full row rank case.

For this, we start with the observation that any U− ∈ Rm×T of row rank k < m
can be decomposed as U− = SÛ−, where S has full column rank and Û− ∈ Rk×T

has full row rank. We now have the following lemma:

Lemma 3.3. Consider the data (U−, X, Y−) and the corresponding set Σi/s/o. Let
S be a matrix of full column rank such that U− = SÛ− with Û− a matrix of full
row rank. Let S† be a left inverse of S.

Then the data (U−, X, Y−) are informative for stabilization by dynamic measure-
ment feedback if and only if the data (Û−, X, Y−) are informative for stabilization
by dynamic measurement feedback.

In particular, if we let Σ̂i/s/o be the set of systems consistent with the “re-
duced" data set (Û−, X, Y−), and if K̂ L̂ and M̂ are real matrices of appropriate
dimensions, then:

Σi/s/o ⊆ ΣK,L,M =⇒ Σ̂i/s/o ⊆ ΣK,L,S† M, (3.43)

Σ̂i/s/o ⊆ ΣK̂,L̂,M̂ =⇒ Σi/s/o ⊆ ΣK̂,L̂,SM̂. (3.44)

Proof. First note that

Σ̂i/s/o =

{
(Â, B̂, Ĉ, D̂) |

[
X+

Y−

]
=

[
Â B̂
Ĉ D̂

] [
X−
Û−

]}
.

We will start by proving the following two implications:

(A, B, C, D) ∈ Σi/s/o=⇒ (A, BS, C, DS) ∈ Σ̂i/s/o, (3.45)

(Â, B̂, Ĉ, D̂) ∈ Σ̂i/s/o=⇒ (Â, B̂S†, Ĉ, D̂S†) ∈ Σi/s/o. (3.46)

To prove implication (3.45), assume that (A, B, C, D) ∈ Σi/s/o. Then, by definition[
X+

Y−

]
=

[
A B
C D

] [
X−
U−

]
.

From the definition of S, we have U− = SÛ−. Substitution of this results in[
X+

Y−

]
=

[
A B
C D

] [
X−

SÛ−

]
=

[
A BS
C DS

] [
X−
Û−

]
.

This implies that (A, BS, C, DS) ∈ Σ̂i/s/o. The implication (3.46) can be proven
similarly by substitution of Û− = S†U−.

To prove the lemma, suppose that the data (U−, X, Y−) are informative for
stabilization by dynamic measurement feedback. This means that there exist K, L,
and M such that [

A BM
LC K + LDM

]
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is stable for all (A, B, C, D) ∈ Σi/s/o. In particular, if (Â, B̂, Ĉ, D̂) ∈ Σ̂i/s/o then
(Â, B̂S†, Ĉ, D̂S†) ∈ Σi/s/o by (3.46). This means that the matrix[

Â B̂S† M
LĈ K + LD̂S† M

]
is stable for all (Â, B̂, Ĉ, D̂) ∈ Σ̂i/s/o. In other words, Σ̂i/s/o ⊆ ΣK,L,S† M and hence
implication (3.43) holds and the data (Û−, X, Y−) are informative for stabilization
by dynamic measurement feedback. The proofs of (3.44) and the “if" part of the
theorem are analogous and hence omitted.

We will now solve the informativity and design problems under the condition
that U− has full row rank.

Theorem 3.9. Consider the data (U−, X, Y−) and assume that U− has full row
rank. Then (U−, X, Y−) are informative for stabilization by dynamic measurement
feedback if and only if the following conditions are satisfied:

(i) We have

rank
[

X−
U−

]
= n + m.

Equivalently, there exists
[
V1 V2

]
such that (3.9) holds. This means that

Σi/s/o = {(X+V1, X+V2, Y−V1, Y−V2)}.

(ii) The pair (X+V1, X+V2) is stabilizable and (Y−V1, X+V1) is detectable.

Moreover, if the above conditions are satisfied, a stabilizing controller (K, L, M)
can be constructed as follows:

(a) Select a matrix M such that X+(V1 + V2M) is stable.

(b) Choose a matrix L such that (X+ − LY−)V1 is stable.

(c) Define K := (X+ − LY−)(V1 + V2M).

Remark 3.8. Under the condition that U− has full row rank, Theorem 3.9 asserts
that in order to construct a stabilizing dynamic controller, it is necessary that the
data are rich enough to identify the system matrices As, Bs, Cs and Ds uniquely.
The controller proposed in (a), (b), (c) is a so-called observer-based controller, see
e.g. [208, Sec. 3.12]. The feedback gains M and L can be computed using standard
methods, for example via pole placement or LMI’s.

Proof of Theorem 3.9. To prove the “if" part, suppose that conditions (i) and (ii)
are satisfied. This implies the existence of the matrices (K, L, M) as defined in
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items (a), (b) and (c). We will now show that these matrices indeed constitute a
stabilizing controller. Note that by condition (i), Σi/s/o = {(As, Bs, Cs, Ds)} with[

As Bs
Cs Ds

]
=

[
X+V1 X+V2
Y−V1 Y−V2

]
. (3.47)

By definition of K, L and M, the matrices As + Bs M and As − LCs are stable and
K = As + Bs M− LCs − LDs M. This implies that (3.40) is stable since the matrices[

As Bs M
LCs As + Bs M− LCs

]
and

[
As + Bs M Bs M

0 As − LCs

]
are similar [208, Sec. 3.12]. We conclude that (U−, X, Y−) are informative for
stabilization by dynamic measurement feedback and that the recipe given by (a),
(b) and (c) leads to a stabilizing controller (K, L, M).

It remains to prove the “only if" part. To this end, suppose that the data
(U−, X, Y−) are informative for stabilization by dynamic measurement feedback.
Let (K, L, M) be such that Σi/s/o ⊆ ΣK,L,M. This means that[

A BM
LC K + LDM

]
is stable for all (A, B, C, D) ∈ Σi/s/o. Let ζ ∈ Rn and η ∈ Rm be such that

[
ζ> η>

] [X−
U−

]
= 0.

Note that (A + ζζ>, B + ζη>, C, D) ∈ Σi/s/o if (A, B, C, D) ∈ Σi/s/o. Therefore,
the matrix [

A BM
LC K + LDM

]
+ α

[
ζζ> ζη>M

0 0

]
is stable for all α ∈ R. We conclude that the spectral radius of the matrix

Wα :=
1
α

[
A BM

LC K + LDM

]
+

[
ζζ> ζη>M

0 0

]
is smaller than 1/α. By taking the limit as α→ ∞, we see that the spectral radius
of ζζ> must be zero due to the continuity of spectral radius. Therefore, ζ must
be zero. Since U− has full column rank, we can conclude that η must be zero too.
This proves that condition (i) and therefore Σi/s/o = {(As, Bs, Cs, Ds)}. Since the
controller (K, L, M) stabilizes (As, Bs, Cs, Ds), the pair (As, Bs) is stabilizable and
(Cs, As) is detectable. By (3.47) we conclude that condition (ii) is also satisfied.
This proves the theorem.

The following corollary follows from Lemma 3.3 and Theorem 3.9 and gives
necessary and sufficient conditions for informativity for stabilization by dynamic
measurement feedback. Note that we do not make any a priori assumptions on
the rank of U−.
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Corollary 3.2. Let S be any full column rank matrix such that U− = SÛ− with
Û− full row rank k. The data (U−, X, Y−) are informative for stabilization by
dynamic measurement feedback if and only if the following two conditions are
satisfied:

(i) We have

rank
[

X−
Û−

]
= n + k.

Equivalently, there exists a matrix
[
V1 V2

]
such that[

X−
Û−

] [
V1 V2

]
=

[
I 0
0 I

]
.

(ii) The pair (X+V1, X+V2) is stabilizable and (Y−V1, X+V1) is detectable.

Moreover, if the above conditions are satisfied, a stabilizing controller (K, L, M) is
constructed as follows:

(a) Select a matrix M̂ such that X+(V1 + V2M̂) is stable. Define M := SM̂.

(b) Choose a matrix L such that (X+ − LY−)V1 is stable.

(c) Define K := (X+ − LY−)(V1 + V2M̂).

Remark 3.9. In the previous corollary it is clear that the system matrices of the
data-generating system are related to the data via[

As BsS
Cs DsS

]
=

[
X+

Y−

] [
V1 V2

]
.

Therefore the corollary shows that informativity for stabilization by dynamic
measurement feedback requires that As and Cs can be identified uniquely from
the data. However, this does not hold for Bs and Ds in general.

3.5.2 Stabilization using input and output data

Recall that we consider a system of the form (3.38). When given input, state and
output data, any system (A, B, C, D) consistent with these data satisfies[

X+

Y−

]
=

[
A B
C D

] [
X−
U−

]
. (3.48)

In this section, we will consider the situation where we have access to input and
output measurements only. Moreover, we assume that the data are collected on a
single time interval, i.e. q = 1. This means that our data are of the form (U−, Y−),
where

U− :=
[
u(0) u(1) · · · u(T − 1)

]
(3.49a)

Y− :=
[
y(0) y(1) · · · y(T − 1)

]
. (3.49b)
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Again, we are interested in informativity of the data, this time given by
(U−, Y−). Therefore we wish to consider the set of all systems of the form
(3.38) with the state space dimension5 n that admit the same input/output data.
This leads to the following set of consistent systems:

Σi/o :=
{
(A, B, C, D) | ∃X ∈ Rn×(T+1) s.t. (3.48) holds

}
.

As in the previous section, we wish to find a controller of the form (3.39) that
stabilizes the system. This means that, in line with Definition 3.2, we have the
following notion of informativity:

Definition 3.9. We say the data (U−, Y−) are informative for stabilization by dynamic
measurement feedback if there exist matrices K, L and M such that Σi/o ⊆ ΣK,L,M.

In order to obtain conditions under which (U−, Y−) are informative for sta-
bilization, it may be tempting to follow the same steps as in Section 3.5.1. In
that section we first proved that we can assume without loss of generality that
U− has full row rank. Subsequently, Theorem 3.9 and Corollary 3.2 characterize
informativity for stabilization by dynamic measurement feedback based on input,
state and output data. It turns out that we can perform the first of these two steps
for input/output data as well. Indeed, in line with Lemma 3.3, we can state the
following:

Lemma 3.4. Consider the data (U−, Y−) and the corresponding set Σi/o. Let S be
a matrix of full column rank such that U− = SÛ− with Û− a matrix of full row
rank.

Then the data (U−, Y−) are informative for stabilization by dynamic measure-
ment feedback if and only if the data (Û−, Y−) are informative for stabilization
by dynamic measurement feedback.

The proof of this lemma is analogous to that of Lemma 3.3 and therefore
omitted. Lemma 3.4 implies that without loss of generality we can consider the
case where U− has full row rank.

In contrast to the first step, the second step in Section 3.5.1 relies heavily on
the affine structure of the considered set Σi/s/o. Indeed, the proof of Theorem 3.9
makes use of the fact that Σ0

i/s/o is a subspace. However, the set Σi/o is not
an affine set. This means that it is not straightforward to extend the results of
Corollary 3.2 to the case of input/output measurements.

Nonetheless, under certain conditions on the input/output data it is possible
to construct the corresponding state sequence X of (3.38) up to similarity trans-
formation. In fact, state reconstruction is one of the main themes of subspace
identification, see e.g. [143,217]. The construction of a state sequence would allow
us to reduce the problem of stabilization using input/output data to that with
input, state and output data. The following result gives sufficient conditions on
the data (U−, Y−) for state construction.

5 The state space dimension of the system may be known a priori. In the case that it is not, it can be
computed using subspace identification methods, see e.g. [217, Thm. 2].
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To state the result, we will first require a bit of notation. First, recall that for a
signal f (0), . . . , f (T − 1) and ` < T, the Hankel matrix of depth ` is defined as

H`( f ) =


f (0) f (1) · · · f (T − `)
f (1) f (2) · · · f (T − `+ 1)

...
...

...
f (`− 1) f (`) · · · f (T − 1)

 .

Given input and output data of the form (3.49), and k such that 2k < T we
consider H2k(u) and H2k(y). Next, we partition our data into so-called “past" and
“future" data as

H2k(u) =
[

Up
U f

]
, H2k(y) =

[
Yp
Yf

]
,

where Up, U f , Yp and Yf all have k block rows. Let x(0), . . . , x(T) denote the state
trajectory of (3.38) compatible with a given (U−, Y−). We now denote

Xp =
[
x(0) · · · x(T − 2k)

]
,

X f =
[
x(k) · · · x(T − k)

]
.

Lastly, let rs(M) denote the row space of the matrix M. Now we have the
following result, which is a rephrasing of [143, Thm. 3].

Theorem 3.10. Consider the system (3.38) and assume it is minimal. Let the
input/output data (U−, Y−) be as in (3.49). Assume that k is such that n < k < 1

2 T.
If

rank
[H2k(u)
H2k(y)

]
= 2km + n, (3.50)

then

rs(X f ) = rs
([

Up
Yp

])
∩ rs

([
U f
Yf

])
,

and this row space is of dimension n.

Under the conditions of this theorem, we can now find the true state sequence
X f up to similarity transformation. That is, we can find X̄ = SX f for some
unknown invertible matrix S. This means that, under these conditions, we obtain
an input/state/output trajectory given by the matrices

Ū− =
[
u(k) u(k + 1) · · · u(T − k− 1)

]
, (3.51a)

Ȳ− =
[
y(k) y(k + 1) · · · y(T − k− 1)

]
, (3.51b)

X̄ = S
[
x(k) x(k + 1) · · · x(T − k)

]
. (3.51c)

We can now state the following sufficient condition for informativity for stabi-
lization with input/output data.
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Corollary 3.3. Consider the system (3.38) and assume it is minimal. Let the
input/output data (U−, Y−) be as in (3.49). Assume that k is such that n < k < 1

2 T.
Then the data (U−, Y−) are informative for stabilization by dynamic measurement
feedback if the following two conditions are satisfied:

(i) The rank condition (3.50) holds.

(ii) The data (Ū−, X̄, Ȳ−), as defined in (3.51), are informative for stabilization
by dynamic measurement feedback.

Moreover, if these conditions are satisfied, a stabilizing controller (K, L, M) such
that Σi/o ⊆ ΣK,L,M can be found by applying Corollary 3.2 (a),(b),(c) to the data
(Ū−, X̄, Ȳ−).

The conditions provided in Corollary 3.3 are sufficient, but not necessary for
informativity for stabilization by dynamic measurement feedback. In addition, it
can be shown that data satisfying these conditions are also informative for system
identification, in the sense that Σi/o contains only the true system (3.38) and all
systems similar to it.

An interesting question is whether the conditions of Corollary 3.3 can be sharp-
ened to necessary and sufficient conditions. In this case it would be of interest to
investigate whether such conditions are weaker than those for informativity for
system identification.

At this moment, we do not have a conclusive answer to the above question.
However, we note that even for subspace identification there are no known
necessary and sufficient conditions for data to be informative, although several
sufficient conditions exist, e.g. [143, Thm. 3 and 5], [217, Thm. 2] and [227, Thm.
3 and 4].

3.6 conclusions and future work
Results in data-driven control should clearly highlight the differences and possible
advantages as compared to system identification paired with model-based control.
One clear advantage of data-driven control is its capability of solving problems in
the presence of data that are not informative for system identification. Therefore,
informativity is a very important concept for data-driven analysis and control.

In this chapter we have introduced a comprehensive framework for studying
informativity problems. We have applied this framework to analyze several
system-theoretic properties on the basis of data. The same framework was used
to solve multiple data-driven control problems.

After solving these problems, we have made the comparison between our
data-driven methods, and the “classical" combination of identification and model-
based control. We have shown that for many analysis and control problems, such
as controllability analysis and stabilization, the data-driven approach can indeed
be performed on data that are not informative for system identification. On the
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other hand, for data-driven linear quadratic regulation it has been shown that
informativity for system identification is a necessary condition. This effectively
means that for this data-driven control problem, we have given a theoretic
justification for the use of persistently exciting data.

Future work

Due to the generality of the introduced framework, many different problems
can be studied in a similar fashion: one could consider different types of data,
where more results based on only input and output data would be particularly
interesting. Many other system-theoretic properties could be considered as well,
for example, analyzing passivity or tackling robust control problems based on
data.

It would also be of interest to generalize the model class under consideration.
One could, for instance, consider larger classes of systems like differential alge-
braic or polynomial systems. On the other hand, the class under consideration can
also be made smaller by prior knowledge of the system. For example, the system
might have an observed network structure, or could in general be parametrized.

A framework similar to ours could be employed in the presence of disturbances,
which is a problem of practical interest. A study of data-driven control problems
in this situation is particularly interesting, because system identification is less
straightforward. We note that data-driven stabilization under measurement noise
has been studied in [47] and under unknown disturbances in [17]. Additionally,
the data-driven LQR problem is popular in the machine learning community,
where it is typically assumed that the system is influenced by (Gaussian) process
noise, see e.g. [50].

In this chapter, we have assumed that the data are given. Yet another problem
of practical interest is that of experiment design, where inputs need to be chosen
such that the resulting data are informative. In system identification, this problem
led to the notion of persistence of excitation. For example, it is shown in [241]
that the rank condition (3.8) can be imposed by injecting an input sequence
that is persistently exciting of order n + 1. However, as we have shown, this
rank condition is not necessary for some data-driven control problems, like
stabilization by state feedback. The question therefore arises whether we can
find tailor-made conditions on the input only, that guarantee informativity for
data-driven control.



4 DATA - B A S E D PA R A M E T E R I Z AT I O N S
O F S U B O P T I M A L C O N T R O L L E R S

In the previous chapter we established that the conditions for data informativity
are dependent on the particular controller that we want to design. In particular,
the conditions for obtaining a linear quadratic regulator (LQR) from data are more
stringent than those for stabilization. In this chapter we investigate the middle ground
between these two controllers. In particular, we are interested in deriving suboptimal
controllers from data. We will focus on the suboptimal LQR and H2 problems.

4.1 introduction

In the field of systems and control, the majority of control techniques is model-
based, meaning that these methods require knowledge of a plant model, for
example in the form of a transfer function or state-space system. Such system
models are rarely known a priori and typically have to be identified using
measured data. The aim of (direct) data-driven control is to bypass this system
identification step, and to design control laws for dynamical systems directly on
the basis of data. Contributions to data-driven control can roughly be divided in
on- and offline techniques.

Methods in the former class are iterative and make use of multiple online
experiments. Examples include direct adaptive control [7], iterative feedback tun-
ing [85] and methods based on reinforcement learning [4, 23]. Offline techniques
construct controllers on the basis of data (typically a single system trajectory)
that is collected offline. The paper [197] considers optimal control using a batch-
form solution to the Riccati equation. Virtual reference feedback tuning was
introduced in [26]. Moreover, the authors of [25] cast the problem of designing
model reference controllers in the prediction error framework. The paper [10]
designs minimum energy controls using data. The fundamental lemma [241]
has also been leveraged for data-driven control in a behavioral setting [125], and
in the context of state-space systems to design model predictive controllers [40],
stabilizing and optimal controllers [47] and robust controllers [17].

An important persisting problem is to understand the relative merits of data-
driven control and combined system identification and model-based control, see
e.g. [209]. A recent paper sheds some light on this issue by studying data-driven
control from the perspective of data informativity. In particular, [221] provides
conditions under which given data contain enough information for control design.
For control problems such as stabilization, these conditions do not require that
the underlying system can be uniquely identified. As such, one can generally
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stabilize an unknown system without learning its dynamics exactly. For the linear
quadratic regulator problem, however, it was shown that the data essentially need
to be rich enough for system identification.

Inspired by the above results, it is our goal to study data-driven suboptimal
control problems. Intuitively, we expect that the data requirements for such
suboptimal problems are weaker than those for their optimal counterparts. We
will focus on data-driven versions of the suboptimal linear quadratic regulator
(LQR) problem and the H2 suboptimal control problem. Both of these problems
involve the data-guided design of controllers that stabilize the unknown system
and render the (LQR or H2) cost smaller than a given tolerance.

Our main results are the following. First, for both suboptimal problems, we
establish necessary and sufficient conditions under which the data are informative
for control design. These conditions do not require that the underlying system can
be identified uniquely. Secondly, for both problems we give a parameterization
of all suboptimal controllers in terms of data-driven linear matrix inequalities.

This chapter is structured as follows. In Section 4.2 we provide some prelim-
inaries. In Section 4.3 we state the problem. Next, Section 4.4 and Section 4.5
contain our main results. An illustrative example is given in Section 4.6. Finally,
Section 4.7 contains our conclusions.

4.2 suboptimal control problems
The purpose of this section is to review two (model-based) suboptimal control
problems whose data-driven versions will be the main topic of this chapter.

4.2.1 The suboptimal LQR problem

Consider the linear system

x(t + 1) = Ax(t) + Bu(t), (4.1)

where x ∈ Rn is the state, u ∈ Rm is the input and A and B are real matrices of
appropriate dimensions. We will occasionally use the shorthand notation (A, B)
to refer to system (4.1). Associated with (4.1), we consider the infinite-horizon
cost functional

J(x0, u) =
∞

∑
t=0

x>(t)Qx(t) + u>(t)Ru(t), (4.2)

where x0 is the initial state and Q = Q> > 0 and R = R> > 0 are real matrices.
Whenever the input function u results from a state feedback law u = Kx, we
will write J(x0, K) instead of J(x0, u). The suboptimal linear quadratic regulator
problem can be formulated as follows. Given an initial condition x0 ∈ Rn and
tolerance γ > 0, find (if it exists) a feedback law u = Kx such that A+ BK is stable,
and the cost satisfies J(x0, K) < γ. Such a K is called a suboptimal feedback gain
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for the system (A, B). The following proposition gives necessary and sufficient
conditions under which a given matrix K is a suboptimal feedback gain.

Proposition 4.1. Let x0 ∈ Rn and γ > 0. The matrix K is a suboptimal feedback
gain if and only if there exists a matrix P = P> > 0 such that

(A + BK)>P(A + BK)− P + Q + K>RK < 0 (4.3)

x>0 Px0 < γ. (4.4)

4.2.2 The H2 suboptimal control problem

Consider the system

x(t + 1) = Ax(t) + Bu(t) + Ew(t) (4.5a)

z(t) = Cx(t) + Du(t), (4.5b)

where x ∈ Rn denotes the state, u ∈ Rm is the control input, w ∈ Rd is a
disturbance input and z ∈ Rp is the performance output. The real matrices
A, B, C, D and E are of appropriate dimensions. The feedback law u = Kx yields
the closed-loop system

x(t + 1) = (A + BK)x(t) + Ew(t) (4.6a)

z(t) = (C + DK)x(t). (4.6b)

Associated with (4.6), we consider the H2 cost functional

JH2(K) :=
∞

∑
t=0

tr
(

T>K (t)TK(t)
)

,

where TK(t) := (C + DK)(A + BK)tE is the closed-loop impulse response from
w to z and tr denotes trace. The cost JH2(K) equals the squared H2 norm of the
transfer function from w to z of (4.6). It is well-known that the H2 cost of a given
stabilizing K can be computed using the observability Gramian. Indeed for a
stabilizing K, the unique solution P to the Lyapunov equation

(A + BK)>P(A + BK)− P + (C + DK)>(C + DK) = 0 (4.7)

is related to the H2 cost by tr(E>PE) = JH2(K). For a given γ > 0, the H2
suboptimal control problem amounts to finding a gain K (if it exists) such that
A + BK is stable and JH2(K) < γ. Such a K is called an H2 suboptimal feedback
gain. Similar to Proposition 4.1 the following proposition gives conditions under
which a given K is an H2 suboptimal feedback gain.

Proposition 4.2. Let γ > 0. The matrix K is an H2 suboptimal feedback gain if
and only if there exists a matrix P = P> > 0 such that

(A + BK)>P(A + BK)− P + (C + DK)>(C + DK) < 0

tr(E>PE) < γ.
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Clearly, the LQR suboptimal control problem can be viewed as a special case
of the H2 suboptimal control problem. Indeed, the H2 problem boils down to the
LQR problem if E = x0, C>C = Q, D>D = R and C>D = 0. However, as we will
see in the next section, the data-driven versions of these problems are different in
the way that data is collected.

4.3 problem formulation
In this section we formulate our problems. We will start by introducing the
data-driven suboptimal LQR problem. Consider the linear system

x(t + 1) = Asx(t) + Bsu(t), (4.8)

where x ∈ Rn denotes the state, u ∈ Rm is the input and As and Bs are real
matrices of appropriate dimensions. We refer to (4.8) as the “true" system.
Suppose that the system matrices As and Bs of the true system are unknown, but
we have access to a finite set of data1

U− :=
[
u(0) u(1) · · · u(T − 1)

]
X :=

[
x(0) x(1) · · · x(T)

]
,

generated by system (4.8). By partitioning the state data as

X− :=
[
x(0) x(1) · · · x(T − 1)

]
X+ :=

[
x(1) x(2) · · · x(T)

]
,

we can relate the data and (As, Bs) via

X+ =
[
As Bs

] [X−
U−

]
.

The set of all systems that explain the input/state data (U−, X) is given by

Σi/s :=
{
(A, B) | X+ =

[
A B

] [X−
U−

]}
.

Associated with system (4.8) we consider the cost functional (4.2), where the
matrices Q = Q> > 0 and R = R> > 0 and the initial condition2 x0 are assumed
to be given. We want to design a suboptimal feedback gain for the unknown
(As, Bs) on the basis of the data. Given (U−, X), it is impossible to distinguish
between the systems in Σi/s, and therefore we can only guarantee that K is a
suboptimal gain for (As, Bs) if it is a suboptimal gain for all systems in Σi/s. With
this in mind, we introduce the following notion of data informativity.

1 We assume a single trajectory is measured. Our results are also applicable in case multiple (short)
trajectories are measured, which can be beneficial if As is unstable [220].

2 We emphasize that the initial condition x0 is not necessarily the same as the first measured state
sample x(0).
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Definition 4.1. Let x0 ∈ Rn and γ > 0. The data (U−, X) are informative for
suboptimal linear quadratic regulation if there exists a matrix K that is a suboptimal
feedback gain for all (A, B) ∈ Σi/s.

We want to find conditions under which the data are informative for suboptimal
LQR, and we want to obtain suboptimal controllers from data. These problems
are stated more formally as follows.

Problem 4.1. Let x0 ∈ Rn and γ > 0. Provide necessary and sufficient conditions
under which the data (U−, X) are informative for suboptimal linear quadratic
regulation. Moreover, for data (U−, X) that are informative, find a feedback gain
K that is suboptimal for all (A, B) ∈ Σi/s.

Subsequently, we turn our attention to the H2 suboptimal control problem. For
this, consider the system

x(t + 1) = Asx(t) + Bsu(t) + Esw(t) (4.9)

z(t) = Cx(t) + Du(t), (4.10)

where the system matrices As, Bs and Es are unknown, but the matrices C and D
defining the performance output are known. We collect the data X and U− as
before, as well as the corresponding measurements of the disturbance

W− :=
[
w(0) w(1) · · · w(T − 1)

]
.

The assumption that W− is available is reasonable in applications such as aircraft
control, where gust disturbances can be measured via on-board LIDAR measure-
ment systems, see e.g., [199]. In this setup, all triples of system matrices (A, B, E)
that explain the data (U−, W−, X) are given by

Σi/d/s :=

(A, B, E) | X+ =
[
A B E

] X−
U−
W−

 .

We can now state the following notion of data informativity for H2 suboptimal
control.

Definition 4.2. Let γ > 0. The data (U−, W−, X) are informative for H2 suboptimal
control if there exists a K that is an H2 suboptimal feedback gain for all (A, B, E) ∈
Σi/d/s.

As before, we are interested in both data informativity conditions and a control
design procedure. We formalize this in the following problem.

Problem 4.2. Let γ > 0. Provide necessary and sufficient conditions under
which the data (U−, W−, X) are informative for H2 suboptimal control. Moreover,
for data (U−, W−, X) that are informative, find a feedback gain K that is H2
suboptimal for all (A, B) ∈ Σi/s.
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Remark 4.1. We note that the data-drivenH2 optimal control problem was studied
by [47] in the case that Es = I and (U−, X) data are collected in the absence of
disturbances. Sufficient data conditions were given for this problem via the
concept of persistency of excitation. Moreover, [17] aims to design data-driven
controllers that minimize a quadratic performance specification (with the H∞
problem as a special case). The authors provide sufficient data conditions in the
scenario that E is known and w is unmeasured.

4.4 data-driven suboptimal lqr
In this section we report our solution to Problem 4.1. Before we start, we need
some results from [221]. We say that (U−, X) are informative for stabilization by
state feedback if there exists a K such that A + BK is stable for all (A, B) ∈ Σi/s.
The following result was proven in [221, Thm. 16] (see also Lemma 3.1 of this
thesis).

Lemma 4.1. The data (U−, X) are informative for stabilization by state feedback
if and only if there exists a right inverse X†

− of X− such that X+X†
− is stable.

Moreover, K is a stabilizing feedback for all systems in Σi/s if and only if
K = U−X†

− for some X†
− satisfying the above properties.

Next, we characterize the informativity of data for suboptimal LQR in terms of
data-driven matrix inequalities.

Theorem 4.1. Let x0 ∈ Rn and γ > 0. The data (U−, X) are informative for
suboptimal linear quadratic regulation if and only if there exists a matrix P =
P> > 0 and a right inverse X†

− of X− such that

(X+X†
−)
>PX+X†

− − P + Q + (U−X†
−)
>RU−X†

− < 0 (4.11)

x>0 Px0 < γ. (4.12)

Moreover, K is a suboptimal feedback gain for all systems (A, B) ∈ Σi/s if and
only if it is of the form K = U−X†

− for some right inverse X†
− satisfying (4.11)

and (4.12).

Proof. To prove the “if" parts of both statements, suppose that there exists a matrix
P = P> > 0 and a right inverse X†

− such that (4.11) and (4.12) are satisfied. Define
the controller K := U−X†

−. For any (A, B) ∈ Σi/s we have X+ = AX− + BU−,
which implies that X+X†

− = A + BK. Substitution of the latter expression into
(4.11) yields

(A + BK)>P(A + BK)− P + Q + K>RK < 0,

which shows that there exists a K and P = P> > 0 satisfying (4.3) and (4.4) for all
(A, B) ∈ Σi/s. By Proposition 4.1, the data are informative for suboptimal LQR.
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To prove the “only if" parts of both statements, suppose that the data (U−, X)
are informative for suboptimal linear quadratic regulation. This means that there
exists a feedback gain K and a matrix P(A,B) = P>(A,B) > 0 such that

(A + BK)>P(A,B)(A + BK)− P(A,B) + Q + K>RK < 0

x>0 P(A,B)x0 < γ

for all (A, B) ∈ Σi/s. We emphasize that the matrix P(A,B) may depend on the
particular system (A, B), but the feedback gain K is fixed by definition. Since
K is such that A + BK is stable for all (A, B) ∈ Σi/s, we obtain by Lemma 4.1
that K is of the form K = U−X†

− for some right inverse X†
− of X−. This yields

A + BK = X+X†
−. The matrix A + BK is therefore the same for all (A, B) ∈ Σi/s.

This implies the existence of a (common) P = P> > 0 such that (4.11) and (4.12)
are satisfied.

Note that the conditions of Theorem 4.1 are not ideal from computational
point of view since (4.11) depends nonlinearly on P and X†

−. Nonetheless, it
is straightforward to reformulate these conditions in terms of linear matrix
inequalities. This is described in the following corollary.

Corollary 4.1. Let Q = C>C, R = D>D and C>D = 0, and let x0 ∈ Rn and γ > 0.
The data (U−, X) are informative for suboptimal linear quadratic regulation if
and only if there exist Y = Y> ∈ Rn×n and Θ ∈ RT×n such that Y Θ>X>+ Θ>Z>−

X+Θ Y 0
Z−Θ 0 I

 > 0 (4.13)

[
γ x>0
x0 Y

]
> 0 (4.14)

X−Θ = Y. (4.15)

Here Z− := CX− + DU−. Moreover, K is a suboptimal feedback gain for all
(A, B) ∈ Σi/s if and only if K = U−ΘY−1 for some Y and Θ satisfying (4.13),
(4.14) and (4.15).

Corollary 4.1 follows from Theorem 4.1 via a few well-known tricks, see
e.g. [188]. First a congruence transformation P−1 is applied to (4.11), after which
a Schur complement argument and change of variables Y := P−1 and Θ := X†

−Y
yields (4.13), (4.14) and (4.15).

Remark 4.2. It is noteworthy that the conditions of Theorem 4.1 and Corollary
4.1 do not require that the data (U−, X) contain enough information to uniquely
identify the system matrices (As, Bs). Quite naturally, the conditions do become
more difficult to satisfy for decreasing values of γ. Clearly, Theorem 4.1 and
Corollary 4.1 require the matrix X− to have full row rank. This means that at
least T > n samples are needed to obtain a suboptimal controller from data. In
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comparison, note that to uniquely identify As and Bs, it is necessary that the rank
condition

rank
[

X−
U−

]
= n + m

is satisfied, which is only possible if T > n + m. In Section 4.6 we will illustrate
Corollary 4.1 in detail by numerical examples.

4.5 data-driven H2 suboptimal control
In this section we study the data-driven H2 suboptimal control problem as
formulated in Problem 4.2. As a first step, we extend Lemma 4.1 to systems with
disturbances. We say the data (U−, W−, X) are informative for stabilization by state
feedback if there exists K such that A + BK is stable for all (A, B, E) ∈ Σi/d/s.

Lemma 4.2. The data (U−, W−, X) are informative for stabilization by state feed-
back if and only if there exists a right inverse X†

− of X− with the properties that
X+X†

− is stable and W−X†
− = 0.

Moreover, K is a stabilizing controller for all systems in Σi/d/s if and only if
K = U−X†

−, where X†
− satisfies the above properties.

Proof. The proof follows a similar line as that of [221, Thm. 16]. To prove the “if"
part of both statements, suppose that there exists a right inverse X†

− such that
X+X†

− is stable and W−X†
− = 0. Define K := U−X†

−. Then X+X†
− = A + BK

for all (A, B, E) ∈ Σi/d/s. Hence A + BK is stable for all (A, B, E) ∈ Σi/d/s and
K = U−X†

− is stabilizing.
To prove the “only if" parts, suppose that the data are informative for stabiliza-

tion by state feedback. Let K be stabilizing for all systems in Σi/d/s. Define the
subspace

Σ0
i/d/s :=

(A0, B0, E0) | 0 =
[
A0 B0 E0

] X−
U−
W−

 .

The matrix A + BK + α(A0 + B0K) is stable for all α ∈ R and all (A0, B0, E0) ∈
Σ0

i/d/s. Thus we have

ρ

(
1
α
(A + BK) + A0 + B0K

)
6

1
α
∀ α > 1,

where ρ(·) denotes spectral radius. We take the limit as α→ ∞, and conclude by
continuity of the spectral radius that A0 + B0K is nilpotent for all (A0, B0, E0) ∈
Σ0

i/d/s. Note that (A0, B0, E0) ∈ Σ0
i/d/s implies that(

(A0 + B0K)>A0, (A0 + B0K)>B0, (A0 + B0K)>E0

)
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is also a member of Σ0
i/d/s. This implies that the matrix (A0 + B0K)>(A0 + B0K)

is nilpotent for all (A0, B0, E0). The only symmetric nilpotent matrix is zero, thus
A0 + B0K = 0 for all (A0, B0, E0) ∈ Σ0

i/d/s. We conclude that

ker
[
X>− U>− W>−

]
⊆ ker

[
I K> 0

]
,

equivalently,

im

 I
K
0

 ⊆ im

X−
U−
W−

 .

This means that there exists a right inverse X†
− of X− such that K = U−X†

− and
W−X†

− = 0. Clearly, X+X†
− = A + BK for all (A, B, E) ∈ Σi/d/s, hence X+X†

− is
stable.

The following theorem provides necessary and sufficient conditions for data
informativity for the H2 problem. It also characterizes all suboptimal controllers
in terms of the data. Recall that Z− was defined as Z− = CX− + DU−.

Theorem 4.2. Let γ > 0. The data (U−, W−, X) are informative forH2 suboptimal
control if and only if at least one of the following two conditions is satisfied:

(i) There exists a right inverse X†
− such that X+X†

− is stable and[
W−
Z−

]
X†
− = 0.

(ii) There exist right inverses X†
− and W†

− such that X+X†
− is stable, W−X†

− = 0,[
X−
U−

]
W†
− = 0,

and the unique solution P to

(X†
−)
>
(

X>+PX+ − X>−PX− + Z>−Z−
)

X†
− = 0 (4.16)

has the property that

tr
(
(X+W†

−)
>PX+W†

−
)
< γ. (4.17)

Moreover, K is an H2 suboptimal controller for all (A, B, E) ∈ Σi/d/s if and only
if K = U−X†

−, where X†
− satisfies the conditions of (i) or (ii).

Remark 4.3. The interpretation of Theorem 4.2 is as follows. Note that both
condition (i) and (ii) require the existence of X†

− such that X+X†
− is stable and

W−X†
− = 0. These conditions are necessary for the existence of a stabilizing
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controller by Lemma 4.2. In condition (i) it is further required that X†
− satisfies

Z−X†
− = 0, which means that the output of all systems in Σi/d/s can be made

identically equal to zero (hence the H2 norm is zero). In condition (ii), the
properties of W†

− imply that Es = X+W†
− can be uniquely identified from the

data. Similar to the suboptimal LQR problem, it is generally not required that As
and Bs can be uniquely identified from the data.

Proof. We first prove the “if" parts of both statements. Suppose that condition
(i) is satisfied and let K := U−X†

−. By Lemma 4.2, A + BK is stable for all
(A, B, E) ∈ Σi/d/s. As Z−X†

− = 0 we have C + DU−X†
− = C + DK = 0. This

means that the H2 norm of (4.6) is zero for all (A, B, E) ∈ Σi/d/s. We conclude
that the data are informative forH2 suboptimal control and K is anH2 suboptimal
controller.

Next suppose that condition (ii) is satisfied, and let K := U−X†
− where X†

−
satisfies the conditions of (ii). Clearly, A+ BK = X+X†

− is stable for all (A, B, E) ∈
Σi/d/s. By the properties of W†

−, (A, B, E) ∈ Σi/d/s implies E = Es. In view of
(4.16) and (4.17) we see that for any (A, B, Es) ∈ Σi/d/s the unique solution P
to (4.7) satisfies tr(E>s PEs) < γ. Therefore, the data are informative for H2
suboptimal control and K is H2 suboptimal.

Subsequently, we prove the “only if" parts of both statements. Suppose that the
data are informative for H2 suboptimal control and let K be an H2 suboptimal
controller for all (A, B, E) ∈ Σi/d/s. By Lemma 4.2, there exists a right inverse X†

−
such that X+X†

− is stable and W−X†
− = 0. Also, the feedback K is of the form

K = U−X†
−. The solution P to (4.16) exists and is unique by stability of X+X†

−.
The matrix P satisfies tr(E>PE) < γ for all (A, B, E) ∈ Σi/d/s. Therefore, we have

tr
(
(E + αE0)

>P(E + αE0)
)
< γ (4.18)

for all (A, B, E) ∈ Σi/d/s, (A0, B0, E0) ∈ Σ0
i/d/s and α ∈ R. We divide both sides of

(4.18) by α2 and take the limit as α→ ∞. Then, by continuity of the trace we obtain
tr(E>0 PE0) = 0, which yields PE0 = 0 for all (A0, B0, E0) ∈ Σ0

i/d/s. We claim that
this implies that either P = 0 or E0 = 0 for all (A0, B0, E0) ∈ Σ0

i/d/s. Suppose that
this claim is not true. Then P 6= 0 and there exists a triple (A0, B0, E0) ∈ Σ0

i/d/s
such that E0 6= 0. Note that (FA0, FB0, FE0) ∈ Σ0

i/d/s for any F ∈ Rn×n. Clearly,
there exists an F such that PFE0 6= 0. This is a contradiction, which proves our
claim. Now, in the case that P = 0 we obtain Z−X†

− and condition (i) is satisfied.
In the case that E0 = 0 for all (A0, B0, E0) ∈ Σ0

i/d/s, there exists a right inverse
W†
− such that X−W†

− = 0 and U−W†
− = 0. This means that (A, B, E) ∈ Σi/d/s

implies E = Es = X+W†
−. Hence (4.17), and therefore (ii), holds. In both cases,

the controller K is of the form K = U−X†
−, where X†

− satisfies either (i) or (ii).

Similar to Corollary 4.1 we can reformulate Theorem 4.2 in terms of linear
matrix inequalities using Proposition 4.2.
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Corollary 4.2. Let γ > 0. The data (U−, W−, X) are informative for H2 sub-
optimal control if and only if at least one of the following two conditions is
satisfied:

(i) There exists a Θ ∈ RT×n such that X−Θ = (X−Θ)>,[
W−
Z−

]
Θ = 0 and

[
X−Θ Θ>X>+
X+Θ X−Θ

]
> 0.

(ii) There exists a right inverse W†
−, a Y = Y> ∈ Rn×n and Θ ∈ RT×n such that

X−Θ is symmetric, the matrices W−Θ, X−W†
− and U−W†

− are zero, andX−Θ Θ>X>+ Θ>Z>−
X+Θ X−Θ 0
Z−Θ 0 I

 > 0

[
Y (W†

−)
>X>+

X+W†
− X−Θ

]
> 0

tr(Y) < γ.

Moreover, K is an H2 suboptimal controller for all (A, B, E) ∈ Σi/d/s if and only
if K = U−Θ(X−Θ)−1, where Θ satisfies the conditions of (i) or (ii).

4.6 illustrative example
We study steered consensus dynamics of the form

x(t + 1) = (I − 0.15L) x(t) + Bu(t), (4.19)

where x ∈ R20, u ∈ R10, L is the Laplacian matrix of the graph G in Figure 4.1,
and B =

[
I 0

]>, meaning that inputs are applied to the first 10 nodes. The goal
of this example is to apply the theory from Section 4.4 to construct suboptimal
controllers for (4.19) using data. We choose the weight matrices as Q = I and
R = I, and define x0 ∈ R20 entry-wise as (x0)i = i.

We start with a time horizon of T = 20 and collect data (U−, X) where the
entries of U− and the initial state of the experiment x(0) are drawn uniformly at
random from (0, 1). Given these data, we attempt to solve a semidefinite program
(SDP) where the objective is to minimize γ subject to the constraints (4.13), (4.14)
and (4.15). We use Yalmip, with Mosek as a solver. Next, we collect one additional
sample of the input and state, and we solve the SDP again for the augmented
data set. We continue this process up to a time horizon of T = 30.

We repeat this entire experiment for 100 trials and display the results in Figures
4.2 and 4.3. Figure 4.2 depicts the fraction of successful trials in which the
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Figure 4.1: Graph G with leader vertices colored black.

constraints (4.13), (4.14) and (4.15) were feasible and a stabilizing controller was
found. Note that a stabilizing controller was only found in 2 out of the 100 trials
for T = 20. This fraction rapidly increases to 0.88 for T = 22, while 100% of the
trials were successful for T > 24. Figure 4.3 displays the minimum cost γ of the
controller, averaged over all successful trials. The cost is very large for small
sample size (T = 20) but decreases rapidly as the number of samples increases.
Figure 4.3 therefore highlights an interesting trade-off between the sample size
and the cost. Note that for T = 30, γ coincides with the optimal cost obtained
from the (model-based) solution to the Riccati equation. This is as expected since
30 = n + m is the minimum number of samples from which the state and input
matrices can be uniquely identified.

4.7 conclusions
In this chapter we have studied the data-driven suboptimal LQR and H2 prob-
lems. For both problems, we have presented conditions under which a given data
set contains sufficient information for control design. We have also given a pa-
rameterization of all suboptimal controllers in terms of data-driven linear matrix
inequalities. Finally, we have illustrated these results by numerical simulations,
which reveal a trade-off between the number of collected data samples and the
achieved controller performance.
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Figure 4.2: Fraction of successful trials as a function of T.
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5 C O N T R O L F R O M N O I S Y DATA V I A
T H E M AT R I X S - L E M M A

So far, we have solved multiple data-driven analysis and control problems using
noiseless data. The purpose of this chapter is to further extend these results and to
consider control using noisy data. It will become apparent that to do so, we need
a generalization of the S-lemma to matrix variables. Hence, the contributions of
this chapter consist of a new matrix S-lemma, and the application of this result to
data-driven control.

5.1 introduction
In this chapter we study the problem of designing control laws for an unknown
dynamical system using noisy data. This general problem exists for a long time,
but has seen a renewed surge of interest over the last few years. The problem
can be approached via different angles, for example using combined system
identification and model-based control, or by computing control laws from data
without the intermediate modeling step. We will contribute to the second category
of methods, aiming at control design directly from noisy data.

One of the main challenges in this area is to come up with robust control laws
that guarantee stability and performance of the unknown system despite the
inherent uncertainty caused by noisy data. Even though there are several recent
contributions addressing this issue, there are multiple open questions. In fact,
one of the unsolved problems is to come up with non-conservative control design
strategies using only a finite number of data samples.

We will tackle this problem by providing necessary and sufficient conditions
on noisy data under which controllers can be obtained. As a consequence, our
ensuing control technique is non-conservative, and also shown to be tractable
from a computational point of view. The technical ingredient that enables our
design is a new generalization of the classical S-lemma [169, 243], which will
be proven in this chapter. We will formulate our control problems using the
general data informativity framework as introduced in [221]. As such, the results
developed in this chapter can be seen as a natural extension of those in [221] to
noisy data.

Literature on data-driven control

The literature on data-driven control is expanding rapidly. Our account of
previous work is therefore not exhaustive, but we note that additional references
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can be found in the survey [89]. We mention contributions to data-driven optimal
control [1, 4, 10, 50, 56, 62, 71, 150, 162, 193, 197, 222], PID control [59, 99], predictive
control [6, 55, 83, 90, 183], and nonlinear control [21, 44, 75, 203, 204]. Some of
these techniques are iterative in nature: the controller is updated online when
new data are presented. Examples of this include policy iteration methods [23]
and iterative feedback tuning [85]. Other methods are one-shot in the sense
that the controller is constructed offline from a batch of data. We mention, for
instance, virtual reference feedback tuning [26] and methods based on Willems’
fundamental lemma [241] (see also [220]). The latter line of work has been quite
fruitful, with contributions ranging from output matching [125] and control
by interconnection [132], to data-enabled predictive control [40] and a data-
based closed-loop system parameterization [47]. This parameterization has been
used for stabilizing and optimal control design using data-based linear matrix
inequalities [47]. We also mention the extension [48] studying LQR using noisy
data, and the paper [17] for a closed-loop parameterization using noisy data.
Additional recent research directions include data-driven control of networks [5,9]
and the interplay between data-guided control and model reduction [140].

Review of the S-lemma

First proven by Yakubovich [243], the S-lemma is a classical result in control
theory and optimization [169]. The result revolves around the question when
the non-negativity of one quadratic function implies that of another one. The
crux of the S-lemma is that this -seemingly difficult- implication is equivalent to
the feasibility of a linear matrix inequality. The act of replacing the implication
by a linear matrix inequality is often referred to as the S-procedure. A notable
fact about the S-lemma is that the involved quadratic functions are not required
to be convex; as such, the result can be interpreted as a non-convex theorem of
alternatives.

For reasons that will become clear in Section 5.2, we need a type of S-lemma
that is applicable to quadratic functions of matrix variables. Such a result has been
reported for specific quadratic functions [116, Thm. 3.3], but a general theorem
is to the best of our knowledge still missing. Another related result is the full
block S-procedure [186, 187]. Our matrix S-lemma is different in nature from the
full block S-procedure in the sense that it directly generalizes the S-lemma and
(like the classical result) also involves a single scalar multiplier. Other differences
are the lack of a boundedness assumption in our matrix S-lemma, and the fact
that we consider both strict and non-strict inequalities.

Our contributions

The core of our approach is to formulate data-driven control as the problem
of deciding whether one quadratic matrix inequality is implied by another one.
Our first contribution is to extend the classical S-lemma to quadratic matrix
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inequalities. Actually, we prove multiple variants of this matrix S-lemma, for both
strict and non-strict inequalities. Our second contribution is to apply these results
to data-driven control. In particular, we come up with non-conservative design
procedures for quadratic stabilization, H2 control and H∞ control.

Throughout the chapter we will assume no statistics on the noise, but we will
work with general bounded disturbances. We are thereby inspired by recent
papers [17, 47] that formalize the assumption of bounded disturbances in terms
of quadratic matrix inequalities. In fact, we will work with an assumption on the
noise that is closely related to that of [17], and is more general than the assumption
in [47]. In terms of control design, our approach completely differs from the
above papers. In fact, instead of working with data-based parameterizations of
closed-loop systems [17,47,48], we will work with a representation of all open-loop
systems explaining the data, akin to the framework of [221]. We believe that our
approach is attractive for the following reasons:

1. We provide robust guarantees on the stability and performance of the
unknown data-generating system. The design involves data-guided LMI’s
that are tractable from a computational point of view and are easy to
implement.

2. Our approach is applicable to general bounded disturbances. This is an
advantage when the noise does not behave according to a known probability
distribution. On the other side of the spectrum, we do note that assumptions
like Gaussian noise lead to sample complexity results [50], that are instead
more difficult (or even impossible) to derive in the bounded setting.

3. By virtue of our matrix S-lemma, the design method is non-conservative.
This is in contrast with previous LMI formulations in [17, 47] that provide
sufficient conditions under which controllers can be obtained from data. In
fact, we believe that our result is the first non-conservative control design
procedure using a finite number of noisy data samples.

4. Last but not least, the variables involved in our method are independent of
the time horizon of the experiment. Our approach is thus applicable to large
data sets. This is an advantage over closed-loop system parameterizations
[17, 47], that become computationally intractable when applied to big data.

Outline of the chapter

In Section 5.2 we will formulate the problem. Section 5.3 contains our results on
the matrix S-lemma. These results are then applied to data-driven stabilization
in Section 5.4, and to data-driven H2 control and H∞ control in Section 5.5. In
Section 5.6 we provide simulation examples. Finally, our conclusions are provided
in Section 5.7.
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5.2 data-driven stabilization
Consider the linear time-invariant system

x(t + 1) = Asx(t) + Bsu(t) + w(t), (5.1)

where x ∈ Rn denotes the state, u ∈ Rm is the input and w ∈ Rn is an unknown
noise term. The matrices As ∈ Rn×n and Bs ∈ Rn×m denote the unknown state
and input matrices. Our goal is to design controllers for (5.1) on the basis of a
finite number of measurements of the state and input of the system. To this end,
suppose that we measure state and input data on a time interval1, and collect
these samples in the matrices

X :=
[
x(0) x(1) · · · x(T)

]
,

U− :=
[
u(0) u(1) · · · u(T − 1)

]
.

By defining the matrices

X+ :=
[
x(1) x(2) · · · x(T)

]
,

X− :=
[
x(0) x(1) · · · x(T − 1)

]
,

W− :=
[
w(0) w(1) · · · w(T − 1)

]
,

we clearly have
X+ = AsX− + BsU− + W−. (5.4)

We emphasize that the system matrices As and Bs as well as the noise term W−
are unknown, while X and U− are measured. Before we introduce the problem
we will explain our assumption on the noise W−.

5.2.1 Assumption on the noise

We will formalize our assumption on the noise in terms of a quadratic matrix
inequality.

Assumption 1. The noise samples w(0), w(1), . . . , w(T− 1), collected in the ma-
trix W−, satisfy the bound[

I
W>−

]> [Φ11 Φ12
Φ>12 Φ22

] [
I

W>−

]
> 0, (5.5)

for known matrices Φ11 = Φ>11, Φ12 and Φ22 = Φ>22 < 0.

Note that the negative definiteness of Φ22 ensures that the set of noise matrices
W− satisfying (5.5) is bounded. In the special case Φ12 = 0 and Φ22 = −I, (5.5)
reduces to

W−W>− =
T−1

∑
t=0

w(t)w(t)> 6 Φ11. (5.6)

1 All our results are still true for data collected on multiple intervals, see [221, Ex. 2] for more details
on how to arrange the data matrices in this case.
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The inequality (5.6) has the interpretation that the energy of w is bounded on the
finite time interval [0, T− 1]. Note that [47, Ass. 5] is a special case of Assumption
1 for the choices Φ11 = γX+X>+ with γ > 0, Φ12 = 0 and Φ22 = −I. If w is a
random variable, its sample covariance matrix is given by

1
T − 1

W−(I − 1
T

J)W>− ,

where J is the matrix of ones. Thus, (5.5) can also capture known bounds on
the sample covariance by the choices Φ12 = 0 and Φ22 = − 1

T−1 (I − 1
T J). We

emphasize that in this chapter we do not make any assumptions on the statistics
of w and work with the general bound (5.5) instead. We remark that norm
bounds on the individual noise samples w(t) also give rise to bounds of the form
(5.5), although this may lead to some conservatism. Indeed, note that ‖w(t)‖2

2 6 ε
implies that w(t)w(t)> 6 εI for all t. As such, the bound (5.6) is satisfied for
Φ11 = TεI.

Remark 5.1. Note that the noise model in Assumption 1 is the “transposed" of
the model in [17], in the sense that we penalize, e.g., the term W−Φ22W>− instead
of a term W>−QwW−. In some cases, these two different noise models are actually
equivalent. For example, if Φ11 > 0 and Φ12 = 0 then (5.5) can be written via a
Schur complement argument as[

Φ11 W−
W>− −Φ−1

22

]
> 0.

In turn, this is equivalent to −Φ−1
22 −W>−Φ−1

11 W− > 0, which is of the same form
as [17].

Remark 5.2. In some cases, we may know a priori that the noise w does not
directly affect the entire state-space, but is contained in a subspace. This prior
knowledge can be captured by the noise model in Assumption 1. Indeed, W− is
of the form W− = EŴ− for some Ŵ− ∈ Rr×T satisfying[

I
Ŵ>−

]> [Φ̂11 Φ̂12
Φ̂>12 Φ̂22

] [
I

Ŵ>−

]
> 0

if and only if [
I

W>−

]> [EΦ̂11E> EΦ̂12
Φ̂>12E> Φ̂22

] [
I

W>−

]
> 0.

Thus, the conclusion is that we can incorporate the knowledge that W− ∈ im E
by appropriate choices of the Φ-matrices in (5.5). Showing the above claim
is straightforward: note that the “only if" statement follows by pre- and post-
multiplication with E and E>, respectively. The “if" part follows by noting that
x ∈ ker E> implies x>W−Φ̂22W>− x > 0, thus W>− x = 0. Hence, ker E> ⊆ ker W>− ,
equivalently, im W− ⊆ im E.
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5.2.2 Problem formulation

We will follow the general framework for data-driven analysis and control in [221].
To this end, we define the set of all systems (A, B) explaining the data (U−, X),
i.e., all (A, B) satisfying

X+ = AX− + BU− + W− (5.7)

for some W− satisfying (5.5). We denote this set by Σ:

Σ := {(A, B) | (5.7) holds for some W− satisfying (5.5)}.
We can only guarantee that a state feedback u = Kx stabilizes the true system
(As, Bs) if it stabilizes all systems in Σ. This motivates the following definition
of informative data. Loosely speaking, data are called informative if they enable
the design of a controller that stabilizes all systems in Σ (and thus, the unknown
(As, Bs)).

Definition 5.1. The data (U−, X) are called informative for quadratic stabilization if
there exists a feedback gain K and a matrix P = P> > 0 such that

P− (A + BK)P(A + BK)> > 0 (5.8)

for all (A, B) ∈ Σ.

Note that in particular, we are interested in quadratic stabilization and we ask
for a common Lyapunov matrix P for all (A, B) ∈ Σ. We will not treat (A, B)-
dependent Lyapunov matrices in this chapter, but consider this case for future
work instead.

Definition 5.1 leads to two natural problems. First, we are interested in the
question under which conditions the data are informative. We formalize this in
the following problem.

Problem 5.1 (Informativity). Find necessary and sufficient conditions under
which the data (U−, X) are informative for quadratic stabilization.

The second problem is a design issue: we are interested in procedures to come
up with a feedback that stabilizes all systems in Σ.

Problem 5.2 (Control design). Given informative data (U−, X), find a stabilizing
feedback gain K such that (5.8) is satisfied for all (A, B) ∈ Σ.

In addition to data-driven stabilization, we are also interested in including
performance specifications. Natural extensions to Problems 5.1 and 5.2 will be
discussed in Section 5.5.

5.2.3 Our approach

In what follows, we will outline our strategy for solving Problems 5.1 and 5.2.
Let (A, B) ∈ Σ and rewrite (5.7) as

W− = X+ − AX− − BU−. (5.9)
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Recall that by Assumption 1, we have[
I

W>−

]> [Φ11 Φ12
Φ>12 Φ22

] [
I

W>−

]
> 0.

By substitution of (5.9), this yields I
A>

B>

> I X+

0 −X−
0 −U−

 [Φ11 Φ12
Φ>12 Φ22

] I X+

0 −X−
0 −U−

>  I
A>

B>

 > 0. (5.10)

This shows that A and B satisfy a quadratic matrix inequality (QMI) of the form
(5.10)2. In fact, the set Σ of all systems explaining the data can be equivalently
characterized in terms of (5.10), as asserted in the following lemma.

Lemma 5.1. We have that Σ = {(A, B) | (5.10) is satisfied}.
Proof. Suppose that (A, B) ∈ Σ. Then (5.9) is satisfied for some W− satisfying
(5.5). This means that (5.10) holds. As such

Σ ⊆ {(A, B) | (5.10) is satisfied} .

To prove the reverse inclusion, let (A, B) be such that (5.10) is satisfied. Define
W− := X+ − AX− − BU−. By (5.10), W− satisfies the assumption (5.5). Since
(5.7) holds for (A, B) by construction, we conclude that (A, B) ∈ Σ.

By Lemma 5.1 the set Σ of systems explaining the data is characterized by a
quadratic matrix inequality in (A, B). Next, we turn our attention to the design
condition (5.8). Suppose that we fix3 a Lyapunov matrix P = P> > 0 and a
feedback gain K. Note that the inequality (5.8) is equivalent to I

A>

B>

> P 0 0
0 −P −PK>

0 −KP −KPK>

 I
A>

B>

 > 0, (5.11)

which is yet another quadratic matrix inequality in A and B. Therefore, Problem
5.1 essentially boils down to understanding under which conditions the quadratic
matrix inequality (5.11) holds for all (A, B) satisfying the quadratic matrix in-
equality (5.10). Data-driven stabilization thus naturally leads to the following
fundamental question:

When does one QMI imply another QMI?

The familiar reader will immediately recognize the similarity between the above
question and the statement of the so-called S-lemma [169]. In fact, the S-lemma
provides conditions under which the non-negativity of one quadratic function
implies that of another one. This motivates the following section, in which we
generalize the S-lemma to matrix variables.

2 We note that similar quadratic uncertainty descriptions also arise in the papers [91,212] on data-driven
control, where it is assumed that w is a normally distributed process noise.

3 We make this hypothesis purely to explain the ideas behind our approach. In fact, in Section 5.4 we
show how P and K can be computed from data.
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5.3 the matrix-valued s-lemma
In this section we present a new S-lemma with matrix variables. Before we do so,
we provide a brief recap on the classical S-lemma.

5.3.1 Recap of the classical S-lemma

A function f : Rn → R is called quadratic if it can be written in the form

f (x) =
[

1
x

]> [M11 M12
M>12 M22

] [
1
x

]
, (5.12)

for some M11 ∈ R, M12 ∈ R1×n and M22 = M>22 ∈ Rn×n. A homogeneous
quadratic function of the form f (x) = x>M22x is called a quadratic form. The
following theorem describes the celebrated S-lemma, proven by Yakubovich
in [243], see also [169, Thm. 2.2].

Theorem 5.1 (S-lemma). Let f , g : Rn → R be quadratic functions. Suppose that
there exists x̄ ∈ Rn such that g(x̄) > 0. Then f (x) > 0 for all x ∈ Rn such that
g(x) > 0 if and only if there exists a scalar α > 0 such that

f (x)− αg(x) > 0 ∀x ∈ Rn. (5.13)

We note that the functions f and g are not assumed to be convex. As such, it
appears to be difficult to check the condition f (x) > 0 for all x ∈ Rn satisfying
g(x) > 0. The importance of the S-lemma lies in the fact that the characterization
(5.13) of this condition is equivalent to a linear matrix inequality[

M11 M12
M>12 M22

]
− α

[
N11 N12
N>12 N22

]
> 0

in the scalar variable α > 0. Here the matrices N11 ∈ R, N12 ∈ R1×n and
N22 ∈ Rn×n define the quadratic function g analogous to (5.12).

The scalar α is called a multiplier and the assumption g(x̄) > 0 for some x̄ ∈ Rn

is often referred to as the Slater condition. This assumption is necessary in the
sense that Theorem 5.1 is false without it. To show this by means of an example,
one can take, e.g., f (x) = x>Ax and g(x) = −x>Bx with A and B as in the
example of [250, Page 4476]. A version of the S-lemma where g satisfies a strict
inequality has been presented in [169, Thm. 7.8]. We will reformulate the result
in the following theorem.

Theorem 5.2 (Strict S-lemma). Let f , g : Rn → R be quadratic forms. Suppose
that there exists an x̄ ∈ Rn such that g(x̄) > 0. Then f (x) > 0 for all x ∈ Rn such
that g(x) > 0 if and only if there exists a scalar α > 0 such that

f (x)− αg(x) > 0 ∀x ∈ Rn.

Note that Theorem 5.2 is stated with two multipliers in [169, Thm. 7.8]. How-
ever, the inclusion of the Slater condition allows us to state Theorem 5.2 with a
single multiplier α.
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5.3.2 S-lemma with matrix variables

Next, we aim at generalizing Theorems 5.1 and 5.2 to quadratic functions of the
form [

I
X

]> [M11 M12
M>12 M22

] [
I
X

]
,

where X ∈ Rn×k is a matrix variable, M11 = M>11 ∈ Rk×k, M12 ∈ Rk×n and
M22 = M>22 ∈ Rn×n. As our first step, the following theorem provides an S-
lemma for homogeneous quadratic functions of the form X>MX. Naturally,
instead of the non-negativity of functions in the classical S-lemma, we now
consider the positive (semi)definiteness of quadratic functions of matrix variables.

Theorem 5.3 (Homogeneous matrix S-lemma). Let M, N ∈ Rn×n be symmetric
matrices and assume that X̄>NX̄ > 0 for some X̄ ∈ Rn×k. The following
statements are equivalent:

(i) X>MX > 0 for all X ∈ Rn×k such that X>NX > 0.

(ii) X>MX > 0 for all X ∈ Rn×k such that X>NX > 0.

(iii) There exists a scalar α > 0 such that M− αN > 0.

Remark 5.3. The assumption on the existence of X̄ such that X̄>NX̄ > 0 is
a natural generalization of the Slater condition in Theorems 5.1 and 5.2. The
assumption is again necessary in the sense that Theorem 5.3 is false without
it. Nonetheless, it can be shown that the assumption can be weakened if one
is interested only in the equivalence of (i) and (iii). In fact, one can show using
similar arguments as in the proof of Theorem 5.3 that (i) ⇐⇒ (iii) under the
assumption that ∃x̄ ∈ Rn such that x̄>Nx̄ > 0, i.e., under the “standard" Slater
condition.

Proof of Theorem 5.3. It is clear that (i) =⇒ (ii) and (iii) =⇒ (i). As such, it
suffices to prove the implication (ii) =⇒ (iii). To this end, suppose that (ii) holds.
Let x ∈ Rn be such that x>Nx > 0. We want to prove that x>Mx > 0 so that
we can apply Theorem 5.2. Choose a vector v ∈ Rk such that ‖v‖ = 1. Next, we
define the matrix X ∈ Rn×k as X := εX̄ + xv> for ε 6= 0. Clearly, X>NX is equal
to

ε2X̄>NX̄ + ε
(

X̄>Nxv> + vx>NX̄
)
+ (x>Nx)vv>.

We claim that X>NX is positive definite for ε sufficiently small. To prove this
claim, first suppose that y ∈ Rk is nonzero and v>y = 0. Then we obtain

y>X>NXy = ε2y>X̄>NX̄y > 0.

Secondly, suppose that y ∈ Rk is nonzero and v>y =: β 6= 0. Then y>X>NXy is
equal to

y>
(

ε2X̄>NX̄ + ε
(

X̄>Nxv> + vx>NX̄
))

y + (x>Nx)β2,
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which is positive for ε sufficiently small since β 6= 0 and x>Nx > 0. We conclude
that X>NX > 0 for ε sufficiently small. Now, by (ii) we conclude that X>MX > 0.
Multiplication of the latter inequality from left by v> and right by v yields the
inequality

ε2v>X̄>MX̄v + ε
(

v>X̄>Mx + x>MX̄v
)
+ x>Mx > 0. (5.14)

This implies that x>Mx > 0. Indeed, if x>Mx < 0 then there exists a sufficiently
small ε 6= 0 such that

ε2v>X̄>MX̄v + ε
(

v>X̄>Mx + x>MX̄v
)
+ x>Mx < 0,

which contradicts (5.14). To conclude, we have shown that x>Mx > 0 for all
x ∈ Rn such that x>Nx > 0. By Theorem 5.2, the condition (iii) is satisfied. This
proves the theorem.

Next, we build on Theorem 5.3 by introducing a general (inhomogeneous)
S-lemma with matrix variables. The following theorem is one of the main results
of this section.

Theorem 5.4 (Matrix S-lemma). Let M, N ∈ R(k+n)×(k+n) be symmetric matrices
and assume that there exists some matrix Z̄ ∈ Rn×k such that[

I
Z̄

]>
N
[

I
Z̄

]
> 0. (5.15)

Then the following statements are equivalent:

(I)
[

I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ Rn×k such that

[
I
Z

]>
N
[

I
Z

]
> 0.

(II)
[

I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ Rn×k such that

[
I
Z

]>
N
[

I
Z

]
> 0.

(III) There exists a scalar α > 0 such that M− αN > 0.

Note that for k = 1, the assumption (5.15) reduces to the standard Slater
condition. In this case, Theorem 5.4 recovers Theorems 5.1 and 5.2 in the following
sense: the equivalence of (I) and (III) is the statement of Theorem 5.1. The
equivalence of (II) and (III) generalizes Theorem 5.2 for quadratic forms to
general quadratic functions.

Proof of Theorem 5.4. Clearly, (I) =⇒ (II) and (III) =⇒ (I). Thus, it suffices to
prove that (II) =⇒ (III). Our strategy will be to show that (II) implies statement
(ii) of Theorem 5.3. To this end, suppose that (II) holds and let X ∈ R(k+n)×k be
such that X>NX > 0. Partition X as

X =

[
X1
X2

]
,
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where X1 ∈ Rk×k and X2 ∈ Rn×k. Clearly, for all sufficiently small ε > 0 we have[
X1 + εI

X2

]>
N
[

X1 + εI
X2

]
> 0.

Also note that X1 + εI is nonsingular for all sufficiently small ε > 0. This implies
that [

I
X2(X1 + εI)−1

]>
N
[

I
X2(X1 + εI)−1

]
> 0.

By (II), we have [
I

X2(X1 + εI)−1

]>
M
[

I
X2(X1 + εI)−1

]
> 0,

equivalently, [
X1 + εI

X2

]>
M
[

X1 + εI
X2

]
> 0

for all ε > 0 sufficiently small. By taking the limit ε ↓ 0 we conclude that
X>MX > 0. Therefore, statement (ii) (equivalently, statement (iii)) of Theorem 5.3
is satisfied. This means that (III) holds, which proves the theorem.

As a special case of Theorem 5.4 we recover the following result by Luo, Sturm
and Zhang.

Corollary 5.1 (Theorem 3.3 of [116]). The quadratic matrix inequality

M11 + M12Z + Z>M>12 + Z>M22Z > 0

holds for all Z ∈ Rn×k satisfying I − Z>DZ > 0 if and only if there exists a scalar
α > 0 such that [

M11 M12
M>12 M22

]
− α

[
I 0
0 −D

]
> 0.

Proof. Note that the generalized Slater condition (5.15) is satisfied (one can choose
e.g., Z̄ = 0). Thus, the statement follows from Theorem 5.4.

Theorem 5.4 provides a natural generalization of the S-lemma to matrix vari-
ables. However, note that for the application that we have in mind, we need a
slightly different version of the theorem. Indeed, note that in the data-driven
context of Section 5.2, a strict inequality (5.11) must hold for all (A, B) satisfying
a non-strict inequality (5.10). As such, we need to extend Theorem 5.4 to the
case when the inequality involving M is strict. Before we do so we introduce the
shorthand notation

SN :=

{
Z ∈ Rn×k |

[
I
Z

]>
N
[

I
Z

]
> 0

}
.
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Theorem 5.5 (Strict matrix S-lemma). Let M and N by symmetric matrices in
R(k+n)×(k+n). Assume that SN is bounded and that there exists some matrix
Z̄ ∈ Rn×k satisfying (5.15). Then we have that[

I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ SN (5.16)

if and only if there exists α > 0 such that M− αN > 0.

Proof. The “if" part is clear, so we focus on proving the “only if" part. Suppose
that (5.16) holds. We claim that there exists an ε > 0 such that[

I
Z

]>
(M− εI)

[
I
Z

]
> 0 for all Z ∈ SN . (5.17)

Suppose that this is not the case. Then there exists a sequence {εi} with εi → 0
as i→ ∞ with the property that for each i there exists Zi ∈ SN such that[

I
Zi

]>
(M− εi I)

[
I

Zi

]
6> 0.

Since SN is bounded, the sequence {Zi} is bounded. As such, by the Bolzano-
Weierstrass theorem, it contains a converging subsequence with limit, say, Z∗. We
conclude that [

I
Z∗

]>
M
[

I
Z∗

]
6> 0.

Note that SN is closed and thus Z∗ ∈ SN . Since (5.16) holds we arrive at a
contradiction. Therefore, we conclude that there exists an ε > 0 such that (5.17)
holds. In particular, this implies the existence of ε > 0 such that[

I
Z

]>
(M− εI)

[
I
Z

]
> 0 for all Z ∈ SN .

Now, by Theorem 5.4 there exists an α > 0 such that

(M− εI)− αN > 0.

We conclude that M− αN > 0 which proves the theorem.

It turns out that we can even state Theorem 5.5 without the boundedness
assumption if some more structure on the matrices M and N is given. In what
follows we partition M and N in the natural way as

M =

[
M11 M12
M>12 M22

]
, N =

[
N11 N12
N>12 N22

]
. (5.18)

We then have the following result.
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Theorem 5.6. Let M, N ∈ R(k+n)×(k+n) by symmetric matrices, partitioned as in
(5.18). Assume that M22 6 0, N22 6 0 and ker N22 ⊆ ker N12. Suppose that there
exists some matrix Z̄ ∈ Rn×k satisfying (5.15). Then we have that[

I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ SN (5.19)

if and only if there exist α > 0 and β > 0 such that

M− αN >
[

βI 0
0 0

]
.

Proof. The “if" part is clear so we focus on proving the “only if" statement.
Suppose that (5.19) holds. We will first prove that ker N22 ⊆ ker M22 and
ker N22 ⊆ ker M12. Let Z ∈ SN and Ẑ ∈ Rn×k be such that N22Ẑ = 0. By
the hypothesis ker N22 ⊆ ker N12 we have Z + γẐ ∈ SN for any γ ∈ R. Thus, we
obtain [

I
Z

]>
M
[

I
Z

]
+ γ(M12Ẑ + (M12Ẑ)>) + γ2Ẑ>M22Ẑ > 0. (5.20)

This implies that M22Ẑ = 0. Indeed, recall that M22 6 0. Thus, if M22Ẑ 6= 0
then there exists a sufficiently large γ such that (5.20) is violated. Similarly, we
conclude that M12Ẑ = 0. Therefore, we have shown that

ker N22 ⊆ ker M22 and ker N22 ⊆ ker M12. (5.21)

Subsequently, we claim that there exists a β > 0 such that[
I
Z

]> (
M−

[
βI 0
0 0

]) [
I
Z

]
> 0 for all Z ∈ SN . (5.22)

If this claim is not true, then there exists a sequence {βi} such that βi → 0 and
for all i there exists Zi ∈ SN such that[

I
Zi

]> (
M−

[
βi I 0
0 0

]) [
I

Zi

]
6> 0. (5.23)

Define V := {Z ∈ Rn×k | N22Z = 0}. Write Zi as Zi = Z1
i + Z2

i , where
Z1

i ∈ V⊥ and Z2
i ∈ V . By the hypothesis ker N22 ⊆ ker N12 we see that Z1

i ∈ SN .
Next, we claim that the sequence {Z1

i } is bounded. We will prove this claim by
contradiction. Thus, suppose that {Z1

i } is unbounded. Clearly, the sequence{
Z1

i
‖Z1

i ‖

}
is bounded. By the Bolzano-Weierstrass theorem it thus has a convergent subse-
quence with limit, say Z∗. Note that

1
‖Z1

i ‖2

(
N11 + N12Z1

i + (N12Z1
i )
> + (Z1

i )
>N22Z1

i

)
> 0.
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By taking the limit along the subsequence as i→ ∞, we get Z>∗ N22Z∗ > 0. Using
the fact that N22 6 0 we conclude that Z∗ ∈ V . Since Z1

i ∈ V⊥ for all i, also
Z1

i
‖Z1

i ‖
∈ V⊥ and thus Z∗ ∈ V⊥. Therefore, we conclude that both Z∗ ∈ V and

Z∗ ∈ V⊥, i.e., Z∗ = 0. This is a contradiction since Z1
i

‖Z1
i ‖

has norm 1 for all i.

We conclude that the sequence {Z1
i } is bounded. It thus contains a convergent

subsequence with limit, say Z∞. Note that SN is closed and thus Z∞ ∈ SN . By
(5.21) and (5.23) we conclude that[

I
Z1

i

]> (
M−

[
βi I 0
0 0

]) [
I

Z1
i

]
6> 0

for all i. We take the limit as i→ ∞, which yields[
I

Z∞

]>
M
[

I
Z∞

]
6> 0.

As Z∞ ∈ SN this contradicts (5.19). As such, we conclude that there exists β > 0
such that (5.22) holds. In particular, there exists β > 0 such that[

I
Z

]> (
M−

[
βI 0
0 0

]) [
I
Z

]
> 0 for all Z ∈ SN .

The theorem now follows by application of Theorem 5.4.

5.4 data-driven stabilization revisited
In this section, we apply the theory from Section 5.3 to data-driven stabilization,
i.e., to Problems 5.1 and 5.2 defined in Section 5.2. To this end, for given
P = P> > 0 and K we define the partitioned matrices

M =

[
M11 M12

M>12 M22

]
:=

P 0 0
0 −P −PK>

0 −KP −KPK>

 , (5.24)

N =

[
N11 N12

N>12 N22

]

:=

 I X+

0 −X−
0 −U−

 [Φ11 Φ12
Φ>12 Φ22

]  I X+

0 −X−
0 −U−


>

. (5.25)

Recall from Section 5.2 that data-driven stabilization entails deciding whether
(5.11) holds for all (A, B) satisfying (5.10). In terms of the matrices M and N as
defined above, we thus have to decide whether[

I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ R(n+m)×n such that

[
I
Z

]>
N
[

I
Z

]
> 0. (5.26)
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Here Z is given by

Z :=
[

A>

B>

]
.

The idea is now to apply Theorem 5.6. To this end, we have to verify its assump-
tions. In particular, we will check that M22 6 0, N22 6 0 and ker N22 ⊆ ker N12.
Note that

M22 = −
[

I
K

]
P
[

I
K

]>
6 0, N22 =

[
X−
U−

]
Φ22

[
X−
U−

]>
6 0,

because P > 0 and Φ22 < 0. Since Φ22 is nonsingular, we also see that

ker N22 = ker
[

X−
U−

]>
,

ker N12 = ker
(
(Φ12 + X+Φ22)

[
X−
U−

]> )
,

and thus ker N22 ⊆ ker N12. We conclude that the assumptions of Theorem 5.6
are satisfied. We assume that the generalized Slater condition (5.15) holds for
N in (5.25). Then, Theorem 5.6 asserts that (5.26) holds if and only if there exist
scalars α > 0 and β > 0 such that

M− αN >
[

βI 0
0 0

]
. (5.27)

From a design point of view, the matrices P and K that appear in M are not
given. However, the idea is now to compute matrices P, K and scalars α and β
such that (5.27) holds. In fact, by the above discussion, the data (U−, X) are
informative for quadratic stabilization if and only if there exists an n× n matrix
P = P> > 0, a K ∈ Rm×n and two scalars α > 0 and β > 0 such that (5.27) holds.
We note that (5.27) (in particular, M) is not linear in P and K. Nonetheless, by a
rather standard change of variables and a Schur complement argument, we can
transform (5.27) into a linear matrix inequality. We summarize our progress in
the following theorem, which is the main result of this section.

Theorem 5.7. Assume that the generalized Slater condition (5.15) holds for N
in (5.25) and some Z̄ ∈ R(n+m)×n. Then the data (U−, X) are informative for
quadratic stabilization if and only if there exists an n× n matrix P = P> > 0, an
L ∈ Rm×n and scalars α > 0 and β > 0 satisfying

P− βI 0 0 0
0 −P −L> 0
0 −L 0 L
0 0 L> P

− α


I X+

0 −X−
0 −U−
0 0

 [Φ11 Φ12
Φ>12 Φ22

] 
I X+

0 −X−
0 −U−
0 0


>

> 0. (FS)

Moreover, if P and L satisfy (FS) then K := LP−1 is a stabilizing feedback gain
for all (A, B) ∈ Σ.
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Proof. To prove the “if" statement, suppose that there exist P, L, α and β satisfying
(FS). Define K := LP−1. By computing the Schur complement of (FS) with respect
to its fourth diagonal block, we obtain (5.27). As such, (5.26) holds. We conclude
that the data (U−, X) are informative for quadratic stabilization and K = LP−1 is
indeed a stabilizing controller for all (A, B) ∈ Σ.

Conversely, to prove the “only if" statement, suppose that the data (U−, X) are
informative for quadratic stabilization. This means that there exist P = P> > 0
and K such that (5.26) holds. By Theorem 5.6 there exist α > 0 and β > 0
satisfying (5.27). Finally, by defining L := KP and using a Schur complement
argument, we conclude that (FS) is feasible.

Theorem 5.7 provides a powerful necessary and sufficient condition under
which quadratically stabilizing controllers can be obtained from noisy data. The
assumption (5.15) puts a mild condition on the data matrices appearing in (5.25).
It is satisfied whenever N has at least n positive eigenvalues, a condition that is
simple to verify from given data. So far, this condition was satisfied in all of our
numerical experiments, see Section 5.6 for more details4. Theorem 5.7 leads to an
effective design procedure for obtaining stabilizing controllers directly from data.
Indeed, the approach entails solving the linear matrix inequality (FS) for P, L, α
and β and computing a controller as K = LP−1. Before we prove Theorem 5.7 we
discuss some of the features of our control design procedure.

1. First of all, we stress that the procedure is non-conservative since Theorem 5.7
provides a necessary and sufficient condition for obtaining quadratically
stabilizing controllers from data. To the best of our knowledge, this is the
first non-conservative design procedure for quadratic stabilization from a
finite number of noisy data samples.

2. We believe that our approach based on the set Σ of open-loop systems
provides a valuable alternative to the data-based closed-loop system param-
eterizations of [47, Thm. 2] and [17, Thm. 4]. Indeed, in the case of noisy
data, it was recognized that certain linear constraints [17, Eq. (3)] defining
these closed-loop systems were difficult to incorporate in the control de-
sign5. Our design procedure does not suffer from the above problem. In
fact, the constraint [17, Eq. (3)] is automatically incorporated in our control
design approach.

3. The variables P, L, α and β are independent of the time horizon T of the
experiment. In fact, note that P ∈ Rn×n, L ∈ Rm×n and α, β ∈ R. Also,
the LMI (FS) is of dimension (3n + m)× (3n + m) and thus independent of
T. As such, our approach fundamentally differs from the design methods
in [17, 47] where certain decision variables have dimension T × n, c.f. [47,
Thm. 6] and [17, Cor. 6]. We believe that our T-independent design method

4 In addition, we remark that even if the generalized Slater condition does not hold, the “if" statement
of Theorem 5.7 remains true.

5 In fact, it was mentioned in [101] that involving the condition [17, Eq. (3)] in design procedures is still
an open problem.
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will play a crucial role in control design from larger data sets. We note that
the collection of big data sets is often unavoidable, for example because
the signal-to-noise ratio is small, or because the data-generating system is
large-scale.

Remark 5.4. We note that under the extra assumption

rank
[

X−
U−

]
= n + m (5.28)

it is possible to prove a variant Theorem 5.7 in which the non-strict inequality is
replaced by a strict inequality, and the term −βI is removed. This can be done
by invoking Theorem 5.5, which is possible since (5.28) implies that the set Σ is
bounded. The reason is that the coefficient matrix N22 defining the quadratic
term in (5.10) is negative definite if (5.28) holds.

Here we chose to state and prove Theorem 5.7 in the slightly more general
setting without assuming (5.28). In the discussion preceding Theorem 5.7 we
have verified the assumptions of Theorem 5.6 for M and N in (5.24), (5.25).
In particular, this implies that the subspace inclusions (5.21) hold and thus
ker

[
X>− U>−

]
⊆ ker

[
I K>

]
, equivalently

im
[

I
K

]
⊆ im

[
X−
U−

]
. (5.29)

Therefore, any controller K that stabilizes the systems in Σ is necessarily of the
form (5.29). This generalizes [221, Lem. 15] (see also Lemma 3.1 of this thesis) to
the case of noisy data.

5.5 inclusion of performance specifications
In this section we extend our data-driven stabilization result by including different
performance specifications. In particular, we will treat the H2 and H∞ control
problems, thereby illustrating the general applicability of the theory in Section 5.3.

5.5.1 H2 control

As before, consider the the unknown system (5.1). We associate to (5.1) a perfor-
mance output

z(t) = Cx(t) + Du(t), (5.30)

where z ∈ Rp, and C and D are known matrices that specify the performance.
For any (A, B) ∈ Σ explaining the data, the feedback law u = Kx yields the
closed-loop system

x(t + 1) = (A + BK)x(t) + w(t)

z(t) = (C + DK)x(t).
(5.31)
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The transfer matrix from w to z of (5.31) is given by

G(z) := (C + DK)(zI − (A + BK))−1,

and itsH2 norm is denoted by ‖G(z)‖H2 . Let γ > 0. It is well-known that A+ BK
is stable and ‖G(z)‖H2 < γ if and only if there exists a matrix P = P> > 0 such
that

P > (A + BK)>P(A + BK) + (C + DK)>(C + DK)

tr P < γ2.
(5.32)

The data-driven H2 problem entails the computation of a feedback gain K from
data such that ‖G(z)‖H2 < γ for all (A, B) ∈ Σ. Similar to our results for quadratic
stabilization, we restrict the attention to a matrix P that is common for all (A, B).
This leads to the following natural definition.

Definition 5.2. The data (U−, X) are informative forH2 control with performance γ
if there exist matrices P = P> > 0 and K such that (5.32) holds for all (A, B) ∈ Σ.

With the theory of Section 5.3 in place, characterizing informativity for H2
control essentially boils down to massaging the inequalities (5.32) such that they
are amenable to design. To this end, note that the first inequality of (5.32) is
equivalent to

Y− A>Y,LPAY,L − C>Y,LCY,L > 0,

where we defined AY,L := AY + BL and CY,L := CY + DL with Y := P−1 and
L := KY. Using a Schur complement argument, this is equivalent to[

Y− C>Y,LCY,L A>Y,L
AY,L Y

]
> 0, (5.33)

Now, (5.33) holds if and only if

Y− C>Y,LCY,L > 0, (5.34)

Y− AY,L(Y− C>Y,LCY,L)
−1 A>Y,L > 0. (5.35)

Note that (5.34) is independent of A and B. In turn, we can write (5.35) as I
A>

B>


>Y 0

0 −
[

Y
L

]
(Y− C>Y,LCY,L)

−1
[

Y
L

]> 
︸ ︷︷ ︸

=:M

 I
A>

B>

> 0. (5.36)

Note that the inequality (5.36) is of a form where A and B appear on the left and
their transposes appear on the right, analogous to (5.11). As such, we are in a
position to apply Theorem 5.6. In fact, we derive the following theorem.
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Theorem 5.8. Assume that the generalized Slater condition (5.15) holds for N
in (5.25) and some Z̄ ∈ R(n+m)×n. Then the data (U−, X) are informative for
H2 control with performance γ if and only if there exist matrices Y = Y> > 0,
Z = Z> and L, and scalars α > 0 and β > 0 satisfying


Y− βI 0 0 0 0

0 0 0 Y 0
0 0 0 L 0
0 Y L> Y C>Y,L
0 0 0 CY,L I

− α


I X+

0 −X−
0 −U−
0 0
0 0


[

Φ11 Φ12
Φ>12 Φ22

] 
I X+

0 −X−
0 −U−
0 0
0 0


>

> 0

[
Y C>Y,L

CY,L I

]
> 0,

[
Z I
I Y

]
> 0, tr Z < γ2.

(H2)
Moreover, if Y and L satisfy (H2) then K := LY−1 is such that A + BK is stable

and ‖G(z)‖H2 < γ for all (A, B) ∈ Σ.

Proof. Suppose that (H2) is feasible and define P := Y−1 and K := LP. The
last two inequalities of (H2) imply that tr P < γ2. We now compute the Schur
complement of the first LMI in (H2) with respect to the diagonal block[

Y C>Y,L
CY,L I

]
.

We thereby make use of the fact that this block is nonsingular by the second LMI
of (H2). The computation of the Schur complement results in

M− αN >
[

βI 0
0 0

]
, (5.37)

where M is defined in (5.36) and N is defined in (5.25). We thus conclude that
the inequality (5.36) is satisfied for all (A, B) ∈ Σ. As such, (5.35) holds for all
(A, B) ∈ Σ. Note that (5.34) holds by the second LMI of (H2). Therefore, we
conclude that (5.32) holds for all (A, B) ∈ Σ. In other words, the data (U−, X)
are informative for H2 control with performance γ, and K = LY−1 is a suitable
controller.

Conversely, suppose that the data (U−, X) are informative for H2 control with
performance γ. Then there exist matrices P = P> > 0 and K such that (5.32)
holds for all (A, B) ∈ Σ. Define Y := P−1, L := KY and Z := P. Clearly, the last
two inequalities of (H2) are satisfied by definition of Z. In addition, we know
that (5.34) and (5.35) hold for all (A, B) ∈ Σ. By (5.34), the second LMI of (H2)
is satisfied. To prove that the first LMI of (H2) also holds, we want to apply
Theorem 5.6. Note that we have already verified the assumptions of this theorem
for the matrix N in (5.25), see the discussion preceding Theorem 5.7. In addition,
we note that

M22 = −
[

Y
L

]
(Y− C>Y,LCY,L)

−1
[

Y
L

]>
6 0
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since Y − C>Y,LCY,L > 0. Hence, Theorem 5.6 is applicable. We conclude that
there exist α > 0 and β > 0 such that (5.37) holds. Using a Schur complement
argument, we see that Y, L, α and β satisfy the first LMI of (H2). Thus, (H2) is
feasible which proves the theorem.

Remark 5.5. If we know a priori that the noise w is contained in a subspace, say
im E, then this information can easily be exploited in the H2 controller design. In
fact, we only need to replace the LMI involving Z by[

Z E>

E Y

]
> 0.

We recall that prior knowledge of w ∈ im E, if available, can also be captured by
our noise model, see Remark 5.2. A natural choice is thus to use E both in the
noise model (5.5) as well as in the LMI (H2). However, we remark that this is not
necessary: the noise in the experiment may come from a different subspace than
the disturbances that are attenuated by the H2 controller.

5.5.2 H∞ control

In this section we will turn our attention to the H∞ control problem. As before,
consider system (5.1) with performance output (5.30). For any (A, B) ∈ Σ, the
feedback u = Kx yields the system (5.31) with transfer matrix from w to z
given by G(z). We will denote the H∞ norm of G(z) by ‖G(z)‖H∞ . Let γ > 0.
By [198, Thm. 4.6.6(iii)], the matrix A + BK is stable and ‖G(z)‖H∞ < γ if and
only if there exists a matrix P = P> > 0 such that

P− A>K (P−1 − 1
γ2 I)−1 AK − C>K CK > 0, (5.38)

P−1 − 1
γ2 I > 0, (5.39)

where we have defined AK := A + BK and CK := C + DK. We now have the
following definition of informativity for H∞ control.

Definition 5.3. The data (U−, X) are informative for H∞ control with performance
γ if there exist matrices P = P> > 0 and K such that (5.38) and (5.39) hold for all
(A, B) ∈ Σ.

By pre- and postmultiplication of (5.38) by P−1 we obtain

Y− A>Y,L(Y−
1

γ2 I)−1 AY,L − C>Y,LCY,L > 0,

Y− 1
γ2 I > 0,
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where the matrices Y := P−1, L := KY, AY,L := AY + BL and CY,L := CY + DL
are defined as in the H2 problem. Note that the first of these inequalities can
again be written in the -by now familiar- form I

A>

B>


> 

Y− C>Y,LCY,L 0

0 −
[

Y
L

]
Z
[

Y
L

]>

 I

A>

B>

 > 0,

where Z := (Y− 1
γ2 I)−1. We thus have the following theorem.

Theorem 5.9. Assume that the generalized Slater condition (5.15) holds for N in
(5.25) and some Z̄ ∈ R(n+m)×n. Then the data (U−, X) are informative for H∞
control with performance γ if and only if there exist matrices Y = Y> > 0 and L,
and scalars α > 0 and β > 0 satisfying

Y− βI 0 0 0 C>Y,L
0 0 0 Y 0
0 0 0 L 0
0 Y L> Y− 1

γ2 I 0
CY,L 0 0 0 I

−α


I X+

0 −X−
0 −U−
0 0
0 0


[

Φ11 Φ12
Φ>12 Φ22

]
I X+

0 −X−
0 −U−
0 0
0 0


>

> 0

Y− 1
γ2 I > 0.

(H∞)
Moreover, if Y and L satisfy (H∞) then K := LY−1 is such that A + BK is stable

and ‖G(z)‖H∞ < γ for all (A, B) ∈ Σ.

The proof of Theorem 5.9 is based on Theorem 5.6. It follows similar steps as
the proof of Theorem 5.8, and is therefore not reported here.

5.6 simulation examples
In this section we illustrate our theoretical results by numerical simulations.

5.6.1 Stabilization using bounds on the noise samples

Consider an unstable system of the form (5.1) with As and Bs given by

As =

 0.850 −0.038 −0.380
0.735 0.815 1.594
−0.664 0.697 −0.064

 , Bs =

1.431 0.705
1.620 −1.129
0.913 0.369

 .

In this example, we assume that the noise samples w(t) are bounded in norm
as ‖w(t)‖2

2 6 ε for all t. As explained in Section 5.2, we can capture this prior
knowledge using the noise model (5.5) with Φ11 = TεI, Φ12 = 0 and Φ22 − I.
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We pick a time horizon of T = 20 and draw the entries of the inputs and
initial state randomly from a Gaussian distribution with zero mean and unit
variance. The noise samples are drawn uniformly at random from the ball
{w ∈ R3 | ‖w‖2

2 6 ε}. We aim at constructing stabilizing controllers from the
input/state data for various values of ε. In particular, we investigate six different
noise levels: ε ∈ {0.5, 1, 1.5, 2, 2.2, 2.4}. For each noise level, we generate 100 data
sets using the method described above. We check the generalized Slater condition
(5.15) by verifying that N in (5.25) has 3 positive eigenvalues; this turns out to
be true for all 600 data sets. For each noise level, we record the percentage of
data sets from which a stabilizing controller was found for (As, Bs) using the
formulation (FS). We display the results in the following table.

ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 2.2 ε = 2.4
100% 96% 90% 82% 75% 73%

For ε = 0.5 we find a stabilizing controller in all 100 cases. When the noise level
increases, the percentage of data sets for which the LMI (FS) is feasible decreases.
The interpretation is that by increasing the noise we enlarge the set of explaining
systems Σ. It thus becomes harder to simultaneously stabilize the systems in
Σ. Nonetheless, even for the larger noise level of ε = 2.4 we find a stabilizing
controller in 73 out of the 100 data sets.

5.6.2 H2 control of a fighter aircraft

We consider a state-space model of a fighter aircraft [198, Ex. 10.1.2]. In particular,
we discretize the model of [198] using a sampling time of 0.01, which results in
the (unstable) system of the form (5.1) with As and Bs given by

1.000 −0.374 −0.190 −0.321 0.056 −0.026
0.000 0.982 0.010 −0.000 −0.003 0.001
0.000 0.115 0.975 −0.000 −0.269 0.191
0.000 0.001 0.010 1.000 −0.001 0.001
0.000 0.000 0.000 0.000 0.741 0.000
0.000 0.000 0.000 0.000 0.000 0.741

 ,

[
0.007 0.000 −0.043 0.000 0.259 0.000
−0.003 0.000 0.030 0.000 0.000 0.259

]>
,

respectively. We consider the performance output as in (5.30) with

C =
[
0 0 0 0 0 1

]
and D = 0. First, we look for the smallest γ such that (5.32) is feasible for (As, Bs).
This minimum value of γ is 1.000 and can be regarded as a benchmark: no
data-driven method can perform better than the model-based solution using full
knowledge of (As, Bs).
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Of course, our goal is not to use the knowledge of (As, Bs) but to seek a data-
driven solution instead. Therefore, we collect T = 750 input and state samples
of (5.1). The entries of the inputs and initial state were drawn randomly from a
Gaussian distribution with zero mean and unit variance. Also the noise samples
were drawn randomly from a Gaussian distribution, with zero mean and variance
σ2 with σ = 0.005. In this example, we assume knowledge of a bound on the
energy of the noise as

W−W>− 6 1.35Tσ2 I. (5.40)

We verified that this bound is satisfied for the generated noise sequence. In
addition, we verified that the matrix N in (5.25) has 6 positive eigenvalues, thus
the generalized Slater condition (5.15) holds.

Next, we want to compute an H2 controller for the unknown system using the
generated data. We do so by minimizing γ subject to (H2). This is a semidefinite
program that we solve in Matlab, using Yalmip [115] with Mosek as an LMI solver.
The obtained controller K is given by[−0.023 1.413 0.695 0.227 −1.591 0.090

0.001 −0.041 −0.028 −0.034 0.010 −2.723

]
.

This controller stabilizes the original system (As, Bs). In addition, the system, in
feedback with K, has an H2 norm of γs where γ2

s = 1.007. We note that this is
almost identical to the smallest possible H2 norm of 1.000.

Subsequently, we repeat the above experiment using only a part of our data
set. In particular, we compute an H2 controller via the semidefinite program as
before, using only the first i samples of X+, X− and U− for i = 50, 100, . . . , 750.
We display the results in Figure 5.1.
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Figure 5.1: Achieved H2 performance of the true system in feedback with a data-based
controller (blue) and the optimal (model-based) performance of the true system
(red).
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In each of the cases a stabilizing controller was found from data. However, the
performance of these controllers when applied to the true system varies, and is
quite poor for i < 500. Starting from i = 500 and onward, the performance is
close to the optimal performance of the true system.

Next, we investigate what happens when we increase the variance σ2 of the
noise. First, we take σ = 0.05. We again generate 750 data samples, and assume
the same bound on the noise. The H2 controller we obtain is given by[−0.007 0.179 0.464 −0.284 −1.411 0.100

0.005 −0.014 −0.363 0.184 0.123 −1.514

]
,

and achieves a performance of γ2
s = 1.146 when interconnected to the true system.

Increasing the variance of the noise has the effect that the set Σ of explaining
systems becomes larger. As such, it is more difficult to control all systems in
Σ resulting in a slightly larger γs. This behavior becomes even more apparent
when increasing the variance of the noise to σ = 0.5. In this case we obtain the
controller [−0.002 −0.001 0.234 0.016 −0.553 0.020

0.001 −0.071 −0.122 −0.002 0.141 −0.550

]
which yields a performance of γ2

s = 3.579. Increasing σ even more to σ = 1
results in infeasibility of the LMI’s (H2) for any γ; the set of explaining systems
has become too large for a quadratically stabilizing controller to exist.

We remark that the size of the set Σ does not only depend on the variance
of the noise, but also on the available bound on the noise. Throughout this
example, we have used the bound (5.40). However, if we reconsider the case of
σ = 0.5 with the tighter bound W−W>− 6 1.22Tσ2 I we obtain a controller with
better performance γ2

s = 2.706. This illustrates the simple fact that data-driven
controllers not only depend on the particular design strategy, but also on the prior
knowledge on the noise.

We conclude the example with a remark on the dimension of the variables
involved in the formulation (H2). The symmetric matrices Y and Z both have 21
free variables. The matrix L contains 12 variables, and α and β are both scalar
variables. Thus, the total number of variables is 56. The size of the largest LMI
in (H2) is 21× 21. We emphasize that our approach is based directly on the set
Σ of open-loop systems and avoids the parameterization of closed-loop systems,
as employed in [17, 47]. Such parameterizations involve decision variables of
dimension T × n, which would result in at least 4500 variables in this example.

5.7 discussion and conclusions
We have studied the problem of obtaining feedback controllers from noisy data.
The essence of our approach has been to formulate data-driven control as the
problem of determining when one quadratic matrix inequality implies another
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one. To get a grip on this fundamental question, we have generalized the classical
S-lemma [169] to matrix variables. The implication involving quadratic matrix
inequalities is thereby equivalent to a linear matrix inequality in a scalar variable.
We have established several versions of the matrix S-lemma, for both strict and
non-strict inequalities. These matrix S-lemmas are interesting in their own right,
and generalize existing S-lemmas [169] as well as a theorem involving quadratic
matrix inequalities [116].

We have followed up by applying our matrix S-lemma to data-driven control. In
particular, we have given necessary and sufficient conditions under which stabiliz-
ing, H2, and H∞ controllers can be obtained from noisy data. Our control design
revolves around data-guided linear matrix inequalities, which can be solved
efficiently using modern LMI solvers. In addition to being non-conservative, an
attractive feature of our design procedure is that decision variables are independent
of the time horizon of the experiment.

So far, we have only applied the matrix S-lemma involving a strict inequality
(Thms. 5.5, 5.6) to data-driven control. However, we are convinced that also the
matrix S-lemma with non-strict inequalities (Thm. 5.4) will find applications, for
example, in the verification of dissipativity properties from data [101].

The noise model that we have employed is flexible, and can describe, e.g.,
constant disturbances, energy bounded noise and norm bounds on noise samples.
If one is only interested in the latter, however, we expect that more specific control
techniques are possible. In fact, analogous to (5.10), we can write the inequality
w(t)>w(t) 6 ε as I

A>

B>

> I x(t + 1)
0 −x(t)
0 −u(t)

 [εI 0
0 −I

] I x(t + 1)
0 −x(t)
0 −u(t)

>
︸ ︷︷ ︸

:=Nt

 I
A>

B>

 > 0.

In the spirit of the S-procedure, one could thus design a stabilizing controller
by computing6 matrices P = P> > 0 and K, and multiple non-negative scalars
α0, α1, . . . , αT−1 such that

M−
T−1

∑
t=0

αtNt > 0,

with M given by (5.24). We will consider norm bounded noise samples in more
detail in future work.

6 This procedure is likely to be conservative, however, since the classical S-lemma is in general
conservative for more than two quadratic functions [169].





6 DATA I N F O R M AT I V I T Y F O R
D I S S I PAT I V I T Y

In this chapter we focus on assessing dissipativity properties of a linear system from
measured data. We will study this problem both in the case that the data are exact
and noisy. In the case of exact data, we are able to show that one can only verify
dissipativity of a linear system from given data if the system is uniquely identifiable
from these data. In the case of noisy data we will see that the matrix S-lemma, as
established in the previous chapter, will play an important role in characterizing
informative data for dissipativity.

6.1 introduction

The theory of dissipativity was first introduced by Willems in [240]. Dissipativity
plays an important role in control design and the study of interconnections of
dynamical systems, see e.g. [188,215]. In the case that the dynamics of the system
are known, dissipativity can be verified using well-known tests involving extremal
storage functions. In addition, if the dynamics of the system are linear, one can
formulate a test for dissipativity in terms of linear matrix inequalities involving
the system matrices. However, in many situations the system dynamics are not
known a priori. In such situations, the question arises whether we can verify
dissipativity using a measured system trajectory, instead of a system model.

The problem of inferring dissipativity properties from data has been considered
in several recent publications. In [179], the set of supply rates with a given
structure with respect to which a (not necessarily linear) system is dissipative is
computed on the basis of a finite number of its input-output trajectories. In [180]
an iterative procedure is illustrated to compute the input feedforward passivity
index and the shortage of passivity for discrete-time linear systems.

The most relevant publications for the problem studied in this chapter are
[100, 101, 132, 178]. The notion of (finite-horizon) L-dissipativity was introduced
in [132] and also studied in [178]. In both these contributions, a crucial assumption
is that the input trajectory is persistently exciting of a sufficiently high order
(see [241]). This property of the input sequence can be shown to imply that the
data-generating system is uniquely identifiable on the basis of the data.

In this chapter we study the more classical notion of dissipativity for linear
systems, rather than L-dissipativity. We consider a similar setup as the one
in [100, 101]. In these papers, sufficient conditions were given under which
dissipativity of a system can be ascertained using data. The main difference
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between this chapter and [100,101] is that the conditions we provide are necessary
and sufficient for data-driven dissipativity, both in the cases of noiseless and noisy
data. An additional difference is that in our setting, the matrices defining the
system’s output are a priori unknown.

Specifically, our contributions are the following. First, we prove that dissi-
pativity of an unknown linear system can only be ascertained if a data matrix
involving measured states and inputs has full rank. In the noiseless data case,
this implies that we can only verify dissipativity from data if the data-generating
system is the only one that explains the data. In this case, dissipativity of the
unknown system can be ascertained if and only if a data-based linear matrix
inequality is feasible. In the noisy data case, we need a new type of dualization
lemma that we prove in this chapter. We combine this dualization lemma with
the matrix S-lemma (see [218] and Chapter 5), to provide a neat data-driven test
for dissipativity in the noisy data setting.

The outline of this chapter is as follows. In Section 6.2 we revisit dissipativity of
discrete-time linear time-invariant systems. In Section 6.3 we set up the problems.
Next, Section 6.4 contains our main results. Finally, we provide conclusions in
Section 6.5 and proofs of auxiliary results in Section 6.6.

Notation

The inertia of a symmetric matrix S is denoted by In(S) = (ρ−, ρ0, ρ+) where
ρ−, ρ0, and ρ+ respectively denote the number of negative, zero, and positive
eigenvalues of S. The interior of a set V is denoted by int(V).

6.2 dissipativity of linear systems
Consider a linear discrete-time input/state/output system

x(t + 1) = Ax(t) + Bu(t) (6.1a)

y(t) = Cx(t) + Du(t) (6.1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
Let S = S> ∈ R(m+p)×(m+p). The system (6.1) is said to be dissipative with

respect to the supply rate

s(u, y) =
[

u
y

]>
S
[

u
y

]
(6.2)

if there exists P ∈ Rn×n with P = P> > 0 such that the dissipation inequality

x(t)>Px(t) + s
(
u(t), y(t)

)
> x(t + 1)>Px(t + 1) (6.3)

holds for all t > 0 and for all trajectories (u, x, y) : N→ Rm+n+p of (6.1).
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It follows from (6.3) that dissipativity with respect to the supply rate (6.2) is
equivalent with the feasibility of the linear matrix inequalities P = P> > 0 and[

I 0
A B

]> [P 0
0 −P

] [
I 0
A B

]
+

[
0 I
C D

]>
S
[

0 I
C D

]
> 0. (6.4)

6.3 informativity: a vocabulary
Consider the linear discrete-time input/state/output system

x(t + 1) = Asx(t) + Bsu(t) + w(t) (6.5a)

y(t) = Csx(t) + Dsu(t) + z(t) (6.5b)

where (u, x, y) ∈ Rm+n+p are the input, state and output, and (w, z) ∈ Rn+p are
noise terms. Throughout the chapter, we assume that the “true" system matrices
(As, Bs, Cs, Ds) and the noise (w, z) are unknown. What is known instead are
a finite number of input/state/output measurements harvested from the true
system (6.5):

u(0), u(1), . . . , u(T − 1)

x(0), x(1), . . . , x(T)

y(0), y(1), . . . , y(T − 1).

We collect these data in the matrices

X :=
[
x(0) x(1) · · · x(T)

]
X− :=

[
x(0) x(1) · · · x(T − 1)

]
X+ :=

[
x(1) x(2) · · · x(T)

]
U− :=

[
u(0) u(1) · · · u(T − 1)

]
Y− :=

[
y(0) y(1) · · · y(T − 1)

]
.

Remark 6.1. To make progress on the general problem of inferring dissipativity
properties from input/output data, it makes sense to consider the simpler one
in which the state is directly measured, even though experiments usually only
measure inputs and outputs. As a matter of fact, in this chapter we show that in
this way definitive conclusions can be drawn about the possibility of ascertaining
dissipativity from data.

Our goal is to infer dissipativity properties of the true system from the data
(U−, X, Y−). We define

ΣN =

{
(A, B, C, D) |

[
X+

Y−

]
−
[

A B
C D

] [
X−
U−

]
∈ N

}
,
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where N ⊆ R(n+p)×T is a set associated with the noise model to be specified
below. We assume that

(As, Bs, Cs, Ds) ∈ ΣN . (6.7)

In the sequel, we will consider three types of noise models. The first one will
capture noise-free situations in which the measurements (U−, X, Y−) are exact:

N0 := {0}. (6.8)

The second noise model is defined by

N1 :=

{
V ∈ R(n+p)×T |

[
I

V>

]>[Φ11 Φ12
Φ>12 Φ22

][
I

V>

]
> 0

}
, (6.9)

where Φ11 = Φ>11 ∈ R(n+p)×(n+p), Φ12 ∈ R(n+p)×T , Φ22 = Φ>22 ∈ RT×T . This
noise model was studied before [218] in the context of state feedback control, see
also Chapter 5.

The third noise model is defined by

N2 := {V ∈ R(n+p)×T |
[

I
V

]>[Θ11 Θ12
Θ>12 Θ22

][
I
V

]
> 0} (6.10)

where Θ11 = Θ>11 ∈ RT×T , Θ12 ∈ RT×(n+p), Θ22 = Θ>22 ∈ R(n+p)×(n+p). This
noise model was also studied in [17, 101] in the contexts of state feedback control
and dissipativity.

We now define the property of informativity for dissipativity.

Definition 6.1. Let a noise modelN be given. The data (U−, X, Y−) are informative
for dissipativity with respect to the supply rate (6.2) if there exists P = P> > 0
such that the LMI (6.4) holds for every system (A, B, C, D) ∈ ΣN .

The following assumptions will be valid throughout the chapter:

(A1) The matrix S has inertia In(S) = (p, 0, m).

(A2) The sets N1 and N2 are bounded and have nonempty interior.

Assumption (A1) is satisfied, for example, for the positive-real and bounded-
real case [188]. Indeed, in the positive-real case we have that m = p and

S =

[
0 Im
Im 0

]
,

so that In(S) = (m, 0, m). In the bounded-real case we have

S =

[
γ2 Im 0

0 −Ip

]
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for γ > 0, which implies that In(S) = (p, 0, m). Assumption (A2) also turns out
to be instrumental in computing storage functions of the “dual" system from
those of the primal one; see Proposition 6.2.

Assumption (A2) can be verified straightforwardly using the following lemma
which we prove in Section 6.6.1.

Lemma 6.1. Let Ψ11 = Ψ>11 ∈ Rq×q, Ψ12 ∈ Rq×r, and Ψ22 = Ψ>22 ∈ Rr×r. Then,
the set

N :=

{
R ∈ Rr×q |

[
I
R

]> [Ψ11 Ψ12
Ψ>12 Ψ22

] [
I
R

]
> 0

}
is bounded and has nonempty interior if and only if Ψ22 < 0 and Ψ11 −
Ψ12Ψ−1

22 Ψ>12 > 0.

Moreover, it is always possible to convert noise model N1 to N2 and vice versa.
To do this, one can use the following type of dualization lemma involving nonstrict
inequalities and matrix variables (see also [188, Lem. 4.9] for a “standard"
dualization lemma). We postpone the proof of Lemma 6.2 to Section 6.6.2.

Lemma 6.2. Let

Ψ =

[
Ψ11 Ψ12
Ψ>12 Ψ22

]
where Ψ11 = Ψ>11 ∈ Rq×q, Ψ12 ∈ Rq×r, and Ψ22 = Ψ>22 ∈ Rr×r be such that
Ψ22 < 0 and Ψ11 −Ψ12Ψ−1

22 Ψ>12 > 0. Define

Ξ :=
[

0 −Ir
Iq 0

]
Ψ−1

[
0 −Iq
Ir 0

]
.

Let R ∈ Rr×q. Then, [
I
R

]>
Ψ
[

I
R

]
> 0 (6.11)

if and only if [
I

R>

]>
Ξ
[

I
R>

]
> 0. (6.12)

In the next section we will provide necessary and sufficient conditions for data
informativity as defined in Definition 6.1 for the noise models N0, N1, and N2.

6.4 main results

6.4.1 A necessary condition for informativity

We begin with a necessary condition for informativity, that applies to all three
noise models.
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Theorem 6.1. Let a noise model N be given. If the data (U−, X, Y−) are informa-
tive for dissipativity with respect to the supply rate (6.2), then[

X−
U−

]
has full row rank. (6.13)

Proof. Suppose that (6.13) does not hold. Then, there exist ξ ∈ Rn and η ∈ Rm

such that ξ>ξ + η>η = 1 and [
ξ> η>

] [X−
U−

]
= 0. (6.14)

The set Γ = {u | ∃ y such that s(u, y) < 0} has nonempty interior since there
exists (û, ŷ) with s(û, ŷ) < 0 due to Assumption (A1). We claim that there exist
x ∈ Rn and u ∈ Γ such that

ξ>x + η>u = 1. (6.15)

Indeed, if ξ 6= 0, then one can construct x and u by selecting u ∈ Γ arbitrarily,

and by defining x := 1−η>u
ξ>ξ

ξ. If ξ = 0 then x ∈ Rn can be selected arbitrarily. In
this case, we can choose u as follows. Since Γ has nonempty interior, there exists
ū ∈ Γ such that η>ū 6= 0. Note that αū ∈ Γ for all nonzero α ∈ R. As such, there
exists an α ∈ R such that u := αū ∈ Γ and η>u = 1. For this u, we obtain (6.15)
which proves our claim.

Since u ∈ Γ, there exists y such that s(u, y) < 0. Let (A0, B0, C0, D0) ∈ ΣN .
Define

ζ := x− A0x− B0u and θ := y− C0x− D0u, (6.16)

and [
A B
C D

]
:=
[

A0 B0
C0 D0

]
+

[
ζ
θ

] [
ξ> η>

]
.

It follows from (6.14) that (A, B, C, D) ∈ ΣN . Since the data are informative for
dissipativity with respect to the supply rate (6.2), there must exist P = P> > 0
such that [

I 0
A B

]> [P 0
0 −P

] [
I 0
A B

]
+

[
0 I
C D

]>
S
[

0 I
C D

]
> 0. (6.17)

Note that [
I 0
A B

] [
x
u

]
=

[
x
x

]
and

[
0 I
C D

] [
x
u

]
=

[
u
y

]
due to (6.15) and (6.16). Therefore, the following inequality holds:[

x
u

]>([ I 0
A B

]> [P 0
0 −P

] [
I 0
A B

]
+

[
0 I
C D

]>
S
[

0 I
C D

])[
x
u

]

=

[
x
x

]> [P 0
0 −P

] [
x
x

]
+

[
u
y

]>
S
[

u
y

]
= s(u, y) < 0.

However, this contradicts (6.17). Consequently, (6.13) holds.
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6.4.2 Informativity and noiseless data

We now give a characterization of informativity for dissipativity for the noiseless
case.

Theorem 6.2. Consider the noise model N0. The data (U−, X, Y−) are informative
for dissipativity with respect to the supply rate (6.2) if and only if

rank
[

X−
U−

]
= n + m (6.18)

and there exists P = P> > 0 such that[
X−
X+

]> [P 0
0 −P

] [
X−
X+

]
+

[
U−
Y−

]>
S
[

U−
Y−

]
> 0. (6.19)

Proof. To prove the “if" part, note that (6.18) implies that ΣN0 is a singleton. It
follows from (6.7) that

ΣN0 = {(As, Bs, Cs, Ds)}
and hence [

X+

Y−

]
=

[
As Bs
Cs Ds

] [
X−
U−

]
.

Define

L :=
[

I 0
As Bs

]>[P 0
0 −P

][
I 0

As Bs

]
+

[
0 I

Cs Ds

]>
S
[

0 I
Cs Ds

]
.

Then (6.19) implies [
X−
U−

]>
L
[

X−
U−

]
> 0. (6.20)

It follows again from (6.18) that L > 0. By (6.4), this means that the system
(As, Bs, Cs, Ds) is dissipative with respect to the supply rate (6.2).

To prove the “only if" part, note that it follows from Theorem 6.1 that (6.18)
holds. Hence we have

ΣN0 = {(As, Bs, Cs, Ds)}.
Since the data are informative for dissipativity for the given N0, there exists
P = P> > 0 such that[

I 0
As Bs

]> [P 0
0 −P

] [
I 0

As Bs

]
+

[
0 I

Cs Ds

]>
S
[

0 I
Cs Ds

]
> 0.

By post- and pre-multiplying this expression by
[

X−
U−

]
and its transpose, we

conclude that (6.19) holds.



118 data informativity for dissipativity

Remark 6.2. Condition (6.18) implies that even if the state is measured (a more
advantageous situation than knowing only the input-output data, as is typically
assumed in data-driven applications), it is only possible to ascertain dissipativity
from data if the plant is uniquely identifiable, i.e., if |ΣN0 | = 1. Consequently, in
the noise-free setting, methods for determining dissipativity directly from data are
conceptually equivalent with indirect ones consisting of a system identification
stage, followed by a second one involving a check on the solvability of an LMI
(condition (6.4)).

6.4.3 Informativity and noisy data

We first consider the noise model N1 defined in (6.9). Define

N1 :=

 I
X+

Y−

0
−X−
−U−

[Φ11 Φ12
Φ>12 Φ22

] I
X+

Y−

0
−X−
−U−


>

. (6.21)

Note that (A, B, C, D) ∈ ΣN1 if and only if I

A> C>

B> D>


>

N1

 I

A> C>

B> D>

 > 0. (6.22)

Partition

S =

[
F G

G> H

]
,

where F ∈ Rm×m, G ∈ Rm×p, H ∈ Rp×p, and define

M1 :=


P 0 0 0
0 F 0 G
0 0 −P 0
0 G> 0 H

 .

With this notation in place, the problem of informativity for dissipativity thus
boils down to the question under which conditions the inequality I

A B
C D


>

M1

 I

A B
C D

 > 0 (6.23)

holds for all (A, B, C, D) satisfying I

A> C>

B> D>


>

N1

 I

A> C>

B> D>

 > 0. (6.24)
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Our strategy to get a grip on this question is to invoke the matrix S-lemma [218],
see also Chapter 5. We recall the result in what follows.

Proposition 6.1 (Matrix S-lemma). Let M, N ∈ R(q+r)×(q+r) be symmetric matri-
ces. Assume that there exists a matrix Z̄ ∈ Rr×q such that[

I
Z̄

]>
N
[

I
Z̄

]
> 0. (6.25)

Then we have that[
I
Z

]>
M
[

I
Z

]
> 0 for all Z ∈ Rr×q with

[
I
Z

]>
N
[

I
Z

]
> 0

if and only if there exists a scalar α> 0 such that M− αN> 0.

Before we can apply Proposition 6.1 we note that the inequality (6.23) is in terms
of (A, B, C, D) while the inequality (6.24) is in terms of the transposed matrices
(A>, C>, B>, D>). Therefore, we will need an additional dualization result that
we formulate in the following proposition.

Proposition 6.2. Let[
A B
C D

]
∈ R(n+p)×(n+m) and S = S> ∈ R(m+p)×(m+p).

Suppose that S satisfies Assumption (A1). Define

Ŝ :=
[

0 −Ip
Im 0

]
S−1

[
0 −Im
Ip 0

]
. (6.26)

A real n× n matrix P = P> > 0 satisfies

L1 :=
[

I 0
A B

]>[P 0
0 −P

] [
I 0
A B

]
+

[
I 0
C D

]>
S
[

I 0
C D

]
> 0 (6.27)

if and only if

L2 :=
[

I 0
A> C>

]>[P−1 0
0 −P−1

] [
I 0

A> C>

]
+

[
0 I

B> D>

]>
Ŝ
[

0 I
B> D>

]
> 0. (6.28)

The proof of Proposition 6.2 is postponed to Section 6.6.3. Next, we will use
Propositions 6.1 and 6.2 to prove the following characterization of informativity
for dissipativity, given the noise model N1.

Theorem 6.3. Suppose that there exists V ∈ R(n+m)×(n+p) such that[
I
V

]>
N1

[
I
V

]
> 0. (6.29)
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Partition [
F̂ Ĝ

Ĝ> Ĥ

]
:= −S−1,

where F̂ = F̂> ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ> ∈ Rp×p.
Given the noise modelN1, the data (U−, X, Y−) are informative for dissipativity

with respect to the supply rate (6.2) if and only if there exist a real n× n matrix
Q = Q> > 0 and a scalar α > 0 such that (LMI) holds.

Proof. To prove the “if" statement, let (A, B, C, D) ∈ ΣN1 . We multiply (LMI) from
right and left by 

I 0
0 I

A> C>

B> D>


and its transpose. By the assumption on the noise (see Equation (6.9)), this leads
to [

I 0
A> C>

]>[Q 0
0 −Q

][
I 0

A> C>

]
+

[
0 I

B> D>

]>
Ŝ
[

0 I
B> D>

]
>0,

where Ŝ is related to S via (6.26). Finally, by Proposition 6.2 we conclude that
(6.27) holds for P = Q−1. That is, the data (U−, X, Y−) are informative for
dissipativity with respect to the supply rate (6.2).

To prove the “only if" part, let P = P> > 0 satisfy[
I 0
A B

]> [P 0
0 −P

] [
I 0
A B

]
+

[
0 I
C D

]>
S
[

0 I
C D

]
> 0 (6.30)

for all (A, B, C, D) ∈ ΣN1 . Let ξ ∈ ker P. It follows from (6.30) that[
α
η

]>(
−
[

ξ>A>

B>

]
P
[
Aξ B

]
+

[
0 I

Cξ D

]>
S
[

0 I
Cξ D

]) [
α
η

]
> 0

for all α ∈ R, η ∈ Rm, and (A, B, C, D) ∈ ΣN1 . This implies that

R :=
[

0 I
Cξ D

]>
S
[

0 I
Cξ D

]
> 0


Q 0 0 0
0 Ĥ 0 −Ĝ>

0 0 −Q 0
0 −Ĝ 0 F̂

− α

 I
X+

Y−

0
−X−
−U−

[Φ11 Φ12
Φ>12 Φ22

] I
X+

Y−

0
−X−
−U−


>

> 0. (LMI)
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for every (A, B, C, D) ∈ ΣN1 . It follows from [45, Theorem 3.1] that

dim(ker R) > 1.

Therefore, Cξ = 0 for every (A, B, C, D) ∈ ΣN1 . The hypothesis (6.29) implies
that the set ΣN1 has nonempty interior. Consequently, we can conclude that ξ = 0
and hence P > 0.

Now, by Proposition 6.2 it follows that (6.28) holds for all (A, B, C, D) ∈ ΣN1 .
We define Q := P−1. By rearranging terms in (6.28) we see that

I 0
0 I

A> C>

B> D>


> 

Q 0 0 0
0 Ĥ 0 −Ĝ>

0 0 −Q 0
0 −Ĝ 0 F̂




I 0
0 I

A> C>

B> D>

 > 0

holds for all (A, B, C, D) ∈ ΣN1 , i.e., for all (A, B, C, D) satisfying (6.24). Finally,
by the matrix S-lemma, Proposition 6.1, there exists a scalar α > 0 such that (LMI)
holds. This completes the proof.

Remark 6.3. Under Assumption (A2) we can always transform the noise model
N1 to N2 and vice versa by Lemma 6.2. Therefore, by combining Theorem 6.3
and Lemma 6.2 we can also come up with necessary and sufficient conditions for
informativity for dissipativity given the noise model N2. This again results in a
data-based LMI condition for dissipativity, analogous to (LMI).

6.5 conclusions
In this chapter we have provided methods to verify dissipativity properties of
linear systems directly from measured data. We have focused both on exact
and noisy data. In the case of exact data, we have proven that one can only
ascertain dissipativity of a system from given data if the system can be uniquely
identified from the data. If this is the case, dissipativity can be verified by means
of a data-based linear matrix inequality. In the case of noisy data, we have
leveraged the matrix S-lemma and a type of dualization lemma to characterize
data informativity for dissipativity. Also in this setting, dissipativity properties
of the data-generating system can be ascertained if a data-based LMI is solvable.

6.6 proofs of auxiliary results

6.6.1 Proof of Lemma 6.1

Proof. Let

Ψ =

[
Ψ11 Ψ12
Ψ>12 Ψ22

]
.
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To prove sufficiency, note that Ψ22 < 0 implies that N is bounded. Define
R := −Ψ−1

22 Ψ>12 and note that Ψ11 −Ψ12Ψ−1
22 Ψ>12 > 0 implies

f (R) :=
[

I
R

]>
Ψ
[

I
R

]
> 0.

This means that N has nonempty interior.
To prove necessity, we first show that Ψ22 < 0. Let R ∈ int(N ) and let ξ ∈ Rr

be such that ξ>Ψ22ξ > 0. Then f (R + αξξ>(Ψ>12 + Ψ22R)) > 0 for all α > 0. Since
N is bounded, we conclude that

ξ>(Ψ>12 + Ψ22R) = 0. (6.31)

Since R ∈ int(N ) is arbitrary, it follows that for all R1, R2 ∈ int(N ) the equality
ξ>Ψ22(R1 − R2) = 0 holds. This implies that ξ>Ψ22 = 0 and, by (6.31), also
ξ>Ψ>12 = 0. Now, observe that f (R + αξξ>) = f (R) > 0 for all α ∈ R and R ∈ N .
By boundedness of N , this implies that ξ = 0. Therefore, Ψ22 < 0.

To prove the rest of the claim, let ζ ∈ Rq and η ∈ Rr be such that

Ψ
[

ζ
η

]
= 0. (6.32)

If R ∈ N then

0 6 ζ> f (R)ζ =

[
ζ

Rζ

]>
Ψ
[

ζ
Rζ

]
=

([
0

Rζ − η

]
+

[
ζ
η

])>
Ψ
([

0
Rζ − η

]
+

[
ζ
η

])
,

and thus 0 6 (Rζ − η)>Ψ22(Rζ − η). Since Ψ22 < 0, we conclude that Rζ − η = 0
for all R ∈ N . This implies that (R1 − R2)ζ = 0 for all R1, R2 ∈ N . Since
the interior of N is nonempty, we conclude that ζ = 0. Thus, (6.32) leads to
Ψ22η = 0 and since Ψ22 < 0, we conclude η = 0. Therefore, Ψ is nonsingular. By
Haynsworth’s inertia formula (see [19, Fact 6.5.5]),

In(Ψ) = In(Ψ22) + In(Ψ11 −Ψ12Ψ−1
22 Ψ>12). (6.33)

Let ν be the number of negative eigenvalues of Ψ. From Ψ22 < 0 and (6.33) we
see that ν > r. Since N is nonempty, it follows from [45, Thm. 3.1] that ν 6 r.
Therefore, we conclude that ν = r. Since Ψ is nonsingular, (6.33) implies that
Ψ11 −Ψ12Ψ−1

22 Ψ>12 > 0, proving the claim.

6.6.2 Proof of Lemma 6.2

Proof. Let [
Ψ̂11 Ψ̂12
Ψ̂>12 Ψ̂22

]
:= −Ψ−1
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where Ψ̂11 ∈ Rq×q, Ψ̂12 ∈ Rq×r, and Ψ̂22 ∈ Rr×r. Also let R ∈ Rr×q and define

MR :=

0 I R>

I Ψ̂11 Ψ̂12
R Ψ̂>12 Ψ̂22

 .

By Haynsworth’s inertia theorem (see [19, Fact 6.5.5]) we have

In(MR) = In(−Ψ−1) + In

([
I
R

]>
Ψ
[

I
R

])
. (6.34)

Next, we define

N :=
[

0 I
I Ψ̂11

]
.

Note that

N−1 =

[−Ψ̂11 I
I 0

]
.

By [117, Lemma 5.1] the matrix N has inertia In(N) = (q, 0, q). We also have that
the Schur complement of MR with respect to N is given by

Ψ̂22 −
[
R Ψ̂>12

] [−Ψ̂11 I
I 0

] [
R>

Ψ̂12

]
=

Ψ̂22 + RΨ̂11R> − RΨ̂12 − Ψ̂>12R> =[
I

R>

]> [ Ψ̂22 −Ψ̂>12
−Ψ̂12 Ψ̂11

] [
I

R>

]
=[

I
R>

]>
Ξ
[

I
R>

]
.

This implies that

In(MR) = In(N) + In

([
I

R>

]>
Ξ
[

I
R>

])
. (6.35)

Since Ψ22 < 0 and Ψ11 − Ψ12Ψ−1
22 Ψ>12 > 0 by our hypotheses, we know that

In(Ψ) = (r, 0, q). Therefore, (6.34) and (6.35) imply

(q, 0, r) + In

([
I
R

]>
Ψ
[

I
R

])
= (q, 0, q) + In

([
I

R>

]>
Ξ
[

I
R>

])
.

This means that [
I
R

]>
Ψ
[

I
R

]
> 0

if and only if [
I

R>

]>
Ξ
[

I
R>

]
> 0,

which proves the lemma.
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6.6.3 Proof of Proposition 6.2

Proof. Denote [
F̂ Ĝ

Ĝ> Ĥ

]
:= −S−1

where F̂ = F̂> ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ> ∈ Rp×p. Define the matrix

M :=


P 0 A> 0 C>

0 0 B> Im D>

A B P−1 0 0
0 Im 0 F̂ Ĝ
C D 0 Ĝ> Ĥ

 .

In addition, let L1 be the Schur complement of M with respect to its submatrixP−1 0 0
0 F̂ Ĝ
0 Ĝ> Ĥ

 =: N1.

Apply Haynsworth’s inertia theorem (see [19, Fact 6.5.5]) to M, and conclude that

In(M) = In(N1) + In(L1)

= In(P) + In(−S) + In(L1). (6.36)

Now consider the following submatrix of M:

N2 :=

P 0 0
0 0 Im
0 Im F̂

 .

It follows from [117, Lemma 5.1] that

In(N2) = In(P) + (m, 0, m).

The Schur complement of M with respect to N2 is given by[
P−1 0

0 Ĥ

]
−
[

A B 0
C D Ĝ>

] P−1 0 0
0 −F̂ Im
0 Im 0

 [A B 0
C D Ĝ>

]>
.

By rearranging terms, this expression can be rewritten as

L2 :=
[

In 0
A> C>

]> [P−1 0
0 −P−1

] [
In 0

A> C>

]
+

[
0 Ip

B> D>

]>
Ŝ
[

0 Ip
B> D>

]
.

Applying Haynsworth’s inertia theorem again, we conclude that

In(M) = In(N2) + In(L2)

= In(P) + (m, 0, m) + In(L2). (6.37)

Since In(−S) = (m, 0, p), (6.36) and (6.37) imply that In(L2) = (0, 0, p − m) +
In(L1). Then, it follows that L1 > 0 if and only if L2 > 0.



7 TO P O LO GY I D E N T I F I C AT I O N O F
H E T E R O G E N E O U S N E T W O R K S

In Chapter 2 we saw how to identify state-space models from one or multiple in-
put/output trajectories. The focus of this chapter is on the identification of state-space
models with a certain structure. In particular, we will be interested in identifying a
state-space model that consists of several known subsystems that are interconnected
through an unknown topology. The problem then boils down to identifying the un-
known interactions between the subsystems from input/output data. We will focus
both on an identifiability aspect (i.e., the question when identification is conceptually
possible), and the topology identification problem itself.

7.1 introduction

Graph structure plays an important role in the overall behavior of dynamical
networks. Indeed, it is well-known that the convergence rate of consensus
algorithms depends on the connectivity of the network topology. In addition,
many properties of dynamical networks, like controllability, can be assessed on
the basis of the network graph [29, 96, 113]. Unfortunately, the graph structure
of dynamical networks is often unknown. This problem is particularly apparent
in biology, for example in neural networks and genetic networks [97], but also
emerges in other areas such as power grids [28].

To deal with this problem, several topology identification methods have been
developed. Such methods aim at reconstructing the topology (and weights) of a
dynamical network on the basis of measured data obtained from the network.

The paper [70] studies necessary and sufficient conditions for dynamical struc-
ture reconstruction, see also [246]. A node-knockout scheme for topology identifi-
cation was introduced in [153] and further investigated in [202]. Moreover, the
paper [184] studies topology identification using compressed sensing, while [130]
considers network reconstruction using Wiener filtering. A distributed algorithm
for network reconstruction has also been studied [145]. The paper [190] stud-
ies topology identification using power spectral analysis. In [226], the network
topology was reconstructed by solving certain Lyapunov equations. A Bayesian
approach to the network identification problem was investigated in [32]. The net-
work topology was inferred from multiple independent observations of consensus
dynamics in [189]. The paper [41] studies topology identification via subspace
methods. There are also several results for topology reconstruction of nonlinear
systems, see e.g., [192, 206, 231] albeit in this case few guarantees on the accuracy
of identification can be given. In addition, we remark that the complementary



126 topology identification of heterogeneous networks

problem of identifying the nodes dynamics assuming a known topology has also
been studied, see e.g. [31, 76, 81, 172, 214, 223, 224], along with the joint topology
and dynamics recovery problem [92, 229].

The goal of this chapter is to provide a comprehensive treatment of topology
identification for linear MIMO heterogeneous networks, with no assumptions on
the network structure such as sparsity or regularity. Most existing work on topol-
ogy identification emphasizes the role of the network topology by considering
relatively simple node dynamics. For example, networks of single integrators have
been studied in [79, 145, 153, 226]. In addition, the papers [202] and [190] consider
homogeneous networks comprised of identical single-input single-output systems.
Nonetheless, there are many examples of networks in which the subsystems are
not necessarily the same, for example, mass-spring-damper networks [102], where
the masses at the nodes can be distinct. Heterogeneity in the node dynamics has
also been studied in the detail in synchronization problems, see e.g. [238, 245].

We study topology identification for the general class of heterogeneous networks,
where the node dynamics are modelled by general, possibly distinct, MIMO linear
systems. We divide our analysis in two parts, namely the study of identifiability
and the development of identification algorithms. The study of identifiability of the
network topology deals with the question whether there exists a data set from
which the topology can be uniquely identified. Identifiability of the topology is
hence a property of the node systems and the network graph, and is independent
of any data. Topological identifiability is an important property. Indeed, if it
is not satisfied, then it is impossible to uniquely identify the network topology,
regardless of the amount and richness of the data. After studying topological
identifiability, we will turn our attention towards identification algorithms. Our
two main contributions are hence the following:

1. We provide conditions for topological identifiability of general heteroge-
neous networks. Our results recover an identifiability result for the special
case of networks of single integrators [163, 226]. We will also see that
homogeneous networks of single-input single-output systems have quite
special identifiability properties that do not extend to the general case of
heterogeneous networks.

2. We establish a topology identification scheme for heterogeneous networks.
The idea of the method is to reconstruct the interconnection matrix of the
network by solving a generalized Sylvester equation involving the Markov
parameters of the network. We prove that the network topology can be
uniquely reconstructed in this way, under the assumptions of topological
identifiability and persistency of excitation of the input data.

The chapter is organized as follows. In Section 7.2 we formulate the problem.
Section 7.3 contains our results on topological identifiability. Subsequently, we
describe our topology identification method in Section 7.4. Finally, we state our
conclusions in Section 7.5.
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Notation

The direct sum of matrices A1, A2, . . . , Ak is the block diagonal matrix defined by

k⊕
i=1

Ai :=


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak

 .

Let A(z) be an n × m rational matrix. Then the constant kernel of A(z) is
cker A(z) := {w ∈ Rm | A(z)w = 0}.

7.2 problem formulation
We consider a network model similar to the one studied by Fuhrmann and
Helmke [61, Ch. 9]. Specifically, we consider networks composed of N discrete-
time systems of the form

xi(t + 1) = Aixi(t) + Bivi(t)

wi(t) = Cixi(t),
(7.1)

where xi(t) ∈ Rni is the state of the i-th node system, vi(t) ∈ Rmi is its input and
wi(t) ∈ Rpi is its output for i = 1, 2, . . . , N. The real matrices Ai, Bi and Ci are of
appropriate dimensions. We occasionally use the shorthand notation (Ai, Bi, Ci)
to denote (7.1). The coupling between nodes is realized by the inputs vi(t), which
are specified as

vi(t) =
N

∑
j=1

Qijwj(t) + Riu(t),

where u(t) ∈ Rm is the external network input and Qij and Ri are real matrices
of appropriate dimensions. In addition, let Si be a real p× pi matrix and consider
the external network output y(t) ∈ Rp, defined by

y(t) =
N

∑
i=1

Siwi(t).

Then, by introducing the block diagonal matrices

A =
N⊕

i=1

Ai, B =
N⊕

i=1

Bi, and C =
N⊕

i=1

Ci, (7.2)

and the matrices

Q =

Q11 · · · Q1N
...

. . .
...

QN1 · · · QNN

 , R =

R1
...

RN

 , S> =

S>1
...

S>N

 ,
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we can represent the network dynamics compactly as

x(t + 1) = (A + BQC)x(t) + BRu(t)

y(t) = SCx(t).
(7.3)

Here x(t) = col(x1(t), x2(t), . . . , xN(t)) ∈ Rn where n is defined as n := ∑N
i=1 ni.

We emphasize that the coupling of the node dynamics is induced by the matrix
Q, which we will hence call the interconnection matrix.

There are a few important special cases of node dynamics (7.1) and resulting
network dynamics (7.3). If Ai = A0, Bi = B0 and Ci = C0 for all i = 1, 2, . . . , N,
the dynamics of all nodes in the network are the same and the resulting dynamical
network is called homogeneous. The more general setting in which the node
dynamics are not necessarily the same is referred to as a heterogeneous network.
Another special case of node dynamics occurs when mi = pi = 1 for all i =
1, 2, . . . , N. In this case, the node systems are single-input single-output (SISO)
systems, and the resulting dynamical network is referred to as a SISO network1.
Topology identification of homogeneous SISO networks has been studied in [202]
and [190]. In addition, topology identification has been well-studied (see e.g
[70, 79, 153, 226]) for networks of so-called single-integrators, in which the node
dynamics are described by ẋi(t) = vi(t). This type of node dynamics can be
seen continuous-time counterpart of (7.1) where Ai = 0, Bi = 1 and Ci = 1 for
i = 1, 2, . . . , N.

The purpose of this chapter is to study topology identification for general,
heterogeneous dynamical networks of the form (7.3). Although we focus on
discrete-time systems, our results can be stated for continuous-time systems
as well. In order to make the problem more precise, we first explain what we
mean by the topology of (7.3). Let G = (V , E) be a weighted directed graph
with V = {1, 2, . . . , N} and E ⊆ V × V such that (j, i) ∈ E if and only if Qij 6= 0.
Each edge (j, i) ∈ E is weighted by the nonzero matrix Qij. We refer to G as the
topology of the dynamical network (7.3). With this in mind, the problem of topology
identification concerns finding G (equivalently, finding Q) using measurements of
the input u(t) and output y(t) of (7.3). We assume knowledge of the local node
dynamics (i.e., the matrices A, B and C) as well as the external input/output
matrices R and S2.

At this point, we may ask the following natural question: is it possible to
uniquely reconstruct the topology of (7.3) from input/output data? To formalize
and answer this question, we define the notion of topological identifiability. Let
yu,x0,Q(t) denote the output of (7.3) at time t, where the subscript emphasizes the
dependence on the input u(·), the initial condition x0 = x(0) and interconnection
matrix Q. The following definition is inspired by [73] and defines the notion of
distinguishability of interconnection matrices.

1 Here we emphasize that “SISO" refers to the node systems of the network. The overall network
dynamics (7.3) can still have multiple external inputs and outputs.

2 This assumption is standard in the literature on topology identification, see, e.g., [190] and [202].
Without knowledge of the node dynamics, topology identification becomes a full system identification
problem.
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Definition 7.1. Let yu,x0,Q(·) and yu,x̄0,Q̄(·) denote the output trajectories of two
systems of the form (7.3) with interconnection matrices Q and Q̄ and initial
conditions x0 and x̄0, respectively. We say that Q and Q̄ are indistinguishable if
there exist initial conditions x0, x̄0 ∈ Rn such that

yu,x0,Q(·) = yu,x̄0,Q̄(·)

for all input functions u. Moreover, Q and Q̄ are said to be distinguishable if they
are not indistinguishable.

With this in mind, the topology of (7.3) is said to be identifiable if Q is distin-
guishable from all other interconnection matrices. More formally, we have the
following definition.

Definition 7.2. Consider system (7.3) with interconnection matrix Q. The topol-
ogy of system (7.3) is said to be identifiable if Q and Q̄ are distinguishable for all
real Q̄ 6= Q.

The importance of topological identifiability lies in the fact that unique recon-
struction of Q from input/output data is only possible if the topology of (7.3)
is identifiable. Indeed, if this is not the case, there exists some Q̄ 6= Q that is
indistinguishable from Q, meaning that both Q and Q̄ explain any input/output
trajectory of (7.3). Topological identifiability is hence a structural property of the
system (7.3) that is independent of a particular data sequence and that is necessary
for the unique reconstruction of Q from data.

Following [73], it is straightforward to characterize topological identifiability in
terms of the transfer matrix from u to y. This transfer function will be denoted by

FQ(z) := SC(zI − A− BQC)−1BR. (7.4)

Proposition 7.1. The topology of the networked system (7.3) is identifiable if and
only if the following implication holds:

FQ(z) = FQ̄(z) for real Q̄ =⇒ Q = Q̄.

Although Proposition 7.1 provides a necessary and sufficient condition for
topological identifiability, the condition involves the arbitrary matrix Q̄. Hence, it
is not clear how to verify the condition of Proposition 7.1. Instead, in this chapter
we want to establish conditions for topological identifiability in terms of the local
system matrices A, B and C and the matrices Q, R and S. This is formalized in
the following problem.

Problem 7.1. Find necessary and sufficient conditions on the node dynamics A,
B, C, the external input/output matrices R, S and the interconnection matrix Q
under which the topology of (7.3) is identifiable.

Our second goal is to identify Q from input/output data.

Problem 7.2. Develop a methodology to identify the interconnection matrix Q
from measurements of the input u(·) and output y(·) of system (7.3).
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7.3 conditions for topological identifiability
In this section we state our solution to Problem 7.1 by providing necessary and
sufficient conditions for topological identifiability. We start by providing an
overview of the results that are proven in this section. In the following table, “N"
denotes necessary and “S" denotes sufficient.

Thm. 7.1 General N-S conditions
Thm. 7.2 N condition; also S if R has full rank
Thm. 7.3 N condition for homogeneous SISO networks
Thm. 7.4 N-S conditions for homog. SISO networks

For analysis purposes, we first rewrite the network transfer matrix FQ(z). Note
that

zI − A = (zI − A− BQC) + BQC.

Premultiplication by (zI − A)−1 and postmultiplication by (zI − A − BQC)−1

yields

(zI − A− BQC)−1 = (zI − A)−1 + (zI − A)−1BQC(zI − A− BQC)−1.

This means that

C(zI − A− BQC)−1B = G(z) + G(z)QC(zI − A− BQC)−1B,

where G(z) = C(zI − A)−1B is a block diagonal matrix containing the transfer
matrices of all node systems. Finally, by rearranging terms we obtain

C(zI − A− BQC)−1B = (I − G(z)Q)−1 G(z). (7.5)

Note that the inverse of I − G(z)Q exists as a rational matrix. Indeed, since
(zI − A)−1 is strictly proper we see that limz→∞(I − G(z)Q) = I. Therefore, we
conclude by (7.5) that the transfer matrix FQ(z) equals

FQ(z) = S (I − G(z)Q)−1 G(z)R. (7.6)

We remark that (7.6) is an attractive representation of the network transfer matrix,
since the matrices A, B and C describing the local system dynamics are grouped
and contained in the transfer matrix G(z).

Remark 7.1. By (7.6), we see that the networked system (7.3) can be represented
by the block diagram in Figure 7.1. Hence, the problem of topology identification
can be viewed as the identification of the static output feedback gain Q, assuming
knowledge of the system G(z) and the external input/output matrices R and S.

The following theorem gives necessary and sufficient conditions for topological
identifiability. We will use the notation Gi(z) := Ci(zI − Ai)

−1Bi to denote the
transfer matrix from vi to wi of node system i ∈ V .
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u R

+

G(z) S y

Q

Figure 7.1: Block diagram of the networked system (7.3).

Theorem 7.1. Consider the networked system (7.3) and assume that the matrix S
has full column rank. The topology of (7.3) is identifiable if and only if

cker
(

Gi(z)⊗ H>Q (z)
)
= {0} for all i ∈ V , (7.7)

where HQ(z) := (I − G(z)Q)−1 G(z)R.

Proof. Suppose that FQ(z) = FQ̄(z), where Q̄ is real. Then, from (7.6) we have

S (I − G(z)Q)−1 G(z)R = S (I − G(z)Q̄)
−1 G(z)R.

By hypothesis, S has full column rank and hence

(I − G(z)Q)−1 G(z)R = (I − G(z)Q̄)
−1 G(z)R. (7.8)

We define ∆ := Q − Q̄. Then, (7.8) is equivalent to each of the following
statements:

(I − G(z)Q̄) (I − G(z)Q)−1 G(z)R = G(z)R

(I − G(z)(Q− ∆)) (I − G(z)Q)−1 G(z)R = G(z)R

G(z)∆ (I − G(z)Q)−1 G(z)R = 0

G(z)∆HQ(z) = 0.

Equivalently,
H>Q (z)∆>G>(z) = 0. (7.9)

Next, let vec(M) denote the vectorization of a matrix M. Then (7.9) is equivalent
to

(G(z)⊗ H>Q (z)) vec(∆>) = 0. (7.10)

By (7.10) it is clear that the topology of (7.3) is identifiable if and only if the
constant kernel of G(z)⊗ H>Q (z) is zero. Finally, by the block diagonal structure
of G(z), this is equivalent to (7.7) which proves the theorem.

By Theorem 7.1, topological identifiability is equivalent to Gi(z)⊗ H>Q (z) hav-
ing zero constant kernel for all i. Note that this condition generally depends on
the -a priori unknown- matrix Q. Notably, identifiability is independent of the
particular matrix Q whenever all node inputs are excited and all node outputs
are measured, as stated in the following theorem.
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Theorem 7.2. Consider the networked system (7.3). If the topology of (7.3) is
identifiable then

cker
(

G>i (z)⊗ Gj(z)
)
= {0} (7.11)

for all i, j ∈ V . In addition, suppose that S has full column rank and R has full
row rank. Then the topology of (7.3) is identifiable if and only if (7.11) holds.

The importance of Theorem 7.2 lies in the fact that the identifiability condition
(7.11) can be verified without knowledge of Q. This means that, whenever the rank
conditions on S and R hold, one can check for topological identifiability before
collecting data from the system.

Remark 7.2. A proper transfer matrix T(z) has constant kernel {0} if and only
if the matrix col(M0, M1, . . . , Mr) has full column rank. Here M0, M1, . . . , Mr are
the Markov parameters of T(z) and r is greater or equal to the order of T(z). As
such, the conditions of Theorems 7.1 and 7.2 can be verified by computing the
rank of the Markov parameter matrices associated to the transfer matrices in (7.7)
and (7.11).

Proof. We first prove the second statement. Suppose that S has full column rank
and R has full row rank. Then FQ(z) = FQ̄(z) is equivalent to

(I − G(z)Q)−1 G(z) = (I − G(z)Q̄)
−1 G(z).

We define ∆ := Q− Q̄. Then, FQ(z) = FQ̄(z) is equivalent to

G(z)∆(I − G(z)Q)−1G(z) = 0,

In other words, G(z)∆G(z)(I − QG(z))−1 = 0. This in turn is equivalent to
G(z)∆G(z) = 0. In other words,

(
G>(z)⊗ G(z)

)
vec(∆) = 0. Exploiting the block

diagonal structure of G(z), we conclude that the topology of (7.3) is identifiable
if and only if (7.11) holds.

A consequence of Theorem 7.2 is that identifiability of the topology of (7.3)
implies that the constant kernel of both G>i (z) and Gi(z) is zero for all i ∈ V .
Based on this fact, we relate topological identifiability and output controllability
of the node systems.

Definition 7.3. Consider the system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t),
(7.12)

where x ∈ Rn, u ∈ Rm and y ∈ Rp, and let yu,x0(·) denote the output trajectory
of (7.12) for a given initial condition x0 and input u(·). System (7.12) is called
output controllable if for every x0 ∈ Rn and y1 ∈ Rp there exists an input u(·) and
time instant T ∈N such that yx0,u(T) = y1.
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Corollary 7.1. If the topology of (7.3) is identifiable then the systems (Ai, Bi, Ci)
and (A>i , C>i , B>i ) are output controllable for all i ∈ V .

Proof. By Theorem 7.2, identifiability of the topology of (7.3) implies that the
constant kernel of G>i (z) is zero for all i ∈ V . Now, for w ∈ Rpi we have
w>Gi(z) = 0 if and only if w>Ci Ak

i Bi = 0 for all k = 0, 1, . . . , equivalently,
w>Ci Ak

i Bi = 0 for all k = 0, 1, . . . , ni − 1. Hence,

w>
[
CiBi Ci AiBi · · · Ci An−1

i Bi
]
= 0 =⇒ w = 0.

The latter implication holds if and only if the output controllability matrix of
(Ai, Bi, Ci) has full row rank, equivalently (Ai, Bi, Ci) is output controllable [208,
Ex. 3.22]. The proof for the necessity of output controllability of (A>i , C>i , B>i ) is
analogous and hence omitted.

Remark 7.3. Output controllability of (Ai, Bi, Ci) can be interpreted as an “ex-
citability" condition. Indeed, it guarantees that we have enough freedom in
steering the output wi(t) of each node i ∈ V .

Example 7.1. We will now illustrate Theorems 7.1 and 7.2. Consider a network
of N = 10 oscillators of the form

xi(t + 1) =
[

cos θi sin θi
− sin θi cos θi

]
xi(t) +

[
1
0

]
vi(t)

wi(t) =
[
1 0
]

xi(t),

where θi ∈ R is a constant, given by θi = (0.2 + 0.01i)π for i = 1, 2, . . . , N.
The network topology is a cycle graph G = (V , E) (with self-loops), defined
by V := {1, 2, . . . , N} and E := {(i, j) | i − j ≡ −1, 0, 1(mod N)}. Here mod
denotes the modulo operation and ≡ denotes congruence. The network nodes
are diffusively coupled, and an external input is applied to node 1, that is,

vi(t) =

{
1
2 ∑j∈Ni

(wj(t)− wi(t)) + u(t) if i = 1
1
2 ∑j∈Ni

(wj(t)− wi(t)) otherwise,

where Ni := {j | (j, i) ∈ E}. This means that the interconnection matrix Q is
defined element-wise as

Qij =


1 if i = j
− 1

2 if i 6= j and (j, i) ∈ E
0 otherwise.

Since we only externally influence the first node system, the corresponding matrix
R is given by the first column of I. We assume that we externally measure all
node outputs, meaning that S = I.

Using Theorem 7.1, we want to show that the topology of (7.3) is identifiable.
First, note that the transfer function Gi(z) of node system i is given by

Gi(z) =
z− cos θi

z2 − 2z cos θi + 1
,
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which is nonzero for all i ∈ V . Since Gi(z) is scalar, Theorem 7.1 implies that the
topology of (7.3) is identifiable if and only if cker H>Q (z) = {0}. This is equivalent
to the output controllability of the system (A + BQC, BR, C). It can be easily
verified that the output controllability matrix[

CBR C(A + BQC)BR · · · C(A + BQC)N−1BR
]

has full row rank. We therefore conclude by Theorem 7.1 that the topology of
(7.3) is identifiable. Note that the rank of the output controllability matrix (and
hence, identifiability) depends on the interconnection matrix Q.

Next, we discuss the scenario in which R = I. In this case, we can externally
influence all nodes. Now, identifiability can be checked without knowledge of
Q. In fact, by Theorem 7.2, the topology of (7.3) is identifiable if and only if
cker

(
G>i (z)⊗ Gj(z)

)
= {0}. This condition is satisfied, since all local transfer

functions are nonzero scalars.

So far, we have provided a general condition for identifiability in Theorem 7.1,
and we have discussed some of the implications of this result in Theorem 7.2
and Corollary 7.1. However, possible criticism of the results may arise from the
full rank condition on S in Theorem 7.1, which, until now, has been left rather
unjustified.

It turns out that full column rank of S (or the dual, full row rank of R) is neces-
sary for topological identifiability in case the networked system is homogeneous
and SISO. For this important class of networked systems, the rank condition on S
in Theorem 7.1 is hence not restrictive.

Theorem 7.3. Consider a homogeneous SISO network, that is, a system of the
form (7.3) with mi = pi = 1 and Ai = A0, Bi = B0 and Ci = C0 for all i ∈ V . If
the topology of (7.3) is identifiable then rank S = N or rank R = N.

Remark 7.4. Theorem 7.3 generalizes several known results (see [163, 225, 226])
for networks of single-integrators. Indeed, in the special case that A0 = 0,
B0 = C0 = 1, the node output wi(t) equals the node state xi(t) for all i ∈ V , and
Theorem 7.3 asserts that either full state measurement or full state excitation
is necessary for identifiability. This fact has been observed in different setups
in [163, Thm. 1], [226, Rem. 2], and [225, Thm. 5].

Before proving Theorem 7.3, we state the following lemma.

Lemma 7.1. Suppose that mi = pi = 1 and Ai = A0, Bi = B0 and Ci = C0 for all
i ∈ V . If the topology of (7.3) is identifiable then (Q, R) is controllable and (S, Q)
is observable.

Proof. Suppose on the contrary that (S, Q) is unobservable. Let v ∈ RN be a
nonzero vector in the unobservable subspace of (S, Q), i.e.,

SQkv = 0 for all k ∈N.
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This implies that SQk = S(Q + vv>)k for all k ∈N. By (7.6), the network transfer
matrix is given by

FQ(z) = S(I − G0(z)Q)−1G0(z)R,

where G0(z) := C0(zI− A0)
−1B0 is a scalar transfer function. Next, by expanding

FQ(z) as a formal series

FQ(z) = S

(
∞

∑
k=0

(QG0(z))k

)
G0(z)R,

it is clear that FQ(z) = FQ̄(z), where the matrix Q̄ is defined as Q̄ := Q + vv>.
Since v 6= 0, the matrices Q and Q̄ are distinct. Hence, the topology of (7.3) is not
identifiable. The proof for necessity of controllability of (Q, R) is analogous and
therefore omitted.

Proof of Theorem 7.3: Suppose on the contrary that rank R < N and rank S <
N. Then there exist nonzero vectors v1, v2 ∈ RN such that Sv1 = 0 and v>2 R = 0.
We assume without loss of generality that v2 is such that v>2 v1 6= −1. Next, we
define T := I + v1v>2 . By the Sherman-Morrison formula, T is invertible if and
only if 1 + v>2 v1 6= 0, equivalently, v>2 v1 6= −1. By our assumption on v2, the
matrix T is hence invertible, and

T−1 = I − v1v>2
1 + v>2 v1

.

We define the matrix

Q̄ := T−1QT =

(
I − v1v>2

1 + v>2 v1

)
Q(I + v1v>2 ). (7.13)

Now, we distinguish two cases: Q 6= Q̄ and Q = Q̄. First suppose that Q 6= Q̄.
Since we have Q̄ = T−1QT, TR = R and ST−1 = S, we obtain

T (I ⊗ A0 + Q⊗ B0C0)T −1 = I ⊗ A0 + Q̄⊗ B0C0

T (I ⊗ B0)R = (I ⊗ B0)R

S(I ⊗ C0)T −1 = S(I ⊗ C0),

where T := T ⊗ I. Here we have used the fact that pi = mi = 1 for all i ∈ V ,
as well as the property (X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2) for matrices X1,
X2, Y1, Y2 of compatible dimensions. We conclude that FQ(z) = FQ̄(z), i.e., the
topology of (7.3) is not identifiable.

Secondly, suppose that Q = Q̄. It follows from (7.13) that

Qv1v>2 −
v1v>2

1 + v>2 v1
Q− v1v>2

1 + v>2 v1
Qv1v>2 = 0,

equivalently,

(1 + v>2 v1)Qv1v>2 − v1v>2 Q− v1v>2 Qv1v>2 = 0.
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Multiply from right by v2 and rearrange terms to obtain

(1 + v>2 v1)v>2 v2Qv1 = (v>2 Qv2 + v>2 Qv1v>2 v2)v1.

This means that v1 is an eigenvector of Q contained in the kernel of S. Therefore,
(S, Q) is unobservable (cf. [208, Ch. 3]). By the previous lemma, this implies that
the topology of (7.3) is not identifiable. �

Theorem 7.3 is interesting because it shows that the ability to measure all node
outputs or to excite all node inputs is necessary for identifiability in the case of
homogeneous SISO networks. This result allows us to sharpen Theorem 7.1 for
this particular class of networks.

Theorem 7.4. Consider a homogeneous SISO network, that is, a system of the
form (7.3) with mi = pi = 1 and Ai = A0, Bi = B0 and Ci = C0 for all i ∈ V . The
topology of (7.3) is identifiable if and only if G0(z) := C0(zI − A0)

−1B0 6= 0 and
at least one of the following two conditions holds:

(i) rank S = N and (Q, R) is controllable

(ii) rank R = N and (S, Q) is observable.

Proof. To prove the “if"-statement, we first assume that G0(z) is nonzero, rank S =
N and (Q, R) is controllable. By Theorem 7.1, the topology of (7.3) is iden-
tifiable if and only if cker H>Q (z) = {0}, where HQ(z) is given by HQ(z) =

(I − G0(z)Q)−1G0(z)R. We expand the latter matrix as a formal series as

(I − G0(z)Q)−1G0(z)R =

(
∞

∑
k=0

(G0(z)Q)k

)
G0(z)R. (7.14)

We claim that by strict properness of G0(z), the powers Gk
0(z) (k = 0, 1, 2, . . . ) are

linearly independent over the reals. Indeed, suppose α1Gk1
0 (z) + · · ·+ αrGkr

0 (z) =

0 for α1, . . . , αr ∈ R and k1 < · · · < kr. Let G0(z) = p0(z)
q0(z)

where p0 and q0 are
polynomials. If α1 6= 0 then

pk1
0 (z)qkr−k1

0 (z)

qkr
0 (z)

= − 1
α1

r

∑
i=2

αi
pki

0 (z)q
kr−ki
0 (z)

qkr
0 (z)

. (7.15)

By strict properness of G0(z), this is a contradiction since every numerator on
the right hand side of (7.15) has degree less than pk1

0 (z)qkr−k1
0 (z). Thus α1 = 0. In

fact, we can repeat the same argument to show α1 = · · · = αr = 0, proving the
claim of independence. It follows from (7.14) that v ∈ RN satisfies v>HQ(z) = 0
if and only if

∞

∑
k=0

Gk
0(z)v

>QkR = 0,

where we leveraged the hypothesis that G0(z) is nonzero. Now, using the fact
that Gk

0(z) (k = 0, 1, 2, . . . ) are linearly independent, we obtain v>QkR = 0
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for all k ∈ N. We conclude by controllability of the pair (Q, R) that v = 0,
hence cker H>Q (z) = {0}. In other words, the topology of (7.3) is identifiable. The
sufficiency of the three conditions G0(z) 6= 0, rank R = N and (S, Q) is observable
is proven in a similar fashion and thus omitted.

To prove the “only if"-statement, suppose that the topology of (7.3) is identi-
fiable. Clearly, this implies that G0(z) 6= 0. Indeed, if G0(z) = 0 then FQ(z) = 0
and any Q̄ satisfies FQ(z) = FQ̄(z). By Lemma 7.1, (Q, R) is controllable and
(S, Q) is observable. Furthermore, by Theorem 7.3, either S or R has full rank.

It is noteworthy that full rank of either R or S is not necessary for topological
identifiability of heterogeneous networks, as demonstrated next.

Example 7.2. Consider a networked system (7.3) consisting of two nodes A1 =
0, B1 = 1, and C1 = 1, and

A2 =

[
0 1
0 0

]
, B2 =

[
0
1

]
, C2 =

[
1 0
]

.

In addition, assume that R =
[
1 0
]> and S =

[
0 1
]
. It can be easily verified that

FQ(z) =
Q21

z3 −Q11z2 −Q22z + Q11Q22 −Q12Q21
,

where Q11, Q12, Q21 and Q22 are the entries of the interconnection matrix

Q =

[
Q11 Q12
Q21 Q22

]
.

We assume that Q21 6= 0 such that FQ(z) is nonzero. Suppose that FQ(z) = FQ̄(z)
for some interconnection matrix Q̄. By comparing the numerators of FQ and FQ̄
we see that Q21 = Q̄21. Moreover, by comparing the coefficients corresponding
to z2 and z in the denominator, we obtain Q11 = Q̄11 and Q22 = Q̄22. Finally, by
comparing constant terms in the denominator, we see that Q12 = Q̄12. Hence,
Q = Q̄ and we conclude that the topology of (7.3) is identifiable. However, S
does not have full column rank and R does not have full row rank.

7.4 topology identification

In this section, we focus on the problem of topology identification, as formulated
in Problem 7.2. The proposed solution consists of two steps: first identify the
Markov parameters of the networked system (7.3), and then extract the matrix
Q. There are several ways of computing the Markov parameters on the basis of
input/output data, we will summarize some of them in the next section.
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7.4.1 Identification of Markov parameters

Consider a general linear system of the form

x(t + 1) = Ax(t) + Bu(t) (7.16)

y(t) = Cx(t) + Du(t), (7.17)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rp the output. In this sec-
tion we recap how one can identify the Markov parameters D, CB, CAB, . . . , CArB
for r ∈ N, using measurements of the input and output of (7.16)-(7.17). For a
given signal f (t) with t = 0, 1, . . . , T − 1, we define the Hankel matrix of depth k
as

Hk( f ) :=


f (0) f (1) · · · f (T − k)
f (1) f (2) · · · f (T − k + 1)

...
...

...
f (k− 1) f (k) · · · f (T − 1)

 .

Recall from Definition 2.1 that the signal f (0), f (1), . . . , f (T − 1) is said to be
persistently exciting of order k if Hk( f ) has full row rank. Now suppose that
we measure T samples of the input u(t) and output y(t) of (7.16)-(7.17) for
t = 0, 1, . . . , T− 1. We rearrange these measurements in Hankel matrices of depth
n + r + 1. Moreover, we partition

Hn+r+1(u) =
[

Up
U f

]
, Hn+r+1(y) =

[
Yp
Yf

]
,

where Up and Yp contain the first n row blocks of Hn+r+1(u) and Hn+r+1(y),
respectively. The following result from [125, Prop. 4] shows how the Markov
parameters can be obtained from data.

Theorem 7.5. Let (7.16) be controllable and assume that u(0), u(1), . . . , u(T − 1)
is persistently exciting of order 2n + r + 1. There exists a matrix G ∈ R(T−n−r)×m

such that Up
Yp
U f

G =

 0
0

col(I, 0)

 .

Moreover, the Markov parameters are given as Yf G = col(D, CB, CAB, . . . , CArB).

Theorem 7.5 shows how the Markov parameters of the system can be obtained
from measured input/output data. The input should be designed in such a way
that it is persistently exciting, special cases of such inputs have been discussed
in [227]. For u(0), u(1), . . . , u(T− 1) to be persistently exciting of order 2n + r + 1
a number of samples T > (m + 1)(2n + r + 1) − 1 is necessary. In fact, there
are input functions that achieve persistency of excitation of this order exactly
for T = (m + 1)(2n + r + 1)− 1. A refinement of Theorem 7.5 is possible using
the notion of weaving trajectories [128], which reduces the order of excitation to
2n + 1. More generally, one can extend the notion of persistency of excitation to
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an arbitrary concatenation of multiple trajectories [220] (see also Chapter 2). This
is useful in situations where single experiments are individually not sufficiently
informative.

Remark 7.5. In addition to the deterministic setting of Theorem 7.5, there are
approaches to identify the Markov parameters of systems with disturbances, i.e.,
systems of the form

x(t + 1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + v(t),

where v and w are zero mean, white vector sequences. In particular, the paper
[161] studies the identification of the system’s Markov parameters from finite
data, and provides statistical guarantees for the quality of estimation.

7.4.2 Topology identification

Subsequently, we will turn to the problem of identifying the topology of (7.3)
from the network’s Markov parameters. As in Theorem 7.1, we will assume that
S has full column rank. In fact, to lighten the notation, we will simply assume
S = I, even though all results can be stated for general matrices S having full
column rank. Under the latter assumption, the Markov parameters of (7.3) are
given by

M`(Q) := C(A + BQC)`BR.

Whenever the dependence of M`(Q) on Q is clear, we simply write M`. It is
not immediately clear how to obtain Q from the Markov parameters since M`

depends on the `-th power of A + BQC. The following lemma will be helpful
since it implies that M` can essentially be viewed as an affine function in Q and
lower order Markov parameters.

Lemma 7.2. We have that

M` = CA`BR +
`−1

∑
i=0

CAiBQM`−i−1.

Proof. First, we claim that for square matrices D1 and D2 of the same dimensions,
we have

(D1 + D2)
` = D`

1 +
`−1

∑
i=0

Di
1D2(D1 + D2)

`−i−1 (7.18)

for all ` = 1, 2, . . . . It is straightforward to prove this claim by induction. Indeed,
for ` = 1, (7.18) holds. If (7.18) holds for ` > 1 then

(D1 + D2)
`+1 = D`

1(D1 + D2) +
`−1

∑
i=0

Di
1D2(D1 + D2)

`−i

= D`+1
1 +

`

∑
i=0

Di
1D2(D1 + D2)

`−i,
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proving the claim. Subsequently, by substitution of D1 = A and D2 = BQC into
(7.18), we obtain

(A + BQC)` = A` +
`−1

∑
i=0

AiBQC(A + BQC)`−i−1.

Finally, the lemma follows by pre- and postmultiplication by C and BR, respec-
tively.

Using Lemma 7.2, we can come up with a system of linear equations in the
unknown interconnection matrix Q. To see this, let us denote K` := M` − CA`BR.
Moreover, define the Toeplitz matrix L by

L :=


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...
CAr−1B CAr−2B · · · CB

 ,

where r > 2n− 1. We apply Lemma 7.2 for ` = 1, . . . , r to obtain
K1
K2
...

Kr

 = L(I ⊗Q)


M0
M1

...
Mr−1

 . (7.19)

Next, let Li denote the (i + 1)-th column block of L and define the matrix K :=
col(K1, K2, . . . , Kr). We can then write (7.19) in a more compact form as

K =
r−1

∑
i=0

LiQMi, (7.20)

which reveals that Q is a solution to a generalized Sylvester equation. Topology
identification thus boils down to i) identifying the network’s Markov parameters,
ii) constructing the matrices K, Li and Mi for i = 0, . . . , r− 1 and iii) solving the
Sylvester equation. We summarize this procedure in the following theorem.

Theorem 7.6. Consider the networked system (7.3) with S = I. Let the Markov
parameters of (7.3) be Mi for i = 0, 1, . . . , r > 2n− 1. Let the matrices K and Li be
as before. If the topology of (7.3) is identifiable then the interconnection matrix Q
is the unique solution to the generalized Sylvester equation

K =
r−1

∑
i=0

LiQMi (7.21)

in the unknown Q.
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Proof. Note that the interconnection matrix Q is a solution to (7.21) by construc-
tion. Suppose that Q̄ is also a solution to (7.21). We want to prove that Q = Q̄.
Since Q and Q̄ are both solutions to (7.21), we have

`−1

∑
i=0

CAiBQM`−i−1(Q) =
`−1

∑
i=0

CAiBQ̄M`−i−1(Q) (7.22)

for ` = 1, 2, . . . , r. Here we have written the dependence of M`−i−1 on Q explicitly,
to distinguish between Q and Q̄. By Lemma 7.2 we have

M`(Q) = CA`BR +
`−1

∑
i=0

CAiBQM`−i−1(Q) (7.23)

M`(Q̄) = CA`BR +
`−1

∑
i=0

CAiBQ̄M`−i−1(Q̄). (7.24)

Clearly, M0(Q) = CBR = M0(Q̄). In fact, we claim that Mk(Q) = Mk(Q̄) for all
k = 0, 1, . . . , r. Suppose on the contrary that there exists an integer s such that
0 < s 6 r and Ms(Q) 6= Ms(Q̄). We assume without loss of generality that s
is the smallest integer for which this is the case. Then Mk(Q) = Mk(Q̄) for all
k = 0, 1, . . . , s− 1. By combining (7.22) and (7.23) we obtain

Ms(Q) = CAsBR +
s−1

∑
i=0

CAiBQ̄Ms−i−1(Q). (7.25)

By hypothesis Mk(Q) = Mk(Q̄) for all k = 0, 1, . . . , s− 1, which yields

Ms(Q) = CAsBR +
s−1

∑
i=0

CAiBQ̄Ms−i−1(Q̄) = Ms(Q̄),

using (7.24). This is a contradiction and we conclude that Mk(Q) = Mk(Q̄) for all
k = 0, 1, . . . , r. Since r > 2n− 1 it follows from the Cayley-Hamilton theorem that
Mk(Q) = Mk(Q̄) for all k ∈N. Thus, FQ(z) = FQ̄(z). Finally, as the topology of
(7.3) is identifiable, we conclude that Q = Q̄. This completes the proof.

7.4.3 Solving the generalized Sylvester equation

In the previous section, we saw that the generalized Sylvester equation (7.21)
plays a central role in our topology identification approach. In this section, we
discuss methods to solve this equation. One simple approach to the problem is to
vectorize Q and write (7.21) as the system of linear equations

r−1

∑
i=0

(
M>i ⊗ Li

)
vec(Q) = vec(K) (7.26)

in the unknown vec(Q) of dimension(
N

∑
i=1

mi

)(
N

∑
i=1

pi

)
.



142 topology identification of heterogeneous networks

However, a drawback of this approach is that the dimension of vec(Q) is quadratic
in the number of nodes N. This means that for large networks, solving (7.26) is
costly from a computational point of view.

For the “ordinary" Sylvester equation of the form

L0Q + QM1 = K,

there are well-known solution methods that avoid vectorization3. The general
idea is to transform the matrices L0 and M1 to a suitable form so that the Sylvester
equation is easier to solve. A classic approach is the Bartels-Stewart method [11]
that transforms L0 and M1 to real Schur form by means of two orthogonal
similarity transformations. The resulting equivalent Sylvester equation is then
simply solved by backward substitution. A Hessenberg-Schur variant of this
algorithm was proposed in [69]. The approach was also extended to be able to
deal with the more general equation

L0QM0 + L1QM1 = K,

using QZ-decompositions [69, Sec. 7]. The problem with all of these transforma-
tion methods is that they rely on the fact that the Sylvester equation consists of
exactly two Q-dependent terms, i.e., r = 1. Therefore, it does not seem possible to
extend such methods to solve generalized Sylvester equations of the form (7.21)
for r > 1, see also the discussion in [216, Sec. 2].

Nonetheless, we can improve upon the basic approach of vectorization (7.26)
by noting that the matrices A, B and C have a special structure. Indeed, recall
from (7.2) that these matrices are block diagonal. This allows us to write down a
Sylvester equation for each row block of Q. Let Q(j) denote the j-th block row of
Q for j ∈ V . Then it is straightforward to show that (7.21) is equivalent to

K(j) =
r−1

∑
i=0

L(j)
i Q(j)Mi (7.27)

for all j ∈ V , where L(j)
i is the (i + 1)-th column block of the matrix L(j), given by

L(j) :=


CjBj 0 · · · 0

Cj AjBj CjBj · · · 0
...

...
. . .

...
Cj Ar−1

j Bj Cj Ar−2
j Bj · · · CjBj

 ,

and K(j) := col(K(j)
1 , K(j)

2 , . . . , K(j)
r ) with K(j)

` the j-th row block of K`. The impor-
tance of (7.27) lies in the fact that each row block of Q can be obtained indepen-
dently, which significantly reduces the dimensions of the involved matrices. In
fact, (7.27) is equivalent to the linear system of equations

r−1

∑
i=0

(
M>i ⊗ L(j)

i

)
vec

(
Q(j)

)
= vec

(
K(j)

)
(7.28)

3 It is typically assumed that the matrices L0 and M1 are square [11, 69].



7.4 topology identification 143

in the unknown vec
(

Q(j)
)

of dimension mj

(
∑N

i=1 pi

)
. Note that the unknown is

linear in the number of nodes, assuming that mj and pi are small in comparison
to N.

7.4.4 Robustness analysis

In the case that the Markov parameters M0, M1, . . . , Mr are identified exactly, we
can reconstruct the topology by solving the generalized Sylvester equation (7.21),
or equivalently, the system of linear equations (7.26). Now suppose that our
estimates of the Markov parameters are inexact, and we have access to

M̂` := M` + ∆`, ` = 1, 2, . . . , r (7.29)

where the real matrices ∆` represent the perturbations. Accordingly, we define
K̂` := M̂` − CA`BR = K` + ∆`. Let ∆ := col(∆1, ∆2, . . . , ∆r). In this case it is
natural to look for an approximate (least squares) solution vec(Q̂) that solves

min
vec(Q̂)

‖
r−1

∑
i=0

(
M̂>i ⊗ Li

)
vec(Q̂)− vec(K̂)‖. (7.30)

An obvious question is how the solution Q̂ is related to the true interconnection
matrix Q. The following lemma provides a bound on the infinity norm of
vec(Q̂)− vec(Q). In what follows, we will make use of the constant

α := ‖
(

r−1

∑
i=0

(
M̂>i ⊗ Li

))†

‖∞,

where X† denotes the Moore-Penrose inverse of X.

Lemma 7.3. Consider the network (7.3) with S = I and suppose that its topology
be identifiable. Assume that the solution Q̂ to (7.30) is unique. Then we have that

‖ vec(Q̂)− vec(Q)‖∞

is upper bounded by

α

(
‖ vec(∆)‖∞ + ‖

r−1

∑
i=0

(∆>i ⊗ Li)‖∞‖ vec(Q)‖∞

)
. (7.31)

Note that the bound (7.31) tends to zero as ∆0, ∆1, . . . , ∆r tend to zero, so Q̂ is
a good approximation of Q for small perturbations. An overestimate of (7.31)
can be obtained if some prior knowledge is available. In particular, note that α is
readily computable from the estimated Markov parameters (7.29). The first two
norms in (7.31) can be upper bounded if a bound on ‖∆i‖∞ is given. Identification
error bounds on the Markov parameters are derived, e.g., in [161]. Finally, to
estimate ‖ vec(Q)‖∞ one requires a bound on the largest network weight, i.e., an
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upper bound on the largest (in magnitude) entry of Q. The upper bound (7.31) is
useful in the case that the nonzero weights of the network are lower bounded in
magnitude by some known positive scalar γ, an assumption that is common in
the literature on consensus networks, cf. [108, Sec. 3]. Indeed, in this case we can
can exactly identify the graph structure G from noisy Markov parameters if

α

(
‖ vec(∆)‖∞ + ‖

r−1

∑
i=0

(∆>i ⊗ Li)‖∞‖ vec(Q)‖∞

)
<

1
2

γ,

since identified entries smaller than 1
2 γ are necessarily zero. We will further

illustrate this point in Example 7.3.

Proof. We make use of the shorthand notation

E :=
r−1

∑
i=0

(
∆>i ⊗ Li

)
, AE :=

r−1

∑
i=0

(
M̂>i ⊗ Li

)
.

The hypothesis that Q̂ is unique is equivalent to AE having full column rank. By
using (7.26) and the relation M̂i = Mi + ∆i, we get

A>E AE vec(Q) = A>E (vec(K) + E vec(Q)).

Therefore, vec(Q) = A†
E(vec(K) + E vec(Q)). Further, vec(Q̂) = A†

E vec(K̂) =
A†

E vec(K + ∆). This yields

vec(Q̂)− vec(Q) = A†
E(vec(∆)− E vec(Q)).

Finally, taking infinity norms yields the upper bound (7.31). This completes the
proof.

Example 7.3. Consider the networked system in Example 7.1. We consider the
situation in which only the first node of the network is externally excited. We
already know by the discussion in Example 7.1 that the topology of the system
is identifiable. Here, our aim is to reconstruct the topology on the basis of the
noisy Markov parameters (7.29), where r = 40. The perturbations are drawn
randomly from a normal distribution using the Matlab command randn, and
scaled such that ‖∆>i ‖∞ 6 10−5 for all i. Since ∆i is a vector, this also implies that
‖∆i‖∞ 6 10−5. In this example, we assume that the weights of the network (i.e.,
the entries of Q) have magnitudes between 1

2 and 1.
We identify the matrix Q̂ by solving (7.30). To get an idea of the quality of

estimation, we want to find a bound on (7.31). First, we compute α = 464.7040.
By the assumptions on the perturbations and network weights, we obtain the
bounds ‖∆‖∞ 6 10−5 and ‖ vec(Q)‖∞ 6 1. Moreover,

‖
r−1

∑
i=0

(∆>i ⊗ Li)‖∞ 6
r−1

∑
i=0
‖∆>i ‖∞‖Li‖∞

6 4.0000× 10−4,
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where we have used [106, Thm. 8 & p. 413] to bound the Kronecker product.
Combining the previous bounds, we conclude that (7.31) is less then or equal to
0.1883. Since 0.1883 6 0.25 we can round all entries of Q̂ that are less than 0.25
to zero, since the corresponding entries in Q are necessarily zero. The resulting
zero/nonzero structure of Q̂ can be captured by a graph Ĝ that we display in
Figure 7.2. Clearly, the structure of Ĝ is identical to the graph defined in Example
7.1, and the weights of Ĝ are close to the weights of G. Next, we repeat the
experiment for larger perturbations, i.e., for ‖∆i‖∞ and ‖∆>i ‖∞ bounded by 0.01.
We identify Q̂ and use the same rounding strategy as before to obtain a graph
Ĝ in Figure 7.3. Note that Ĝ resembles the original network structure G. In fact,
all links are identified correctly, except for (7, 8) and the spurious link (4, 8). In
this case, the bound (7.31) equals 49.9997, illustrating the fact that (7.31) can be
conservative.
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Figure 7.2: Ĝ for ‖∆i‖∞ 6 10−5.
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Figure 7.3: Ĝ for ‖∆i‖∞ 6 10−2.

7.5 conclusions
In this chapter we have studied the problem of topology identification of het-
erogeneous networks of linear systems. First, we have provided necessary and
sufficient conditions for topological identifiability. These conditions were stated
in terms of the constant kernel of certain network-related transfer matrices. We
have also seen that homogeneous SISO networks enjoy quite special identifiability
properties that do not extend to the heterogeneous case. Subsequently, we have
turned our attention to the topology identification problem. The idea of the
identification approach was to solve a generalized Sylvester equation involving
the network’s Markov parameters to obtain the network topology. One of the
attractive features of the approach is that the structure of the networked system
can be exploited so that each row block of the interconnection matrix can be
obtained individually.
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The generalized Sylvester equation (7.21) plays an important role in our identi-
fication approach. Numerical solution methods are less well-developed for this
equation than they are for the standard Sylvester equation [11, 69]. Hence, it
would be of interest to further develop numerical methods for Sylvester equations
of the form (7.21). We note that a Krylov subspace method has already been
developed in [22]. Another direction for future work is to study topological identi-
fiability with prior information on the interconnection matrix. For example, from
physical principles it may be known that Q is Laplacian. Such prior knowledge
could be exploited to weaken the identifiability conditions in Theorems 7.1, 7.2
and 7.4.



8 TO P O LO GY R E C O N S T R U C T I O N O F
A U TO N O M O U S N E T W O R K S

In this chapter we continue studying the problem of topology identification, but for
networks of single-integrators without external inputs. In this case, excitation has to
be secured through the initial conditions of the network. We will provide conditions
under which unique reconstruction is possible, and also develop methods for topology
identification itself. We will see that the more specialized setup of this chapter allows
for a more particular reconstruction technique, via the solutions to certain Lyapunov
equations.

8.1 introduction

Networks of dynamical systems appear in many contexts, including biological
networks [213], water distribution networks [49] and (wireless) sensor networks
[118].

The overall behavior of a dynamical network is greatly influenced by its network
structure (also called network topology). For instance, in the case of consensus
networks, the dynamical network reaches consensus if and only if the network
graph is connected [158]. Unfortunately, the interconnection structure of dynam-
ical networks is often unavailable. For instance, in the case of wireless sensor
networks [118] the locations of sensors, and hence, communication links between
sensors is not always known. Other examples of dynamical networks with un-
known network topologies are encountered in biology, for instance in neural
networks [213] and genetic networks [97].

Consequently, the problem of network reconstruction is studied in the literature.
The aim of network reconstruction (also called topology identification) is to find
the network structure and weights of a dynamical network, using measurements
obtained from the network. To this end, most papers assume that the states of
the network nodes can be measured. The literature on network reconstruction
methods can roughly be divided into two parts, namely methods for stochastic
and deterministic dynamical networks.

Methods for stochastic network dynamics include inverse covariance estima-
tion [79], [145] and methods based on power spectral analysis [190]. Moreover,
network reconstruction based on compressive sensing [184] has been investigated.
Furthermore, the authors of [130] consider network reconstruction using Wiener
filtering.
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Apart from methods for stochastic networks, network reconstruction for deter-
ministic network dynamics has been considered. In the paper [153] the concept
of node-knockout is introduced, and a network reconstruction method based on
this concept is discussed. The paper [70] considers the problem of reconstruct-
ing a network topology from a transfer matrix of the network. Conditions are
investigated under which the network structure can be uniquely determined.
Furthermore, the paper [242] considers network reconstruction using a so-called
response network.

In this chapter, we consider network reconstruction for deterministic networks of
linear dynamical systems. In contrast to papers studying network reconstruction
for specific network dynamics such as consensus dynamics [153] and adjacency
dynamics [57], we consider network reconstruction for general linear network
dynamics described by state matrices contained in the so-called qualitative class
[87]. It is our aim to infer the unknown network topology of such dynamical
networks, from state measurements obtained from the network.

The contributions of this chapter are threefold. Firstly, we rigorously define
what we mean by solvability of the network reconstruction problem for dynamical
networks. Loosely speaking, we say that the network reconstruction problem
is solvable if the measurements obtained from a network correspond only with
the network under consideration (and not with any other dynamical network).
Secondly, we provide necessary and sufficient conditions under which the network
reconstruction problem is solvable. Thirdly, we provide a framework for network
reconstruction of dynamical networks, using constrained Lyapunov equations.
We will show that our framework can be used to establish algorithms to infer
network topologies for a variety of network dynamics, including Laplacian and
adjacency dynamics. An attractive feature of our approach is that the conditions
under which our algorithms reconstruct the network structure are not restrictive.
In other words, we show that our algorithms return the correct network structure
if and only if the network reconstruction problem is solvable.

Although the chapter mainly focuses on continuous-time network dynamics,
we also show how our reconstruction algorithms can be applied to discrete-time
systems, and to systems with sampled measurements.

The organization of this chapter is as follows. First, in Section 8.2, we introduce
preliminaries and notation. Subsequently, we give a formal problem statement
in Section 8.3. In Section 8.4 we discuss necessary and sufficient conditions for
the solvability of the network reconstruction problem. Section 8.5 provides our
network reconstruction algorithms. We consider an illustrative example in Section
8.6. Finally, Section 8.7 contains our conclusions.

8.2 preliminaries

We denote by Sn the set of n× n symmetric real matrices. For a given set S, the
power set 2S is the set of all subsets of S. Let X and Y be nonempty sets. If for
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each x ∈ X, there exists a set F(x) ⊆ Y, we say F is a set-valued map from X to Y,
and we denote F : X → 2Y. The image of a set-valued map F : X → 2Y is defined
as im F := {y ∈ Y | ∃x ∈ X such that y ∈ F(x)}.

8.2.1 Systems theory

Consider the linear time-invariant system

ẋ(t) = Ax(t)

y(t) = Cx(t),
(8.1)

where x ∈ Rn is the state, y ∈ Rp is the output, and the real matrices A and C
are of suitable dimensions. We denote the unobservable subspace of system (8.1) by〈

ker C | A
〉
, i.e., 〈

ker C | A
〉

:=
n−1⋂
i=0

ker
(

CAi
)

.

The subspace
〈

ker C | A
〉

is A-invariant, that is, A
〈

ker C | A
〉
⊆
〈

ker C | A
〉
.

Furthermore, system (8.1) is observable if and only if
〈

ker C | A
〉
= {0} (see,

e.g., Chapter 3 of [208]). If system (8.1) is observable, we say the pair (C, A) is
observable.

8.2.2 Graph theory

All graphs considered in this chapter are simple, i.e., without self-loops and with
at most one edge between any pair of vertices. We denote the set of simple,
undirected graphs of n nodes by Gn. Consider a graph G ∈ Gn, with vertex set
V = {1, 2, . . . , n} and edge set E. The set of neighbours Ni of vertex i ∈ V is
defined as Ni := {j ∈ V | (i, j) ∈ E}.

We will now define various families of matrices associated with graphs in Gn.
To this end, we first define the set-valued map Q : Gn → 2Sn

as

Q(G) := {X ∈ Sn | for all i 6= j, Xij 6= 0 ⇐⇒ (i, j) ∈ E}.

The set of matrices Q(G) is called the qualitative class of the graph G ∈ Gn

[87]. The qualitative class has recently been studied in the context of structural
controllability of dynamical networks [142], [219]. Note that each matrix X ∈
Q(G) carries the graph structure of G, in the sense that X contains nonzero
off-diagonal entries in exactly the same positions corresponding to the edges in G.
Furthermore, note that the diagonal elements of matrices in the qualitative class
are unrestricted. Hence, examples of matrices in Q(G) include the well-known
(weighted) adjacency and Laplacian matrices, which are defined next. Define the
set-valued map A : Gn → 2Sn

as

A(G) := {A ∈ Q(G) | for all i, j, Aij > 0 and Aii = 0}.
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Matrices in A(G) are called adjacency matrices associated with the graph G.
Subsequently, define L : Gn → 2Sn

as

L(G) := {L ∈ Q(G) | L1 = 0 and for all i 6= j, Lij 6 0}.

Matrices in the set L(G) are called Laplacian matrices of G. A Laplacian matrix
L ∈ L(G) is said to be unweighted if Lij ∈ {0,−1} for all i 6= j. Similarly, an
adjacency matrix A ∈ A(G) is called unweighted if Aij ∈ {0, 1} for all i, j.

8.2.3 Consensus dynamics

Consider a graph G ∈ Gn, with vertex set V = {1, 2, . . . , n} and edge set E. With
each vertex i ∈ V, we associate a linear dynamical system ẋi(t) = ui(t), where
xi ∈ R is the state of node i, and ui ∈ R is its control input. Suppose that each
node i ∈ V applies the control input

ui(t) = − ∑
j∈Ni

aij(xi(t)− xj(t)),

where aij = aji > 0 for all i ∈ V and j ∈ Ni. Then, the dynamics of the overall
system can be written as

ẋ(t) = −Lx(t), (8.2)

where x = col(x1, x2, . . . , xn), and L ∈ L(G) is a Laplacian matrix. We refer
to system (8.2) as a consensus network. Consensus networks have been studied
extensively in the literature, see, e.g., [158] and the references therein.

8.3 problem formulation
In this section we define the network reconstruction problem. We consider a linear
time-invariant network system, with nodes satisfying single-integrator dynamics.
We assume that the state matrix of the system (and hence, the network topology)
is not directly available. Moreover, we suppose that the state vector of the system
is available for measurement during a time interval [0, T]. It is our goal to find
conditions on the system under which the exact state matrix can be reconstructed
from such measurements. Moreover, if the state matrix can be reconstructed, we
want to develop algorithms to infer the state matrix from measurements.

We will now make these problems more precise. Since we want to consider net-
work reconstruction for general network dynamics (instead of specific consensus
or adjacency dynamics), we consider any set-valued map K : Gn → 2Sn

such that

∅ 6= K(G) ⊆ Q(G) (8.3)

for all G ∈ Gn. The map K is specified by the available information on the type
of network. For example, if we know that we deal with a consensus network,
we have K = −L. On the other hand, if no additional information on the
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communication weights (such as sign constraints) is known, we let K = Q. With
this in mind, we consider the system

ẋ(t) = Xx(t)

x(0) = x0,
(8.4)

where x ∈ Rn is the state, and X ∈ imK (i.e., X ∈ K(G) for some network
graph G ∈ Gn). In what follows, we denote the state trajectory of (8.4) by xx0( ·),
where the subscript indicates dependence on the initial condition x0. We assume
that X is unknown, but the state trajectory of (8.4) can be measured during the
time-interval [0, T], where T > 0. The problem of network reconstruction concerns
finding the matrix X (and thereby, the graph G), using the state measurements
xx0(t) for t ∈ [0, T]. Of course, this is only possible if the state trajectory xx0( ·)
of (8.4) is not a solution to the differential equation ẋ(t) = X̄x(t) for some
other admissible state matrix X̄ 6= X. Indeed, if this were the case, the state
measurements could correspond to a network described either by X or X̄, and
we would not be able to distinguish between the two. This leads to the following
definition.

Definition 8.1. Consider system (8.4), and denote its state trajectory by xx0( ·).
We say that the network reconstruction problem is solvable for system (8.4) if for
all X̄ ∈ imK such that xx0( ·) is a solution to

ẋ(t) = X̄x(t) for t ∈ [0, T], (8.5)

we have X̄ = X. In the case that the network reconstruction problem is solvable
for system (8.4), we say that the network reconstruction problem is solvable for
(x0, X,K).

Remark 8.1. As the state variables of system (8.4) are sums of exponential func-
tions of t, they are real analytic functions of t. It is well-known that if two real
analytic functions are equal on a non-degenerate interval, they are equal on their
whole domain (see, e.g., Corollary 1.2.5 of [104]). Consequently, the state vector
xx0( ·) of system (8.4) satisfies (8.5) for t ∈ [0, T] if and only if xx0( ·) satisfies (8.5)
for all t > 0. Therefore, Definition 8.1 can be equivalently stated for t > 0 instead
of t ∈ [0, T].

In this chapter we are interested in conditions on x0, X, and K under which
the network reconstruction problem is solvable for (x0, X,K). More explicitly, we
have the following problem.

Problem 8.1. Consider system (8.4). Provide necessary and sufficient conditions
on x0, X, and K under which the network reconstruction problem is solvable for
system (8.4).

In addition to Problem 8.1, we are interested in solving the network reconstruc-
tion problem itself. This is stated in the following problem.
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Problem 8.2. Consider system (8.4), and denote its state vector by xx0( ·). Suppose
that xx0(t) is available for measurement for t ∈ [0, T], and that the network
reconstruction problem is solvable for (8.4). Provide a method to compute the
matrix X.

Remark 8.2. Note that we assume that the states of all nodes in the network
can be measured. This assumption is necessary in the sense that the network
reconstruction problem is not solvable (in the case of Q(G)) if we can only
measure a part of the state vector. To see this, suppose that we only have access
to a p-dimensional output vector y(t) = Cx(t), where

C =
[
I 0
]
∈ Rp×n.

We claim that for each X ∈ Q(G) and x0 ∈ Rn there exists a graph Ḡ, a matrix
X̄ ∈ Q(Ḡ) \ {X} and a vector x̄0 ∈ Rn such that

CeXtx0 = CeX̄t x̄0. (8.6)

That is, we cannot distinguish between X and X̄ on the basis of output measure-
ments. To see that this claim is true, we write X as

X =

[
X11 X12
X21 X22

]
,

where the partitioning of X is compatible with the one of C. Now we distinguish
two cases. First suppose that X21 6= 0. Clearly, there exists a vector z ∈ Rn−p

such that z>X21 6= 0 and z>z = 1. Define

S :=
[

I 0
0 S22

]
,

where S22 := I − 2zz> = S−1
22 . Then let X̄ := SXS and x̄0 := Sx0. It is not difficult

to see that X̄ 6= X and (8.6) is satisfied for this choice of X̄ and x̄0. Secondly,
consider the case that X21 = 0. Then X12 = 0. We can choose X̄ as

X̄ :=
[

X11 0
0 X̄22

]
,

where X̄22 6= X22. In this case, it can be shown that X̄ and x̄0 := x0 satisfy (8.6).
Hence, for the network reconstruction problem to be solvable it is necessary to
measure all nodes.

8.4 solvability of the reconstruction problem
In this section we state our main results regarding Problem 8.1. That is, we
provide conditions on x0, X, and K under which the network reconstruction
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problem is solvable. Firstly, in Section 8.4.1 we provide necessary and sufficient
conditions for the solvability of the network reconstruction problem in the general
case that K is any mapping satisfying (8.3). Later, we consider the special cases in
which K = Q (Section 8.4.2), and the cases in which K = −L or K = A (Section
8.4.3).

8.4.1 Solvability for general K

Let G ∈ Gn be a graph, and let the mapping K be as in (8.3). Recall that we
consider the dynamical network described by system (8.4). As a preliminary
result, we give conditions under which the state trajectory xx0( ·) of system (8.4)
is also the solution to the system

ẋ(t) = X̄x(t)

x(0) = x0,
(8.7)

where X̄ ∈ K(Ḡ) for some graph Ḡ ∈ Gn. This result is given in the following
proposition.

Proposition 8.1. Consider systems (8.4) and (8.7), and let xx0( ·) be the state
trajectory of (8.4). The trajectory xx0( ·) is also the solution to system (8.7) if and
only if x0 ∈

〈
ker (X̄− X) | X

〉
.

Proof. Suppose that the state trajectory xx0( ·) of (8.4) is also the solution to system
(8.7). This means that xx0( ·) is the solution to both the differential equation

ẋ(t) = Xx(t), (8.8)

and the differential equation

ẋ(t) = Xx(t) + (X̄− X)x(t). (8.9)

In particular, by substitution of t = 0, this implies that x0 is contained in
ker (X̄− X). Moreover, by taking the i-th time-derivative of (8.8) and (8.9), we
find that x0 ∈ ker (X̄− X) Xi for i = 1, 2, . . . , n − 1. Consequently, we obtain
x0 ∈

〈
ker (X̄− X) | X

〉
.

Conversely, suppose that x0 satisfies x0 ∈
〈

ker (X̄− X) | X
〉
. By X-invariance

of
〈

ker (X̄− X) | X
〉
, this implies that the state trajectory xx0( ·) of system (8.4)

satisfies xx0(t) ∈
〈

ker (X̄− X) | X
〉

for all t > 0. Specifically, we have that
xx0(t) ∈ ker (X̄− X) for all t > 0. We conclude that xx0( ·) is the solution to
Equation (8.9), and consequently, to Equation (8.7).

Remark 8.3. Note that a condition equivalent to the one given in Proposition 8.1
can be stated in terms of the common eigenspaces of X and X̄. Such a condition
was previously proven by Battistelli et al. [14], [13] in the case that X and X̄ are
Laplacian matrices.
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By combining Proposition 8.1 and the fact that the state variables of (8.4)
are real analytic functions in t (see Remark 8.1), we obtain Theorem 8.1. This
theorem states a necessary and sufficient condition under which the network
reconstruction problem is solvable for (x0, X,K).
Theorem 8.1. Let G ∈ Gn be a graph, and let the mapping K be as in (8.3).
Moreover, consider a matrix X ∈ K(G) and a vector x0 ∈ Rn. The network
reconstruction problem is solvable for (x0, X,K) if and only if for all X̄ ∈ imK \
{X}, we have

x0 6∈
〈

ker (X̄− X) | X
〉
.

Although Theorem 8.1 gives a general necessary and sufficient condition for
network reconstruction, it is not directly clear how to verify this condition.
Especially since X is assumed to be unknown, it seems difficult to check that
x0 6∈

〈
ker (X̄− X) | X

〉
. In fact, we will show in Section 8.5 that the condition of

Theorem 8.1 can be checked using only the measurements xx0(t) for t ∈ [0, T].
Note that the condition of Theorem 8.1 is not only given in terms of x0 and X,

but also in terms of all other matrices X̄ ∈ imK. In the following theorem, we pro-
vide a simple sufficient condition for the solvability of the network reconstruction
problem, which is stated in terms of x0 and X.

Theorem 8.2. Let G ∈ Gn be a graph, and let the mapping K be as in (8.3).
Moreover, consider a matrix X ∈ K(G) and a vector x0 ∈ Rn. The network
reconstruction problem is solvable for (x0, X,K) if the pair (x>0 , X) is observable.

Proof. Suppose that (x>0 , X) is observable, and assume x0 ∈
〈

ker (X̄− X) |X
〉

for
some matrix X̄ ∈ imK. We want to show that X̄ = X. Note that by hypothesis,
we have x0 ∈ ker(X̄− X)Xi, for i = 0, 1, . . . , n− 1. As a consequence, we obtain
the equalities

X̄Xix0 = Xi+1x0, (8.10)

for i = 0, 1, . . . , n− 1. It is not difficult to see that by induction, Equation (8.10)
implies that

Xix0 = X̄ix0, (8.11)

for i = 1, 2, . . . , n. In other words, the matrix X
[
x0 Xx0 . . . Xn−1x0

]
is equal to

X̄
[
x0 X̄x0 . . . X̄n−1x0

]
. (8.12)

Since (x>0 , X) is observable and X = X>, the matrix
[
x0 Xx0 . . . Xn−1x0

]
is

invertible. This allows us to conclude that

X = X̄
[
x0 X̄x0 . . . X̄n−1x0

] [
x0 Xx0 . . . Xn−1x0

]−1 .

However, by (8.11), this implies that X = X̄. Consequently, for all X̄ ∈ imK \ {X}
we have x0 6∈

〈
ker (X̄− X) | X

〉
. Finally, we conclude by Theorem 8.1 that the

network reconstruction problem is solvable for (x0, X,K).
In the next section, we show that for K = Q, the observability condition of

Theorem 8.2 is necessary and sufficient. However, in general, the observability
condition is not necessary. In particular, this will be shown for consensus networks
in Section 8.4.3.



8.4 solvability of the reconstruction problem 155

8.4.2 Solvability for K = Q

In this subsection, we consider the case that K = Q. This case corresponds to
the situation where we do not have any additional information (such as sign
constraints) on the entries of the state matrix X. To be precise, we consider
system (8.4), where X ∈ Q(G) for some network graph G ∈ Gn. We will see
that the solvability of the network reconstruction problem for (x0, X,Q) is in fact
equivalent to the observability of the pair (x>0 , X). This is stated in the following
theorem.

Theorem 8.3. Consider a graph G ∈ Gn, let X ∈ Q(G), and let x0 ∈ Rn. The
network reconstruction problem is solvable for (x0, X,Q) if and only if the pair
(x>0 , X) is observable.

Proof. Sufficiency follows immediately from Theorem 8.2 by taking K = Q.
Hence, assume that the pair (x>0 , X) is unobservable. We want to show that the
network reconstruction problem is not solvable for (x0, X,Q). To do so, we will
construct a matrix X̄ 6= X such that x0 ∈

〈
ker (X̄− X) | X

〉
.

Let v ∈ Rn be a nonzero vector such that

v>
[
x0 Xx0 . . . Xn−1x0

]
= 0. (8.13)

Subsequently, define the matrix X̄ := X + vv>. By definition of v, we obtain
X̄ix0 = Xix0, for i = 1, 2, . . . , n. Consequently, x0 ∈

〈
ker (X̄− X) |X

〉
. It remains

to be shown that X̄ ∈ imQ, i.e., X̄ ∈ Q(Ḡ) for some Ḡ ∈ Gn. Define the simple
undirected graph Ḡ = (V, E), where V := {1, 2, . . . , n}, and for distinct i, j ∈ V,
we have (i, j) ∈ E if and only if X̄ij 6= 0. By definition of the qualitative classQ(Ḡ),
we obtain X̄ ∈ Q(Ḡ). We conclude that the network reconstruction problem is
not solvable for (x0, X,Q).

8.4.3 Solvability for K = −L and K = A

In what follows, we consider solvability of the network reconstruction problem
for consensus and adjacency networks. We will start with consensus networks.
That is, we consider the system

ẋ(t) = −Lx(t)

x(0) = x0,
(8.14)

where x ∈ Rn is the state and L ∈ L(G) denotes the Laplacian matrix of a graph
G ∈ Gn. In this section we show by means of an example that observability of
(x>0 ,−L) is not necessary for the solvability of the network reconstruction problem
for (x0,−L,−L). In Section 8.5 we will use this fact to establish an algorithm for
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network reconstruction of consensus networks, that does not require observability
of the pair (x>0 ,−L). Consider the Laplacian matrix

L =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 ,

corresponding to the star graph G depicted in Figure 8.1.

3

2

4

1

Figure 8.1: Star graph G.

Moreover, consider the initial condition x0 ∈ R4 given by x0 = col(1, 0, 3, 1).
We claim that the network reconstruction problem is solvable for (x0,−L,−L),
even though the pair (x>0 ,−L) is unobservable. Indeed, it can be verified that the
unobservable subspace of (x>0 ,−L) is

〈
ker x>0 | − L

〉
= im v, where the vector

v is defined as v := col(0, 2, 1,−3). This implies that (x>0 ,−L) is unobservable.
To prove that the network reconstruction problem is solvable for (x0,−L,−L),
consider a Laplacian matrix L̄ ∈ imL such that x0 ∈

〈
ker (L− L̄) | − L

〉
. We

obtain
(L− L̄)

[
x0 −Lx0 . . . (−L)n−1x0

]
= 0. (8.15)

In other words, the columns of the matrix D := L − L̄ are contained in the
unobservable subspace of (x>0 ,−L). Since D is symmetric and

〈
ker x>0 | − L

〉
=

im v, we find

D = α


0 0 0 0
0 4 2 −6
0 2 1 −3
0 −6 −3 9

 , (8.16)

for some α ∈ R. If α 6= 0, the entries D32 and D42 of the matrix D have opposite
sign. Since we have L32 = L42 = 0, we conclude from the relation L̄ = L− D that
L̄32 and L̄42 have opposite sign. However, this is a contradiction as L̄ is a Laplacian
matrix. Therefore, we conclude that α = 0, and hence, D = 0. Consequently,
we obtain L = L̄. By Theorem 8.1, we conclude that the network reconstruction
problem is solvable for (x0,−L,−L). Thus, we have shown that observability of
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the pair (x>0 , L) is not necessary for the solvability of the network reconstruction
problem for (x0,−L,−L).

It can be shown that im v also equals
〈

ker x>0 | A
〉
, where A ∈ A(G) denotes

the unweighted adjacency matrix associated with the star graph G depicted in
Figure 8.1. Then, using the exact same reasoning as before, we conclude that the
pair (x>0 , A) is unobservable, but the network reconstruction problem is solvable
for (x0, A,A). In other words, observability of (x>0 , A) is not necessary for the
solvability of the network reconstruction problem for (x0, A,A).

8.5 the network reconstruction problem

In this section, we provide a solution to Problem 8.2. That is, given measurements
generated by an unknown network, we establish algorithms to infer the network
topology. Similar to the setup of Section 8.4, we start with the most general case
in which K is any mapping satisfying (8.3). For this case, we obtain a general
methodology to infer X ∈ K(G) from measurements. Subsequently, we provide
specific algorithms for network reconstruction in the case that K = Q (Section
8.5.2), and in the case of consensus and adjacency networks (Section 8.5.3).

8.5.1 Network reconstruction for general K

Recall that we consider the system (8.4), where the matrix X and graph G are
unknown, but the state vector xx0( ·) of (8.4) can be measured during the time
interval [0, T]. In this section, we establish a method to infer the matrix X and
graph G using the vector xx0(t) for t ∈ [0, T]. Firstly, define the matrix

P :=
∫ T

0
xx0(t)xx0(t)

>dt =
∫ T

0
eXtx0x>0 eXtdt. (8.17)

Note that P can be computed from the measurements xx0(t) for t ∈ [0, T]. The
unknown matrix X is a solution to a Lyapunov equation involving the matrix P.
Indeed, we have

XP + PX =
∫ T

0

(
XeXtx0x>0 eXt + eXtx0x>0 eXtX

)
dt

=
∫ T

0

d
dt

(
eXtx0x>0 eXt

)
dt

= xTx>T − x0x>0 ,

(8.18)

where xT := xx0(T) = eXTx0. In other words, X satisfies the Lyapunov equation

XP + PX = Q, (8.19)
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where Q is defined as Q := xTx>T − x0x>0 . Note that we can compute the matrix
Q from the measurements xx0(t) at time t = 0 and time t = T. Therefore, if the
matrix S = X is the unique solution to the Lyapunov equation

SP + PS = Q, (8.20)

we can find X (and therefore G), by solving (8.20) for S. However, it turns out
that in general it is not necessary for network reconstruction that the Lyapunov
equation (8.20) has a unique solution S. In fact, we only need a unique solution
S in the image of K. That is, the Lyapunov equation (8.20) may have many
solutions, but if only one of these solutions is contained in imK, we can solve the
network reconstruction problem for (x0, X,K). This is stated more formally in
the following theorem.

Theorem 8.4. Let G ∈ Gn, and let the mapping K be as in (8.3). Moreover,
consider X ∈ K(G), x0 ∈ Rn, and let P and Q be as defined in (8.17) and (8.19)
respectively. The network reconstruction problem is solvable for (x0, X,K) if and
only if there exists a unique matrix S satisfying

SP + PS = Q, S ∈ imK. (8.21)

Moreover, under this condition, we have S = X.

Before we can prove Theorem 8.4, we need the following proposition, which
states that ker P equals the unobservable subspace of the pair (x>0 , X).

Proposition 8.2. Let P, x0 and X be as in (8.17). Then we have that ker P =〈
ker x>0 | X

〉
.

Proof. Let v ∈ ker P. We compute

v>Pv =
∫ >

0

(
x>0 eXtv

)2
dt = 0, (8.22)

from which we obtain x>0 eXtv = 0 for all t ∈ [0, T]. Since x>0 eXtv is a real analytic
function, we see that x>0 eXtv = 0 for all t > 0 (cf. Remark 8.1). This implies that
v ∈

〈
ker x>0 | X

〉
.

Conversely, suppose that v ∈
〈

ker x>0 | X
〉
. This implies that x>0 eXtv = 0 for all

t > 0. We compute

Pv =
∫ T

0
eXtx0x>0 eXtv dt = 0. (8.23)

In other words, we obtain v ∈ ker P. We conclude that ker P =
〈

ker x>0 | X
〉
,

which completes the proof.

Proof of Theorem 8.4. To prove the “if" part, suppose that the network reconstruc-
tion problem is not solvable for (x0, X,K). We want to prove that the solution to
(8.21) is not unique. By hypothesis, there exists a matrix X̄ ∈ imK \ {X} such that
eXtx0 = eX̄tx0 for all t ∈ [0, T]. We can repeat the discussion of Equation (8.18)
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for X̄, to show that X̄ also solves the Lyapunov equation (8.21). Consequently, we
conclude that there exists no unique solution S satisfying (8.21).

Conversely, to prove the “only if" part, suppose that there exists no unique
solution to (8.21). Note that S = X is always a solution to (8.21) by Equation (8.19).
This implies that there exists a matrix X̄ 6= X satisfying (8.21). Consequently,
X̄ ∈ imK, and

(X̄− X)P + P(X̄− X) = 0. (8.24)

Since P is symmetric positive semidefinite, there exists an orthogonal matrix
U ∈ Rn×n such that P = UΛU>, where

Λ =

[
D 0
0 0

]
,

with D a positive definite diagonal matrix. We define the matrix X̂ := U>(X̄−
X)U. It follows from (8.24) that X̂ satisfies the Lyapunov equation X̂Λ + ΛX̂ = 0.
Next, we partition X̂ as

X̂ =

[
X̂11 X̂12
X̂21 X̂22

]
,

where the partitioning of X̂ is compatible with the one of Λ. Then, we rewrite
X̂Λ + ΛX̂ = 0 as [

X̂11D + DX̂11 DX̂12
X̂21D 0

]
=

[
0 0
0 0

]
.

Since D is nonsingular, X̂12 = 0. Moreover, since D and −D do not have
common eigenvalues, the Lyapunov equation X̂11D + DX̂11 = 0 has a unique
solution given by X̂11 = 0 (cf. Theorem 2.5.10 of [12]). This means that ΛX̂ = 0.
Therefore, P(X̄ − X) = 0. By Proposition 8.2 we have x>0 Xi(X̄ − X) = 0 for
i = 0, 1, . . . , n− 1. By exploiting symmetry, we obtain x0 ∈

〈
ker(X̄−X) | X

〉
. We

conclude by Theorem 8.1 that the network reconstruction problem is not solvable
for (x0, X,K).

Finally, as we have shown in Equation (8.19) that X ∈ imK is always a solution
to the Lyapunov equation SP + PS = Q, it is immediate that S = X if there exists
a unique solution S to (8.21).

Theorem 8.4 provides a general framework for network reconstruction. Indeed,
suppose that the network reconstruction problem is solvable for (x0, X,K). We can
compute the matrices P and Q from the state measurements xx0(t) for t ∈ [0, T].
Then, network reconstruction boils down to computing the unique solution S to
the constrained Lyapunov equation (8.21). In the subsequent sections, we will
show how this can be done for several types of network dynamics.

8.5.2 Network reconstruction for K = Q

In this section, we consider network reconstruction in the case that K is equal to
Q. Based on Theorem 8.4 we will derive an algorithm to identify the unknown
matrix X ∈ Q(G) using state measurements taken from the network.
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Recall from Theorem 8.4 that the network reconstruction problem is solvable
for (x0, X,Q) if and only if there exists a unique matrix S satisfying SP + PS = Q
and S ∈ imQ. Note that imQ is equal to Sn, the set of n× n symmetric matrices.
In other words, if the network reconstruction problem is solvable for (x0, X,Q),
the solution to the problem can be found by computing the unique symmetric
solution to the Lyapunov equation SP + PS = Q. It is not difficult to see that
there exists a unique symmetric solution to SP + PS = Q if and only if there exists
a unique solution to SP + PS = Q. This yields the following corollary of Theorem
8.4.

Corollary 8.1. Let G ∈ Gn be a graph, and let X ∈ Q(G). Moreover, consider a
vector x0 ∈ Rn, and let P and Q be as defined in (8.17) and (8.19) respectively.
The network reconstruction problem is solvable for (x0, X,Q) if and only if
the Lyapunov equation SP + PS = Q admits a unique solution S. Under this
condition, we have S = X.

Based on Corollary 8.1, we establish Algorithm 1, which infers the state matrix
X and graph G from measurements. Recall from Theorem 8.3 that the network re-
construction problem is solvable for (x0, X,Q) if and only if (x>0 , X) is observable.
Of course, we can not directly check observability of (x>0 , X) since X is unknown.
However, we can in fact check observability of the pair (x>0 , X) using the matrix
P. Indeed, by Proposition 8.2, (x>0 , X) is observable if and only if the matrix P is
nonsingular. This condition is similar to a persistency of excitation condition, found
in the literature on adaptive systems, cf. Section 3.4.3 of [119].

Algorithm 1 Network reconstruction for (x0, X,Q)
Input: Measurements xx0(t) for t ∈ [0, T];
Output: Matrix X or “No unique solution exists";

1: Compute the matrix P =
∫ T

0 xx0(t)xx0(t)
>dt;

2: if rank P < n then
3: return “No unique solution exists";
4: else
5: Compute the matrix Q = x0x>0 − xTx>T ;
6: Solve SP + PS = Q with respect to S;
7: return X = S;
8: end if

A classic method to solve the Lyapunov equation in Step 6 of Algorithm 1

is the Bartels-Stewart algorithm [11]. In addition, much effort has been made to
develop methods for solving large-scale Lyapunov equations [77], [195]. Typically,
such methods use the Galerkin projection of the Lyapunov equation onto a lower-
dimensional Krylov subspace [195]. The resulting reduced problem is then solved
by means of standard schemes for (small) Lyapunov equations. Using these
techniques, it is possible to efficiently solve large-scale (n > 10000) Lyapunov
equations [195].
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Remark 8.4. In theory, the correctness of Theorem 8.4, Corollary 8.1, and Algo-
rithm 1 is independent of the exact choice of time T > 0. However, choosing
small T results in a matrix P with high condition number, and hence numerical
rank computation (as in line 2 of Algorithm 1) becomes inaccurate. Consequently,
in practice the value of T should be sufficiently large.

Remark 8.5. Even though the focus of this chapter is on continuous-time systems,
we remark that Algorithm 1 can also be applied for network reconstruction of
discrete-time networks of the form

z(k + 1) = Mz(k) for k ∈N

z(0) = z0,
(8.25)

where z ∈ Rn and M ∈ imQ. In this case, we assume that we can measure
the state z(k), for k = 0, 1, . . . , m, where m > n. From these measurements, we
compute

P :=
m−1

∑
k=0

z(k)z(k)>, Q :=
m−1

∑
k=0

z(k + 1)z(k)> + z(k)z(k + 1)>.

Similar to the continuous-time case, the matrix P is nonsingular if and only if
(z>0 , M) is observable. Under this condition, we can reconstruct M by computing
the unique solution to the Lyapunov equation MP + PM = Q.

The above approach can also be used for the continuous-time network (8.4)
in the case that we cannot measure the state trajectory xx0( ·) during a time
interval, but only have access to sampled measurements. Indeed, suppose that we
can measure xx0(kτ) for k = 0, 1, . . . , m, where τ > 0 is some sampling period.
We can then use the framework for discrete-time systems on z(k) := xx0(kτ)
to reconstruct the matrix M = eXτ . Subsequently, we can reconstruct X by
computing the (unique) matrix logarithm of eXτ .

8.5.3 Network reconstruction for K = −L and K = A

Although Algorithm 1 is applicable to general network dynamics described by
state matrices X ∈ Q(G), the observability condition guaranteeing uniqueness
of the solution to (8.20) can be quite restrictive if the type of network is a priori
known. We have already seen in Section 8.4.3 that observability of the pair (x>0 , X)
is not necessary for the solvability of the network reconstruction problem for
adjacency or consensus networks. Therefore, in this section we focus on network
reconstruction for (x0,−L,−L) and (x0, A,A).

Recall from Theorem 8.4 that the network reconstruction problem is solvable for
(x0,−L,−L) if and only if there exists a unique matrix S satisfying SP + PS = Q
and S ∈ − imL. Based on the definition of L (see Section 8.2.2), we find the
following corollary of Theorem 8.4.

Corollary 8.2. Let G ∈ Gn be a graph, and let L ∈ L(G). Moreover, consider a
vector x0 ∈ Rn, and let P and Q be as defined in (8.17) and (8.19) respectively.
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The network reconstruction problem is solvable for (x0,−L,−L) if and only if
there exists a unique solution S to

SP + PS = Q, S ∈ Sn, S1 = 0, Sij > 0 for i 6= j. (8.26)

Moreover, under this condition, we have S = −L.

The constraint Sij > 0 for i 6= j can be stated as a linear matrix inequality (LMI)
in the matrix variable S. Indeed, Sij > 0 is equivalent to e>i Sej > 0, where ek
denotes the k-th column of the n× n identity matrix. Consequently, by Corollary
8.2, network reconstruction for (x0,−L,−L) boils down to finding the matrix S
satisfying linear matrix equations and linear matrix inequalities, given by (8.26).
We can deduce a corollary similar to Corollary 8.2 for the class A(G). In this case,
the restrictions on the elements of S are Sii = 0 and Sij > 0 for all i ∈ V and all
j 6= i.

8.6 illustrative example
In this section we illustrate the developed theory by considering an example of a
sensor network. Specifically, consider a graph G = (V, E) consisting of 100 sensor
nodes, monitoring a region of 1 km× 1 km (see Figure 8.2). It is assumed that the
sensors are linked using a so-called geometric link model [166]. This means that
there is a connection between two nodes in the network if and only if the distance
between the two nodes is less than a certain threshold, set to be equal to 135 m
in this example. It is assumed that the sensors run consensus dynamics, that is,
the dynamics of the network is given by ẋ(t) = −Lx(t), where x ∈ R100, and
L ∈ L(G) is the unweighted Laplacian associated with G. The components of the
initial condition x0 ∈ R100 were selected randomly within [0, 10]. Moreover, for
this example, measurements were used over the time-interval [0, 10], i.e., T = 10.
We compute the matrices P and Q, and solve (8.26) using Yalmip with Sedumi as
an LMI solver. The resulting identified Laplacian matrix is denoted by Lr. The
relative and maximum element-wise errors between the identified Laplacian Lr
and original Laplacian L are very small. Specifically, we obtain

‖Lr − L‖
‖Lr‖

= 1.56 · 10−8, max
i,j∈V
|Lij − (Lr)ij| = 2.21 · 10−7,

where ‖·‖ denotes the induced 2-norm.

8.7 conclusions
In this chapter, we have considered the problem of network reconstruction for
networks of linear dynamical systems. In contrast to papers studying network
reconstruction for specific network dynamics such as consensus dynamics [153]
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Figure 8.2: Graph G of the sensor network.

and adjacency dynamics [57], we considered network reconstruction for general
linear network dynamics described by state matrices contained in the qualitative
class. We formulated what is meant by solvability of the network reconstruction
problem. Subsequently, we provided necessary and sufficient conditions under
which the network reconstruction problem is solvable. Using constrained Lya-
punov equations, we established a general framework for network reconstruction
of networks of dynamical systems. We have shown that this framework can be
used for a variety of network types, including consensus and adjacency networks.
Finally, we have illustrated the theory by reconstructing the network topology of
a sensor network.





9 N E T W O R K I D E N T I F I A B I L I T Y A N D
G R A P H S I M P L I F I C AT I O N

In the preceeding two chapters we have aimed at identifying networks with an unknown
interconnection structure. However, for certain networks, such as water distribution
networks, the interconnection structure may be readily available. Therefore, in this
chapter we focus on the identifiability of network models with known structure. We
will focus on a notion of global identifiability of the model set, which allows us to
fully characterize identifiability in terms of the locations of the measured nodes and
the graph structure underlying the network. We will see that the assumption of known
network structure is beneficial in the sense that network identifiability can typically
be guaranteed with relatively few measured nodes.

9.1 introduction

Networks of dynamical systems appear in a variety of domains, including power
systems, robotic networks, and aerospace systems [137]. In this chapter, we
consider a dynamical network model in which the relations between node signals
are modelled by proper transfer functions. Such network models have received
much attention in recent years, see e.g. [46, 81, 214, 223, 235].

The interconnection structure of a dynamical network can be represented by
a directed graph, where vertices (or nodes) represent scalar signals, and edges
correspond to transfer functions connecting different node signals. We will
assume that the underlying graph (i.e., the topology) of the dynamical network is
known. We remark that the related problem of topology identification has also been
studied, see e.g. [70, 130, 154, 190, 226, 246].

We are interested in conditions for identifiability of dynamical networks. Iden-
tifiability is a fundamental property of a model set that guarantees that a unique
(network) model can be identified, given informative data. Thus identifiability
can be thought of as a prerequisite for identification: if identifiability does not
hold then it is impossible to uniquely determine a network model, irrespective of
the particular identification method and the experimental conditions.

In the literature, several methods have been proposed for network identification
[46, 76, 214, 236], these methods all exploit the structure of the network. For
instance, a prediction error method was considered in [236], where consistency
and minimum variance properties were proven under the assumption that the
network is identifiable, the disturbances are filtered white noise, and the inputs are
persistently exciting and uncorrelated with the disturbances. Another work [76]
considers subspace identification of networks with a path graph topology. As we
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will see, the structure of the network plays a fundamental role also with respect
to the question of identifiability.

We follow the setup of [81], where all network nodes can be externally excited,
but only a subset of nodes can be measured. Within this setup, we are interested
in two identifiability problems. Firstly, we want to find conditions under which
the transfer functions from a given node to its out-neighbours are identifiable.
Secondly, we wonder under which conditions the transfer functions of all edges
in the network are identifiable. In particular, our aim is to find graph-theoretic
conditions for the above problems, that is, conditions in terms of the network
structure and the locations of measured nodes. Such conditions based on the
network topology are desirable since they give insight on the types of network
structures that allow unique identification, and in addition may aid in the selection
of measured nodes. Graph-theoretic methods have also been succesfully applied
to assess other system-theoretic properties like structural controllability [30, 96,
113, 142, 219] and fault detection [49, 95, 174].

Identifiability of dynamical networks is an active research area, see e.g. [3, 80,
81, 152, 223, 224, 234, 235] and the references therein. The papers that are most
closely related to the work presented here are [152], [224], [81], and [223], in which
identifiability is also considered from graph-theoretic perspective. In [152] and [224],
sufficient graph-theoretic conditions for identifiability have been presented for a
class of state-space systems.

In [81], graph-theoretic conditions have been established for generic identifi-
ability. That is, conditions were given under which transfer functions in the
network can be identified for “almost all" network matrices associated with the
graph. The authors of [81] show that generic identifiability is equivalent to the ex-
istence of certain vertex-disjoint paths, which yields elegant conditions for generic
identifiability.

Inspired by the work in [81], we are interested in graph-theoretic conditions
for a stronger notion, namely identifiability for all network matrices associated
with the graph, a notion often referred to as global identifiability. This problem is
motivated by the fact that, although generic identifiability guarantees identifiabil-
ity for almost all network matrices, there are meaningful examples of network
matrices that are not contained in this set of almost all network matrices. As a
consequence, a situation may arise in which the system under consideration is
not identifiable, even though the conditions for generic identifiability are satisfied.
For an example of such a situation, we refer to Section 9.3. On the other hand, if
the conditions derived in this chapter are satisfied, then it is guaranteed that the
network is identifiable for all network matrices associated with the graph. The
contributions of this chapter are the following.

1. We introduce the so-called graph simplification process. Based on this process,
we provide necessary and sufficient conditions for the left-invertibility of
certain network-related transfer matrices.

2. Using the fact that identifiability is characterized by the left-invertibility
of transfer matrices [81], [223], we provide necessary and sufficient graph-
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theoretic conditions for identifiability based on graph simplification. We also
show that these conditions can be verified by polynomial time algorithms.

3. We compare our results with the sufficient topological conditions for identi-
fiability based on constrained vertex-disjoint paths [223]. In particular, we
show that the results obtained in this chapter generalize those in [223].

This chapter is organized as follows. In Section 9.2 we discuss the preliminaries
that are used throughout this chapter. Subsequently, in Section 9.3 we state
and motivate the problem. Next, in Section 9.4 we recall rank conditions for
identifiability. Sections 9.5 and 9.6 contain our main results. In Section 9.5
we introduce the graph simplification process and show its relation to the left-
invertibility of transfer matrices. Subsequently, in Section 9.6 we provide graph-
theoretic conditions for identifiability. Our main results are compared to previous
work in Section 9.7. Finally, Section 9.8 contains our conclusions.

9.2 preliminaries

9.2.1 Rational functions and rational matrices

Consider a scalar variable z and a rational function f (z) = p(z)
q(z) , where p(z) and

q(z) are real polynomials and q is nonzero. The function f is proper if the degree
of p(z) is less than or equal to the degree of q(z). We say f is strictly proper if
the degree of p(z) is less than the degree of q(z). An m× n matrix A(z) is called
rational if its entries are rational functions in the variable z. In addition, A(z)
is proper if its entries are proper rational functions. We omit the argument z
whenever the dependency of A on z is clear from the context. The normal rank
of A(z) is defined as maxλ∈C rank A(λ) and denoted by rank A(z), with slight
abuse of notation. We say A(z) is left-invertible if rank A(z) = n. We denote the
(i, j)-th entry of a matrix A by Aij. Moreover, the j-th column of A is given by
A•j. More generally, letM ⊆ {1, 2, . . . , m} and N ⊆ {1, 2, . . . , n}. Then, AM,N
denotes the submatrix of A containing the rows of A indexed by M and the
columns of A indexed by N . Next, consider the case that A is square, i.e., m = n.
The determinant of A is denoted by det A, while the adjugate of A is denoted by
adj A. A principal submatrix of A is a submatrix AM,M, whereM⊆ {1, 2, . . . , m}.
The determinant of AM,M is called a principal minor of A.

9.2.2 Graph theory

Let G = (V , E) be a directed graph, with vertex (or node) set V = {1, 2, . . . , n}
and edge set E ⊆ V × V . The graphs considered in this chapter are simple, i.e.,
without self-loops and with at most one edge from one node to another. Consider
an edge (i, j) ∈ E . Then (i, j) is called an outgoing edge of node i ∈ V and j is
called an out-neighbour of i ∈ V . The set of out-neighbours of i is denoted by
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N+
i . Similarly, (i, j) is called an incoming edge of j ∈ V and node i is called an

in-neighbour of j. The set of in-neighbours of node j is denoted by N−j . For any
subset S = {v1, v2, . . . , vs} ⊆ V we define the s× n matrix P(V ;S) as Pij := 1
if j = vi, and Pij := 0 otherwise. The complement of S in V is defined as
S c := V \ S . Moreover, the cardinality of S is denoted by |S|. A path P is a set of
edges in G of the form P = {(vi, vi+1) | i = 1, 2, . . . , k} ⊆ E , where the vertices
v1, v2, . . . , vk+1 are distinct. The vertex v1 is called a starting node of P , while vk+1
is the end node. The cardinality of P is called the length of the path. A collection of
paths P1,P2, . . . ,Pl is called vertex-disjoint if the paths have no vertex in common,
that is, if for all distinct i, j ∈ {1, 2, . . . , l}, we have that

(ui, wi) ∈ Pi, (uj, wj) ∈ Pj =⇒ ui, wi, uj and wj are distinct.

Let U ,W ⊆ V be disjoint. We say there exists a path from U to W if there exist
vertices u ∈ U and w ∈ W such that there exists a path in G with starting node u
and end node w. Similarly, we say there are m vertex-disjoint paths from U to
W if there exist m vertex-disjoint paths1 in G with starting nodes in U and end
nodes in W . In the case that U ∩W 6= ∅, we say there exist m vertex-disjoint
paths from U toW if there are max{0, m− |U ∩W|} vertex-disjoint paths from
U \W toW \ U . Roughly speaking, this means that we count paths of “length
zero" from every node in U ∩W to itself.

9.3 problem statement and motivation
Let G = (V , E) be a simple directed graph with vertex set V = {1, 2, . . . , n} and
edge set E ⊆ V × V . We associate with each node i ∈ V a scalar node signal wi,
an external excitation signal ri and a disturbance signal vi. Then, we consider the
dynamics

wi = ∑
j∈N−i

Gijwj + ri + vi,

where Gij(z) is a scalar transfer function. By concatenation of the node signals,
excitation signals and disturbance signals, we can write the dynamics of all nodes
compactly as w = Gw + r + v, where w, r, and v are n-dimensional vectors and
G(z) is a n× n rational matrix. In addition, we consider a measured output vector
y of dimension p that consists of the node signals of a subset C ⊆ V of so-called
measured nodes. By defining an associated binary matrix C as C := P(V , C), we
can write this output as y = Cw. Finally, by combining the equations for w and y,
we obtain the networked system

w = Gw + r + v

y = Cw.
(9.1)

We call the matrix G(z) the network matrix and assume that it satisfies the following
properties:

1 Such sets of vertex-disjoint paths have been studied in detail in [151], where they were called linkings.
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(P1) For all i, j ∈ V , the entry Gij(z) is a proper rational (transfer) function.

(P2) The function Gij(z) is nonzero if and only if (j, i) ∈ E . A matrix G(z) that
satisfies this property is said to be consistent with the graph G.

(P3) Every principal minor of limz→∞(I − G(z)) is nonzero. This implies that the
network model (9.1) is well-posed in the sense of Definition 2.11 of [46].

A network matrix G(z) satisfying Properties P1, P2, and P3 is called admissible.
The set of all admissible network matrices is denoted by A(G).

For the development of this chapter, it is important to distinguish between the
following two concepts:

• Identifiability: this is a fundamental property of the set of models of the
form (9.1) that captures under what conditions identification is conceptually
possible. If this property is not satisfied, one cannot uniquely identify the
dynamics, no matter which identification algorithm is used. Identifiability
does not involve any use of data.

• Identification: this involves the development of numerical algorithms for
identifying the system dynamics from data. If identifiability holds then iden-
tification can be successfully performed in different ways under hypotheses
on the noise and the informativity of the data [114].

This chapter focuses on characterizations of identifiability. To explain what iden-
tifiability means in a network context, we first write (9.1) in input/output form
as

y = C(I − G)−1r + v̄,

where v̄ := C(I − G)−1v. It is well-known that the transfer matrix C(I − G(z))−1

from r to y can be obtained from {r, y}-data, under suitable assumptions on r
and v [114]. The question of network identifiability is then the following: which
entries of G(z) can be uniquely reconstructed from C(I−G(z))−1? In this chapter
we restrict our attention to the identifiability of the transfer functions outgoing a
given node i (i.e., identifiability of a column of G(z)), and to the identifiability of
the entire matrix G(z). A standing assumption in our work is that we know the
graph structure G underlying the dynamical network.

In recent work [81], [15] the problem of identifiability has been considered from
generic viewpoint. Graph-theoretic conditions were given under which certain
entries of G(z) can be uniquely reconstructed from C(I − G(z))−1 for almost all
network matrices G consistent with the graph. For a formal definition of generic
identifiability we refer to Definition 1 of [81]. Here, we will informally illustrate
the approach of [81]. We will use the shorthand notation T(z; G) := (I − G(z))−1.
This means that the transfer matrix from r to y equals CT.

Example 9.1. Consider the graph G = (V , E) in Figure 9.1. We assume that the
node signals of nodes 4 and 5 can be measured, that is, C = {4, 5}. Suppose
that we want to identify the transfer functions from node 1 to its out-neighbours,
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i.e., the transfer functions G21(z) and G31(z). According to Corollary 5.1 of [81],
this is possible if and only if there exist two vertex-disjoint paths from N+

1 to
C. Note that this is the case in this example, since the edges (2, 4) and (3, 5) are
two vertex-disjoint paths. To see why we can generically identify the transfer
functions G21 and G31, we compute CT as:

1

2

3

4

5

Figure 9.1: Graph used in Example 9.1.

CT =

[
G42G21 + G43G31 G42 G43 1 0
G52G21 + G53G31 G52 G53 0 1

]
,

where we omit the argument z. Clearly, we can uniquely obtain the transfer
functions G42, G43, G52, and G53 from CT. Moreover, the transfer matrices G21 and
G31 satisfy [

G42 G43
G52 G53

] [
G21
G31

]
=

[
T41
T51

]
. (9.2)

Equation (9.2) has a unique solution in the unknowns G21 and G31 if G42G53 −
G43G52 6= 0, which means that we can identify G21 and G31 for “almost all" G
consistent with G.

As mentioned before, the approach based on vertex-disjoint paths [81] gives
necessary and sufficient conditions for generic identifiability. This implies that
for some network matrices G, it might be impossible to identify the transfer
functions, even though the path-based conditions are satisfied. For instance, in
Example 9.1 we cannot identify G21 and G31 if the network matrix G is such
that G42 = G43 = G52 = G53. Nonetheless, scenarios in which some (or all)
transfer functions in the network are equal occur frequently, for example in
the study of undirected (electrical) networks [53], in unweighted consensus
networks [158], and in the study of Cartesian products of graphs [29]. Therefore,
instead of generic identifiability, we are interested in graph-theoretic conditions
that guarantee identifiability for all admissible network matrices. Such a problem
might seem like a simple extension of the work on generic identifiability [81].
However, to analyze strong structural network properties (for all network matrices),
we typically need completely different graph-theoretic tools than the ones used
in the analysis of generic network properties. For instance, in the literature on
controllability, weak structural controllability is related to maximal matchings [113],
while strong structural controllability is related to zero forcing sets [142] and
constrained matchings [29]. To make the problem of this chapter more precise,
we state a few definitions. First, we are interested in conditions under which all
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transfer functions from a node i to its out-neighbours N+
i are identifiable (for

any admissible network matrix G ∈ A(G)). If this is the case, we say (i,N+
i ) is

globally identifiable, or simply (i,N+
i ) is identifiable for short.

Definition 9.1. Consider a directed graph G = (V , E) and let i ∈ V and C ⊆ V .
Moreover, define C = P(V , C). We say (i,N+

i ) is (globally) identifiable from C if
the implication

CT(z; G) = CT(z; Ḡ) =⇒ G•i(z) = Ḡ•i(z)

holds for all G(z), Ḡ(z) ∈ A(G).
In addition, we are interested in conditions under which the entire network

matrix G can be identified. If this is the case, we say the graph G is (globally)
identifiable.

Definition 9.2. Consider a directed graph G = (V , E) and let C ⊆ V and C =
P(V , C). We say G is (globally) identifiable from C if the implication

CT(z; G) = CT(z; Ḡ) =⇒ G(z) = Ḡ(z)

holds for all G(z), Ḡ(z) ∈ A(G).
The main goals of this chapter are to find graph-theoretic conditions for identi-

fiability of (i,N+
i ) and G.

Problem 9.1. Consider a directed graph G = (V , E) and measured nodes C ⊆
V . Provide necessary and sufficient graph-theoretic conditions under which,
respectively, (i,N+

i ) and G are identifiable from C.

Graph-theoretic conditions for global identifiability are attractive for two rea-
sons. First, such conditions will give insight on the types of graph structures that
allow identification. Secondly, they allow us to select measured nodes guaran-
teeing identifiability before collecting data. To deal with Problem 9.1, we make
use of rank conditions for identifiability which we will recall in Section 9.4. To
verify such rank conditions, we introduce a novel graph-theoretic concept called
the graph simplification process in Section 9.5.

9.4 rank conditions for identifiability
First, we review some of the conditions for identifiability in terms of the normal
rank of transfer matrices. For the proofs of all results in this section, we refer
to [223]. Recall from Section 9.2 that TC,N+

i
(z; G) denotes the submatrix of T

formed by taking the rows of T indexed by C and the columns of T corresponding
to N+

i . This means that TC,N+
i
(z; G) is a submatrix of the transfer matrix CT(z; G)

from r to y, obtained by selecting the columns corresponding to N+
i . The

following lemma (Lemma 5 of [223]) asserts that identifiability of (i,N+
i ) is

equivalent to a rank condition on the matrix TC,N+
i
(z; G).
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Lemma 9.1. Consider a directed graph G = (V , E), let i ∈ V , and C ⊆ V . Then,
(i,N+

i ) is identifiable from C if and only if rank TC,N+
i
(z; G) = |N+

i | for all
G(z) ∈ A(G).

As an immediate consequence of Lemma 9.1, we find conditions for the identi-
fiability of G based on the normal rank of transfer matrices. This is stated in the
following corollary.

Corollary 9.1. Consider a directed graph G = (V , E) and let C ⊆ V . Then, G is
identifiable from C if and only if rank TC,N+

i
(z; G) = |N+

i | for all i ∈ V and all
G(z) ∈ A(G).

Although Lemma 9.1 and Corollary 9.1 give necessary and sufficient conditions
for the identifiability of respectively (i,N+

i ) and G, these conditions are limited
since there is no obvious method to check left-invertibility of TC,N+

i
(z; G) for an

infinite number of matrices G. Therefore, one of the main results of this chapter
will be graph-theoretic conditions for the left-invertibility of TW ,U (z; G), where
U ,W ⊆ V are any two subsets of vertices. These conditions will be introduced in
the next section.

9.5 the graph simplification process
In this section we provide necessary and sufficient conditions for left-invertibility
of TW ,U (z; G) for all G(z) ∈ A(G), where U ,W ⊆ V . Loosely speaking, the idea is
to simplify the graph G and nodesW in such a way that checking left-invertibility
becomes easy. To give the reader some intuition for the approach, we start
with the following basic lemma, which asserts that TW ,U (z; G) is left-invertible if
U ⊆ W .

Lemma 9.2. Consider a directed graph G = (V , E) and let U ,W ⊆ V . If U ⊆ W
then rank TW ,U (z; G) = |U | for all G(z) ∈ A(G).

The proof of Lemma 9.2 is postponed to Section 9.9.1. The condition U ⊆ W
considered in Lemma 9.2 is clearly not necessary for left-invertibility. One can
show this using the example G = (V , E), where V = {1, 2}, E = {(1, 2)}, and the
subsets U andW are chosen as U = {1} andW = {2}. However, the main idea
of the graph simplification process is to simplify G and to “move" the nodes in
W closer to the nodes in U such that the condition U ⊆ W possibly holds after
applying these operations. Of course, we cannot blindly modify the graph G
since this would affect the left-invertibility of TW ,U (z; G). Instead, we will now
state two lemmas in which we consider two different operations on G andW that
preserve left-invertibility of TW ,U (z; G). We emphasize that the graph operations
are introduced for analysis purposes only. Indeed, since the condition of Lemma
9.2 is simple to check, the graph operations should be seen as a tool to check
left-invertibility of the transfer matrix of a given fixed graph G. First, we state
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Lemma 9.3 which asserts that left-invertibility of TW ,U (z; G) is unaffected by the
removal of the outgoing edges ofW .

Lemma 9.3. Consider a directed graph G = (V , E) and let U ,W ⊆ V . Moreover,
let Ḡ = (V , Ē) be the graph obtained from G by removing all outgoing edges of
the nodes in W . Then rank TW ,U (z; G) = |U | for all G(z) ∈ A(G) if and only if
rank TW ,U (z; Ḡ) = |U | for all Ḡ(z) ∈ A(Ḡ).
Proof. Let G(z) ∈ A(G). Relabel the nodes in V such that

G =

[
GR,R GR,W
GW ,R GW ,W

]
, (9.3)

where R := V \W and the argument z has been omitted. Define the matrix Ḡ as

Ḡ =

[
GR,R 0
GW ,R 0

]
. (9.4)

The matrix Ḡ is an admissible matrix consistent with Ḡ, i.e., Ḡ ∈ A(Ḡ). To see
this, note that Ḡ satisfies Property P1. Moreover, since all outgoing edges of
nodes inW are removed in the graph Ḡ, the matrix Ḡ is consistent with Ḡ. Hence,
Ḡ satisfies property P2. Finally, to see that Ḡ satisfies Property P3, note that any
principal minor of

lim
z→∞

[
I − GR,R(z) 0
−GW ,R(z) I

]
(9.5)

is either 1 or equal to a principal minor of limz→∞(I−GR,R(z)), which is nonzero
by the assumption that G is admissible. We conclude that Ḡ ∈ A(Ḡ). Next, by
Proposition 2.8.7 of [19], the inverse of I − G can be written as

T = (I − G)−1 =

[ ∗ ∗
S(G)GW ,R(I − GR,R)−1 S(G)

]
,

where S(G) := (I − GW ,W − GW ,R(I − GR,R)−1GR,W ))−1 denotes the inverse
Schur complement of I − G. Using the same formula to compute the inverse of
I − Ḡ, we find

T̄ := (I − Ḡ)−1 =

[ ∗ ∗
GW ,R(I − GR,R)−1 I

]
.

The above expressions for T and T̄ imply that

TW ,U = S(G)T̄W ,U ,

and because S(G) has full normal rank, we obtain

rank TW ,U = rank T̄W ,U . (9.6)

Next, we use (9.6) to prove the lemma. First, to prove the “if" statement, suppose
that rank TW ,U (z; Ḡ) = |U | for all matrices Ḡ ∈ A(Ḡ). Let G ∈ A(G). Using G,
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construct the matrix Ḡ ∈ A(Ḡ) in (9.4). By hypothesis, rank TW ,U (z; Ḡ) = |U |
and therefore we conclude from (9.6) that rank TW ,U (z; G) = |U |.

Subsequently, to prove the “only if" statement, suppose that rank TW ,U (z; G) =
|U | for all G(z) ∈ A(G). Consider any matrix Ḡ(z) ∈ A(Ḡ) and note that Ḡ
can be written in the form (9.4). Next, we choose the matrices GR,W and GW ,W
such that the matrix G in (9.3) is consistent with the graph G, and such that the
nonzero entries of GR,W and GW ,W are strictly proper rational functions. This
means that G readily satisfies Properties P1 and P2 (see Section 9.3). In fact, G also
satisfies P3. Indeed, since limz→∞(I −G(z)) is given by (9.5), it follows that every
principal minor of limz→∞(I − G(z)) is either 1 or equal to a principal minor of
limz→∞(I − GR,R), which is nonzero by the hypothesis that Ḡ(z) ∈ A(Ḡ). We
conclude that G satisfies Properties P1, P2, and P3, equivalently, G ∈ A(G). By
hypothesis, rank TW ,U (z; G) = |U | and consequently, by (9.6) we conclude that
rank TW ,U (z; Ḡ) = |U |. This proves the lemma.

Remark 9.1. In similar fashion as in the proof of Lemma 9.3, we can prove
that all incoming edges of nodes in U can be removed without affecting the
left-invertibility of TW ,U (z; G).

Inspired by Lemma 9.3, we wonder what type of operations we can further
perform on the graph G and nodes W without affecting left-invertibility of
TW ,U (z; G). In what follows we will show that under suitable conditions it is
possible to “move" the nodes inW closer to the nodes in U . Here the notion of
reachability in graphs will play an important role. For a subset U ⊆ V and a node
j ∈ V \ U , we say j is reachable from U if there exists at least one path from U to j.
By convention, if j ∈ U then j is reachable from U . In the following lemma, we
will show that the rank of TW ,U (z; G) is unaffected if we replace a node k ∈ W \U
by j, provided that j is the only in-neighbour of k that is reachable from U .

Lemma 9.4. Consider a directed graph G = (V , E) and let U ,W ⊆ V . Suppose
that k ∈ W \ U has exactly one in-neighbour j ∈ N−k that is reachable from U .
Then for all G(z) ∈ A(G), we have

rank TW ,U (z; G) = rank TW̄ ,U (z; G),

where W̄ := (W \ {k}) ∪ {j}.

Remark 9.2. We emphasize that Lemma 9.4 does not require node k to have
exactly one in-neighbour. In general, node k may have multiple in-neighbours,
but if exactly one of such neighbours is reachable from U , we can apply Lemma 9.4.
The intuition of Lemma 9.4 is as follows: under the assumptions, all information
from the nodes in U enters node k via node j. Therefore, choosing node k or node
j as a node in W does not make any difference. An interesting special case is
obtained when both nodes j and k are contained in W . In this case, we obtain
W̄ =W \ {k}, that is, node k can be removed fromW without affecting the rank
of TW ,U (z; G).
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Proof of Lemma 9.4. By Lemma 9.3, we can assume without loss of generality that
the nodes inW have no outgoing edges. Let G(z) ∈ A(G). In what follows we
omit the dependence of G on z and the dependence of T(z; G) on both z and G.
Consider a vertex v ∈ U . Note that

(I − G)T = I (9.7a)
n

∑
l=1

(I − G)klTlv = 0, (9.7b)

where n := |V| and (9.7b) follows from the fact that k ∈ W \ U and v ∈ U are
distinct. Equation (9.7b) implies that

Tkv = ∑
l∈N−k

GklTlv. (9.8)

Note that j ∈ N−k , but possibly N−k contains other vertices. We will now prove
that for all these other vertices, the corresponding transfer function Tlv equals
zero. That is, Tlv = 0 for all l ∈ N−k \ {j}. To see this, we first observe that there
does not exist a path in G from v to l ∈ N−k \ {j}. Indeed, suppose that there is
a path P from v to l. Then this path cannot contain the edge (j, k), since node
k ∈ W \ U does not have any outgoing edges. This implies that there exists a
path P ∪ (l, k) from v to k via node l. This is a contradiction since by hypothesis
j is the only in-neighbour of k that is reachable from U . Therefore, we conclude
that there does not exist a path from v to l. By Lemma 3 of [214] we conclude
that Tlv = 0. This means that (9.8) can be simplified as

Tkv = GkjTjv.

Since v ∈ U is arbitrary, it follows that

Tk,U = GkjTj,U .

As Gkj 6= 0, we conclude that

rank TW ,U = rank TW̄ ,U ,

where W̄ := (W \ {k}) ∪ {j}. This proves the lemma.

From Lemma 9.3 and Lemma 9.4, we see that (i) we can always remove the
outgoing edges of nodes inW and (ii) we can move nodes inW closer to U under
suitable conditions. Of course, since both operations do not affect left-invertibility
of TW ,U , we can also apply these operations multiple times consecutively. There-
fore, we introduce the following process to simplify the graph G and move the
nodes inW . The idea of this process is to apply the above operations to the graph
until no more changes are possible.
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Graph simplification process:
Let G = (V , E) be a directed graph and let U ,W ⊆ V . Consider the following
two operations on the graph G and nodesW .

1. Remove all outgoing edges of nodes inW from G.

2. If k ∈ W \ U has exactly one in-neighbour j ∈ N−k that is reachable from
U , replace k by j inW .

Consecutively apply operations 1 and 2 on the graph G and nodesW until no
more changes are possible.

Clearly, the graph simplification process terminates after a finite number of
applications of operations 1 and 2. Indeed, operation 1 can only be applied once
in a row, and a node in W \ U can be “moved" at most |V| − 1 times which
means that operation 2 can be applied only a finite number of times. In fact,
it is attractive to apply the operations 1 and 2 in alternating fashion since the
process will then terminate within |V| operations of both types. This is due to
the fact that if the outgoing edges of a node j ∈ V are removed, then we cannot
apply operation 2 to replace a node k by j. A graph obtained by applying the
graph simplification process to G is called a derived graph, which we denote by
D(G). Similarly, we call a vertex set obtained by applying the graph simplification
process toW a derived vertex set, denoted by D(W). To stress the fact that D(G)
and D(W) do not only depend on the graph G and setW , but also on the set U ,
we say that D(G) and D(W) are a derived graph of G and derived vertex set of
W with respect to the set U . We emphasize that derived graphs and derived vertex
sets are not necessarily unique. In general, the derived graph and derived vertex
set that are obtained from the graph simplification process depend on the order in
which the operations 1 and 2 are applied, and on the order in which operation
2 is applied to the nodes in W . However, it turns out that the non-uniqueness
of derived graphs and derived vertex sets is not a problem for the application
(left-invertibility) we have in mind. In fact, we will show in Theorem 9.1 that any
derived graph and derived vertex set will lead to the same conclusions about
left-invertibility.

Remark 9.3. In step 2 of the graph simplification process, we have to decide
whether there exists a node k ∈ W \ U that has exactly one in-neighbour j ∈ N−k
which is reachable from U . Therefore, we want to find which in-neighbours of k
are reachable from U . One of the ways to do this, is to use Dijkstra’s single source
shortest path (SSSP) algorithm [51], [160]. This algorithm computes the shortest
paths (i.e., paths of minimum length) from a given source node s to every other
node in the graph, and returns an “infinite" distance for each node which is not
reachable from s. If we apply the SSSP algorithm to each node in U , we obtain
all nodes in V that are reachable from U . Dijkstra’s SSSP algorithm has time
complexity O(n + e), where n = |V| and e = |E | [160], and therefore we can find
all nodes reachable from U in time complexity O(un + ue), where u = |U |. Once
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we know the nodes in V that are reachable from U , we can simply check whether
there exists exactly one j ∈ N−k that is reachable from U . In particular, this shows
that the graph simplification process can be implemented in polynomial time
since both operations 1 and 2 can be implemented in polynomial time, and the
graph simplification process executes at most n operations of type 1 and 2 (if
applied in this order).

Example 9.2. Consider the graph G = (V , E) in Figure 9.2 and define U := {2}
and W := {5, 6}. The goal of this example is to apply the graph simplification
process to obtain a derived graph and derived vertex set. After this simplification,
it will be easy to check left-invertibility of TW ,U (z; G).

1 2

3

4

5

6

Figure 9.2: Graph G with nodesW colored black.

First, note that both nodes 5 and 6 do not have outgoing edges, so at the
moment we cannot apply operation 1. However, we observe that node 6 has
exactly one in-neighbour (node 4) that is reachable from U . Consequently, we can
replace node 6 by node 4 inW (see Figure 9.3).
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Figure 9.3: Graph with nodesW , obtained by applying operation 2 to node 6.

To follow up, we see that node 4 has outgoing edges, which we can remove by
applying operation 1, see Figure 9.4.

Subsequently, node 5 has exactly one in-neighbour that is (trivially) reachable
from U . Therefore, we replace vertex 5 by 2 in W . Next, we can remove all
outgoing edges of node 2 using operation 1. These result of these two operations
is depicted in Figure 9.5.

Note that nodes 2 and 4 do not have any outgoing edges. Moreover, the in-
neighbour 3 of node 4 is not reachable from node 2, so we cannot use operation
2 to node 4. In addition, operation 2 cannot be applied to node 2 since 2 ∈
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Figure 9.4: Graph with nodesW , obtained by applying operation 1 to node 4.
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Figure 9.5: Derived graph D(G) with derived vertex set D(W) (in black), obtained by
applying operation 2 to node 5 and operation 1 to node 2.

U . Therefore, the graph simplification process terminates. We conclude that
the graph D(G) in Figure 9.5 is a derived graph of G, whereas the vertex set
D(W) = {2, 4} is a derived vertex set of W (with respect to U ). This example
shows the strength of the graph simplification process in the following way: since
U ⊆ D(W), we conclude by Lemma 9.2 that TD(W),U (z; G) is left-invertible for all
G(z) ∈ A(D(G)). However, by Lemma 9.3 and Lemma 9.4, we immediately see
that TW ,U (z; G) is left-invertible for all G(z) ∈ A(G). This suggests that the graph
simplification process is a promising tool to study left-invertibility of transfer
matrices (and hence, to study identifiability of dynamical networks).

To summarize, we have seen that it is possible to remove the outgoing edges
of nodes inW and to move the nodes inW closer to U if certain conditions are
satisfied. Since left-invertibility is preserved by both operations due to Lemmas
9.3 and 9.4, we see that left-invertibility of TW ,U (z; G) for all G(z) ∈ A(G) is
equivalent to the left-invertibility of TD(W),U (z; G) for all G(z) ∈ A(D(G)). Using
Lemma 9.2, this shows that the condition U ⊆ D(W) is sufficient for the left-
invertibility of TW ,U (z; G). Remarkably, the condition U ⊆ D(W) turns out to be
also necessary for left-invertibility of TW ,U (z; G). This is stated more formally in
the following theorem, which is one of the main results of this chapter.

Theorem 9.1. Consider a directed graph G = (V , E) and let U ,W ⊆ V . Let D(W)
be any derived vertex set ofW with respect to U . Then rank TW ,U (z; G) = |U | for
all matrices G(z) ∈ A(G) if and only if U ⊆ D(W).
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Before we prove Theorem 9.1, we need some auxiliary results. Consider
a directed graph G = (V , E), let n = |V|, s = |E |, and index the edges as
E = {e1, e2, . . . , es}. We associate with each edge e ∈ E an indeterminate ge.
Moreover, we define the s-dimensional vector

g :=
[
ge1 ge2 . . . ges

]> ,

which we call the indeterminate vector of G. Next, we define the n× n matrix G as

Gji =

{
gek if ek = (i, j) for some k

0 otherwise.

We emphasize that not all entries of G are indeterminates, but some are fixed
zeros. Note that we write G in sans-serif font, to clearly distinguish between
G and a fixed rational matrix G(z). It is clear that the determinants of square
submatrices of I − G are real polynomials in the indeterminate entries of G, i.e.,
in the indeterminate vector g. Hence, the entries of the adjugate of I − G are real
polynomials in g. We state the following basic lemma, which gives conditions
under which an entry of adj(I − G) is a nonzero polynomial.

Lemma 9.5. Consider a directed graph G = (V , E) and let i, j ∈ V . Let g and G be
the indeterminate vector and matrix of G, respectively, and define A := adj(I−G).
Then Aji is a nonzero polynomial in g if and only if there exists a path from i to j.

Lemma 9.5 follows from Proposition 5.1 of [81]. Next, we state the following
basic result on polynomials.

Proposition 9.1. Consider k nonzero real polynomials pi(x), where i = 1, 2, ..., k
and x = (x1, x2, . . . , xn). There exists an x̄ ∈ Rn such that pi(x̄) 6= 0 for all
i = 1, 2, ..., k.

Remark 9.4. Without loss of generality, we can assume that x̄ in Proposition 9.1
has only nonzero coordinates. Indeed, by continuity, if pi(x̄) 6= 0 for i = 1, 2, ..., k,
there exists an open ball B(x̄) around x̄ in which pi(x) 6= 0 for all i = 1, 2, ..., k
and all x ∈ B(x̄). Clearly, this open ball contains a point with only nonzero
coordinates.

Finally, we require a proposition on rational matrices.

Proposition 9.2. Let A(z) be an m× n rational matrix and assume that each row
of A(z) contains at least one nonzero entry. There exists a vector b ∈ Rn such
that each entry of A(z)b is a nonzero rational function.

The proof of Proposition 9.2 follows simply from induction on the number of
rows of A(z) and is therefore omitted. With these results in place, we are ready
to prove Theorem 9.1.

Proof of Theorem 9.1. Let D(G) and D(W) be a derived graph and derived vertex
set with respect to U obtained from the graph simplification process. To prove
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the “if" statement, suppose that U ⊆ D(W). By Corollary 9.2 we find that
rank TD(W),U (z; G) = |U | for all G(z) ∈ A(D(G)). By consecutive application of
Lemmas 9.3 and 9.4, we conclude that rank TW ,U (z; G) = |U | for all G(z) ∈ A(G).

Conversely, to prove the “only if" statement, suppose that U 6⊆ D(W). We
want to show that

rank TD(W),U (z; G) < |U | for some G(z) ∈ A(D(G)).

Since U 6⊆ D(W), the set Ū := U \D(W) is nonempty. Furthermore, as D(G) and
D(W) result from the graph simplification process, it is clear that nodes in D(W)
do not have outgoing edges. In addition, each node in the set W̄ := D(W) \ U
has either zero or at least two in-neighbours that are reachable from U . As nodes
in D(W) ∩ U have no outgoing edges, this means that each node in W̄ has either
zero or at least two in-neighbours that are reachable from Ū . Finally, we assume
that the nodes in U do not have any incoming edges, which is without loss of
generality by Remark 9.1.

The idea of the proof is to show that TD(W),Ū (z; G)b = 0, for some to-be-
determined network matrix G(z) ∈ A(D(G)) and nonzero vector b. Hence,
rank TD(W),Ū (z; G) < |Ū | and since TD(W),Ū is a submatrix of TD(W),U , it will
then immediately follow that rank TD(W),U (z; G) < |U |.

We investigate a row Tw,Ū (z; G) of the transfer matrix TD(W),Ū (z; G) and we
distinguish two cases, namely the case that w ∈ D(W) ∩ U and the case that
w ∈ W̄ . First, suppose that w ∈ D(W) ∩ U . This implies that w ∈ U . Recall that
the nodes in U do not have any incoming edges. Consequently, there are no paths
from v to w for any v ∈ Ū . We conclude from Lemma 3 of [214] that Twv(z; G) = 0
for all G(z) ∈ A(D(G)). Therefore, Tw,Ū (z; G) = 0 for all G(z) ∈ A(D(G)).
Obviously, this implies that Tw,Ū (z; G)b = 0 for all G(z) ∈ A(D(G)) and all real
vectors b.

Next, we consider the second case in which w ∈ W̄ . Let G denote the inde-
terminate matrix of D(G). In addition, define A := adj(I − G). Then, we have

(I − G)A = det(I − G)I (9.9a)

(I − G)W̄ ,VAV ,Ū = 0, (9.9b)

where (9.9b) follows from the fact that Ū and W̄ are disjoint. Recall that nodes in
W̄ do not have any outgoing edges, and therefore (I − G)W̄ ,W̄ = I. This means
that we can rewrite (9.9b) as

AW̄ ,Ū = GW̄ ,W̄ cAW̄ c ,Ū , (9.10)

where we recall that W̄ c := V \ W̄ . Note that for j ∈ W̄ c, the column GW̄ ,j is
equal to 0 if j is not an in-neighbour of any node in W̄ . In addition, for any
j ∈ W̄ c, the row Aj,Ū equals 0 if there is no path from Ū to j (by Lemma 9.5).
Therefore, we can rewrite (9.10) as

AW̄ ,Ū = GW̄ ,NAN ,Ū , (9.11)
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where N ⊆ W̄ c is characterized by the following property: we have j ∈ N if
and only if j is an in-neighbour of a node in W̄ and there is a path from Ū
to j. By definition of the adjugate, the entries of AN ,Ū are polynomials in the
indeterminate entries of G. We claim that the indeterminate entries of GW̄ ,N do
not appear in any entry of AN ,Ū , that is, AN ,Ū is independent of the indeterminate
entries of GW̄ ,N . For the sake of clarity, we postpone the proof of this claim to the
end. For now, we assume that AN ,Ū is independent of the indeterminate entries
of GW̄ ,N .

By definition, there is a path from Ū to each node inN . LetN = {n1, n2, . . . , nr},
where r = |N |. Then, for each node ni ∈ N , there exists a node ui ∈ Ū such
that Ani ,ui is a nonzero polynomial in the indeterminate entries of G (by Lemma
9.5). We emphasize that ui and uj are not necessarily distinct. We focus on the r
nonzero polynomials

An1,u1 ,An2,u2 , . . . ,Anr ,ur . (9.12)

The idea is to apply Proposition 9.1 and Remark 9.4 to these r polynomials. By
Remark 9.4, we can substitute nonzero real numbers for the indeterminate entries
of G such that all r polynomials (9.12) evaluate to nonzero real numbers. Since the
polynomials (9.12) are independent of the indeterminate entries of GW̄ ,N , we do
not have to fix the entries of GW̄ ,N . In addition, it is possible to substitute strictly
proper functions in z for the indeterminate entries of G (except for entries of GW̄ ,N )
such that the polynomials (9.12) evaluate to nonzero rational functions. Indeed,
one can simply choose all indeterminate entries of G as nonzero real numbers as
before, and then divide all of these real numbers by z.

To summarize the progress so far, we have substituted strictly proper functions
for the indeterminate entries of G (except for the entries of GW̄ ,N ) such that the
polynomials (9.12) evaluate to nonzero rational functions. Note that this implies
that the matrix AN ,Ū evaluates to a rational matrix, which we denote by AN ,Ū (z)
from now on. Since each row of AN ,Ū (z) contains a nonzero rational function, by
Proposition 9.2 there exists a nonzero real vector b such that AN ,Ū (z)b has only
nonzero rational entries.

Subsequently, we will choose the indeterminate entries of GW̄ ,N such that
GW̄ ,N AN ,Ū (z)b = 0. Recall that the nodes in W̄ either have zero or at least two in-
neighbours from the setN . If a node w ∈ W̄ has no in-neighbours, then Gw,N = 0,
and therefore clearly Gw,N AN ,Ū (z)b = 0. If a node w ∈ W̄ has at least two in-
neighbours, say n1, n2, . . . , np ∈ N , then we substitute strictly proper functions for
the indeterminate entries Gw,n1 ,Gw,n2 , . . . ,Gw,np so that Gw,N AN ,Ū (z)b = 0. Note
that this is possible since the vector AN ,Ū (z)b has only nonzero rational entries. To
conclude, we have substituted strictly proper functions for the indeterminate en-
tries of G which yields a matrix which we denote by G(z). The adjugate of I−G(z)
is denoted by A(z) = adj(I − G(z)). We have shown that GW̄ ,N (z)AN ,Ū (z)b = 0.
By (9.11), this yields AW̄ ,Ū (z)b = 0. Note that det(I − G(z)) is nonzero since all
nonzero entries of G are strictly proper functions. Therefore,

T(z; G) =
1

det(I − G(z))
A(z),
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from which we find that TW̄ ,Ū (z; G)b = 0. Consequently, TD(W),Ū (z; G)b = 0, and
rank TD(W),Ū (z; G) < |Ū |. Therefore, we conclude that rank TD(W),U (z; G) < |U |.
We still have to show that G(z) is admissible, i.e., G(z) ∈ A(D(G)). Since the
indeterminate matrix G is consistent with the graph D(G) and we substituted
(nonzero) strictly proper functions for each indeterminate entry of G, the matrix
G(z) readily satisfies Properties P1 and P2. In addition, since all nonzero entries
of G(z) are strictly proper, we obtain limz→∞ I − G(z) = I, and hence, G(z)
also satisfies Property P3. We conclude that rank TD(W),U (z; G) < |U | for some
G(z) ∈ A(D(G)). Finally, by consecutive application of Lemmas 9.3 and 9.4, we
conclude that rank TW ,U (z; G) < |U | for some G(z) ∈ A(G).

Recall that we have so far assumed that AN ,Ū is independent of the indeterminate
entries of GW̄ ,N . It remains to be shown that this is true. To this end, label the
nodes in V such that G can be written as

G =

[
GW̄ c ,W̄ c GW̄ c ,W̄
GW̄ ,W̄ c GW̄ ,W̄

]
(9.13a)

=

[
GW̄ c ,W̄ c 0
GW̄ ,W̄ c 0

]
, (9.13b)

where (9.13b) follows from the fact that nodes in W̄ have no outgoing edges. This
implies that

I − G =

[
I − GW̄ c ,W̄ c 0
−GW̄ ,W̄ c I

]
,

and therefore

A = adj(I − G) =

[
adj(I − GW̄ c ,W̄ c) 0

∗ ∗

]
. (9.14)

Since the entries of GW̄ c ,W̄ c are independent of the indeterminate entries of
GW̄ ,W̄ c , we conclude from (9.14) that the matrix AW̄ c ,W̄ c = adj(I − GW̄ c ,W̄ c) is
independent of the indeterminate entries of GW̄ ,W̄ c . Now, to prove the claim, note
that Ū and W̄ are disjoint by definition, and therefore Ū ⊆ W̄ c. In addition, we
have N ⊆ W̄ c. Therefore, the matrix AN ,Ū is a submatrix of AW̄ c ,W̄ c . Furthermore,
we see that GW̄ ,N is a submatrix of GW̄ ,W̄ c by using the fact that N ⊆ W̄ c. We
conclude that the entries of AN ,Ū are independent of the indeterminate entries of
GW̄ ,N . This proves the theorem.

9.6 identifiability and graph simplification
In this section we use Theorem 9.1 to provide solutions to the identifiability
problems introduced in Section 9.3. Specifically, the following theorem follows
from Theorem 9.1 and Lemma 9.1 and states necessary and sufficient graph-
theoretic conditions for identifiability of (i,N+

i ).
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Theorem 9.2. Consider a directed graph G = (V , E), let i ∈ V and C ⊆ V .
Moreover, let D(C) be any derived vertex set of C with respect to N+

i . Then
(i,N+

i ) is identifiable from C in G if and only if N+
i ⊆ D(C).

Example 9.3. Consider the graph in Figure 9.2. We wonder whether (1,N+
1 )

is identifiable. Note that we have N+
1 = {2}. The set of measured nodes is

C = {5, 6}. As shown in Example 9.2, a derived vertex set of C with respect to N+
1

is given by D(C) = {2, 4}. Since {2} ⊆ D(C), we conclude by Theorem 9.2 that
(1,N+

1 ) is identifiable. In other words, we can uniquely reconstruct G21(z) from
the transfer matrix CT(z; G). This approach shows the strength of our approach.
Indeed, note that to check identifiability, we do not have to verify Definition 9.1
directly. Also, we do not have to compute CT(z; G) = C(I − G(z))−1 and verify
its rank for all G(z) ∈ A(G), which is required to check the condition of Lemma
9.1.

By definition of the graph simplification process, we have that |D(C)| 6 |C|.
Hence, it follows from Theorem 9.2 that identifiability of (i,N+

i ) implies that the
number of measured nodes is greater or equal to the number of out-neighbours
of node i.

Corollary 9.2. Consider a directed graph G = (V , E), let i ∈ V and C ⊆ V . If
(i,N+

i ) is identifiable from C in G then |N+
i | 6 |C|.

The next result gives necessary and sufficient graph-theoretic conditions under
which the entire graph G is identifiable. This result is a corollary of Theorem 9.2
but is stated as a theorem due to its importance.

Theorem 9.3. Consider a directed graph G = (V , E) and let C ⊆ V . Then G is
identifiable from C if and only if for all i ∈ V , we have N+

i ⊆ D(C), where D(C)
is any derived vertex set of C with respect to N+

i .

We emphasize that the derived set D(C) of C depends on the choice of neigh-
bour set N+

i , and hence, for each node i ∈ V we have to compute the derived set
of C with respect to N+

i .

9.7 constrained vertex-disjoint paths
In the previous section we established necessary and sufficient graph-theoretic
conditions for the identifiability of respectively (i,N+

i ) and G. The purpose of
the current section is to compare these results to the ones based on so-called
constrained vertex-disjoint paths [223]. We first recall the definition in what follows.

Definition 9.3. Let G = (V , E) be a directed graph. Consider a set of m vertex-
disjoint paths in G with starting nodes Ū ⊆ V and end nodes W̄ ⊆ V . We say that
the set of vertex-disjoint paths is constrained if it is the only set of m vertex-disjoint
paths from Ū to W̄ .
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Next, let U ,W ⊆ V be disjoint subsets of vertices. We say that there exists a
constrained set of m vertex-disjoint paths from U toW if there exists a constrained
set of m vertex-disjoint paths in G with starting nodes Ū ⊆ U and end nodes
W̄ ⊆ W . In the case that U ∩ W 6= ∅, we say that there is a constrained
set of m vertex-disjoint paths from U to W if there exists a constrained set of
max{0, m− |U ∩W|} vertex-disjoint paths from U \W toW \ U .

Remark 9.5. Note that for a set of m vertex-disjoint paths from U to W to be
constrained, we do not require the existence of a unique set of m vertex-disjoint
paths from U to W . In fact, we only require the existence of a unique set of
vertex-disjoint paths between the starting nodes Ū of the paths and the end nodes W̄ .
We will illustrate the definition of constrained vertex-disjoint paths in Example
9.4.

Remark 9.6. The notion of constrained vertex-disjoint paths is strongly related to
the notion of constrained matchings in bipartite graphs [82]. In fact, a constrained
matching can be seen as a special case of a constrained set of vertex-disjoint paths
where all paths are of length one.

Example 9.4. Consider the graph G = (V , E) in Figure 9.6. Moreover, con-
sider the subsets of vertices U := {2, 3} and W := {6, 7, 8}. Clearly, the paths

1

2

3

4

5

6

7

8

Figure 9.6: Graph used in Example 9.4.

{(2, 4), (4, 6)} and {(3, 5), (5, 7)} form a set of two vertex-disjoint paths from U to
W . In fact, this set of vertex-disjoint paths is constrained since there does not exist
another set of two vertex-disjoint paths from Ū = {2, 3} to W̄ = {6, 7}. Therefore,
there exists a constrained set of two vertex-disjoint paths from U toW . Note that
there are also other sets of vertex-disjoint paths from U toW . For example, the
paths {(2, 4), (4, 7)} and {(3, 5), (5, 8)} also form a set of two vertex-disjoint paths.
However, this set of vertex-disjoint paths is not constrained. To see this, note
that we have another set of vertex-disjoint paths from Ū = {2, 3} to W̄ = {7, 8},
namely the set consisting of the paths {(2, 4), (4, 8)} and {(3, 5), (5, 7)}.

In the following theorem, we recall the main result presented in [223], which re-
lates the notion of constrained vertex-disjoint paths and identifiability of (i,N+

i ).
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Theorem 9.4. Consider a directed graph G = (V , E), let i ∈ V and C ⊆ V . If there
exists a constrained set of |N+

i | vertex-disjoint paths from N+
i to C then (i,N+

i )
is identifiable from C.

The proof of Theorem 9.4 can be found in [223] (see Theorem 13). A natural
question to ask is whether the condition given in Theorem 9.4 is also necessary for
identifiability. It turns out that this is not the case, as demonstrated next.

Example 9.5. In this example, we revisit the graph G = (V , E) in Figure 9.2.
Suppose that we are interested in the identifiability of (1,N+

1 ), i.e., in the iden-
tifiability of the transfer function corresponding to the edge (1, 2). The set of
measured nodes is given by C = {5, 6}. The purpose of this example is to show
that Theorem 9.4 is not necessary, i.e., we have to show that (1,N+

1 ) is identifiable
even though there does not exist a constrained set of one (vertex-disjoint) path
from N+

1 to C.
Note that N+

1 = {2} and that there are three different paths from 2 to 5. In
addition, there are two different paths from node 2 to node 6. This implies that
there does not exist a constrained set of one (vertex-disjoint) path from N+

1 to
C. Nonetheless, we can show that (1,N+

1 ) is identifiable. The easiest way to
show this is by noting that we already proved in Example 9.2 that N+

1 ⊆ D(C),
where D(C) is a derived vertex set of C. Hence, by Theorem 9.2 we conclude
that (1,N+

1 ) is identifiable. However, to gain a bit more insight we will prove
identifiability of (1,N+

1 ) by inspection of the transfer matrix TC,N+
1
(z; G). For

any G(z) ∈ A(G), we obtain

TC,N+
1
=

[
G52 + G54(G42 + G43G32)

G64(G42 + G43G32)

]
, (9.15)

where we omitted the argument z. If G42 + G43G32 6= 0 then G64(G42 + G43G32) 6=
0 and therefore rank TC,N+

1
= 1. If G42 + G43G32 = 0, we see that G52 + G54(G42 +

G43G32) = G52 6= 0 so also in this case rank TC,N+
1

= 1. We conclude that

rank TC,N+
1
= 1 for all admissible network matrices, which means that (1,N+

1 ) is
identifiable by Lemma 9.1.

Example 9.5 also gives some intuition for the fact that Theorem 9.4 is not
necessary for identifiability. Indeed, the condition based on constrained vertex-
disjoint paths guarantees that a square submatrix of TC,N+

i
(z; G) is invertible for

all admissible G, where the columns and rows of this submatrix are indexed by
the starting nodes and end nodes of the paths, respectively [223]. However, as
can be seen from (9.15), the matrix TC,N+

i
(z; G) might be left-invertible for all

admissible G, even though there does not exist a square |N+
i | × |N+

i | submatrix
of TC,N+

i
(z; G) that is invertible for all admissible G. In general, the particular

square submatrix of TC,N+
i
(z; G) that is invertible depends on the network matrix

G. Interestingly, we can use the general theory developed in this chapter to show
that the condition of Theorem 9.4 is necessary and sufficient in the special case
that TC,N+

i
(z; G) is square itself (a proof is given in Section 9.9.2).
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Theorem 9.5. Consider a directed graph G = (V , E). Let i ∈ V and C ⊆ V be
such that |C| = |N+

i |. Then, (i,N+
i ) is identifiable if and only if there exists a

constrained set of |N+
i | vertex-disjoint paths from N+

i to C.

The main message of this section is that the conditions in terms of constrained
vertex-disjoint paths [223] are only necessary and sufficient in the special case
that |N+

i | = |C|. This case is quite particular, especially if one is interested in
identifiability of the entire network. In the latter situation, Theorem 9.5 can
only be applied if the number of out-neighbours of each node is equal to the
number of measured nodes, which is very restrictive. Therefore, we conclude
that the necessary and sufficient conditions for identifiability based on graph
simplification are much more general. Additional advantages of the conditions
based on the graph simplification process are that they are conceptually simpler,
and appealing from computational point of view, cf. Remark 9.3.

9.8 conclusions
In this chapter we have considered the problem of identifiability of dynamical
networks for which interactions between nodes are modelled by transfer functions.
We have been interested in graph-theoretic conditions for two identifiability
problems. First, we wanted to find conditions under which the transfer functions
of all outgoing edges of a given node are identifiable. Secondly, we have been
interested in conditions under which all transfer functions in the network are
identifiable. It is known that these problems are equivalent to the left-invertibility
of certain transfer matrices for all networked matrices associated with the graph
[81], [223]. However, the downside of such rank conditions is that it is not clear
how to check the rank of a transfer matrix for an infinite number of network
matrices.

Therefore, as our first contribution, we have provided a necessary and sufficient
graph-theoretic condition under which a transfer matrix has full column rank
for all network matrices. To this end, we have introduced a new concept called
the graph simplification process. The idea of this process is to apply simplifying
operations to the graph, after which left-invertibility can be verified by simply
checking a set inclusion. Based on the graph simplification process, we have
given necessary and sufficient conditions for identifiability. Notably, we have
shown that our conditions can be verified by polynomial time algorithms. Finally,
we have shown that our results generalize existing sufficient conditions based on
constrained vertex-disjoint paths [223].

It is interesting to observe that our topological conditions for global identifia-
bility are quite different from the path-based conditions for generic identifiabil-
ity [81]. This is analogous to the controllability literature, where it was shown
that weak structural controllability can be characterized in terms of maximal
matchings [113], while strong structural controllability was characterized using a
(different) graph-theoretic concept called zero forcing [142].
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9.9 some proofs

9.9.1 Proof of Lemma 9.2

Proof of Lemma 9.2. Without loss of generality, we assume that the nodes inW do
not have outgoing edges (see Lemma 9.3). Since U ⊆ W , the nodes in U do not
have outgoing edges. We now relabel the nodes in G such that G(z) ∈ A(G) can
be written as

G =

[
GU ,U GU ,U c

GU c ,U GU c ,U c

]
=

[
0 GU ,U c

0 GU c ,U c

]
,

where we omitted the argument z, and where the zeros are present due to the
fact that nodes in U do not have outgoing edges. Consequently, we obtain

T = (I − G)−1 =

[
I −GU ,U c

0 I − GU c ,U c

]−1

=

[
I ∗
0 ∗

]
,

and therefore, TU ,U = I. Hence, TU ,U has full rank for all G(z) ∈ A(G) and we
conclude that TW ,U has rank |U | for all G(z) ∈ A(G).

9.9.2 Proof of Theorem 9.5

To prove Theorem 9.5, we will first state two lemmas. Under the assumption that
|U | = |W|, the following lemma asserts that the existence of a set of constrained
vertex-disjoint paths from U toW is preserved by operation 1.

Lemma 9.6. Let G = (V , E) be a directed graph and consider U ,W ⊆ V such
that |U | = |W|. Moreover, let Ḡ = (V , Ē) be the graph obtained from G by
removing all outgoing edges of the nodes inW . There exists a constrained set of
|U | vertex-disjoint paths from U toW in G if and only if there exists a constrained
set of |U | vertex-disjoint paths from U toW in Ḡ.

Proof. The lemma follows from the following important observation: if |U | = |W|,
then a set of |U | vertex-disjoint paths from U toW does not contain any outgoing
edge of a node in W . Indeed, if a path P from U to W in such a set of vertex-
disjoint paths contains an edge (w, v), where w ∈ W and v ∈ V , then the path
P contains at least two vertices inW (namely w and the end node). This means
that P is contained in a set of at most |U | − 1 vertex disjoint paths from U toW .
However, this is a contradiction since we assumed that P was contained in a set
of |U | vertex-disjoint paths from U toW .

Next, we prove the “if" statement. Suppose that there exists a constrained
set S of |U | vertex-disjoint paths from U to W in Ḡ. Then S is also a set of |U |
vertex-disjoint paths from U toW in G. We want to prove that S is constrained
(in the graph G). Therefore, suppose on the contrary that there exists another set
S̄ of |U | vertex-disjoint paths from U to W in G. By the above discussion, we
know that no path in S̄ contains an outgoing edge of a node inW . Therefore, S̄
is a set of |U | vertex-disjoint paths from U toW in Ḡ. As such, we conclude that
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S̄ = S . In other words, S is a constrained set of |U | vertex-disjoint paths from U
toW in G.

Conversely, to prove the “only if" statement, suppose that there exists a con-
strained set S of |U | vertex-disjoint paths from U to W in G. Again, by the
previous discussion we know that no path in S contains an outgoing edge of a
node inW . Therefore, S is also a constrained set of |U | vertex-disjoint paths from
U toW in Ḡ. This proves the lemma.

The following lemma relates the existence of a constrained set of vertex-disjoint
paths and the second graph operation.

Lemma 9.7. Consider a directed graph G = (V , E) and let U ,W ⊆ V . Suppose
that k ∈ W \ U has exactly one in-neighbour j ∈ N−k that is reachable from U .
Then there exists a constrained set of |U | vertex-disjoint paths from U to W if
and only if there exists a constrained set of |U | vertex-disjoint paths from U to W̄
with W̄ := (W \ {k}) ∪ {j}.

Proof. We will first show that S is a set of |U | vertex-disjoint paths from U toW
if and only if S̄ is a set of |U | vertex-disjoint paths from U to W̄ , where S̄ will be
specified.

Suppose that S is a set of |U | vertex disjoint paths from U toW . Consider the
path P ∈ S that goes from U to k. Since j ∈ N−k is the only in-neighbour of k
that is reachable from U , we obtain (j, k) ∈ P . This means that P̄ := P \ (j, k) is
a path from U to j. Clearly, S̄ := (S \ P) ∪ P̄ is a set of |U | vertex-disjoint paths
from U to W̄ .

Conversely, suppose that S̄ is a set of |U | vertex-disjoint paths from U to W̄ .
Consider the path P̄ ∈ S̄ that goes from U to j ∈ W̄ . Since j ∈ N−k is the only
in-neighbour of k that is reachable from U , the path P̄ does not pass through the
vertex k. Consequently, P := P̄ ∪ (j, k) is a path from U to k. Again using the fact
that j is the only in-neighbour of k that is reachable from U , we see that no path
in S̄ passes through the vertex k. This implies that S := (S̄ \ P̄) ∪ P is a set of
|U | vertex-disjoint paths from U toW .

To conclude, we have shown that S is a set of |U | vertex-disjoint paths from U
toW if and only if S̄ is a set of |U | vertex-disjoint paths from U to W̄ , where the
set S̄ is defined as S̄ := (S \ P) ∪ P̄ . This implies that S is a constrained set of
|U | vertex-disjoint paths from U toW if and only if S̄ is a constrained set of |U |
vertex-disjoint paths from U to W̄ .

Proof of Theorem 9.5. The “if" statement follows from Theorem 9.4. To prove the
“only if" part, suppose that (i,N+

i ) is identifiable. By Theorem 9.2, N+
i ⊆ D(C),

where D(C) is a derived vertex set of C with respect to N+
i . In fact, we obtain

N+
i = D(C) as |N+

i | = |C|. Let D(G) denote the associated derived graph of G.
By definition, there exists a constrained set of |N+

i | vertex-disjoint paths from
N+

i to D(C) in D(G) (see Section 9.7). By consecutive application of Lemmas 9.6
and 9.7, we conclude that there exists a constrained set of |N+

i | vertex-disjoint
paths from N+

i to C in the graph G.
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U N D I R E C T E D N E T W O R K S

In this chapter we continue our work on identifiability of networks with known graph
structure. We will, however, focus on a different class of undirected networks described
by state-space models. For this (more specific) class of networks we are able to derive
stronger results. In fact, we prove that identifiability can generally be secured by
both measuring and exciting a subset of nodes in the network.

10.1 introduction

Networks of dynamical systems appear in multiple contexts, including power
networks, sensor networks, and robotic networks, cf. [137, Sec. 1]. It is natural
to describe such networks by a graph, where nodes correspond with dynamical
subsystems, and edges represent interaction between different systems. Often,
the graph structure of dynamical networks is not directly available. For instance,
in neuroscience, the interactions between brain areas are typically unknown [213].
Other examples of networks with unknown interconnection structure include
genetic networks [97] and wireless sensor networks [118].

Consequently, the problem of network reconstruction is considered in the litera-
ture. Network reconstruction is quite a broad concept, and there exist multiple
variants of this problem. For example, the goal in [190], [130] is to reconstruct
the Boolean structure of the network (i.e., the locations of the edges). Moreover,
simultaneous identification of the graph structure and the network weights has
been considered in [79], [223], [249]. Typically, the conditions under which the net-
work structure is uniquely identifiable are rather strong, and it is often assumed
that the states of all nodes in the network can be measured [130], [79], [223], [249].
In fact, it has been shown [163] that measuring all network nodes is necessary for
network reconstruction of dynamical networks (described by a class of state-space
systems).

In this chapter, we consider undirected dynamical networks described by state-
space systems. In contrast to the above discussed papers, we assume that the
graph structure is known, but the state matrix of the network is unavailable. Such
a situation arises, for example, in electrical or power networks in which the
locations of links are typically known, but link weights require identification. Our
goal is to find graph-theoretic conditions under which the state matrix of the
network can be uniquely identified.

Graph-theoretic conditions have previously been used to assess other system-
theoretic properties such as structural controllability [142], [219], fault detection
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[174], [49], and parameter-independent stability [102]. Conditions based on
the graph structure are often desirable since they avoid potential numerical
issues associated with more traditional linear algebra tests. In addition, graph-
theoretic conditions provide insight in the types of networks having certain
system-theoretic properties, and can aid the selection of input/output nodes [167].

The papers that are most closely related to the work in this chapter are [152]
and [15]. Nabavi et al. [152] consider weighted, undirected consensus networks
with a single input. They assume that the graph structure is known, and aim to
identify the weights in the network. A sensor placement algorithm is presented,
which selects a set of sensor nodes on the basis of the graph structure. It is
shown that this set of sensor nodes is sufficient to guarantee weight identifiability.
Bazanella et al. [15] consider a network model where interactions between nodes
are modeled by proper transfer functions (see also [214], [235]). Also in this
chapter, the graph structure is assumed to be known, and the goal is to find
conditions under which the transfer functions can be identified. Under the
assumption that all nodes are externally excited, necessary and sufficient graph-
theoretic conditions are presented under which all transfer functions can be
(generically) identified.

Note that the above papers make explicit assumptions on the number of input
or output nodes. Indeed, in [152] there is a single input node, all nodes are
input nodes in [15], and all nodes are measured in [235]. In contrast to these
papers, the current chapter considers graph-theoretic conditions for identifiability
of dynamical networks where the sets of input and output nodes can be any two
(known) subsets of the vertex set. Our main contribution consists of a graph
coloring condition for identifiability of dynamical networks with single-integrator
node dynamics. Specifically, we prove a relation between identifiability and
so-called zero forcing sets [87] (see also [142], [219], [207]). As our second result,
we show how our framework can be used to assess identifiability of dynamical
networks with general, higher-order node dynamics.

The organization of this chapter is as follows. First, in Section 10.2 we introduce
the notation and preliminaries used throughout the chapter. Subsequently, in
Section 10.3 we state the problem. Section 10.4 contains our main results, and
Section 10.5 treats an extension to higher-order dynamics. Finally, our conclusions
are stated in Section 10.6.

10.2 preliminaries

10.2.1 Graph theory

All graphs considered in this chapter are simple, that is, without self-loops and
with at most one edge between any pair of vertices. Let G = (V, E) be an
undirected graph, where V = {1, 2, . . . , n} is the set of vertices (or nodes), and
E ⊆ V×V denotes the set of edges. A node j ∈ V is said to be a neighbour of i ∈ V
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if (i, j) ∈ E. An induced subgraph GS = (VS, ES) of G is a graph with the properties
that VS ⊆ V, ES ⊆ E and for each i, j ∈ VS we have (i, j) ∈ ES if and only if
(i, j) ∈ E. For any subset of nodes V′ = {v1, v2, . . . , vr} ⊆ V we define the n× r
matrix P(V; V′) as Pij := 1 if i = vj and Pij := 0 otherwise, where Pij denotes the
(i, j)-th entry of P. We will now define two families of matrices associated with
the graph G. Firstly, we define the qualitative class Q(G) as [87]

Q(G) := {X ∈ Sn | for i 6= j, Xji 6= 0 ⇐⇒ (i, j) ∈ E}.
The off-diagonal entries of matrices in Q(G) carry the graph structure of G in
the sense that Xji is nonzero if and only if there exists an edge (i, j) in the graph
G. Note that the diagonal elements of matrices in Q(G) are free, and hence,
both Laplacian and adjacency matrices associated with G are contained in Q(G)
(see [142]). In this chapter, we focus on a subclass of Q(G), namely the class of
matrices with non-negative off-diagonal entries. This class is denoted by Qp(G),
and defined as

Qp(G) := {X ∈ Q(G) | for i 6= j, Xji 6= 0 =⇒ Xji > 0}.
Note that (weighted) adjacency and negated Laplacian matrices are members of
the class Qp(G).

10.2.2 Zero forcing sets

In this section we review the notion of zero forcing. Let G = (V, E) be an
undirected graph with vertices colored either black or white. The color-change
rule is defined in the following way. If u ∈ V is a black vertex and exactly one
neighbour v ∈ V of u is white, then change the color of v to black [87]. When
the color-change rule is applied to u to change the color of v, we say u forces v,
and write u → v. Given a coloring of G, that is, given a set Z ⊆ V containing
black vertices only, and a set V \ Z consisting of only white vertices, the derived
set D(Z) is the set of black vertices obtained by applying the color-change rule
until no more changes are possible [87]. A zero forcing set for G is a subset of
vertices Z ⊆ V such that if initially the vertices in Z are colored black and the
remaining vertices are colored white, then D(Z) = V. Finally, a zero forcing set
Z ⊆ V is called a minimum zero forcing set if for any zero forcing set Y in G we
have |Y| > |Z|.

10.2.3 Dynamical networks

Consider an undirected graph G = (V, E). Let VI ⊆ V be the set of so-called input
nodes, and let VO ⊆ V be the set of output nodes, with cardinalities |VI | = m and
|VO| = p, respectively. Associated with G, VI , and VO, we consider the dynamical
system

ẋ(t) = Xx(t) + Mu(t) (10.1a)

y(t) = Nx(t), (10.1b)
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where x ∈ Rn is the state, u ∈ Rm is the input, and y ∈ Rp is the output.
Furthermore, X ∈ Qp(G) and the matrices M and N are indexed by VI and VO
in the sense that

M = P(V; VI), and N = P>(V; VO). (10.2)

We use the shorthand notation (X, M, N) to denote the dynamical system (10.1).
The transfer matrix of (10.1) is given by T(s) := N(sI − X)−1M.

Remark 10.1. Note that in this chapter, we focus on dynamical networks (10.1),
where the state matrix X is contained in Qp(G). This implies that X is symmetric
and the off-diagonal elements of X are non-negative. Dynamical networks of
this form appear, for example, in consensus problems [158], and in the study of
resistive-capacitive electrical networks, cf. [53, Sec. VB]. In addition, as we will
see, the constraints on the matrix X are also attractive from identification point of
view in the sense that we can often identify X with relatively small sets of input
and output nodes. This is in contrast to the case of identifiability of matrices that
do not satisfy symmetry and/or sign constraints. This is explained in more detail
in Remark 10.3.

10.2.4 Network identifiability

In this section, we define the notion of network identifiability. It is well-known
that the transfer matrix from u to y of system (10.1) can be identified from
measurements of u(t) and y(t) if the input function u is sufficiently rich [114].
Then, the question is whether we can uniquely reconstruct the state matrix X
from the transfer matrix T(s). Specifically, since we assume that the matrix X is
unknown, we are interested in conditions under which X can be reconstructed
from T(s) for all matrices X ∈ Qp(G). This is known as global identifiability (see,
e.g., [73]). To be precise, we have the following definition.

Definition 10.1. Consider an undirected graph G = (V, E) with input nodes
VI ⊆ V and output nodes VO ⊆ V. Define M and N as in (10.2). We say
(G; VI ; VO) is identifiable if for all matrices X, X̄ ∈ Qp(G) the following implication
holds:

N(sI − X)−1M = N(sI − X̄)−1M =⇒ X = X̄. (10.3)

Note that identifiability of (G; VI ; VO) is a property of the graph and the
input/output nodes only, and not of the particular state matrix X ∈ Qp(G).

Observation 10.1. The implication (10.3) that appears in Definition 10.1 can be
equivalently stated as

NXk M = NX̄k M for all k ∈N =⇒ X = X̄.

The matrices NXk M for k ∈N are often referred to as the Markov parameters of
(X, M, N).
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In addition to identifiability of (G; VI ; VO), we are interested in a more general
property, namely identifiability of an induced subgraph of G. This is defined as
follows.

Definition 10.2. Consider an undirected graph G = (V, E) with input nodes
VI ⊆ V and output nodes VO ⊆ V, and let GS be an induced subgraph of G.
Define M and N as in (10.2). We say (GS; VI ; VO) is identifiable if for all matrices
X, X̄ ∈ Qp(G) the following implication holds:

N(sI − X)−1M = N(sI − X̄)−1M =⇒ XS = X̄S,

where XS, X̄S ∈ Qp(GS) are the principal submatrices of X and X̄ corresponding
to the nodes in GS.

Note that identifiability of (G; VI ; VO) is a special case of identifiability of
(GS; VI ; VO), where the subgraph GS is simply equal to G.

10.3 problem statement
Let G = (V, E) be an undirected graph with input nodes VI ⊆ V and output
nodes VO ⊆ V, and consider the associated dynamical system (10.1). Throughout
this chapter, we assume G, VI , and VO to be known. We want to investigate
which principal submatrices of X can be identified from input/output data
(for all X ∈ Qp(G)). In other words, we want to find out for which induced
subgraphs GS of G, the triple (GS; VI ; VO) is identifiable. In particular, we are
interested in conditions under which (G; VI ; VO) is identifiable. Note that it is
not straightforward to check the condition for identifiability in Definitions 10.1
and 10.2. Indeed, these definitions requires the computation and comparison
of an infinite number of transfer matrices (for all X, X̄ ∈ Qp(G)). Instead, in
this chapter we want to establish a condition for identifiability of (GS; VI ; VO) in
terms of zero forcing sets. Such a graph-based condition has the potential of
being more efficient to check than the condition of Definition 10.2. In addition,
graph-theoretic conditions have the advantage of avoiding possible numerical
errors in the linear algebra computations appearing in Definition 10.2. Explicitly,
the considered problem in this chapter is as follows.

Problem 10.1. Consider an undirected graph G = (V, E) with input nodes VI ⊆ V
and ouput nodes VO ⊆ V, and let GS be an induced subgraph of G. Provide
graph-theoretic conditions under which (GS; VI ; VO) is identifiable.

10.4 main results
In this section, we state our main results. First, we establish a lemma which
will be used to prove our main contributions (Theorems 10.1 and 10.2). The
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following lemma considers the case that VI = VO, and asserts that identifiability
of (GS; U; U) is invariant under the color-change rule.

Lemma 10.1. Let GS be an induced subgraph of the undirected graph G = (V, E),
and let U ⊆ V. Suppose that u→ v, where u ∈ U and v ∈ V \U. Then (GS; U; U)
is identifiable if and only if (GS; U ∪ {v}; U ∪ {v}) is identifiable.

Proof. The “only if" part of the statement follows directly from the fact that identi-
fiability is preserved under the addition of input and output nodes. Therefore, in
what follows, we focus on proving the “if" part. Suppose that (GS; U ∪ {v}; U ∪
{v}) is identifiable. Let M̄ := P(V; U ∪ {v}) denote the associated input matrix,
and let N̄ := M̄> be the output matrix. In addition, let M := P(V; U) and
N := M>. The idea of this proof is as follows. For any X ∈ Qp(G), we will show
that the Markov parameters N̄Xk M̄ for k ∈N can be obtained from the Markov
parameters

NXk M for k ∈N. (10.4)

Then, we will show that this implies that (GS; U; U) is identifiable. In particular,
due to the overlap in the Markov parameters of (N̄, X, M̄) and (N, X, M), we
only need to show that (Xk)vw = (Xk)wv and (Xk)vv can be obtained from (10.4)
for all k ∈N and all w ∈ U. We start by showing that Xuv can be obtained from
(10.4). To this end, we define Vu := {u} ∪ {j ∈ V | (u, j) ∈ E} and compute

(X2)uu = ∑
z∈Vu

XuzXzu

= X2
uv + ∑

z∈Vu\{v}
XuzXzu.

By hypothesis, u→ v and hence Vu \ {v} ⊆ U. This implies that X2
uv = (X2)uu −

∑z∈Vu\{v} XuzXzu can be obtained from the Markov parameters (10.4). As X ∈
Qp(G), we have Xuv > 0 and therefore also Xuv can be obtained from (10.4).

Next, we prove that (Xk)vw can be obtained from (10.4) for any k ∈N and any
w ∈ U. To this end, we write

(Xk+1)uw = Xuv(Xk)vw + ∑
z∈Vu\{v}

Xuz(Xk)zw.

Since Vu \ {v} ⊆ U, and Xuv can be obtained from (10.4), this shows that we can
find (Xk)vw from the Markov parameters (10.4) using the formula

(Xk)vw =
1

Xuv

(Xk+1)uw − ∑
z∈Vu\{v}

Xuz(Xk)zw

 .
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Finally, we have to show that (Xk)vv can be obtained from (10.4) for any k ∈N.
To do so, we compute

(Xk+2)uu = ∑
i,j∈Vu

Xui(Xk)ijXju

= X2
uv(Xk)vv + ∑

i,j∈Vu
{i,j}6={v}

Xui(Xk)ijXju.

Note that (Xk+2)uu appears as an entry of one of the Markov parameters (10.4).
Furthermore, we have already established that Xuv can be obtained from (10.4).
If i = v, then Xui = Xuv, and we obtain Xui from (10.4). Otherwise, i ∈ Vu \ {v},
and Xui already appears as an entry of one of the Markov parameters (10.4).
We can repeat the exact same argument for Xju, to show that it can be obtained
from (10.4). Finally, consider the term (Xk)ij for i and j not both equal to v. If
i, j ∈ Vu \ {v}, then i, j ∈ U and (Xk)ij appears directly as an entry of a Markov
parameter in (10.4). Next, if i = v, then j ∈ U and we have already proven that
(Xk)vj can be obtained from (10.4). By symmetry, this also holds for the entry
(Xk)iv, where i ∈ U. This shows that (Xk)vv can be found using the Markov
parameters (10.4) via the fomula

(Xk)vv =
1

X2
uv

(Xk+2)uu − ∑
i,j∈Vu
{i,j}6={v}

Xui(Xk)ijXju

 .

Now, by hypothesis, for any X, X̄ ∈ Qp(G) the following implication holds:

N̄Xk M̄ = N̄X̄k M̄ for all k ∈N =⇒ XS = X̄S, (10.5)

where XS and X̄S are the principal submatrices of respectively X and X̄ corre-
sponding to the nodes in GS. Suppose that NXk M = NX̄k M for all k ∈N. By the
above formulae for (Xk)vv and (Xk)vw (and for (X̄k)vv, (X̄k)vw), we conclude that
N̄Xk M̄ = N̄X̄k M̄ for all k ∈ N, and consequently XS = X̄S by (10.5). Therefore,
(GS; U; U) is identifiable.

Based on the previous lemma, we state the following theorem, which is one of
the main results of this chapter. Loosely speaking, it states that we can identify
the principal submatrix of X corresponding to the derived set (cf. Section 10.2.2)
of VI ∩VO.

Theorem 10.1. Let GS = (VS, ES) be an induced subgraph of the undirected
graph G = (V, E), and let VI , VO ⊆ V. Define W := VI ∩VO and let D(W) be the
derived set of W in G. If VS ⊆ D(W) then (GS; VI ; VO) is identifiable.

Proof. Let GW denote the induced subgraph of G with vertex set D(W). Note that
(GW ; D(W); D(W)) is trivially identifiable. By consecutive application of Lemma
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10.1, we find that (GW ; W; W) is identifiable. By hypothesis, GS is a subgraph of
GW and hence (GS; W; W) is identifiable. Finally, note that W ⊆ VI and W ⊆ VO.
Since identifiability is invariant under the addition of input/output nodes, we
conclude that (GS; VI ; VO) is identifiable.

As a particular case of Theorem 10.1, we find that (G; VI ; VO) is identifiable if
D(W) = V, that is, if W is a zero forcing set in the graph G. This is the topic of
the following theorem.

Theorem 10.2. Let G = (V, E) be an undirected graph and let VI , VO ⊆ V. If
VI ∩VO is a zero forcing set in G then (G; VI ; VO) is identifiable.

Remark 10.2. For a graph G = (V, E), checking whether a given subset is a
zero forcing set in G can be done in time complexity O(n2), where n = |V|
(cf. [207]). Consequently, checking the condition of Theorem 10.2 is still feasible
for large-scale graphs. Although the focus of this chapter is on the analysis of
identifiability, we remark that Theorem 10.2 can also be used in the design of sets
VI and VO that ensure identifiability of (G; VI ; VO). Specifically, input and output
sets with small cardinality are obtained by choosing VI = VO as a minimum zero
forcing set in G. Minimum zero forcing sets are known for several types of graphs
including path, cycle, and complete graphs, and for the class of tree graphs (see
Section IV-B of [142]). Finding a minimum zero forcing set in general graphs is
NP-hard [2]. However, there also exist heuristic algorithms for finding (minimum)
zero forcing sets. For instance, it can be shown that for any graph G, it is possible
to find a zero forcing set of cardinality n− diam(G), where diam(G) denotes the
diameter of G.

Remark 10.3. It is interesting to remark that Theorem 10.2 implies that for many
networks it is sufficient to excite and measure only a fraction of nodes (see, for
instance, Example 10.1). This is in contrast with the case of identifiability of
dynamical networks with unknown graph structure, for which it was shown that
all nodes need to be measured [163]. Apart from the fact that we assume that the
graph G is known, the rather mild conditions of Theorem 10.2 are also due to
the fact that we consider undirected graphs with state matrices that satisfy sign
constraints. In fact, in the case of directed graphs it can be shown that the condition
VI ∪VO = V is necessary for identifiability, i.e., each node of the graph needs to
be an input or output node (or both). To see this, let Gd be a directed graph, and
define Qp(Gd) analogous to the definition for undirected graphs (Section 10.2.1),
with the distinction that X ∈ Qp(Gd) is not necessarily symmetric. Assume that
VI ∪VO 6= V. We partition X ∈ Qp(Gd), and pick a nonsingular S ∈ Rn×n as

X =

[
X11 X12
X21 X22

]
, S =

[
I 0
0 εI

]
,

where the row block
[
X21 X22

]
corresponds to the nodes in V \ (VI ∪VO). The

partition of S is compatible with the one of X, and ε is a positive real number,
not equal to 1. If X12 and X21 are not both zero matrices, then X̄ := S−1XS is
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contained in Qp(Gd) and X̄ 6= X, but (X, M, N) and (X̄, M, N) have the same
Markov parameters. That is, (G; VI ; VO) is not identifiable. If both X12 and X21
are zero, then the Markov parameters of (X, M, N) are independent of X22, hence,
(G; VI ; VO) is also not identifiable. Therefore, for directed graphs the condition
VI ∪ VO = V is necessary for identifiability. The above discussion also implies
that VI ∪ VO = V is necessary for identifiability of undirected graphs for which
X ∈ Q(G) (i.e., for which X does not necessarily satisfy the sign constraints).
Indeed, this can be shown by the same arguments as above, using ε = −1. We
conclude that the conditions for identifiability become much more restrictive once
we remove either the assumption on sign constraints or the assumption that the
graph is undirected.

Example 10.1. In this example, we illustrate Theorem 10.2. Consider the tree
graph G = (V, E) of Figure 10.1. The input set VI and output set VO have been
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Figure 10.1: Tree graph G with input and output set VI = VO = {4, 7, 9, 10,
17, 19, 22, 34, 38, 40, 41, 42, 44, 47, 49, 50, 52, 57, 60, 64, 65, 67}.

designed in such a way that VI = VO is a minimum zero forcing set in G. In fact,
the nodes of VI have been chosen as initial nodes of paths in a so-called minimal
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path cover of G [142], and therefore, VI is a minimum zero forcing set in G by
Proposition IV.12 of [142]. Hence VI ∩VO is a zero forcing set, and therefore, by
Theorem 10.2 we conclude that (G; VI ; VO) is identifiable.

Example 10.2. It is important to note that the condition in Theorem 10.2 is not
necessary for identifiability. This is shown in the following example. Consider a
graph G = (V, E), where V = {1, 2, 3}, and E = {(1, 2), (2, 1), (2, 3), (3, 2)}, and
let VI = {2} and VO = V. A straightforward calculation shows that any matrix
X ∈ Qp(G) can be identified from the Markov parameters NXM and NX2M.
This shows that (G; VI ; VO) is identifiable. However, note that VI ∩VO = {2} is
not a zero forcing set in G.

10.5 higher-order node dynamics
The purpose of this section is to generalize the results of Section 10.4 to the case
of higher-order node dynamics. Suppose that node i ∈ V has the associated
dynamics

ẋi(t) =

{
Axi(t) + Bui(t) + Fzi(t) if i ∈ VI

Axi(t) + Fzi(t) otherwise
,

where xi ∈ Rq is the state of node i, ui ∈ Rr is the input (only applied to nodes
in VI), and zi ∈ Rs describes the coupling between the nodes. The real matrices
A, B, and F are of appropriate dimensions. In addition, we associate with each
node i ∈ VO the output equation

yi(t) = Cxi(t).

The coupling variable zi is chosen as

zi(t) =
n

∑
j=1

XijKxj(t),

where K ∈ Rs×q, Xii ∈ R, Xij = Xji, and for i 6= j, Xij > 0 and Xij > 0 if and
only if (i, j) ∈ E. We define x := col(x1, x2, . . . , xn), u := col(ui1 , ui2 , . . . , uim), and
y := col(yj1 , yj2 , . . . , yjp), where ik ∈ VI and jl ∈ VO for all k = 1, 2, . . . , m and
l = 1, 2, . . . , p. Then, the dynamics of the entire network is described by the
system

ẋ(t) = (I ⊗ A + X⊗ FK)x(t) + (M⊗ B)u(t) (10.6a)

y(t) = (N ⊗ C)x(t), (10.6b)

where the (i, j)-th entry of the matrix X ∈ Qp(G) is equal to Xij, and the matrices
M and N are defined in (10.2). Dynamics of the form (10.6) arise, for example,
when synchronizing networks of linear oscillators [185]. In what follows, we use
the notation Xe := I ⊗ A + X⊗ FK, Me := M⊗ B, and Ne := N ⊗ C.
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We assume that the matrices A, B, C, F and K are known, and we are interested
in conditions under which we can identify an induced subgraph GS of G. To
make this precise, we say (GS; VI ; VO) is identifiable with respect to (10.6) if for all
X, X̄ ∈ Qp(G) the following implication holds:

Ne(sI − Xe)
−1Me = Ne(sI − X̄e)

−1Me =⇒ XS = X̄S,

where Xe := I ⊗ A + X ⊗ FK, X̄e := I ⊗ A + X̄ ⊗ FK, and the matrices XS, X̄S ∈
Qp(G) are the principal submatrices of X and X̄ corresponding to the nodes of
GS. The following theorem states conditions for identifiability of (GS; VI ; VO) for
the case of general network dynamics.

Theorem 10.3. Let GS = (VS, ES) be an induced subgraph of the undirected
graph G = (V, E), and let VI , VO ⊆ V. Define W := VI ∩VO and let D(W) be the
derived set of W in G. Then (GS; VI ; VO) is identifiable with respect to (10.6) if
VS ⊆ D(W) and C(FK)kB 6= 0 for all k ∈N.

Proof. Consider two matrices X, X̄ ∈ Qp(G) and define Xe := I ⊗ A + X ⊗ FK
and X̄e := I ⊗ A + X̄ ⊗ FK. Moreover, let Me := M ⊗ B, and Ne := N ⊗ C.
Suppose that NeXk

e Me = NeX̄k
e Me for all k ∈N. We want to prove by induction

that NXk M = NX̄k M for all k ∈N. For k = 1, the equation NeXe Me = NeX̄e Me
implies

(N ⊗ C)(I ⊗ A + X⊗ FK− I ⊗ A− X̄⊗ FK)(M⊗ B) = 0,

and hence N(X − X̄)M⊗ CFKB = 0. By assumption, CFKB 6= 0, and therefore
NXM = NX̄M. Next, suppose that NXi M = NX̄i M for all i = 1, . . . , k. The aim
is to prove that NXk+1M = NX̄k+1M. Note that we obtain

NeXk+1
e Me = NXk+1M⊗ C(FK)k+1B +

k

∑
i=0

NXi M⊗ Ri,

where Ri is a matrix that depends on A, B, C, F and K only. Completely analo-
gously, an expression for NeX̄k+1

e Me can be derived. By the induction hypothesis,
NXi M = NX̄i M for i = 1, . . . , k, and therefore NeXk+1

e Me = NeX̄k+1
e Me implies

(NXk+1M− NX̄k+1M)⊗ C(FK)k+1B = 0.

Since C(FK)k+1B 6= 0, we find NXk+1M = NX̄k+1M. Therefore, NXk M =
NX̄k M for all k ∈ N. However, since VS ⊆ D(W) we find X = X̄ by Theorem
10.1. Hence (GS; VI ; VO) is identifiable with respect to (10.6).

10.6 conclusions
In this chapter we have considered the problem of identifiability of undirected
dynamical networks. Specifically, we have assumed that the graph structure
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of the network is known, and we were interested in graph-theoretic conditions
under which (a submatrix of) the network’s state matrix can be identified. To
this end, we have used a graph coloring rule called zero forcing. We have shown
that a principal submatrix of the state matrix can be identified if the intersection
of input and output nodes can color all nodes corresponding to the rows and
columns of the submatrix. In particular, the entire state matrix can be identified
if the intersection of input and output nodes constitutes a so-called zero forcing
set in the graph. Checking whether a given set of nodes is a zero forcing set
can be done in O(n2), where n is the number of nodes in the network [207]. We
emphasize that the results we have presented here only treat the identifiability
of dynamical networks, and we have not discussed any network reconstruction
algorithms, like in [190], [130], [79], [223]. However, if the conditions of Theorem
10.2 are satisfied, then the state matrix of the network can be identified using any
suitable method, given sufficiently rich data.
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So far, we have studied notions of network identifiability. We saw that global
identifiability of a model set is a structural property: it can be characterized in terms
of the network graph and the locations of excited and measured nodes. In this chapter,
we focus on a different structural property, namely strong structural controllability.
As with identifiability, we will see that structural controllability can be characterized
in graph-theoretic terms, via two graphs associated to the considered linear system.

11.1 introduction
Controllability is a fundamental concept in systems and control. For linear
time-invariant systems of the form

ẋ(t) = Ax(t) + Bu(t), (11.1)

controllability can be be verified using the Kalman rank test or the Hautus
test [208]. Often, the exact values of the entries in the matrices A and B are not
known, but the underlying interconnection structure between the input and state
variables is known exactly.

In order to formalize this, Mayeda and Yamada have introduced a framework
in which, instead of a fixed pair of real matrices, only the zero/nonzero structure of
A and B is given [133]. This means that each entry of these matrices is known to
be either a fixed zero or an arbitrary nonzero real number. Given this zero/nonzero
structure, they then study controllability of the family of systems for which the
state and input matrices have this zero/nonzero structure. In this setup, this
family of systems is called strongly structurally controllable if all members of the
family are controllable in the classical sense [133].

Most of the existing literature up to now has considered strong structural
controllability under the above rather restrictive assumption that for each of the
entries of the system matrices there are only two possibilities: it is either a fixed
zero, or an arbitrary nonzero value [8, 29, 93, 133, 135, 157, 175, 207]. There are,
however, many scenarios in which, in addition to these two possibilities, there
is a third possibility, namely, that a given entry is not a fixed zero or nonzero,
but can take any real value. In such a scenario, it is not possible to represent the
system using a zero/nonzero structure, but a third possibility needs to be taken
into account. To illustrate this, consider the following example.

Example 11.1. The electrical circuit in Figure 11.1 consists of a resistor, two
capacitors, an inductor, an independent voltage source, an independent current
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Figure 11.1: Example of electrical circuit.

source and a current controlled voltage source. Assume that the parameters
R, C1, C2 and L are positive but not known exactly. We denote the current
through R, L, and C1 by IR, IL, and IC1 , respectively, and the voltage across C1
and C2 by VC1 and VC2 , respectively. The current controlled voltage source is
represented by GIC1 with gain G assumed to be positive. Define the state vector
as x = [VC1 VC2 IL]

T and the input as u = [V I]T . By Kirchhoff’s current and
voltage laws, the circuit is represented by a linear time-invariant system (11.1)
with

A =

−
1

RC1
0 − 1

C1

0 0 − 1
C2

R−G
RL

1
L −G

L

 , B =


1

RC1
0

0 − 1
C2

G−R
RL 0

 . (11.2)

Recall that the parameters R, C1, C2, L > 0 are not known exactly. This means
that the matrices in (11.2) are not known exactly, but we do know that they have
the following structure. Firstly, some entries are fixed zeros. Secondly, some of the
entries are always nonzero, for instance, the entry with value − 1

RC1
. The third type

of entries, those with value R−G
RL and G−R

RL , can be either zero (if R = G) or nonzero.
Since the system matrices in this example do not have a zero/nonzero structure,
the existing tests for strong structural controllability [8, 29, 93, 133, 157, 175, 207]
are not applicable.

A similar problem as in Example 11.1 appears in the context of linear networked
systems. Strong structural controllability of such systems has been well-studied
[29, 142, 147, 168, 207]. In the setup of these references, the weights on the edges
of the network graph are unknown, while the network graph itself is known.
Under the assumption that the edge weights are arbitrary but nonzero, linear
networked systems can thus be regarded as systems with a given zero/nonzero
structure. This zero/nonzero structure is determined by the network graph, in
the sense that nonzero entries in the system matrices correspond to edges in
the network graph. However, often even exact knowledge of the network graph
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is not available, in the sense that it is unknown whether certain edges in the
graph exist or not. This issue of missing knowledge appears, for example, in
social networks [103], the world wide web [237], biological networks [34, 74] and
ecological systems [105]. Another cause for uncertainty about the network graph
might be malicious attacks and unintentional failures. This issue is encountered
in transportation networks [107], sensor networks [98] and gas networks [27].

To conclude, both in the context of modeling physical systems, as well as in
representing networked systems, capturing the system simply by a zero/nonzero
structure is not always possible, and a more general system structure is required.
The papers [142, 146, 147, 149, 170, 219] study classes1 of zero/nonzero/arbitrary
patterns in the context of strong structural controllability. However, neces-
sary and sufficient conditions for strong structural controllability of general
zero/nonzero/arbitrary patterns have not yet been established. The goal of
this chapter is to provide such general necessary and sufficient conditions. In
particular, our main contributions are the following:

1. We extend the notion of zero/nonzero structure to a more general type
of zero/nonzero/arbitrary structure, and formalize this structure in terms of
suitable pattern matrices.

2. We establish necessary and sufficient conditions for strong structural con-
trollability for families of systems with a given zero/nonzero/arbitrary
structure. These conditions are of an algebraic nature and can be verified
by a rank test on two pattern matrices.

3. We provide a graph-theoretic condition for a given pattern matrix to have
full row rank. This condition can be verified using a new color change rule,
that will be defined in this chapter.

4. We establish a graph-theoretic test for strong structural controllability for
the new families of structured systems.

5. Finally, we relate our results to those existing in the literature by showing
how existing results can be recovered from those we present in this chapter.
We find that seemingly incomparable results of [207] and [142] follow
from our main results, which reveals an overarching theory. For these
reasons, this chapter can be seen as a unifying approach to strong structural
controllability of linear time-invariant systems.

We conclude this section by giving a brief account of research lines that are
related to strong structural controllability but that will not be pursued in this
chapter. The concept of weak structural controllability was introduced by Lin
in [110] and has been studied extensively, see [37,38,52,110,113,194,201]. Another,
more recent, line of work focuses on structural controllability of systems for which

1 In [142, 146, 147, 149, 219], a special structure where only the diagonal entries of the state matrix are
arbitrary entries (typically arising from a network context) were studied. In [170], the authors call
zero/nonzero/arbitrary structure a “selective structure".
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there are dependencies among the arbitrary entries of the system matrices [94, 112].
An important special case of dependencies among parameters arises when the
state matrix is constrained to be symmetric, which was considered in [134,136,147].
The problem of minimal input selection for controllability has also been well-studied,
see, e.g., [159, 167, 200, 211]. Strong structural controllability was also studied for
time-varying systems in [177], and conditions for controllability were established
for both discrete-time and continuous-time systems. Finally, weak and strong
structural targeted controllability have been investigated in [109] and [141, 219],
respectively.

The outline of the rest of the chapter is as follows. In Section 11.2, we present
some preliminaries. Next, in Section 11.3, we formulate the main problem treated
in this chapter. Then, in Section 11.4 we state our main results. Section 11.5
contains a comparison of our results with previous work. In Section 11.6 we state
proofs of the main results. Finally, in Section 11.7 we formulate our conclusions.

11.2 preliminaries
In this chapter, we will use so-called pattern matrices. By a pattern matrix we
mean a matrix with entries in the set of symbols {0, ∗, ?}. These symbols will be
given a meaning in the sequel.

The set of all p× q pattern matrices will be denoted by {0, ∗, ?}p×q. For a given
p× q pattern matrixM, we define the pattern class ofM as

P(M) := {M ∈ Rp×q |Mij = 0 ifMij = 0,

Mij 6= 0 ifMij = ∗}.

This means that for a matrix M ∈ P(M), the entry Mij is either (i) zero ifMij = 0,
(ii) nonzero ifMij = ∗, or (iii) arbitrary (zero or nonzero) ifMij = ?.

11.3 problem formulation

Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Consider the linear
dynamical system

ẋ(t) = Ax(t) + Bu(t), (11.3)

where the system matrix A is in P(A) and the input matrix B is in P(B), and
where x ∈ Rn is the state and u ∈ Rm is the input.

We will call the family of systems (11.3) a structured system. To simplify the
notation, we denote this structured system by the pair of pattern matrices (A,B).

Example 11.2. Consider the electrical circuit discussed in Example 11.1. Recall
that this was modelled as the state space system (11.2) in which the entries of
the system matrix and input matrix were either fixed zeros, strictly nonzero



11.4 main results 205

or undetermined. This can be represented as a structured system (A,B) with
pattern matrices

A =

∗ 0 ∗
0 0 ∗
? ∗ ∗

 and B =

∗ 0
0 ∗
? 0

 . (11.4)

In this chapter we will study structural controllability of structured systems. In
particular, we will focus on strong structural controllability.

Definition 11.1. The system (A,B) is called strongly structurally controllable if the
pair (A, B) is controllable for all A ∈ P(A) and B ∈ P(B).

The problem that we will investigate in the present chapter is stated as follows.

Problem 11.1. Given two pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m,
provide necessary and sufficient conditions under which (A,B) is strongly struc-
turally controllable.

In the remainder of this chapter, we will simply call the structured system
(A,B) controllable if it is strongly structurally controllable.

Remark 11.1. In addition to strong structural controllability, weak structural con-
trollability has also been studied extensively. This concept was introduced by
Lin in [110]. Instead of requiring all systems in a family associated with a given
structured system to be controllable, weak structural controllability only asks for
the existence of at least one controllable member of that family, see [52, 110, 194].
In these references, conditions were established for weak structural controllability
of structured systems in which the pattern matrices only contain 0 or ? entries.
The question then arises: is it possible to generalize the results from [52, 110, 194]
to structured systems in the context of our chapter, with more general pattern
matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m. Indeed, it turns out that the
results in [52, 110, 194] can immediately be applied to assess weak structural
controllability of our more general structured systems. To show this, for given
pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m we define two new pattern
matrices A′ ∈ {0, ?}n×n and B′ ∈ {0, ?}n×m as follows: A′ij = 0 ⇐⇒ Aij = 0
and B′ij = 0 ⇐⇒ Bij = 0. The new structured system (A′,B′) is now a
structured system of the form studied in [52, 110, 194]. Using the fact that weak
structural controllability is a generic property [194], it can then be shown that
weak structural controllability of (A′,B′) is equivalent to that of (A,B). In other
words, weak structural controllability of general (A,B) can be verified using the
conditions established in previous work [52, 110, 194].

11.4 main results
In this section, the main results of this chapter will be stated. Firstly, we will
establish an algebraic condition for controllability of a given structured system.
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This condition states that controllability of a structured system is equivalent to
full rank conditions on two pattern matrices associated with the system. Secondly,
a graph-theoretic condition for a given pattern matrix to have full row rank
will be given in terms of a so-called color change rule. Finally, based on the
above algebraic condition and graph-theoretic condition, we will establish a
graph-theoretic condition for controllability of a structured system.

Our first main result is a rank test for controllability of a structured system.
In the sequel, we say that a pattern matrix M has full row rank if every matrix
M ∈ P(M) has full row rank.

Theorem 11.1. The system (A,B) is controllable if and only if the following two
conditions hold:

1. The pattern matrix
[
A B

]
has full row rank.

2. The pattern matrix
[
Ā B

]
has full row rank where Ā is the pattern matrix

obtained from A by modifying the diagonal entries of A as follows:

Āii :=

{
∗ if Aii = 0,
? otherwise.

(11.5)

We note here that the two rank conditions in Theorem 11.1 are independent,
in the sense that one does not imply the other in general. To show that the first
rank condition does not imply the second, consider the pattern matrices A, the
corresponding Ā, and B given by

A =

[∗ ∗
0 0

]
, Ā =

[
? ∗
0 ∗

]
and B =

[∗
∗

]
.

It is evident that the pattern matrix
[
A B

]
has full row rank. However, with

Ā =

[
0 1
0 1

]
∈ P(Ā) and B =

[
1
1

]
∈ P(B),

the matrix
[
Ā B

]
does not have full row rank. To show that the second condition

does not imply the first one, consider the pattern matrix A, the corresponding Ā,
and B given by

A =

[
? 0
∗ 0

]
, Ā =

[
? 0
∗ ∗

]
and B =

[∗
∗

]
.

Obviously, the pattern matrix
[
Ā B

]
has full row rank. However, for the choice

A =

[
1 0
1 0

]
∈ P(A) and B =

[
1
1

]
∈ P(B),

we see that
[
A B

]
does not have full row rank.

Next, we discuss a noteworthy special case in which the first rank condition
in Theorem 11.1 is implied by the second one. Indeed, if none of the diagonal
entries of A is zero, it follows from (11.5) that P(A) ⊆ P(Ā). Hence, we obtain
the following corollary to Theorem 11.1.
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Corollary 11.1. Suppose that none of the diagonal entries of A is zero. Let Ā be
as defined in (11.5). The system (A,B) is controllable if and only if

[
Ā B

]
has

full row rank.

Note that both
[
A B

]
and

[
Ā B

]
appearing in Theorem 11.1 are n× (n + m)

pattern matrices. Next, we will develop a graph-theoretic test for checking
whether a given pattern matrix has full rank. To do so, we first need to introduce
some terminology. Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. We
associate a directed graph G(M) = (V, E) withM as follows. Take as node set
V = {1, 2, . . . , q} and define the edge set E ⊆ V × V such that (j, i) ∈ E if and
only ifMij = ∗ orMij =?. If (i, j) ∈ E, then we call j an out-neighbor of i. Also,
in order to distinguish between ∗ and ? entries in M, we define two subsets
E∗ and E? of the edge set E as follows: (j, i) ∈ E∗ if and only if Mij = ∗ and
(j, i) ∈ E? if and only ifMij =?. Then, obviously, E = E∗ ∪ E? and E∗ ∩ E? = ∅.
To visualize this, we use solid and dashed arrows to represent edges in E∗ and
E?, respectively.

Example 11.3. As an example, consider the pattern matrixM given by

M =


0 0 ∗ 0 0
0 ∗ ∗ ? ∗
∗ 0 ? 0 0
0 ∗ 0 0 ?

 .

The associated directed graph G(M) is then given in Figure 11.2.

1

2 3

4 5

Figure 11.2: The graph G(M) associated withM.

Next, we introduce the notion of colorability for G(M):

1. Initially, color all nodes of G(M) white.

2. If a node i has exactly one white out-neighbor j and (i, j) ∈ E∗, we change
the color of j to black.
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3. Repeat step 2 until no more color changes are possible.

The graph G(M) is called colorable if the nodes 1, 2, . . . , p are colored black
following the procedure above. Note that the remaining nodes p + 1, . . . , q can
never be colored black since they have no incoming edges. We refer to step 2

in the above procedure as the color change rule. Similar color change rules have
appeared in the literature before (see e.g. [87, 142, 207]). Unlike some of these
rules, node i in step 2 does not need to be black in order to change the color of a
neighboring node.

Example 11.4. Consider the pattern matrixM given by

M =


∗ 0 0 0 ∗ 0
0 ? 0 ∗ 0 ∗
∗ 0 0 ∗ 0 0
0 ? ∗ ∗ 0 0

 .

The directed graph G(M) associated with M is depicted in Figure 11.3. By
repeated application of the color change rule as shown in Figure 11.4 to 11.6, we
obtain the derived set D = {1, 2, 3, 4}. Hence, G(M) is colorable.

1

2

3

4

5

6

Figure 11.3: The graph G(M).
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Figure 11.4: Node 5 colors 1 and 6 colors 2.
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Figure 11.5: Node 1 colors 3.

1

2

3

4

5

6

Figure 11.6: Node 3 colors 4.
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The following theorem now provides a necessary and sufficient graph-theoretic
condition for a given pattern matrix to have full row rank.

Theorem 11.2. Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. Then, M
has full row rank if and only if G(M) is colorable.

It is clear from the definition of the color change rule that colorability of a given
graph can be checked in polynomial time.

Finally, based on the rank test in Theorem 11.1 and the result in Theorem 11.2,
the following necessary and sufficient graph-theoretic condition for controllability
of a given structured system is obtained.

Theorem 11.3. Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices.
Also, let Ā be obtained from A by modifying the diagonal entries of A as follows:

Āii :=

{
∗ if Aii = 0,
? otherwise.

(11.6)

Then, the structured system (A,B) is controllable if and only if both G(
[
A B

]
)

and G(
[
Ā B

]
) are colorable.

As an example, we study controllability of the electrical circuit discussed in
Example 11.1.

Example 11.5. According to Example 11.2, the electrical circuit depicted in Fig-
ure 11.1 can be modelled as a structured system of the form (11.3). For this
example, we have

A =

∗ 0 ∗
0 0 ∗
? ∗ ∗

 , B =

∗ 0
0 ∗
? 0

 , and Ā =

? 0 ∗
0 ∗ ∗
? ∗ ?

 .

The graphs G(
[
A B

]
) and G(

[
Ā B

]
) are depicted in Figure 11.7 and Figure 11.8,

respectively. Both graphs are colorable. Indeed, node 5 colors 2, node 2 colors 3,
and finally 3 colors 1 in both graphs. Therefore, the system (A,B) is controllable
by Theorem 11.3.
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1

3

24 5

Figure 11.7: The graph G(
[
A B

]
).

1

3

24 5

Figure 11.8: The graph G(
[
Ā B

]
).

By applying Theorem 11.3 to the special case discussed in Corollary 11.1, we
obtain the following.

Corollary 11.2. Suppose that none of the diagonal entries of A is zero. Let Ā
be defined as in (11.6). Then, the system (A,B) is controllable if and only if
G(
[
Ā B

]
) is colorable.

To conclude this section, the results we have obtained for controllability lead
to an interesting observation in the context of structural stabilizability. We say
that a structured system (A,B) is stabilizable if the pair (A, B) is stabilizable for
all A ∈ P(A) and B ∈ P(B).

Theorem 11.4. The system (A,B) is stabilizable if and only if it is controllable.

11.5 discussion of existing results
In this section, we compare our results with those existing in the literature. We
focus on the most relevant related work [8, 29, 93, 133, 142, 157, 175, 207]. The
structured systems studied in these references are all special cases of those we
study in this chapter. In Table 11.1, we summarize the different pattern matrices
A and B studied in these references. We also include the type of conditions
that were developed, i.e., either graph-theoretic, algebraic or both. Note that
the references [29, 142, 207] study controllability in a network context, where the
pattern matrix B has a particular structure in the sense that each column has
exactly one ∗-entry, and each row has at most one ∗-entry. Additionally, the
paper [142] considers a particular class of systems where the diagonal entries
of A are all ? and none of the off-diagonal entries is ?. In the following two
subsections, we elaborate on the existing graph-theoretic conditions and algebraic
conditions, respectively. In both sections, we also compare these results to the
present work.
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Ref. A B Conditions
GTC AC

[133]

{0, ∗}n×n

{0, ∗}n×1 X −
[157] − X

[8]
{0, ∗}n×m

X −
[175] X X
[93] X X
[29]

particular {0, ∗}n×m
− X

[207] − X
[142] particular {0, ∗, ?}n×n X X

Table 11.1: An overview of previous work. Graph-theoretic conditions are abbreviated by
“GTC" and algebraic conditions by “AC".

11.5.1 Graph-theoretic conditions

The graph-theoretic conditions provided in [133, Thm. 1] for the single-input case
(m = 1) and extended to the multi-input case in [8, Satz 3] are based on the graph
G = (V, E) associated with a pattern matrix

[
A B

]
where A ∈ {0, ∗}n×n and

B ∈ {0, ∗}n×m. Note that V = {1, 2, . . . , n + m} in this case. The graph-theoretic
characterization in [8, Satz 3] (or in [133, Thm. 1] if m = 1) consists of three
conditions. The first one requires checking the so-called accessibility of each
node in {1, 2, . . . , n} from the nodes in {n + 1, n + 2, . . . , n + m}. The remaining
two conditions require checking certain relations for all subsets of {1, 2, . . . , n}.
As such, the computational complexity of checking these conditions is at least
exponential in n. Note that, in contrast, the computational complexity of checking
the colorability conditions of our Theorem 11.3 is polynomial in n.

The paper [133] provides another set of graph-theoretic conditions, stated, more
specifically, in [133, Thm. 2] (only for the case m = 1). As argued in [133, p. 135],
this theorem performs better than [133, Thm. 1] for sparse graphs. Essentially, the
conditions given in [133, Thm. 2] require checking the existence of a unique serial
buds cactus as well as nonexistence of certain cycles within the graph G. How
these conditions can be checked in an algorithmic manner is not clear, whereas
the colorability conditions given in Theorem 11.3 can be checked by a simple
algorithm.

On top of the advantages of computational complexity, the conditions provided
in Theorem 11.3 are more attractive because of their conceptual simplicity. Indeed,
colorability is a simpler and more intuitive notion than those appearing in the
results of [133] and [8].

Yet another graph-theoretical characterization is provided in [93, Thm. 5]. In
order to verify the conditions of [93, Thm. 5], one needs to check whether a
unique spanning cycle family with certain properties exists in (n+m

n ) directed
graphs obtained from the pattern matrices A and B. Needless to say, checking
the conditions of Theorem 11.3 is much easier than checking these conditions.
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Also in the context of networked systems, graph-theoretic conditions for strong
structural controllability have been obtained (see e.g. [29, 142, 207]). To elaborate
further on the relationship between the work on networked systems and our work,
we first need to explain the framework of the papers [29, 142, 207]. The starting
point of these papers is a directed graph H = (W, F) where W = {1, 2, . . . , n}
denotes the node set and F the edge set. The graphs considered in [29, 207]
are so-called loop graphs, that are graphs which are allowed to contain self-
loops, whereas [142] does not allow self-loops. Apart from the graph H, these
papers consider a subset of the node set W, the so-called leader set, say WL =
{w1, w2, . . . , wm}. Based on the graph H and WL, [29, 142, 207] introduce systems
of the form (11.3) where the pattern matrix B is defined by

Bij =

{
∗ if i = wj

0 otherwise
(11.7)

for i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}. In [29] and [207] the pattern matrix A is
defined by

Aij =

{
∗ if (j, i) ∈ F
0 otherwise

(11.8)

whereas in [142] the pattern matrix A is defined by

Aij =


∗ if (j, i) ∈ F
? if i = j
0 otherwise

(11.9)

for i, j ∈ {1, 2, . . . , n}.
In [29], the authors first define two bipartite graphs obtained from the pattern

matrices A and B. Then, they show in [29, Thm. 5] that (A,B) is strongly
structurally controllable if and only if there exist so-called constrained matchings
with certain properties in these bipartite graphs. Later, in [207, Thm. 5.4] an
equivalence between the existence of constrained matchings and so-called zero
forcing sets for loop graphs was established. To explain this in more detail, we
need to introduce the notion of zero forcing that was originally studied in the
context of minimal rank problems (see e.g. [87]).

Let H = (W, F) be a directed loop graph and S ⊆W. Color all nodes in S black
and the others white.

If a node i (of any color) has exactly one white out-neighbor j, we change the
color of j to black and write i→ j. If all the nodes in W can be colored black by
repeated application of this color change rule, we say that S is a loopy zero forcing
set for H. Given a loopy zero forcing set, we can list the color changes in the
order in which they were performed to color all nodes black. This list is called a
chronological list of color changes.

In order to quote [207, Thm. 5.5], we need two more definitions. Define
Wloop ⊆W to be the subset of all nodes with self-loops and let H∗ be the graph
obtained from H by placing a self-loop at every node.
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Theorem 11.5. [207, Thm. 5.5] Let H be a directed loop graph and WL be a
leader set. Consider the pattern matrices defined in (11.7) and (11.8). Then, the
structured system (A,B) is controllable if and only if the following conditions
hold:

1. WL is a loopy zero forcing set for H.

2. WL is a loopy zero forcing set for H∗ for which there is a chronological list
of color changes that does not contain a color change of the form i→ i with
i ∈Wloop.

A result similar to this theorem was obtained in [142] for controllability of
pattern matrices defined by (11.7) and (11.9) that are obtained from a graph H
without self-loops. However, in order to deal with this class of pattern matrices,
[142] introduces a slightly different notion of zero forcing to be defined below.

Let H = (W, F) be a directed graph without self-loops and S ⊆ W. Color all
nodes in S black and the others white. If a black node i has exactly one white
out-neighbor j, we change the color of j to black. If all the nodes in W can be
colored black by repeated application of this color change rule, we say that S is a
ordinary zero forcing set for H.

We now state the graph-theoretic characterization of controllability established
in [142].

Theorem 11.6. [142, Thm. IV.4] Let H be a directed graph without self-loops
and WL be a leader set. Consider the pattern matrices given by (11.7) and (11.9).
Then, the structured system (A,B) is controllable if and only if WL is an ordinary
zero forcing set for H.

Even though Theorems 11.5 and 11.6 present conditions that are similar in
nature, it is not possible to compare these results immediately as they deal with
two different and non-overlapping system classes. Indeed, the pattern matrices
considered in [207] (given by (11.8)) do not contain any ? entries whereas those
studied in [142] (given by (11.9)) contain only ? entries on their diagonals.

Next, we will show that the conditions of Theorem 11.3 are equivalent to
those of Theorems 11.5 and 11.6 if specialized to the corresponding pattern
matrices. This will shed light on the relationship between these results based on
the different zero forcing notions.

We start with Theorem 11.5. According to our color change rule, the nodes
belonging to WL will be colored black in both G(

[
A B

]
) and G(

[
Ā B

]
) because

B is a pattern matrix with structure defined by (11.7). Since A does not contain
? entries, G(

[
A B

]
) is colorable if and only if WL is a loopy zero forcing set for

G(A). By noting that H = G(A), we see that the first condition in Theorem 11.3
is equivalent to that of Theorem 11.5. Now, let the pattern matrix A∗ be such
that H∗ = G(A∗). Since Wloop = {i | Āii = ?}, we see that G(

[
Ā B

]
) is colorable

if and only if the second condition of Theorem 11.5 holds. Thus, the second
condition of Theorem 11.3 is equivalent to that of Theorem 11.5.
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Now, we turn attention to Theorem 11.6. It follows from (11.6) and (11.9) that
Ā = A, i.e., graphs G(

[
Ā B

]
) and G(

[
A B

]
) are the same. As in the discussion

above, the nodes belonging to WL will be colored black in G(
[
Ā B

]
) because

B is a pattern matrix with structure defined by (11.7). According to our color
change rule, a white node can never color any other white node in G(

[
Ā B

]
)

since (i, i) ∈ E? for every node i of G(Ā). This means that G(
[
Ā B

]
) is colorable

if and only if WL is an ordinary zero forcing set for G(Ā). By noting that
H = G(A) = G(Ā), we see that the conditions in Theorem 11.3 are equivalent to
the single condition of Theorem 11.6.

11.5.2 Algebraic conditions

In this subsection, we will compare our rank tests for strong structural controlla-
bility with those provided in [29, 142, 175]. More precisely, we will show that the
rank tests in Theorem 11.1 reduce to those in [29, 142, 175] for the corresponding
special cases of pattern matrices.

An algebraic condition for controllability of (A,B) was provided in [175,
Thm. 2] for A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m. Later, these conditions were
reformulated in [29, Thm. 3]. These conditions rely on a matrix property that will
be defined next for pattern matrices that may also contain ? entries.

Definition 11.2. Consider a pattern matrix M ∈ {0, ∗, ?}p×q with p 6 q. The
matrixM is said to be of Form III if there exist two permutation matrices P1 and
P2 such that

P1MP2 =


⊗ · · · ⊗ ∗ 0 · · · 0
...

...
. . . . . . . . .

...
⊗ · · · ⊗ · · · ⊗ ∗ 0
⊗ · · · ⊗ · · · ⊗ ⊗ ∗

 , (11.10)

where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?.

The above-mentioned algebraic conditions are stated next.

Theorem 11.7. [29, Thm. 3] Let A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m be two
pattern matrices. Also, let A∗ be the pattern matrix obtained from A by replacing
all diagonal entries by ∗. The system (A,B) is controllable if and only if the
following two conditions hold:

1. The matrix
[
A B

]
is of Form III.

2. The matrix
[
A∗B

]
is of Form III with the additional property that ∗ entries

appearing in (11.10) do not originate from diagonal elements in A that are ∗
entries.

It can be shown that our algebraic conditions in Theorem 11.1 are equivalent to
those in Theorem 11.7 for the special case of pattern matrices that only contain 0
and ∗ entries. Recall that it follows from Theorem 11.1 that (A,B) is controllable
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if and only if both
[
A B

]
and

[
Ā B

]
have full row rank, where Ā is given in

(11.6). To relate our algebraic conditions with the ones in Theorem 11.7, we need
the following lemma.

Lemma 11.1. LetM ∈ {0, ∗, ?}p×q with p 6 q. Then,M has full row rank if and
only ifM is of Form III.

From Lemma 11.1 it immediately follows that
[
A B

]
has full row rank if

and only if
[
A B

]
is of Form III. Hence, the first condition of Theorem 11.1 is

equivalent to that of Theorem 11.7. We will now also show that
[
Ā B

]
has full

row rank if and only if the second condition of Theorem 11.7 holds. From Lemma
11.1, we have that

[
Ā B

]
has full row rank if and only if

[
Ā B

]
is of Form III. By

definition of Ā and A∗, it follows that Āij = A∗ij for all i 6= j. If Aii = 0 then both
Āii = ∗ and A∗ii = ∗. On the other hand, if Aii = ∗ then Āii =? and A∗ii = ∗. To
sum up, Āij 6= A∗ij if and only if i = j and Aii = ∗. In other words, all entries of Ā
and A∗ are the same, except for those that correspond to the diagonal elements of
A that are ∗ entries. Hence, there exist two permutation matrices P1 and P2 such
that all entries of the matrices P1

[
Ā B

]
P2 and P1

[
A∗ B

]
P2 are the same, except

those that originate from diagonal elements of A that are ∗ entries. This implies
that

[
Ā B

]
is of Form III if and only if

[
A∗ B

]
is of Form III with the additional

property that the ∗ entries in (11.10) do not originate from diagonal elements in A
that are ∗ entries. In other words, the second conditions of Theorem 11.1 and 11.7
are equivalent. Since also the first conditions in these theorems are equivalent,
we conclude that the algebraic conditions in Theorem 11.1 are equivalent to those
in Theorem 11.7 for the special case in which A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m.

A different algebraic condition was introduced in [142] for systems defined on
simple directed graphs. The pattern matrices of such systems can be represented
by A and B given by (11.9) and (11.7), respectively. The algebraic condition
referred to above is then stated as follows.

Theorem 11.8. [142, Lem. IV.1] Consider the pattern matrices A and B given by
(11.9) and (11.7), respectively. Then, (A,B) is controllable if and only if

[
A B

]
has full row rank.

In order to see that this theorem follows from Corollary 11.1, note that A = Ā
since all diagonal entries of A are ?’s.

11.6 proofs

11.6.1 Proof of Theorem 11.1

Proof. To prove the “only if" part, assume that (A,B) is controllable. By the
Hautus test [208, Thm. 3.13] and the definition of strong structural controllability,
it follows that

[
A− λI B

]
has full row rank for all (A, B) ∈ P(A)×P(B) and

all λ ∈ C. By substitution of λ = 0 we conclude that condition 1 is satisfied.



216 a unifying framework for structural controllability

To prove that condition 2 also holds, suppose that xT [Ā B
]
= 0 for some pair

(Ā, B) ∈ P(Ā)×P(B) and x ∈ Rn. We want to prove that x = 0. Let α ∈ R be a
nonzero real number such that α 6∈ {Āii | i is such that Aii = ∗}. Then, define a
nonsingular diagonal matrix X ∈ Rn×n as

Xii =

{
1 if Āii = ?
α/Āii if Āii = ∗.

It is clear that ĀX ∈ P(Ā) and xT [ĀX B
]
= 0. Furthermore, by the choice of α

and X we obtain Â := ĀX− αI ∈ P(A). By assumption,
[
Â + αI B

]
has full row

rank (by substitution of λ = −α). In other words,
[
ĀX B

]
has full row rank and

therefore x = 0. We conclude that condition 2 is satisfied.
To prove the “if" part, assume that conditions 1 and 2 are satisfied. Suppose

that zH [A− λI B
]
= 0 for some (A, B) ∈ P(A)× P(B) and (λ, z) ∈ C× Cn,

and zH denotes the conjugate transpose of z. We want to prove that z = 0. Note
that if λ = 0, it readily follows that z = 0 by condition 1. Therefore, it remains to
be shown that z = 0 if λ 6= 0. To this end, write z = ξ + jη, where ξ, η ∈ Rn and
j denotes the imaginary unit. Next, let α ∈ R be a nonzero real number such that

α 6∈
{
− ξi

ηi
| ηi 6= 0

}
∪
{
− (ξT A)i

(ηT A)i
| (ηT A)i 6= 0

}
.

We define x := ξ + αη. Now, we claim that

(a) xi = 0 if and only if zi = 0.

(b) xi = 0 if and only if (xT A)i = 0.

Note that (a) follows directly from the definition of x and the choice of α. To prove
the “only if" part of (b), suppose that xi = 0. By (a), this implies that zi = 0. Since
zH A = λzH , we see that (zH A)i = 0. Equivalently, ((ξT − jηT)A)i = 0. Therefore,
both (ξT A)i = 0 and (ηT B)i = 0. We conclude that (xT A)i = ((ξT + αηT)A)i = 0.

To prove the “if" part of (b), suppose that (xT A)i = 0. This means that
((ξT + αηT)A)i = 0. Equivalently, (ξT A)i + α(ηT A)i = 0. By the choice of α, this
implies that (ξT A)i = (ηT A)i = 0. We conclude that (zH A)i = 0. Recall that
zH A = λzH , where λ was assumed to be nonzero. This implies that zi = 0. Again,
using (a) we conclude that xi = 0. This proves (b).

Next, we define the diagonal matrix X′ ∈ Rn×n as

X′ii =

{
1 if xi = 0
(xT A)i

xi
otherwise.

We know that X′ is nonsingular by (b). By definition of X′ we have xT A = xTX′.
Furthermore, as zH B = 0 we obtain ξT B = ηT B = 0 and therefore xT B = 0.
Hence xT [A− X′ B

]
= 0. Since X′ is nonsingular, it follows that A− X′ ∈ P(Ā).

By condition 2, this means that x = 0. Finally, we conclude that z = 0 using
(a).
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11.6.2 Proof of Theorem 11.2

To prove Theorem 11.2, we need the following auxiliary result.

Lemma 11.2. LetM ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. Consider the
directed graph G(M). Suppose that each node is colored white or black. Let
D ∈ Rp×p be the diagonal matrix defined by

Dkk =

{
1 if node k is black,
0 otherwise.

Suppose further that j ∈ {1, 2, . . . , p} is a node for which there exists a node
i ∈ {1, 2, . . . , p}, possibly identical to j, such that j is the only white out-neighbor
of i and (i, j) ∈ E∗. Then for all M ∈ P(M) we have that

[
M D

]
has full row rank

if and only if
[

M D + ejeT
j

]
has full row rank where ej denotes the jth column of

I.

Proof. The “only if" part is trivial. To prove the “if" part, suppose that M ∈ P(M)

and
[

M D + ejeT
j

]
has full row rank. Let z ∈ Rp be such that zT [M D

]
= 0.

Our aim is to show that zj = 0. Indeed, if zj is zero then zT
[

M D + ejeT
j

]
=

zT [M D
]
= 0 and hence z must be zero. This would prove that

[
M D

]
has full

row rank. We will distinguish two cases: i = j and i 6= j. Suppose first that i = j.
Let β, ω ⊆ {1, 2, . . . , p} be defined as the index sets β = {k | k 6= j and k is black}
and ω = {` | ` 6= j and ` is white}. In the sequel, to simplify the notations,
for a given vector z ∈ Rp and a given index set α ⊆ {1, 2, . . . , p}, we define
zα := {x ∈ R|α| | xi = zα(i), i ∈ {1, 2, . . . , |α|}}, where |α| is the cardinality of α.
From zT M = 0, we get

zj Mjj + zT
β Mβj + zT

ω Mωj = 0. (11.11)

Since j is the only white out-neighbor of itself, we must have that Mjj is nonzero
and that Mωj is a zero vector. Moreover, it follows from zT D = 0 that zβ must a
zero vector. Therefore, (11.11) implies that zj must be zero.

Next, suppose that i 6= j. Let β, ω ⊆ {1, 2, . . . , p} be defined as the index sets
β = {k | k 6= i, k 6= j, and k is black} and ω = {` | ` 6= i, ` 6= j, and ` is white}.
From zT M = 0, we now get

zi Mii + zj Mji + zT
β Mβi + zT

ω Mωi = 0. (11.12)

Since j is the only white out-neighbor of i, we must have that Mji is nonzero and
thatMωi is a zero vector. Moreover, it follows from zT D = 0 that zβ must a zero
vector. Therefore, (11.12) implies that

zi Mii + zj Mji = 0. (11.13)

Now, we distinguish two cases: i is black and i is white. If i is black, then we have
that zi is zero because zT D = 0. Therefore, (11.13) implies that zj = 0 as desired.
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Finally, if i is white, then we have that Mii = 0 for otherwise i would have two
white out-neighbors. Again, (11.13) implies that zj is zero. This completes the
proof.

Now, we can give the proof of Theorem 11.2.

Proof of Theorem 11.2. To prove the “if" part, suppose that G(M) is colorable. Let
M ∈ P(M) . By repeated application of Lemma 11.2, it follows that M has
full row rank if and only if

[
M I

]
has full row rank, which is obviously true.

Therefore, we conclude that M has full row rank.
To prove the “only if" part, suppose thatM has full row rank but G(M) is not

colorable. Let C be the set of nodes that are colored black by repeated application
of the color change rule until no more color changes are possible. Then, C is a
strict subset of {1, 2, . . . , p}. Thus, possibly after reordering the nodes, we can
partitionM as

M =

[M1
M2

]
,

where the rows of the matrixM1 correspond to the nodes in C and the matrix
M2 correspond to the remaining white nodes. Note that C = ∅ means that
M2 = M and M1 is absent. Since no more color changes are possible, there
is no column of M2 that has exactly one ∗ entry while all other entries are 0.
Therefore, for any column ofM2, we have one of the following three cases:

a. All entries are 0.

b. There exists exactly one ? entry while all other entries are 0.

c. At least two entries belong to the set {∗, ?}.

Consequently, there exists a matrix M2 ∈ P(M2) such that its column sums are
zero, that is 1T M2 = 0, where 1 denotes the vector of ones of appropriate size.
Take any M1 ∈ P(M1). Then

M =

[
M1
M2

]
∈ P(

[M1
M2

]
) = P(M)

satisfies
[
0T

1
T] [M1

M2

]
= 0. Hence, M does not have full row rank and we have

reached a contradiction.

11.6.3 Proof of Theorem 11.3

Proof. By Theorems 11.1 and 11.2, we have that
[
A B

]
is controllable if and only

if G(
[
A B

]
) and G(

[
Ā B

]
) are colorable.
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11.6.4 Proof of Theorem 11.4

Proof. The “if" part is evident. Therefore, it is enough to prove the “only if"
part. Suppose that the system (A,B) is stabilizable. Let (A, B) ∈ P(A)×P(B).
Then, (A, B) is stabilizable. Note that −A ∈ P(A). Therefore, both (A, B) and
(−A, B) are stabilizable. It follows from the Hautus test for stabilizability (see
e.g. [208, Thm. 3.32]) that (A, B) is controllable. Consequently, the system (A,B)
is controllable.

11.6.5 Proof of Lemma 11.1

Proof. Since the “if" part is evident, it remains to prove the “only if" part. Suppose
thatM has full row rank. From Theorem 11.2, it follows that G(M) is colorable.
In particular, there exist i ∈ {1, 2, . . . , q} and j ∈ {1, 2, . . . , p} such thatMji = ∗
andMki = 0 for all k 6= j. Therefore, we can find permutation matrices P′1 and
P′2 such that

P′1MP′2 =

 M′
0
...
0

⊗ · · · ⊗ ∗


where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?. Note that M
has full row rank for all M ∈ P(M) if and only if M′ has full row rank for all
M ∈ P(M′). Therefore, repeated application of the argument above results in
permutation matrices P1 and P2 such that (11.10) holds.

11.7 conclusions
In most of the existing literature on strong structural controllability of structured
systems, a zero/nonzero structure of the system matrices is assumed to be given.
However, in many physical systems or linear networked systems, apart from
fixed zero entries and nonzero entries we need to allow a third kind of entries,
namely those that can take arbitrary (zero or nonzero) values. To deal with this,
we have extended the notion of zero/nonzero structure to what we have called
zero/nonzero/arbitrary structure. We have formalized this more general class of
structured systems using pattern matrices containing fixed zero, arbitrary nonzero
and arbitrary entries. In this setup, we have established necessary and sufficient
algebraic conditions for strong structural controllability of these systems in terms
of full rank tests on two associated pattern matrices. Moreover, a necessary
and sufficient graph-theoretic condition for a given pattern matrix to have full
row rank has been given in terms of a new color change rule. We have then
established a graph-theoretic test for strong structural controllability of the new
class of structured systems. Finally, we have shown how our results generalize
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previous work. We have also shown that some existing results [142, 207] that are
seemingly incomparable to ours, can be put in our framework, thus unveiling an
overarching theory.

In addition to strong structural controllability, weak structural controllability
and strong structural stabilizability of zero/nonzero/arbitrary structured systems
has been analyzed. We have shown that weak structural controllability of our
structured systems can be checked using tests that already exist in the literature.
We have also shown that a structured system with zero/nonzero/arbitrary struc-
ture is strongly structurally stabilizable if and only if it is strongly structurally
controllable.

It would be interesting to adopt our new framework of structured systems to
other problem areas in systems and control, such as network identifiability [223]
or fault detection and isolation [174]. This is left as a possibility for future
research.



12 P R O P E R T I E S O F PAT T E R N
M AT R I C E S

In this chapter we take a closer look at properties of pattern matrices. As in the
previous chapter, we consider pattern matrices with three types of entries: zero,
nonzero and arbitrary. We will introduce addition and multiplication of such pattern
matrices. Thereafter, we will investigate the pattern classes of matrices that are
either the sum or product of two pattern matrices. These results are then applied to
three structural problems, namely strong structural input-state observability, output
controllability, and controllability of differential algebraic equations. In each of these
problems we will see that addition and multiplication of pattern matrices plays an
important role.

12.1 introduction
Often, the exact parameters of a dynamical system are unavailable. Nonetheless,
in many scenarios we do know something about the structure of these parameters,
for example that some of them are nonzero. It is useful to capture such prior
knowledge by a so-called pattern matrix. A pattern matrix is simply an array of
symbols, where each of the symbols represents some prior information. In this
chapter1 we focus on pattern matrices having three types of entries: “0", “∗" and
“?". Naturally, 0 captures the prior knowledge that a parameter is zero, while ∗
represents nonzero real numbers and ? represents arbitrary (zero or nonzero) real
numbers. Given a pattern matrix, its pattern class is the set of all real matrices
having the same zero/nonzero/arbitrary structure as the pattern matrix.

Sometimes we can conclude that a property of a dynamical system holds
for all system matrices in a pattern class. Such properties are referred to as
strong structural properties. Strong structural properties are thus independent
of the particular numerical parameters of the system, and instead depend on
the configuration of symbols in the involved pattern matrices. These structural
properties are valuable since they allow us to ascertain system-theoretic properties
of a system even though its parameters are uncertain.

The purpose of the chapter is to take a closer look at properties of pattern
matrices. In particular, we will introduce pattern matrix addition and multipli-
cation. We then investigate the pattern class of matrices that are either the sum
or product of two pattern matrices. We will conclude that the pattern class of
the sum of two pattern matrices is equal to the sum of the pattern classes of

1 We note that other types of pattern matrices have also been studied, see for instance the work on sign
patterns [78, 148].
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each of the matrices. However, a similar equality generally does not hold for
multiplication. Nonetheless, we can show that the product of two pattern classes
of pattern matrices is contained in the pattern class of the product of these pattern
matrices.

Next, we follow up by applying our results on pattern matrix addition and
multiplication to strong structural system properties. In particular, we focus on
three strong structural properties, namely controllability of differential algebraic
equations (DAE’s), input-state observability, and output controllability. Strong
structural controllability of DAE’s was studied in [170], and the different notion
of weak (or generic) structural controllability was also considered in [176, 244].
Our approach differs from [170] in the sense that we relate strong structural
controllability to full rank properties of certain (sums of) pattern matrices.

Strong and weak structural input-state observability were studied in a network
setting in [72]. Here, a zero/nonzero pattern was considered and input-state
observability was characterized in terms of a graph underlying this pattern. In
this chapter, we consider more general zero/nonzero/arbitrary pattern matrices
and characterize input-state observability algebraically, via full rank properties of
sums of pattern matrices. Our results can also be verified in a graph-theoretic
manner using a so-called color change rule [96].

Finally, strong structural output controllability has been considered in [141,219]
and its weak structural version was also studied in [63, 109, 144]. Both [141]
and [219] study the problem in a network context, where the input and output
matrices have a particular structure. In this context, output controllability is often
referred to as targeted controllability. In these papers, also the state matrix has
particular structure in the sense that its pattern has only arbitrary diagonal entries
and zero/nonzero off-diagonal entries. On top of this, the paper [219] considers a
subclass of the pattern class, called the distance-information preserving subclass. In
this chapter, we study strong structural output controllability in the more general
setting where the structure of the system matrices is any zero/nonzero/arbitrary
pattern. We will see that the multiplication of pattern matrices plays in important
role in the characterization of strong structural output controllability.

The organization of this chapter is as follows. In Section 12.2 we introduce
addition and multiplication of pattern matrices. Subsequently, in Section 12.3
we treat applications. In particular, we consider strong structural controllability
of DAE’s in Section 12.3.1, input-state observability in Section 12.3.2 and output
controllability in Section 12.3.3. Finally, we provide our conclusions in Section
12.4.

12.2 pattern matrices

In this section, we will review the concept of pattern matrix. A particular type of
pattern matrices was introduced in [96] in order to formalize the idea of matrices
whose entries are not known precisely but are known to be zero, nonzero or
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arbitrary real numbers. More precisely, a pattern matrix is a matrix with entries
from the set of symbols {0, ∗, ?}. Here ∗ represents nonzero real numbers and ?
represents arbitrary real numbers, as is made precise in the following definition.

Definition 12.1. Let A ∈ {0, ∗, ?}m×n. The set

P(A) =
{

A ∈ Rm×n
∣∣∣∣ Aij = 0 if Aij = 0

Aij 6= 0 if Aij = ∗

}

is called the pattern class of A.

We can define properties of pattern matrices in terms of the properties of the
real matrices in their pattern classes. For example, we say that a pattern matrix A
has full rank if A has full rank for all A ∈ P(A). Rank properties will be crucial
in the applications to structured systems as most system-theoretic properties
are characterized in terms of full rank conditions. Fortunately, conditions under
which a pattern matrix has full row rank exist and can be checked algorithmically
(see Theorem 11 and Lemma 21 of [96]).

In practice, we will be working with several “unknown" matrices that belong
to the pattern classes of some known pattern matrices. This will naturally lead
to expressions involving sums and products. In order to understand the results
of such expression, we will define a sensible way of adding and multiplying
pattern matrices. Here sensible means that the result of adding and multiplying
pattern matrices gives us some useful information on the result of adding and
multiplying matrices belonging to their pattern classes.

To this end, we will define addition for a pair of pattern matrices in such a
way that the sum of any pair of real matrices belonging to their pattern class is
contained in the pattern class of the sum of the pattern matrices. We know that
the sum of zero and any real number is just the number itself, while the sum of
two nonzero real numbers can be any real number. Motivated by this, we define
addition for the set {0, ∗, ?} as shown in Table 12.1.

Table 12.1: Addition for the set {0, ∗, ?}.
+ 0 ∗ ?

0 0 ∗ ?
∗ ∗ ? ?
? ? ? ?

Then addition for pattern matrices is defined element-wise.

Definition 12.2. Let A,B ∈ {0, ∗, ?}m×n. Their sum A + B ∈ {0, ∗, ?}m×n is
defined as

(A+ B)ij = Aij + Bij

for all i ∈ {1, . . . , m} and j ∈ {1, . . . n}.
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By definition, if A and B are pattern matrices of the same dimensions, then
P(A+ B) ⊇ P(A) + P(B), where

P(A) + P(B) = {A + B | A ∈ P(A), B ∈ P(B)}

is the Minowski sum of sets. It turns out that the converse is true as well.

Proposition 12.1. If A and B are pattern matrices of the same dimensions, then
P(A+ B) = P(A) + P(B).
Proof. The inclusion P(A+ B) ⊇ P(A) + P(B) follows from the definition of
addition. For the other inclusion, let C ∈ P(A+ B) and consider an entry Cij.
The goal is to show that there exist entries Aij ∈ P(Aij) and Bij ∈ P(Bij) such
that Cij = Aij + Bij. We will consider the cases Cij = 0 and Cij 6= 0 separately.

Suppose that Cij = 0. Then either (A + B)ij = 0 or (A + B)ij = ?. In the
former, we must have that Aij = 0 and Bij = 0, hence Aij = 0 and Bij = 0 would
work. In the latter, there are several possibilities whose solutions are listed below.

Aij Bij Aij Bij
∗, ? ∗, ? 1 −1
0 ? 0 0
? 0 0 0

Suppose that Cij 6= 0. Then either (A + B)ij = ∗ or (A + B)ij = ?. In the
former, exactly one of Aij and Bij is ∗ and the other one is 0, hence we can pick
either Aij = Cij and Bij = 0, or Aij = 0 and Bij = Cij. In the latter, there are
several possibilities whose solutions are listed below.

Aij Bij Aij Bij

∗, ? ∗, ?
Cij
2

Cij
2

0 ? 0 Cij
? 0 Cij 0

The element Cij was chosen arbitrarily, hence we can always find matrices A ∈
P(A) and B ∈ P(B) such that A + B = C and thus P(A + B) ⊆ P(A) +
P(B).

In the same vein, we now turn to the definition of multiplication for pattern
matrices. Note that the product of zero and any real number is just zero, while
the product of two nonzero real numbers is always a nonzero real number. This
motivates the definition of multiplication for the set {0, ∗, ?} shown in Table 12.2.
Then we can define pattern matrix multiplication in the usual way.

Definition 12.3. Let A ∈ {0, ∗, ?}m×p and B ∈ {0, ∗, ?}p×n. Their product AB ∈
{0, ∗, ?}m×n is defined as

(AB)ij =
p

∑
k=1
AikBkj

for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}.
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Table 12.2: Multiplication for the set {0, ∗, ?}.
· 0 ∗ ?

0 0 0 0
∗ 0 ∗ ?
? 0 ? ?

By definition, if A and B are of appropriate dimensions, then P(AB) ⊇
P(A)P(B), where

P(A)P(B) = {AB | A ∈ A, B ∈ B}.

Unfortunately, the converse is generally not true. When multiplying matrices
with at least two rows or columns, we typically create dependencies between the
entries of the product. These dependencies cannot be captured by the operations
with pattern matrices.

Example 12.1. Consider the pattern vectors

A =

[∗
∗

]
and B =

[
∗ ∗
]

.

Their product is easily computed as

AB =

[∗ ∗
∗ ∗

]
,

whose pattern class contains the matrix[
1 1
1 2

]
∈ P(AB).

Note that the latter is a matrix of rank 2, thus it cannot be written as the outer
product of two vectors. In other words, the fact that the columns (or rows) of AB,
where A ∈ P(A) and B ∈ P(B), are linearly dependent cannot be inferred from
the product AB.

Although the equality P(AB) = P(A)P(B) does not hold in general, there
are special cases of A and B for which equality holds. A notable special case is
when either A or B is the identity pattern matrix I of appropriate dimensions,
defined as

I :=


∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...
0 0 · · · ∗

 .

Indeed, suppose that A = I . It is not difficult to see that IB = B and
P(I)P(B) = P(B), and thus, P(IB) = P(B) = P(I)P(B). In the case that
B = I we can prove the equality in an analogous way.
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Finally, we will consider the following lemma that will come in handy when
considering the applications to structured systems in the next section.

Lemma 12.1. Let A,B ∈ {0, ∗, ?}m×n. Then A − λB has full rank for all A ∈
P(A), B ∈ P(B) and nonzero λ ∈ C if and only if A+ B has full rank.

Proof. Suppose that A − λB has full rank for all A ∈ P(A), B ∈ P(B) and
nonzero λ ∈ C. Fixing λ = −1 shows that A + B has full rank for all A ∈ P(A),
B ∈ P(B). But this is equivalent to C having full rank for all C ∈ P(A) + P(B),
hence A+ B has full rank due to Proposition 12.1.

Conversely, suppose that A+B has full rank. We will only treat the case where
m 6 n since the case where n > m follows the same reasoning after transposing
A and B. With this in mind, let z ∈ Cm be such that z∗A− λz∗B = 0. The goal is
to show that z must be the zero vector. Write z = x + iy, where x, y ∈ Rm and i
denotes the imaginary unit, and consider ẑ = x + αy with α ∈ R such that

α /∈ { xk
yk
| yk 6= 0, k = 1, 2, . . . , m}, (12.1)

α /∈ { (x>A)k

(y>A)k
| (y>A)k 6= 0, k = 1, 2, . . . , m}, (12.2)

α /∈ { (x>B)k

(y>B)k
| (y>B)k 6= 0, k = 1, 2, . . . , m}. (12.3)

Note that (12.1) implies that zk = 0 if and only if ẑk = 0. Similarly, (12.2) and
(12.3) imply that (z∗A)k = 0 if and only if (ẑ>A)k = 0, and (z∗B)k = 0 if and
only if (ẑ>B)k = 0. Furthermore, since λ 6= 0 and z∗A = λz∗B, we have that
(z∗A)k = 0 if and only if (z∗B)k = 0, hence (ẑ>A)k = 0 if and only if (ẑ>B)k = 0.
Therefore, the diagonal matrix ∆ ∈ Rn×n defined as

∆kk =


1 if (ẑ>B)k = 0,

(ẑ>A)k

(ẑ>B)k
otherwise,

is a member of P(I). Moreover, we have ẑ>A = ẑ>B∆. Since P(B)P(I) = P(B)
it holds that −B∆ ∈ P(B). Therefore, A − B∆ ∈ P(A + B) due to Proposi-
tion 12.1. Then A− B∆ has full row rank, which implies that ẑ = 0 and thus
z = 0 because of (12.1). This proves the lemma.

12.3 applications
In this section, we will show how {0, ∗, ?} pattern matrices can be used to
characterize properties of structured systems. This has already been done for
strong structural controllability in [96]. There it was shown that a structured
system is strongly structurally controllable if and only if a pair of pattern matrices
has full row rank. As the latter can be checked algorithmically, this provides a
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way to verify strong structural controllability for a given structured system. Here,
we will extend the work of [96] by studying strong structural controllability of
systems of differential algebraic equations. In addition, we will treat the problems
of input-state observability and output controllability. As we will see, addition
and multiplication of pattern matrices will play an important role in each of these
three problems.

12.3.1 Controllability of linear DAE’s

In this subsection, we will extend the results on strong structural controllability
in [96] to systems of linear differential-algebraic equations (DAE’s). Let (E, A, B)
denote the system

Eẋ(t) = Ax(t) + Bu(t), (12.4)

where t > 0, x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, E ∈ Rn×n, A ∈ Rn×n

and B ∈ Rn×m. The system (E, A, B) is called regular if sE− A is invertible as
a rational matrix in s. Typically, the matrix E is singular, which puts algebraic
constraints on the state. This leads to (E, A, B) having special features that are not
found in systems described by linear differential equations only. Consequently,
there are different kinds of controllability notions defined for (E, A, B), some
of which make sense only in the presence of algebraic constraints. We will not
go into the analysis of DAE systems, and will instead focus on a particular
definition of controllability and its characterization, as presented in [43]. To this
end, let x(t; x0, u) denote the state trajectory at time t > 0 for the initial condition
x(0) = x0 ∈ Rn and input u.

Definition 12.4. The regular system (E, A, B) is controllable if for any T > 0,
x0 ∈ Rn and x1 ∈ Rn, there exists an input function2 u ∈ Ch−1

p such that
x(T; x0, u) = x1.

Then we have the following characterization of controllability for (E, A, B).

Theorem 12.1. [43, Thm. 2-2.1] The regular system (E, A, B) is controllable if
and only if

rank
[
E B

]
= rank

[
A− λE B

]
= n (12.5)

for all λ ∈ C.

Now, suppose that E, A and B are not known precisely but are known to
belong to the pattern classes of some known pattern matrices. In other words,
we know that E ∈ P(E), A ∈ P(A) and B ∈ P(B) for given pattern matrices
E ∈ {0, ∗, ?}n×n, A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m. This naturally leads to a
family of systems as E, A and B range over the respective pattern classes. This
family is completely characterized by E , A and B, hence we denote it by (E ,A,B)
and call it a structured system.

2 The input is assumed to be in Ch−1
p , the set of (h− 1)-times piecewise continuously differentiable

functions. Here h denotes the index of the DAE, see Chapter 1 of [43].
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We are interested in conditions under which all regular (E, A, B) ∈ P(E)×
P(A)×P(B) are controllable. This motivates the following definition.

Definition 12.5. The structured system (E ,A,B) is regularly strongly structurally
controllable if all regular systems (E, A, B) ∈ P(E)× P(A)× P(B) are control-
lable.

Making use of the results from Section 12.2, we now have the following theorem
that provides a sufficient condition for regular strong structural controllability.

Theorem 12.2. The rank conditions (12.5) hold for all (E, A, B) ∈ P(E)×P(A)×
P(B) if and only if the pattern matrices[

E B
]

,
[
A B

]
and

[
A+ E B

]
have full row rank. Moreover, if these pattern matrices have full row rank then
(E ,A,B) is regularly strongly structurally controllable.

Proof. Note that the rank conditions (12.5) hold for all (E, A, B) ∈ P(E)×P(A)×
P(B) if and only if

rank
[
E B

]
= rank

[
A B

]
= rank

[
A− λE B

]
= n

for all nonzero λ ∈ C, E ∈ P(E), A ∈ P(A) and B ∈ P(B). The result then
follows from Lemma 12.1.

Remark 12.1. In the special case that E = I , all systems (E, A, B) ∈ P(I) ×
P(A)×P(B) are regular. In this case, we can also write (12.4) as

ẋ = E−1 Ax + E−1Bu

for all E ∈ P(I), A ∈ P(A) and B ∈ P(B). Clearly, E−1 ∈ P(I) for all
E ∈ P(I). Since P(I)P(A) = P(A) and P(I)P(B) = P(B), we see that regular
strong structural controllability of (I ,A,B) is equivalent to strong structural
controllability of (A,B), i.e., to controllability of (A, B) for all A ∈ P(A) and
B ∈ P(B). In fact, in the special case E = I , the conditions of Theorem 12.2
coincide with the conditions for strong structural controllability given in [96, Thm.
7]. To see this, note that

[
I B

]
has full row rank for any B. In addition, the matrix

Ā := A+ I is the pattern matrix obtained from A by changing the diagonal
entries of A to

Ākk =

{
∗ if Akk = 0,

? otherwise.

A such, Theorem 12.2 requires
[
A B

]
and

[
Ā B

]
to have full row rank, which

are exactly the two conditions of [96, Thm. 7]. These conditions are, in fact,
necessary and sufficient for controllability of (A,B) [96]. The lack of necessity
in the characterization of regular strong structural controllability (Theorem 12.2)
stems from the fact that in general not all (E, A, B) ∈ P(E)×P(A)×P(B) are
regular.
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12.3.2 Input-state observability

In this section, we will use the techniques developed in the analysis of strong
structural controllability to another property, namely, input-state observability.
Let (A, B, C, D) denote the system

ẋ(t) = Ax(t) + Bu(t) (12.6)

y(t) = Cx(t) + Du(t), (12.7)

where t > 0 represents time, x(t) ∈ Rn is the state, u(t) ∈ Rm is the input,
y(t) ∈ Rp is the output, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.
For a given initial condition x(0) = x0 ∈ Rn and input function u, we denote
the corresponding output trajectory at time t > 0 by y(t; x0, u). Consider the
following definition.

Definition 12.6. The system (A, B, C, D) is input-state observable if y(t; x1, u1) =
y(t; x2, u2) for all t > 0 implies that x1 = x2 and u1(t) = u2(t) for all t > 0.

In other words, a system (A, B, C, D) is input-state observable if different initial
states and input functions can be distinguished on the basis of the output of the
system. Conditions under which this is the case are provided in the following
theorem.

Theorem 12.3. [191, Thm. 3.3] The system (A, B, C, D) is input-state observable
if and only if

rank
[

A− λI B
C D

]
= n + m

for all λ ∈ C.

As before, instead of considering a single system (A, B, C, D), we consider the
family of systems where A ∈ P(A), B ∈ P(B), C ∈ P(C) and D ∈ P(D) for
given pattern matrices A, B, C and D of appropriate dimensions. We denote this
family by (A,B, C,D) and refer to it as a structured system. We are interested in
finding necessary and sufficient conditions under which (A, B, C, D) is guaranteed
to be input-state observable for all A ∈ P(A), B ∈ P(B), C ∈ P(C) and D ∈
P(D).
Definition 12.7. The system (A,B, C,D) is strongly structurally input-state ob-
servable if (A, B, C, D) is input-state observable for all A ∈ P(A), B ∈ P(B),
C ∈ P(C) and D ∈ P(D).

In view of Theorem 12.3 and the results presented so far, the following charac-
terization of strong structural input-state observability follows naturally.

Theorem 12.4. The system (A,B, C,D) is strongly structurally input-state observ-
able if and only if the pattern matrices[A B

C D

]
and

[A+ I B
C D

]
have full column rank.
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Proof. We claim that (A,B, C,D) is strongly structurally input-state observable if
and only if

rank
[

A− λ∆ B
C D

]
= n + m (12.8)

for all λ ∈ C, ∆ ∈ P(I), A ∈ P(A), B ∈ P(B), C ∈ P(C) and D ∈ P(D). Indeed,
(12.8) holds if and only if

rank
[

∆−1 A− λI ∆−1B
C D

]
= n + m

and ∆−1 A ∈ P(A), ∆−1B ∈ P(B) if and only if A ∈ P(A), B ∈ P(B). Therefore,
(A,B, C,D) is strongly structurally input-state observable if and only if

rank
[

A B
C D

]
= rank

[
A B
C D

]
− λ

[
∆ 0
0 0

]
= n + m

for all λ 6= 0, ∆ ∈ P(I), A ∈ P(A), B ∈ P(B), C ∈ P(C) and D ∈ P(D), which
is equivalent to [A B

C D

]
and

[A+ I B
C D

]
having full column rank by Lemma 12.1. This proves the theorem.

12.3.3 Output controllability

In this section, we will show how pattern matrix multiplication and its properties
can be used to characterize strong structural output controllability. To this end,
consider the system (A, B, C, D) as defined in Section 12.3.2.

Definition 12.8. The system (A, B, C, D) is output controllable if for any x0 ∈ Rn

and y1 ∈ Rp, there exist a time T > 0 and an input u such that y(T; x0, u) = y1.

The following is a well-known characterization of output controllability of
(A, B, C, D), c.f., [208, Ex. 3.22].

Theorem 12.5. The system (A, B, C, D) is output controllable if and only if

rank
[
D CB CAB · · · CAn−1B

]
= p.

Now, consider the structured system (A,B, C,D) as defined in Section 12.3.2.

Definition 12.9. The system (A,B, C,D) is strongly structurally output controllable
if (A, B, C, D) is output controllable for all A ∈ P(A), B ∈ P(B), C ∈ P(C) and
D ∈ P(D).

We are interested in conditions under which (A,B, C,D) is strongly struc-
turally output controllable. Note that the condition for output controllability
of (A, B, C, D) involves products of system matrices, unlike the conditions for
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controllability of (E, A, B) or input-state observability of (A, B, C, D). This sug-
gest that we need to consider products of pattern matrices when investigating
strong structural output controllability of (A,B, C,D). Unfortunately, since prod-
ucts of pattern matrices do not share the same favourable property as sums,
i.e., P(AB) 6= P(A)P(B), we cannot easily derive necessary and sufficient
conditions. Nevertheless, we state and prove the following sufficient condition.

Theorem 12.6. The system (A,B, C,D) is strongly structurally output controllable
if the pattern matrix [

D CB CAB · · · CAn−1B
]

has full row rank.

Proof. Let A ∈ P(A), B ∈ P(B), C ∈ P(C) and D ∈ P(D). Recall that
P(C)P(B) ⊆ P(CB), that is, CB ∈ P(CB) for all C ∈ P(C) and B ∈ P(B).
Similarly, we find that

P(C)P(A)P(B) ⊆ P(CA)P(B) ⊆ P(CAB),

and, more generally, that P(C)P(A)kP(B) ⊆ P(CAkB) for all positive integers
k. In other words, we have that[

D CB CAB · · · CAn−1B
]
⊆ P(

[
D CB CAB · · · CAn−1B

]
).

Hence (A, B, C, D) is output controllable. As A, B, C and D were chosen arbitrar-
ily, it follows that (A,B, C,D) is strongly structurally output controllable.

12.4 conclusion
In this chapter we have studied addition and multiplication of pattern matrices
having a zero/nonzero/arbitrary structure. We have seen that addition of such
pattern matrices preserves the pattern class, while multiplication of pattern
matrices enlarges the pattern class in general. We have applied these results
to assess strong structural properties of linear systems. In particular, we have
derived conditions for strong structural input-state observability and output
controllability of linear systems. We have also studied controllability of differential
algebraic equations. In each of the three problems we saw that addition and/or
multiplication of pattern matrices plays an important role. We are confident that
our results on pattern matrices can also be applied to other system-theoretic
properties such as fault detection and isolation [95].





13 A D I S TA N C E - B A S E D A P P R OA C H
TO TA R G E T C O N T R O L L A B I L I T Y

In this chapter we continue our work on strong structural output controllability.
This time, we will consider the problem in a more specific (network) setting. Here,
the input and output matrices have a particular structure reflecting the fact that
inputs are applied to a subset of network nodes and outputs consist of a subset of
nodal states. In this setting, output controllability is often referred to as targeted
controllability. We will additionally focus on a smaller class of so-called distance-
information preserving state matrices. This allows us to come up with stronger results
for targeted controllability. We will provide both a sufficient and a necessary condition
for targeted controllability. In addition, we will propose a method to select inputs
that guarantee targeted controllability.

13.1 introduction

During the last two decades, networks of dynamical agents have been extensively
studied. It is customary to represent the infrastructure of such networks by
a graph, where nodes are identified with agents and arcs correspond to the
communication between agents. In the study of controllability of networks, two
types of nodes are distinguished: leaders, which are influenced by external input,
and followers whose dynamics are completely determined by the behaviour of
their neighbours. Network controllability comprises the ability to drive the states
of all nodes of the network to any desired state, by applying appropriate input to
the leaders.

Motivated by model uncertainties, the notion of structural controllability of
linear control systems described by the pair (A, B) was introduced by Lin [110].
Here the entries of the matrices A and B are either fixed zeros or free parameters.
In this framework, weak structural controllability requires almost all realizations
of (A, B) to be controllable. That is, for almost all parameter settings of the
entries of A and B, the pair (A, B) is controllable. Lin provided a graph-theoretic
condition under which (A, B) is weakly structurally controllable in the single-
input case. Many papers followed [110], amongst others we name [67] and [194]
in which extensions to multiple leaders are given, and the article [133], that
introduces strong structural controllability, which requires all realizations of
(A, B) to be controllable.

In recent years, structural controllability gained much attention in the study of
networks of dynamical agents [24], [29], [113], [142], [207]. With a given network
graph, a family of linear control systems is associated, where the structure of the
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state matrix of each system depends on the network topology, and the input matrix
is determined by the leader set. In this framework, a network is said to be weakly
(strongly) structurally controllable if almost all (all) systems associated with the
network are controllable. The graph-theoretic results obtained in classical papers
[110], [133] lend themselves excellently to the study of structural controllability
of networks. A topological condition for (weak) structural controllability of
networks is given in terms of maximum matchings in [113], while strong structural
controllability is fully characterized in terms of zero forcing sets in [142], and in
terms of constrained matchings in [29].

However, in large-scale networks with high vertex degrees, a substantial amount
of nodes must be chosen as leader to achieve full control in the strong sense,
which is often infeasible. Furthermore, in some applications full control over the
network is unnecessary. Hence, we are interested in controlling a subset of agents,
called target nodes. This specific form of output control is known under the name
target control [63], [141]. Potential applications of target control within the areas
of biology, chemical engineering and economic networks are identified in [63].

A network is said to be strongly targeted controllable if all systems in the fam-
ily associated with the network graph are targeted controllable. In this chapter
we consider strong targeted controllability for the class of state matrices called
distance-information preserving matrices. The adjacency matrix and symmetric,
indegree and outdegree Laplacian matrices are examples of distance-information
preserving matrices. As these matrices are often used to describe network dy-
namics (see, e.g., [54], [68], [171], [205], [247]), distance-information preserving
matrices form an important class of matrices associated with network graphs.

Our main results are threefold. Firstly, we provide a sufficient topological con-
dition for strong targeted controllability of networks, that generalizes the results
of [141] for the class of distance-information preserving matrices. Specifically, the
results of [141] are restricted to target nodes having distance one with respect to
the so-called derived set of the leaders. However, our result is applicable to target
nodes that have arbitrary distance with respect to the leaders. Our sufficient
topological condition can be understood as a “k-walk theory" [63] for strong
targeted controllability. However, we remark that the k-walk theory for (weak)
targeted controllability established in Theorem 2 of [63] is only applicable to
single-input directed tree networks. On the other hand, our result is applicable to
arbitrary directed networks with multiple leaders.

Secondly, noting that our proposed sufficient condition for target control is not
a one-to-one correspondence, we establish a necessary graph-theoretic condition
for strong targeted controllability.

Finally, we consider the minimum leader selection problem in the context of
strong targeted controllability of networks. Recently, leader selection (and in gen-
eral, actuator placement) has received much attention in the literature. Minimum
actuator placement in the context of controllability is studied in [159], [165], [200]
and [211]. Also, minimum actuator placement for reachability problems was
studied [210]. Moreover, the selection of minimum input sets achieving (strong)
structural controllability has been considered in [29], [113], [167] and [168]. It was
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shown [29] that determining minimum input sets for strong structural controlla-
bility is NP-hard in general. In the context of (weak) targeted controllability, a
leader selection method has been given in [63]. However, an algorithm for leader
selection for strong targeted controllability is still missing. We first prove that
there exists no polynomial-time algorithm to determine minimum leader sets
achieving strong target control (assuming P 6= NP). Subsequently, we provide
a heuristic two-phase leader selection algorithm consisting of a binary linear
programming phase and a greedy approach to obtain leader sets achieving strong
target control.

The chapter is organized as follows: in Section 13.2, we introduce preliminaries
and notation. Subsequently, the problem is stated in Section 13.3. Our main
results are presented in Section 13.4. To illustrate the main results, an example is
given in Section 13.5. Finally, Section 13.6 contains our conclusions.

13.2 preliminaries
Consider a directed graph G = (V, E), where V is a set of n vertices, and E is the
set of directed arcs. Throughout this chapter, all graphs are assumed to be simple
and without self-loops.

We define the distance d(u, v) between two vertices u, v ∈ V as the length of
the shortest path from u to v. If there does not exist a path in the graph G from
vertex u to v, the distance d(u, v) is defined as infinite. Moreover, the distance
from a vertex to itself is equal to zero.

For a nonempty subset S ⊆ V and a vertex j ∈ V, the distance from S to j is
defined as

d(S, j) := min
i∈S

d(i, j). (13.1)

A directed graph G = (V, E) is called bipartite if there exist disjoint sets of
vertices V− and V+ such that V = V− ∪V+ and (u, v) ∈ E only if u ∈ V− and
v ∈ V+. We denote bipartite graphs by G = (V−, V+, E), to indicate the partition
of the vertex set.

13.2.1 Qualitative class and pattern class

The qualitative class of a directed graph G is a family of matrices associated with
the graph. Each of the matrices of this class contains a nonzero element in position
i, j if and only if there is an arc (j, i) in G, for i 6= j. More explicitly, the qualitative
class Q(G) of a graph G is given by

Q(G) = {X ∈ Rn×n | for i 6= j, Xij 6= 0 ⇐⇒ (j, i) ∈ E}.

Note that the diagonal elements of a matrix X ∈ Q(G) do not depend on the
structure of G, these are “free elements" in the sense that they can be either zero
or nonzero.
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Next, we look at a different class of matrices associated with a bipartite graph
G = (V−, V+, E), where the vertex sets V− and V+ are given by

V− = {r1, r2, ..., rs}
V+ = {q1, q2, ..., qt}.

(13.2)

The pattern class P(G) of the bipartite graph G, with vertex sets V− and V+ given
by (13.2), is defined as

P(G) = {M ∈ Rt×s |Mij 6= 0 ⇐⇒ (rj, qi) ∈ E}. (13.3)

Note that the cardinalities of V− and V+ can differ, hence the matrices in the
pattern class P(G) are not necessarily square.

13.2.2 Subclass of distance-information preserving matrices

In this subsection we investigate properties of the powers of matrices belonging
to the qualitative class Q(G). The relevance of these properties will become
apparent later on, when we provide a graph-theoretic condition for targeted
controllability of systems defined on graphs.

We first provide the following lemma, which states that if the distance between
two nodes is greater than k, the corresponding element in Xk is zero.

Lemma 13.1. Consider a directed graph G = (V, E), two distinct vertices i, j ∈ V,
a matrix X ∈ Q(G) and a positive integer k. If d(j, i) > k, then (Xk)ij = 0.

Proof. The proof follows easily by induction on k, and is therefore omitted.

Subsequently, we consider the class of matrices for which (Xk)ij is nonzero if the
distance d(j, i) is exactly equal to k. Such matrices are called distance-information
preserving, more precisely:

Definition 13.1. Consider a directed graph G = (V, E). A matrix X ∈ Q(G) is
called distance-information preserving if for any two distinct vertices i, j ∈ V we
have that d(j, i) = k implies (Xk)ij 6= 0.

Although the distance-information preserving property does not hold for all
matrices X ∈ Q(G), it does hold for the adjacency and Laplacian matrices [174].
Because these matrices are often used to describe network dynamics, distance-
information preserving matrices form an important subclass of Q(G), which from
now on will be denoted by Qd(G).

13.2.3 Zero forcing sets

In this section we review the notion of zero forcing. The reason for this is the
correspondence between zero forcing sets and the sets of leaders rendering a
system defined on a graph controllable. More on this will follow in the next
subsection.
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For now, let G = (V, E) be a directed graph with vertices colored either black
or white. The color-change rule is defined in the following way: If u ∈ V is a black
vertex and exactly one out-neighbour v ∈ V of u is white, then change the color
of v to black [87].

When the color-change rule is applied to u to change the color of v, we say u
forces v, and write u→ v.

Given a coloring of G, that is, given a set C ⊆ V containing black vertices only,
and a set V \ C consisting of only white vertices, the derived set D(C) is the set of
black vertices obtained by applying the color-change rule until no more changes
are possible [87].

A zero forcing set for G is a subset of vertices Z ⊆ V such that if initially the
vertices in Z are colored black and the remaining vertices are colored white, then
D(Z) = V.

The zero forcing number ρ(G) of the graph G = (V, E) is the minimum of |Z|
over all zero forcing sets Z ⊆ V. Moreover, a zero forcing set Z ⊆ V is called a
minimum zero forcing set if |Z| equals ρ(G).

Finally, for a given zero forcing set, we can construct the derived set, listing the
forces in the order in which they were performed. This list is called a chronological
list of forces. Note that such a list does not have to be unique.

13.2.4 Output controllability of linear systems

In this section we review the notion of output controllability for linear, time-
invariant systems. This notion will become useful in the next section, where we
will discuss targeted controllability of systems defined on graphs.

Consider the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), (13.4)

where x ∈ Rn is the state of the system, u ∈ Rm is the input and the real matrices
A and B are of appropriate dimensions. For a given initial condition x0 ∈ Rn

and input function u, we denote the state of (13.4) at time t by xu(t, x0). It is
well-known that system (13.4) is called controllable if for all x0, x1 ∈ Rn, there
exists an input function u and a finite time T, such that xu(T, x0) = x1. In the
case (13.4) is controllable, we say the pair (A, B) is controllable. If in addition to
Equation 13.4 we specify an output equation y(t) = Cx(t), we obtain the system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(13.5)

where y ∈ Rp is the output of the system and C ∈ Rp×n. For a given initial
condition x0 and input function u, we denote the output of (13.5) at time t by
yu(t, x0). We are now ready to introduce the notion of output controllability.

Definition 13.2. [208] System (13.5) is called output controllable if for all x0 ∈
Rn and y1 ∈ Rp, there exists an input function u and finite time T such that
yu(T, x0) = y1.
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In case (13.5) is output controllable, we say (A, B, C) is output controllable.

13.2.5 Targeted controllability of systems defined on graphs

Consider a directed graph G = (V, E), where the vertex set is given by V =
{1, 2, ..., n}. Furthermore, let V′ = {v1, v2, ..., vr} ⊆ V be a subset. The n × r
matrix P(V; V′) is defined by

Pij =

{
1 if i = vj
0 otherwise.

(13.6)

We now introduce the subset VL ⊆ V consisting of so-called leader nodes,
i.e. agents of the network to which an external control input is applied. The
remaining nodes V \VL are called followers. We consider finite-dimensional linear
time-invariant systems of the form

ẋ(t) = Xx(t) + Uu(t), (13.7)

where x ∈ Rn is the state and u ∈ Rm is the input of the system. Here X ∈ Q(G)
and U = P(V; VL), for some leader set VL ⊆ V. An important notion regarding
systems of the form (13.7) is the notion of strong structural controllability.

Definition 13.3. [142] A system of the form (13.7) is called strongly structurally
controllable if the pair (X, U) is controllable for all X ∈ Q(G).

In the case that (13.7) is strongly structurally controllable we say (G; VL) is
controllable, with a slight abuse of terminology. There is a one-to-one correspon-
dence between strong structural controllability and zero forcing sets, as stated in
the following theorem.

Theorem 13.1. [142] Let G = (V, E) be a directed graph and let VL ⊆ V be a
leader set. Then (G; VL) is controllable if and only if VL is a zero forcing set.

Remark 13.1. In the context of minimum leader selection, it is particularly in-
teresting to compute minimum zero forcing sets. Unfortunately, the problem of
computing a minimum zero forcing set has been shown to be NP-hard [2]. In
fact, the inapproximability of a related problem suggests that it is even hard to
approximate the minimum number of leaders (i.e., the zero forcing number ρ(G)).
Following Trefois et al. [207], it can be shown that in a directed bipartite graph
G with n vertices, we have that n− ρ(G) is equal to the so-called maximum size
constrained matching in G. It has been shown in [139] that it is hard to approxi-
mate the maximum size constrained matching in bipartite graphs within a factor
O(n 1

3−ε) for any ε > 0. This suggests that also the zero forcing number (and
thereby, the minimum number of leaders) cannot be approximated in polynomial
time within a large factor. The above considerations are for bipartite graphs.
However, note that if the zero forcing number is hard to approximate in bipartite
graphs, it is certainly hard to approximate in general directed graphs.
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In this chapter, we are primarily interested in controlling the states of a subset
VT ⊆ V of nodes, called target nodes. We specify an output equation y(t) = Hx(t),
which together with (13.7) yields the system

ẋ(t) = Xx(t) + Uu(t)

y(t) = Hx(t),
(13.8)

where y ∈ Rp is the output of the system consisting of the states of the target
nodes, and H = P>(V; VT). Note that the ability to control the states of all target
nodes in VT is equivalent with the output controllability of system (13.8) [141]. As
the output of system (13.8) specifically consists of the states of the target nodes,
we say (13.8) is targeted controllable if it is output controllable.

Furthermore, system (13.8) is called strongly targeted controllable if (X, U, H)
is targeted controllable for all X ∈ Q(G) [141]. In case (13.8) is strongly tar-
geted controllable, we say (G; VL; VT) is targeted controllable with respect to
Q(G). The term “with respect to Q(G)" clarifies the class of state matrices un-
der consideration. This chapter mainly considers strong targeted controllability
with respect to Qd(G). We conclude this section with well-known conditions
for strong targeted controllability. Let U = P(V; VL) and H = P>(V; VT) be
the input and output matrices respectively, and define the reachable subspace〈

X | im U
〉
= im U + X im U + · · ·+ Xn−1 im U.

Proposition 13.1. [141] The following statements are equivalent:

1) (G; VL; VT) is targeted controllable with respect to Q(G)
2) rank

[
HU HXU · · · HXn−1U

]
= p ∀ X ∈ Q(G)

3) H
〈

X | im U
〉
= Rp ∀ X ∈ Q(G)

4) ker H +
〈

X | im U
〉
= Rn ∀ X ∈ Q(G).

13.3 problem statement
Strong targeted controllability with respect to Q(G) was studied in [141], and
a sufficient graph-theoretic condition was provided. Motivated by the fact that
Qd(G) contains important network-related matrices like the adjacency and Lapla-
cian matrices, we are interested in extending the results of [141] to the class of
distance-information preserving matrices Qd(G). More explicitly, the problem
that we will investigate in this chapter is given as follows.

Problem 13.1. Given a directed graph G = (V, E), a leader set VL ⊆ V and target
set VT ⊆ V, provide necessary and sufficient graph-theoretic conditions under
which (G; VL; VT) is targeted controllable with respect to Qd(G).

The study of such graph-theoretic conditions is motivated by the fact that
known rank conditions for strong targeted controllability (Proposition 13.1, condi-
tion 2) are computationally infeasible. Indeed, verifying condition 2 of Proposition
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3 would require the rank computation of an infinite number of output controllabil-
ity matrices (one for each X ∈ Qd(G)). Furthermore, graph-theoretic conditions
for targeted controllability may aid in finding leader selection procedures.

In addition to Problem 1, we are interested in a method to compute leader sets
achieving targeted controllability. More precisely:

Problem 13.2. Given a directed graph G = (V, E) and target set VT ⊆ V, compute
a leader set VL ⊆ V of minimum cardinality such that (G; VL; VT) is targeted
controllable with respect to Qd(G).

13.4 main results

Our main results are presented in this section. Firstly, in Section 13.4.1, we
provide a sufficient graph-theoretic condition for strong targeted controllability
with respect to Qd(G). Subsequently, in Section 13.4.2, we review the notion of
sufficient richness of subclasses, and prove that the subclass Qd(G) is sufficiently
rich. This result allows us to establish a necessary condition for strong targeted
controllability, which is presented in Section 13.4.3. Finally, in Section 13.4.4, we
show there is no polynomial-time algorithm solving Problem 13.2 (assuming P 6=
NP). Therefore, we provide a heuristic leader selection algorithm to determine
leader sets achieving targeted controllability.

13.4.1 Sufficient condition for targeted controllability

This section discusses a sufficient graph-theoretic condition for strong targeted
controllability. We first introduce some notions that will become useful later on.

Consider a directed graph G = (V, E) with leader set VL and target set VT .
In this section, we assume all target nodes have finite distance with respect to
VL. This assumption is without loss of generality. Indeed, it is easy to see that
(G; VL; VT) is not targeted controllable if a target node v ∈ VT cannot be reached
from any leader.

The derived set of VL is given by D(VL). Furthermore, let VS ⊆ V \ D(VL) be a
subset. We partition the set VS according to the distance of its nodes with respect
to D(VL), that is

VS = V1 ∪V2 ∪ · · · ∪Vd, (13.9)

where for j ∈ VS we have j ∈ Vi if and only if d(D(VL), j) = i for i = 1, 2, ..., d.
Moreover, we define V̌i and V̂i to be the sets of vertices in VS of distance re-
spectively less than i and greater than i with respect to D(VL). More precisely:

V̌i := V1 ∪ ...∪Vi−1 for i = 2, ..., d

V̂i := Vi+1 ∪ ...∪Vd for i = 1, ..., d− 1
(13.10)
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By convention V̌1 = ∅ and V̂d = ∅. With each of the sets V1, V2, ..., Vd we associate
a bipartite graph Gi = (D(VL), Vi, Ei), where for j ∈ D(VL) and k ∈ Vi we have
(j, k) ∈ Ei if and only if d(j, k) = i in the network graph G.

Example 13.1. We consider the network graph G = (V, E) as depicted in Figure
13.1. The set of leaders is VL = {1, 2}, which implies that D(VL) = {1, 2, 3}.
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Figure 13.1: Graph G with VL = {1, 2}.
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Figure 13.2: D(VL) = {1, 2, 3}.

In this example, we define the subset VS ⊆ V \ D(VL) as VS := {4, 5, 6, 7, 8}.
Note that VS can be partitioned according to the distance of its nodes with respect
to D(VL) as VS = V1 ∪V2 ∪V3, where V1 = {4, 5}, V2 = {6, 7} and V3 = {8}. The
bipartite graphs G1, G2 and G3 are given in Figures 13.3,13.4 and 13.5 respectively.
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Figure 13.3: Graph G1.
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Figure 13.4: Graph G2.
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Figure 13.5: Graph G3.

The main result presented in this section is given in Theorem 13.2. This statement
provides a sufficient graph-theoretic condition for targeted controllability of
(G; VL; VT) with respect to Qd(G).

Theorem 13.2. Consider a directed graph G = (V, E), with leader set VL ⊆ V and
target set VT ⊆ V. Let VT \ D(VL) be partitioned as in (13.9), and assume D(VL)
is a zero forcing set in Gi = (D(VL), Vi, Ei) for i = 1, 2, ..., d. Then (G; VL; VT) is
targeted controllable with respect to Qd(G).

In the special case of a single leader, i.e. |VL| = 1, the condition of Theorem
13.2 can be simplified. In this case, (G; VL; VT) is targeted controllable if no pair of
target nodes has the same distance with respect to the leader. This is formulated
in the following corollary.
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Corollary 13.1. Consider a directed graph G = (V, E), with singleton leader set
VL = {v} ⊆ V and target set VT ⊆ V. (G; VL; VT) is targeted controllable with
respect to Qd(G) if d(v, i) 6= d(v, j) for all distinct i, j ∈ VT .

Note that the condition of Corollary 13.1 is similar to the “k-walk theory" for
(weak) targeted controllability established in Theorem 2 of [63]. However, it
is worth mentioning that k-walk theory [63] was only proven for directed tree
networks with a single leader. On the other hand, Theorem 13.2 establishes a
condition for strong targeted controllability that is applicable to general directed
networks with multiple leaders.

Furthermore, note that Theorem 13.2 significantly improves the known con-
dition for strong targeted controllability given in [141] for the class Qd(G). In
Theorem 13.2 target nodes with arbitrary distance with respect to the derived set
are allowed, while the main result Theorem VI.6 of [141] is restricted to target
nodes of distance one with respect to D(VL). Before proving Theorem 13.2, we
provide an illustrative example and two auxiliary lemmas.

Example 13.2. Once again, consider the network graph depicted in Figure 13.1,
with leader set VL = {1, 2} and assume the target set is given by VT = {1, 2, ..., 8}.
The goal of this example is to prove that (G; VL; VT) is targeted controllable with
respect to Qd(G).

Note that VS := VT \ D(VL) is given by VS = {4, 5, 6, 7, 8}, which is partitioned
according to (13.9) as VS = V1 ∪ V2 ∪ V3, where V1 = {4, 5}, V2 = {6, 7} and
V3 = {8}. The graphs G1, G2 and G3 have been computed in Example 13.1.
Note that D(VL) = {1, 2, 3} is a zero forcing set in all three graphs (see Figures
13.3, 13.4 and 13.5). We conclude by Theorem 13.2 that (G; VL; VT) is targeted
controllable with respect to Qd(G).

Lemma 13.2. Consider a directed graph G = (V, E) with leader set VL ⊆ V
and target set VT ⊆ V. Let Qs(G) ⊆ Q(G) be any subclass. Then (G; VL; VT)
is targeted controllable with respect to Qs(G) if and only if (G; D(VL); VT) is
targeted controllable with respect to Qs(G).

Proof. Let U = P(V; VL) index the leader set VL and W = P(V; D(VL)) index the
derived set of VL. Furthermore, let the matrix H be given by H = P>(V; VT). We
have that (G; VL; VT) is targeted controllable with respect to Qs(G) if and only if

H
〈

X | im U
〉
= Rp for all X ∈ Qs(G). (13.11)

However, as
〈

X | im U
〉
=
〈

X | im W
〉

for any X ∈ Q(G) (see Lemma VI.2
of [141]), (13.11) holds if and only if

H
〈

X | im W
〉
= Rp for all X ∈ Qs(G). (13.12)

We conclude that (G; VL; VT) is targeted controllable with respect to Qs(G) if and
only if (G; D(VL); VT) is targeted controllable with respect to Qs(G).

Lemma 13.3. Let G = (V−, V+, E) be a bipartite graph and assume V− is a zero
forcing set in G. Then all matrices M ∈ P(G) in the pattern class of G have full
row rank.
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Proof. Note that forces of the form u→ v, where u, v ∈ V+ are not possible, as G
is a bipartite graph. Relabel the nodes of V− and V+ such that a chronological
list of forces is given by ui → vi, where ui ∈ V− and vi ∈ V+ for i = 1, 2, ..., |V+|.
Let M ∈ P(G) be a matrix in the pattern class of G. Note that the element Mii
is nonzero, as ui → vi. Furthermore, Mji is zero for all j > i. The latter follows
from the fact that ui would not be able to force vi if there was an arc (ui, vj) ∈ E.
We conclude that the columns 1, 2, ..., |V+| of M are linearly independent, hence
M has full row rank.

Proof of Theorem 13.2. Let D(VL) = {1, 2, ..., m}, and assume without loss of gen-
erality that the matrix U has the form (see Lemma 13.2):

U =
[
Im×m 0m×(n−m)

]>
. (13.13)

Furthermore, we let VS := VT \D(VL) be given by {m + 1, m + 2, ..., p}, where the
vertices are ordered in non-decreasing distance with respect to D(VL). Partition
VS according to the distance of its nodes with respect to D(VL) as

VS = V1 ∪V2 ∪ · · · ∪Vd, (13.14)

where for j ∈ VS we have j ∈ Vi if and only if d(D(VL), j) = i for i = 1, 2, ..., d.
Finally, assume the target set VT contains all nodes in the derived set D(VL). This
implies that the matrix H is of the form

H =
[

Ip×p 0p×(n−p)

]
. (13.15)

Note that by the structure of H and U, the matrix HXiU is simply the p× m
upper left corner submatrix of Xi. We now claim that HXiU can be written as
follows.

HXiU =


Λi

Mi

0i

 , (13.16)

where Mi ∈ P(Gi) is a |Vi| × m matrix in the pattern class of Gi, Λi is an(
m + |V̌i|

)
× m matrix containing elements of lesser interest, and 0i is a zero

matrix of dimension |V̂i| ×m.
We proceed as follows: first we prove that the bottom submatrix of (13.16)

contains zeros only, secondly we prove that Mi ∈ P(Gi). From this, we conclude
that equation (13.16) holds.

Note that for k ∈ D(VL) and j ∈ V̂i, we have d(k, j) > i and by Lemma 13.1
it follows that (Xi)jk = 0. As D(VL) = {1, 2, ..., m}, this means that the bottom
|V̂i| ×m submatrix of HXiU is a zero matrix.

Subsequently, we want to prove that Mi, the middle block of (13.16), is an
element of the pattern class ∈ P(Gi). Note that the jth row of Mi corresponds to
the element l := m + |V̌i|+ j ∈ Vi.



244 a distance-based approach to target controllability

Suppose (Mi)jk 6= 0 for a k ∈ {1, 2, ..., m} and j ∈ {1, 2, ..., |Vi|}. As Mi is a
submatrix of HXiU, this implies (HXiU)lk 6= 0. Recall that HXiU is the p×m
upper left corner submatrix of Xi, therefore it holds that (Xi)lk 6= 0. Note that
for the vertices k ∈ D(VL) and l ∈ Vi we have d(k, l) > i by the partition of VS.
However, as (Xi)lk 6= 0 it follows from Lemma 13.1 that d(k, l) = i. Therefore, by
the definition of Gi, there is an arc (k, l) ∈ Ei.

Conversely, suppose there is an arc (k, l) ∈ Ei for l ∈ Vi and k ∈ D(VL). This
implies d(k, l) = i in the network graph G. By the distance-information preserving
property of X we consequently have (Xi)lk 6= 0. We conclude that (Mi)jk 6= 0 and
hence Mi ∈ P(Gi). This implies that equation (13.16) holds, We compute the first
dm columns of the output controllability matrix

[
HU HXU HX2U . . . HXdU

]
as follows: 

I ∗ ∗ . . . ∗ ∗
0 M1 ∗ . . . ∗ ∗
0 0 M2

. . .
...

...

0 0 0
. . . ∗ ∗

...
...

...
. . . Md−1 ∗

0 0 0 . . . 0 Md


, (13.17)

where zeros denote zero matrices and asterisks denote matrices of less interest.
As D(VL) is a zero forcing set in Gi for i = 1, 2, ..., d, the matrices M1, M2, ..., Md
have full row rank by Lemma 13.3. We conclude that the matrix (13.17) has full
row rank, and consequently (G; VL; VT) is targeted controllable with respect to
Qd(G).

Note that the condition given in Theorem 13.2 is sufficient, but not necessary.
One can verify that the graph G = (V, E) with leader set VL = {1} and target set
VT = {2, 3} depicted in Figure 13.6 is an example of a graph for which (G; VL; VT)
is targeted controllable with respect to Qd(G). However, this graph does not
satisfy the conditions of Theorem 13.2.
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Figure 13.6: Theorem 13.2 not necessary. Figure 13.7: Theorem 13.4 not sufficient.
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13.4.2 Sufficient richness of Qd(G)

The notion of sufficient richness of a qualitative subclass was introduced in [142].
We provide an equivalent definition as follows.

Definition 13.4. Let G = (V, E) be a directed graph with leader set VL ⊆ V. A
subclass Qs(G) ⊆ Q(G) is called sufficiently rich if (G; VL) is controllable with
respect to Qs(G) implies (G; VL) is controllable with respect to Q(G).

The following geometric characterization of sufficient richness is proven in
[142].

Proposition 13.2. A qualitative subclass Qs(G) ⊆ Q(G) is sufficiently rich if for
all z ∈ Rn and X ∈ Q(G) satisfying z>X = 0, there exists an X′ ∈ Qs(G) such
that z>X′ = 0.

The goal of this section is to prove that the qualitative subclass of distance-
information preserving matrices is sufficiently rich. This result will be used
later on, when we provide a necessary condition for targeted controllability with
respect to Qd(G). First, however, we state two auxiliary lemmas which will be
the building blocks to prove the sufficient richness of Qd(G).

Lemma 13.4. Consider q nonzero multivariate polynomials pi(x), where i =
1, 2, ..., q and x ∈ Rn. There exists an x̄ ∈ Rn such that pi(x̄) 6= 0 for i = 1, 2, ..., q.

Proof. The proof follows immediately from continuity of polynomials and is
omitted.

Remark 13.2. Without loss of generality, we can assume that the point x̄ ∈ Rn

has only nonzero coordinates. Indeed, if pi(x̄) 6= 0 for i = 1, 2, ..., q, there exists
an open ball B(x̄) around x̄ in which pi(x) 6= 0 for i = 1, 2, ..., q. Obviously, this
open ball contains a point with the aforementioned property.

Lemma 13.5. Let X ∈ Q(G) and D = diag (d1, d2, ..., dn) be a matrix with variable
diagonal entries. If d(i, j) = k for distinct vertices i and j, then ((XD)k)ji is a
nonzero polynomial in the variables d1, d2, ..., dn.

Proof. Note that ((XD)k)ji is given by

n

∑
i1=1

n

∑
i2=1
· · ·

n

∑
ik−1=1

(XD)i1,i (XD)i2,i1 · · · (XD)j,ik−1
,

which equals

n

∑
i1=1

n

∑
i2=1
· · ·

n

∑
ik−1=1

diXi1,i di1 Xi2,i1 · · · dik−1
Xj,ik−1

. (13.18)

Since the distance d(i, j) is equal to k, there exists at least one path of length
k from i to j, which we denote by (i, i1), (i1, i2), ..., (ik−1, j). It follows that the
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corresponding elements of the matrix X, i.e. the elements Xi1,i, Xi2,i1 , Xj,ik−1
are

nonzero. Therefore, the term

diXi1,i di1 Xi2,i1 · · · dik−1
Xj,ik−1

(13.19)

is nonzero (as a function of di, di1 , di2 , ..., dik−1
). Furthermore, this combination

of k diagonal elements is unique in the sense that there does not exist another
summand on the right-hand side of (13.18) with exactly the same elements. This
implies that the term (13.19) does not vanish (as a polynomial). We conclude that
((XD)k)ji is a nonzero polynomial function in the variables d1, d2, ..., dn.

Theorem 13.3. The subclass Qd(G) is sufficiently rich.

Proof. Given a matrix X ∈ Q(G), using Lemmas 13.4 and 13.5, we first prove
there exists a diagonal matrix D̄ with nonzero diagonal components such that
XD̄ ∈ Qd(G). From this we will conclude Qd(G) is sufficiently rich.

Let D = diag (d1, d2, ..., dn) be a matrix with variable diagonal entries. We
define pij := ((XD)d(i,j))ji for distinct i, j = 1, 2, ..., n. By Lemma 13.5 we have that
pij(d1, d2, ..., dn) is a nonzero polynomial in the variables d1, d2, ..., dn. Moreover,
Lemma 13.4 states the existence of nonzero real constants d̄1, d̄2, ..., d̄n such that

pij(d̄1, d̄2, ..., d̄n) 6= 0 for distinct i, j = 1, 2..., n. (13.20)

Therefore, the choice D̄ = diag (d̄1, d̄2, ..., d̄n) implies XD̄ ∈ Qd(G). Let z ∈ Rn

be a vector such that z>X = 0 for an X ∈ Q(G). The choice of X′ = XD̄ yields
a matrix X′ ∈ Qd(G) for which z>X′ = 0. By Proposition 13.2 it follows that
Qd(G) is sufficiently rich.

13.4.3 Necessary condition for targeted controllability

In addition to the previously established sufficient condition for targeted control-
lability, we give a necessary graph-theoretic condition for targeted controllability
in Theorem 13.4.

Theorem 13.4. Let G = (V, E) be a directed graph with leader set VL ⊆ V and
target set VT ⊆ V. If (G; VL; VT) is targeted controllable with respect to Qd(G)
then VL ∪ (V \VT) is a zero forcing set in G.

Proof. Assume without loss of generality that VL ∩ VT = ∅. Hence, VL ∪ (V \
VT) = V \ VT . We partition the vertex set V into VL, V \ (VL ∪ VT) and VT .
Without loss, we write VL = {1, 2, . . . , m} and VT = {n− p + 1, n− p + 2, . . . , n}.
Moreover, we use the shorthand notation n̄ = n− p−m to denote the number of
nodes that are neither a target node nor a leader node. Accordingly, the input
and output matrices U = P(V; VL) and H = P>(V; VT) satisfy

U =
[
Im×m 0m×n̄ 0m×p

]> , (13.21)

and
H =

[
0p×m 0p×n̄ Ip×p

]
. (13.22)
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Note that ker H = im R, where R := P(V; (V \VT)) is given by

R =

[
Im×m 0m×n̄ 0m×p
0n̄×m In̄×n̄ 0n̄×p

]>
. (13.23)

Since for all X ∈ Qd(G) we have

ker H +
〈

X | im U
〉
= Rn, (13.24)

or, equivalently,
im R +

〈
X | im U

〉
= Rn, (13.25)

we obtain 〈
X | im

[
U R

] 〉
= Rn. (13.26)

As im U ⊆ im R, (13.26) implies
〈

X | im R
〉
= Rn for all X ∈ Qd(G), or, equiva-

lently, the pair (X, R) is controllable for all X ∈ Qd(G). Furthermore, by sufficient
richness of Qd(G), it follows that (X, R) is controllable for all X ∈ Q(G). We
conclude from Theorem 13.1 that V \VT is a zero forcing set.

Example 13.3. Consider the directed graph G = (V, E) with leader set VL = {1, 2}
and target set VT = {1, 2, ..., 8} as depicted in Figure 13.1. We know from Example
13.2 that (G; VL; VT) is targeted controllable with respect to Qd(G). The set
VL ∪ (V \VT) = {1, 2, 9, 10} is colored black in Figure 13.8. Indeed, VL ∪ (V \VT)
is a zero forcing set in G. A possible chronological list of forces is: 1→ 3, 3→ 4,
2→ 5, 4→ 6, 6→ 8 and 9→ 7.
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Figure 13.8: Zero forcing set. Figure 13.9: Directed graph G = (V, E) with
target set VT = {1, 4, 5, 6, 7}.

The condition provided in Theorem 13.4 is necessary for targeted controllability,
but not sufficient. To prove this fact, consider the directed graph with leader
set VL = {1} and target set VT = {4, 5} given in Figure 13.7. It can be shown
that (G; VL; VT) is not targeted controllable with respect to Qd(G), even though
VL ∪ (V \VT) = {1, 2, 3} is a zero forcing set.
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So far, we have provided a necessary and a sufficient topological condition for
targeted controllability. However, given a network graph with target set, it is not
clear how to choose leaders achieving target control. Hence, in the following
section we focus on a leader selection algorithm.

13.4.4 Leader selection algorithm

We now address Problem 2, as introduced in Section 13.3. That is, given a directed
graph G = (V, E) with target set VT ⊆ V, we want to find a leader set VL ⊆ V of
minimum cardinality such that (G; VL; VT) is targeted controllable with respect
to Qd(G). Such a leader set is called a minimum leader set. In general, a graph G
with target set VT can have multiple minimum leader sets. In this section we first
prove that there is no polynomial-time algorithm that solves Problem 2 (assuming
P 6= NP). Subsequently, we provide a heuristic algorithm to determine leader sets
achieving targeted controllability.

Theorem 13.5. Assuming P 6= NP, there is no polynomial-time algorithm that
solves Problem 2.

Proof. Assume that P 6= NP. The problem of finding a minimum zero forcing
set was proven to be NP-hard in [2], by a reduction from the directed Hamilto-
nian cycle problem. Consequently, by Theorem 13.1 there is no polynomial-time
algorithm to determine a minimum leader set VL that achieves controllability
of (G; VL) with respect to Q(G). Recall from Theorem 13.3 that the subclass
Qd(G) is sufficiently rich. Hence, controllability of (G; VL) with respect to Q(G)
is equivalent with controllability of (G; VL) with respect to Qd(G). Therefore,
there is no polynomial-time algorithm to determine a minimum leader set VL
such that (G; VL) is controllable with respect to Qd(G). Note that “ordinary"
controllability of (G; VL) can be regarded as a special case of targeted controllabil-
ity of (G; VL; VT), where VT = V. We conclude that there is no polynomial-time
algorithm solving Problem 2 (assuming P 6= NP).

Next, we propose a heuristic approach to compute a (minimum) leader set that
achieves targeted controllability. The algorithm consists of two phases. Firstly, we
identify a set of nodes in the graph G from which all target nodes can be reached.
These nodes are taken as leaders. Secondly, this set of leaders is extended to
achieve targeted controllability.

To explain the first phase of the algorithm, we introduce some notation. First
of all, we define the notion of root set.

Definition 13.5. Consider a directed graph G = (V, E) and a target set VT ⊆ V.
A subset VR ⊆ V is called a root set of VT if for any v ∈ VT there exists a vertex
u ∈ VR such that d(u, v) < ∞.

A root set of VT of minimum cardinality is called a minimum root set of VT . Note
that the cardinality of a minimum root set of VT is a lower bound on the minimum
number of leaders rendering (G; VL; VT) targeted controllable. Indeed, it is easy
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to see that if there are no paths from any of the leader nodes to a target node, the
graph is not targeted controllable. The first step of the proposed algorithm is to
compute the minimum root set of VT . Let the vertex and target sets be given by
V = {1, 2, ..., n} and VT = {v1, v2, ..., vp} ⊆ V respectively. Furthermore, define a
matrix A ∈ Rp×n in the following way. For j ∈ V and vi ∈ VT let

Aij :=
{

1 if d(j, vi) < ∞,
0 otherwise.

(13.27)

That is, the matrix A contains zeros and ones only, where coefficients with value
one indicate the existence of a path between the corresponding vertices.

Remark 13.3. The matrix A can be found using p runs of Dijkstra’s algorithm [51],
with total computational complexity O(pn2). This can be done by transposing
the graph G = (V, E), i.e., computing Ḡ = (V, Ē), where (j, i) ∈ Ē if and only if
(i, j) ∈ E. Dijkstra’s algorithm can be applied to find the distance from a (target)
node to all other nodes. We apply Dijkstra’s algorithm in Ḡ to all target nodes, to
find a p× n distance matrix D, with elements in N∪ {∞}. Here, each element Dij
is equal to the distance from node vi ∈ VT to j ∈ V in the graph Ḡ. As the graph Ḡ
is the transposed of G, we have that Dij equals the distance from j ∈ V to vi ∈ VT
in the original graph G. Consequently, the matrix A is easily obtained from D
by changing “∞"-elements in D to 0, and all other elements in D to 1. Dijkstra’s
algorithm and graph transposition have computational complexity O(n2). As
we execute Dijkstra’s algorithm p times, the total procedure has computational
complexity O(pn2). The distance matrix D will also become useful in the second
phase of the leader selection algorithm.

Now, finding a minimum root set of VT boils down to finding a binary vector
x ∈ Rn with minimum number of ones such that Ax > 1p, where the inequality
is defined element-wise and 1p denotes the p-dimensional vector of all ones. In
the vector x, coefficients with value one correspond to elements in the root set
of VT . It is for this reason we can formulate the minimum root set problem as a
binary integer linear program

minimize 1>n x

subject to Ax > 1p

and x ∈ {0, 1}n.

(13.28)

Linear programs of this form can be solved using software like CPLEX or Matlab.

Remark 13.4. Note that the minimum root set problem (and in general binary
integer programming) is NP-hard. This can be shown by constructing an NP-
reduction from the well-known NP-hard set-covering problem [33] to the min-
imum root set problem. Therefore, for large-scale problems it is advisable to
apply an approximation algorithm to compute an approximate minimum root set.
The greedy algorithm for the set-covering problem [33] can be directly applied
to the minimum root set problem. This algorithm has computational complexity
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O(p2n), and has an approximation ratio of O(ln(n)). That is, the approximation
algorithm returns a root set containing at most O(ln(n)) times the optimal num-
ber of vertices in the minimum root set. Furthermore, it has been shown in [58]
that no polynomial-time algorithm for the set-covering problem can have a better
approximation ratio than O(ln(n)).

In the following example, we illustrate how the minimum root set problem can
be regarded as a binary integer linear program.

Example 13.4. Consider the directed graph G = (V, E) with target set VT =
{1, 4, 5, 6, 7} depicted in Figure 13.9. The goal of this example is to find a mini-
mum root set for VT . The matrix A, as defined in (13.27), is given by

A =


1 0 0 0 0 0 0
0 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 0 0 1 0
1 1 1 1 0 0 1

 . (13.29)

Note that x =
[
1 0 0 1 0 0 0

]> satisfies the inequality Ax > 1p and the constraint
x ∈ {0, 1}7. Furthermore, the vector x minimizes 1>n x under these constraints.
This can be seen in the following way: there is no column of A in which all
elements equal 1, hence there is no vector x with a single one such that Ax > 1p
is satisfied. Therefore, x solves the binary integer linear program (13.28), from
which we conclude that the choice VR = {1, 4} yields a minimum root set for VT .
Indeed, observe in Figure 13.9 that we can reach all nodes in the target set starting
from the nodes 1 and 4. It is worth mentioning that the choice of minimum root
set is not unique: the set {1, 2} is also a minimum root set for VT .

In general, the minimum root set VR of VT does not guarantee targeted con-
trollability of (G; VR; VT) with respect to Qd(G). For instance, it can be shown
for the graph G and target set VT of Example 13.4 that the leader set VL = {1, 4}
does not render (G; VL; VT) targeted controllable with respect to Qd(G). Hence,
we propose a greedy approach to extend the minimum root set of VT to a leader
set that does achieve targeted controllability.

Recall from Theorem 13.2 that (G; VL; VT) is targeted controllable with respect
to Qd(G) if D(VL) is a zero forcing set in the bipartite graphs Gi = (D(VL), Vi, Ei)
for i = 1, 2, ..., d, where Vi ⊆ VT is the set of target nodes having distance i from
D(VL). Given an initial set of leaders VL, we compute its derived set D(VL) and
verify whether we can force all nodes in the bipartite graphs Gi for i = 1, 2, ..., d.
Suppose that in the bipartite graph Gk the set Vk cannot be forced by D(VL) for
a k ∈ {1, 2, ..., d}. In this case, we choose an additional leader as follows. Let
Vu ⊆ Vk be the set of vertices in Vk that can’t be forced. Suppose vi ∈ Vu is the
vertex in Vu from which most target nodes can be reached. Then we choose vi as
additional leader. Consequently, we have extended our leader set VL to VL ∪ {vi}.
Note that vi can be easily found by computing the column sums of the columns
in A corresponding to the nodes in Vu.
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With the extended leader set we can repeat the procedure, until the leaders
render the graph targeted controllable. This idea is captured more formally in
the following leader selection algorithm. One should recognize the two phases
of leader selection: firstly, a minimum root set is computed. Subsequently,
the minimum root set is greedily extended to a leader set achieving targeted
controllability.

Algorithm 2 Leader Selection Procedure

Input: Directed graph G = (V, E), target set VT ⊆ V;
Output: Leader set VL ⊆ V achieving target control;

1: Let VL = ∅;
2: Compute matrix A, given in (13.27);
3: Compute a solution x to the linear program (13.28);
4: for i = 1 to n do
5: if xi = 1 then
6: VL ← VL ∪ {i};
7: end if
8: end for
9: Compute D(VL);

10: i ← 1;
11: repeat
12: Compute Vi and Gi = (D(VL), Vi, Ei);
13: if D(VL) forces Vi in Gi then
14: i ← i + 1;
15: else
16: Find unforced v ∈ Vi reaching the most targets;
17: VL ← VL ∪ {v};
18: Compute D(VL);
19: i ← 1;
20: end if
21: until d(D(VL), w) < i for all w ∈ VT ;
22: return VL.

Remark 13.5. Algorithm 1 can be implemented with computational complexity
O(p2n2) if the heuristic set-covering procedure [33] is used to compute an ap-
proximate minimum root set (step 3). This can be seen as follows. First, note that
the repeat (step 11) runs at most p2 times. Moreover, every step within the repeat
runs in time at most O(n2). Indeed, using the distance matrix D (see Remark
13.3), we can compute Vi and Gi = (D(VL), Vi, Ei) in time O(pn). Furthermore,
the derived sets in steps 13 and 18 can be computed in O(n2) time [207]. Finally,
step 16 compares the column sums of at most p columns of length p, and can
hence be implemented in O(p2). As p 6 n, we find that all steps within the
repeat run with computational complexity at most O(n2). Consequently, steps
11-21 have computational complexity O(p2n2). Steps 1-10 of the algorithm run
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in time complexity less than O(p2n2) (see Remarks 13.3 and 13.4). We conclude
that Algorithm 1 can be implemented with computational complexity O(p2n2) if
the heuristic set-covering procedure is applied to step 3.

Note that Algorithm 1 is a heuristic algorithm, and the quality of its solution
with respect to the actual minimum leader set is not known. The problem of
finding a minimum leader set achieving target control is more general than
the problem of finding a minimum leader set achieving (full) strong structural
controllability. Indeed, by the choice VT = V, one can solve the latter problem
using the former. Consequently, Remark 13.1 suggests that the minimum number
of leaders achieving target control cannot be approximated within a large factor.

However, it is worth mentioning that Algorithm 1 does return optimal results
for some specific types of graphs. In the case of a cycle or a complete graph (with
target set VT = V), Algorithm 1 returns leader sets of respectively 2 and n− 1
leaders. This is in agreement with the optimal results found in [142] for cycle and
complete graphs.

13.5 illustrative example
In this section, we illustrate our algorithm using an example. Consider the di-
rected graph given in Figure 13.10, with targets VT = {2, 3, 6, 8, 10, 13, 15, 16, 17, 20}.
The goal of this example is to compute a leader set VL such that (G; VL; VT) is
targeted controllable with respect to Qd(G).
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Figure 13.10: Directed graph G = (V, E) with encircled target nodes VT =
{2, 3, 6, 8, 10, 13, 15, 16, 17, 20}.
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The first step of Algorithm 1 is to compute the matrix A, defined in (13.27). For
this example, A is given as follows.

A =



1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1


Using the Matlab function intlinprog, we find the optimal solution

x =
[
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

]>
to the binary linear program (13.28). Hence, a minimum root set for VT is given
by {4, 13}. Following Algorithm 1, we define our initial leader set VL = {4, 13}.
As nodes 4 and 13 both have three out-neighbours, the derived set of VL is simply
given by D(VL) = {4, 13}. The next step of the algorithm is to compute the first
bipartite graph G1 = (D(VL), V1, E1), which we display in Figure 13.11.
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Figure 13.11: G1 for D(VL) = {4, 13}.
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Figure 13.12: G1 for D(VL) = {2, 4, 13}.
Observe that the nodes 2 and 3 cannot be forced. As both nodes can reach the
same number of target nodes, we simply choose node 2 as additional leader. The
process now repeats itself, we redefine VL = {2, 4, 13} and compute D(VL) =
{2, 4, 13}. Furthermore, for this leader set, the graph G1 = (D(VL), V1, E1) is
given in Figure 13.12. In this case, the set V1 = {3, 17} of nodes having distance
one with respect to D(VL) is forced. Therefore, we continue with the second
bipartite graph G2 = (D(VL), V2, E2), given in Figure 13.13.
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Figure 13.13: G2 for D(VL) = {2, 4, 13}.
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Figure 13.14: G3 for D(VL) = {2, 4, 13}.
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The set V2 is forced by D(VL) in the graph G2, hence we continue to investigate
the third bipartite graph consisting of nodes having distance three with respect
to D(VL). This graph is displayed in Figure 13.14. As neither node 8 nor 10 can
be forced, we have to add another leader. Node 8 can reach 4 target nodes, while
node 10 can reach 7 target nodes. Hence, we choose node 10 as additional leader.
In other words, we redefine VL = {2, 4, 10, 13}. The new bipartite graphs G1, G2
and G3 are given in Figure 13.15.
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Figure 13.15: Graphs G1, G2 and G3 for D(VL) = {2, 4, 10, 13}.

Note that in this case D(VL) is a zero forcing set in all three bipartite graphs.
Furthermore, since d(D(VL), v) < 4 for all v ∈ VT , Algorithm 1 returns the leader
set VL = {2, 4, 10, 13}. This choice of leader set guarantees that (G; VL; VT) is
targeted controllable with respect to Qd(G). For the sake of clarity, we display
the network graph in Figure 13.16.
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Figure 13.16: Network G = (V, E) with targets VT = {2, 3, 6, 8, 10, 13, 15, 16, 17, 20}, and
leader set VL = {2, 4, 10, 13}.
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13.6 conclusions
In this chapter, strong targeted controllability for the class of distance-information
preserving matrices has been discussed. We have provided a sufficient graph-
theoretic condition for strong targeted controllability, expressed in terms of
zero-forcing sets of particular distance-related bipartite graphs. We have shown
that this result improves the known sufficient topological condition [141] for
strong targeted controllability of the class of distance-information preserving
matrices.

Motivated by the observation that the aforementioned sufficient condition is not
a one-to-one correspondence, we provided a necessary topological condition for
strong targeted controllability. This condition was proved using the fact that the
subclass of distance-information preserving matrices is sufficiently rich. Finally,
we showed that there is no polynomial-time algorithm to compute minimum
leader sets achieving targeted controllability (assuming P 6= NP). Therefore, a
heuristic leader selection algorithm was given to compute approximate minimum
leader sets achieving target control. The algorithm comprises two phases: firstly,
it computes a minimum root set of the target set, i.e. a set of vertices from which
all target nodes can be reached. Secondly, this minimum root set is greedily
extended to a leader set achieving target control.

Both graph-theoretic conditions for strong targeted controllability provided
in this chapter are not one-to-one correspondences. Hence, finding a necessary
and sufficient topological condition for strong targeted controllability is still an
open problem. Furthermore, investigating other system-theoretic concepts like
disturbance decoupling and fault detection for the class of distance-information
preserving matrices is among the possibilities for future research.





14 C O N C L U S I O N S

In this thesis we have studied four problems, namely data-driven analysis and control,
topology identification, network identifiability and structural controllability. In what
follows we highlight the main contributions and provide some ideas for future work.

14.1 contributions
In Chapter 2 we have studied Willems’ fundamental lemma. This result asserts
that under suitable hypotheses all trajectories of a linear system can be expressed
in terms of a single (measured) one. We have extended the result to the setting
where multiple -possibly short- system trajectories are measured. This result can
be applied, for example, to system identification from data sets with missing
samples.

In Chapter 3 we have introduced a general framework for data informativity
for system analysis and control. We have applied this framework to analyze
stability, stabilizability and controllability. This has led to data-driven Hautus
tests that can be used to verify controllability and stabilizability of a system
directly on the basis of data. We have also studied stabilization by state feedback
and linear quadratic regulation (LQR). In the case of stabilization, we saw that
the corresponding conditions on the data are weaker than those for system
identification. In general, it is thus easier to learn a stabilizing controller than it is
to learn a system model from data. In the case of the LQR problem, however, we
saw that the data informativity conditions are practically the same as for system
identification. For both stabilization and LQR we have established data-driven
control design techniques in terms of linear matrix inequalities. In Chapter 4 we
have extended the work on data-driven control. In particular, we have treated
the suboptimal LQR and H2 problems. Also for these problems we were able
to provide data-driven control design methods. In addition, we have shown by
numerical simulations that there is an intuitive trade-off between the number
of data samples and the optimal controller performance. In Chapter 5 we have
extended the control design methods from Chapters 3 and 4 to a setting involving
noisy data. To do so, we have established a generalization of the S-lemma [243]
to matrix variables. This result provides verifiable conditions under which one
quadratic matrix inequality implies another one. The matrix S-lemma is not
only interesting in the setting of Chapter 5, but may also find other applications
in the general area of robust control. In Chapter 6 we have aimed at verifying
dissipativity properties of a linear system from data. We have studied this problem
both for exact and noisy data. In the case of noisy data, we have introduced a
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new type of dualization lemma. Combined with the matrix S-lemma, this led to
new data-driven tests for dissipativity.

In Chapter 7 we have studied the problem of identifying the topology of a
heterogeneous network of linear systems. We have considered both the identi-
fiability, as well as the reconstruction aspect of this problem. Our identifiability
results have recovered and generalized a result for the special case of networks
of single integrators [163, 226]. We have also seen that homogeneous networks
of single-input single-output systems have quite special identifiability properties
that do not extend to the general case of heterogeneous networks. Our topology
identification scheme has leveraged Willems’ fundamental lemma (Chapter 2) to
identify the network’s Markov parameters. Then, the network interconnection ma-
trix has been reconstructed by solving a generalized Sylvester equation involving the
Markov parameters. We have proven that the network topology can be uniquely
reconstructed in this way, under the assumptions of topological identifiability and
persistently exciting inputs. In Chapter 8 we have investigated a more specific
network setup, where the dynamics of each node is a single integrator, and the
network is autonomous. In this case, excitation has to be secured through the
initial conditions of the network. The more specialized setting of Chapter 8 has
allowed us to come up with more specific reconstruction methods, in terms of
Lyapunov equations.

In Chapter 9 we have focussed on the problem of assessing global identifiability
of networks with known graph structure. To do so, we have introduced a new
graph-theoretic concept called the graph simplification process. We have used this
process to assess the identifiability of a subset of the network’s transfer functions,
and of all the transfer functions in the network. A noteworthy fact is that
identifiability can often be secured with a limited number of measured nodes. The
number of measured nodes required for full network identifiability is, however,
lower bounded by the maximum degree of the network. In a special case, we have
established an interesting analogy between global identifiability (Chapter 9) and
the concept of generic identifiability [81]. Indeed, generic identifiability is related
to the existence of certain vertex-disjoint paths [81]. On the other hand, global
identifiability depends on the existence of a unique set of vertex-disjoint paths.
In Chapter 10 we have further explored global identifiability, but for a different
class of undirected networks described by state-space systems. In this case we
have provided sufficient conditions for identifiability in terms of so-called zero
forcing sets. The results of Chapter 10 have revealed that in the more specialized
(undirected) setup, identifiability can be achieved not only with a limited number
of measured nodes, but also with a limited number of excited nodes.

In Chapter 11 we have focussed on strong structural controllability. We have
studied this problem in the general setting of zero/nonzero/arbitrary structured
systems. We have provided both algebraic and graph-theoretic necessary and
sufficient conditions for controllability in this setting. We have also shown that
our results generalize all related work in the literature. In addition, we have seen
that seemingly incomparable results in [207] and [142] follow from our main
results; our work has thus revealed an overarching theory. In Chapter 12 we
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have extended the work on zero/nonzero/arbitrary structured systems. In this
chapter, we have focussed on strong structural input-state observability, output
controllability and controllability of differential algebraic equations. We have been
able to provide conditions for these strong structural properties, using results
on the addition and multiplication of zero/nonzero/arbitrary pattern matrices.
Finally, in Chapter 13 we have studied strong structural output controllability
in a network setting. Here, the output of the network consists of the states of
a subset of network nodes, called target nodes. Output controllability is often
referred to as targeted controllability in this context. We have followed up on the
work of [141] by studying targeted controllability for a subclass of state matrices,
called distance-information preserving matrices. For this subclass, we have been
able to come up with more powerful sufficient conditions for strong structural
targeted controllability. We have also provided necessary conditions for targeted
controllability, as well as a strategy for the selection of input nodes.

14.2 outlook

In what follows, we provide some ideas for future work. In Chapters 3, 4, 5

and 6, we have gained insight in the conditions on the data that are necessary
for different analysis and control problems. So far, our results are applicable to
discrete-time, linear time-invariant systems. However, extensions to continuous-
time systems and nonlinear dynamics are also of interest. One could study,
for example, model classes of nonlinear systems, where the involved nonlinear
functions are unknown linear combinations of known basis functions.

An interesting follow-up question is how to generate informative data. In other
words, how can we design inputs for a system such that the resulting measured
data are informative. In view of our results, a particularly relevant question
is how to design experiments such that data-based linear matrix inequalities
are feasible. This problem is especially interesting in the noisy data setting in
Chapters 5 and 6 where persistency of excitation is generally not sufficient to
guarantee that data are informative.

Another topic for future work is related to the noise model employed in
Chapter 5. In this chapter, we have assumed a type of energy bound on the noise.
It would be interesting to investigate whether control design is also possible for
other types of bounds, for example, bounds on the norm of individual noise
samples. We believe that also for this kind of noise models, applying a type of
S-procedure can be a promising approach for control design.

As also mentioned in the introduction, the problem of topology identification
(Chapters 7 and 8) is not only relevant in the systems and control community
but also in physics. The types of models that we have considered so far, however,
are rather control-oriented. It would thus be of interest to explore topology
identification for different types of dynamics, for example, those described by
the Schrödinger equation and Liouville-von Neumann equation appearing in
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quantum mechanics. We believe that there is potential for a system-theoretic
approach also in this area.

Related to the identifiability results in Chapters 9 and 10, there is a synthesis
problem that is largely open. The general problem involves selecting locations
for the external excitation signals and measured signals such that the network is
globally identifiable. In the context of Chapter 10, input and output sets can be
designed by computing a (minimal) zero forcing set for the graph. Minimal zero
forcing sets are known for special types of graphs such as path, cycle, complete
and tree graphs. For general graphs, however, finding a minimal zero forcing set
is known to be NP-hard [2]. In the setting of Chapter 9 it is not yet clear how
to choose a (minimal) set of measured nodes such that the network is globally
identifiable. We do note that a greedy approach was recently developed to select
excited/measured nodes ensuring generic identifiability [31].

In the study of structured systems, dependencies among entries are very
difficult to deal with. We have seen this problem in Chapters 12 and 13 when
studying output controllability. Indeed, the pattern class of the product of two
pattern matrices is generally not equal to the product of the pattern classes of the
individual matrices (Chapter 12). The test for output controllability in Section 12.3
is thus conservative in general. Dependencies among entries in pattern matrices
have been studied in the context of structural controllability [94, 112]. There are,
however, still many open questions in this direction. For instance, it is not yet
clear how to handle dependencies due to pattern matrix multiplication.
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S U M M A R Y

This thesis focuses on modeling, analysis and control of dynamical systems using
data and structure. In particular, we consider four different problems, namely
data-driven control, topology identification, network identifiability, and structural
controllability.

First, we revisit a result by Willems and coauthors called the fundamental
lemma. This result enables a parameterization of all trajectories of a linear
system in terms of a single (measured) trajectory. The result has important
consequences for system identification and data-driven control. Our contribution
is to extend the fundamental lemma to the situation where multiple -possibly
short- trajectories are measured instead of a single one. This result is shown to be
beneficial, for example, in the identification of linear systems from data sets with
missing samples.

Next, we turn our attention to data-driven analysis and control. Here, the
goal is to verify system-theoretic properties and to construct controllers of an
unknown dynamical system directly using data. We study these problems from
the perspective of “data informativity". This means that we are interested in
characterizing the conditions on the data that enable data-driven analysis and
control. We provide a general definition for data informativity. Thereafter,
we study several data-driven analysis problems such as stability, stabilizability,
controllability and dissipativity. In addition, we study control problems such as
stabilization, H2 and H∞ control. We characterize the informativity of data for
each of these analysis and control problems. For the control problems, we also
provide direct control design methods. Both the situations in which data are exact
and noisy are considered. In the setting of noisy data, our investigation leads to a
novel dualization lemma and S-lemma for matrix variables. These results are of
independent interest, and may also find other applications in the general area of
robust control.

Subsequently, we investigate the problem of topology identification of net-
worked systems. A networked system (or network) is a collection of intercon-
nected dynamical systems. Networks are often represented by a graph, where
nodes correspond to dynamical systems and edges represent coupling between
systems. In many real-world networks, the graph structure underlying the net-
work is unknown. This is, for example, the case in neural networks and networks
of interconnected stock prices. Thus, a relevant problem is that of topology iden-
tification, which entails the identification of the network graph on the basis of
measurements taken from (a subset of) the node systems. We study topology iden-
tification for general heterogeneous networks of linear systems, where the node
systems are general (possibly distinct) multi-input multi-output systems. We treat
both the identifiability and the reconstruction aspect of topology identification.



282 summary

Identifiability is concerned with the question whether there exists a data set with
which the network topology can be uniquely determined. Reconstruction, in turn,
involves the development of algorithms that identify the network topology on
the basis of measured data. We provide conditions for topological identifiability,
recovering existing conditions as special cases. Our reconstruction methodology
combines Willems’ fundamental lemma with the solution to certain generalized
Sylvester equations in order to identify the network topology. We also consider
topology identification in the more specialized setup of autonomous networks of
single integrators. In this case we show that the topology can be reconstructed by
solving a certain Lyapunov equation.

In addition to studying topology identification, we study identifiability of
networks with known graph structure. The assumption of known graph structure
is justifiable in engineering systems such as water distribution networks. We first
focus on a class of networked systems where the interactions between nodes are
described by transfer functions, and each node is influenced by an independent
excitation signal but only a subset of node signals is measured. Identifiability
then involves the question whether the transfer functions in the network can
be uniquely identified using a priori knowledge of the graph structure and
measurements of the excitation and node signals. We treat this problem from
a purely graph-theoretic perspective. To this end, we define a notion of so-
called global identifiability. We then introduce a new concept called the graph
simplification process. Using this concept, it is possible to provide necessary and
sufficient graph-theoretic conditions for global identifiability. We also study a
similar notion of global identifiability for a different class of undirected networks
described by state-space systems. In this case it turns out to be possible to secure
identifiability by a limited number of measured and excited nodes.

Finally, we study strong structural controllability of linear systems. We study
this problem in a general setup where each entry of the system matrices is not
known exactly, but is known to be either zero, nonzero or arbitrary. The problem
of strong structural controllability then involves verifying whether all systems
with this zero/nonzero/arbitrary structure are controllable in the classical sense.
We provide algebraic necessary and sufficient conditions for strong structural
controllability in terms of full rank properties of so-called pattern matrices. In
addition, we provide graph-theoretic conditions in terms of a color change rule.
Besides controllability, we also study strong structural input-state observability
and output controllability. For both of these problems, we come up with algebraic
conditions in terms of full rank properties of sums and products of pattern
matrices. We also provide more specialized results for strong structural output
controllability in a network setting. In this setting, we provide both a sufficient
and a necessary condition for strong structural output controllability, as well as a
method for selecting inputs that guarantee ouput controllability.



S A M E N VAT T I N G

Dit proefschrift gaat over het modelleren, analyseren en regelen van dynamische
systemen op basis van data en systeemstructuur. In het bijzonder beschouwen
we vier verschillende problemen, namelijk datagestuurd regelaar-ontwerp, graafi-
dentificatie, identificeerbaarheid van netwerken, en structurele regelbaarheid.

Ten eerste herzien we een resultaat van Willems en coauteurs dat het fun-
damentele lemma heet. Dit resultaat maakt het mogelijk om alle trajektorieën
van een lineair systeem te parametriseren in termen van een enkele (gemeten)
trajektorie. Dit resultaat heeft belangrijke consequenties voor systeemidentificatie
en datagestuurd ontwerp van regelaars. Onze bijdrage is om het fundamentele
lemma uit te breiden naar de situatie waarin meerdere (mogelijk korte) tra-
jektorieën gemeten worden in plaats van één enkele. Dit resultaat is nuttig,
bijvoorbeeld in de identificatie van lineaire systemen op basis van datasets met
missende datapunten.

Vervolgens richten we onze aandacht op datagestuurde analyse en regelaar-
ontwerp. Het doel is om van een onbekend dynamisch systeem, systeemthe-
oretische eigenschappen af te leiden en regelaars te construeren op basis van
data. We bestuderen deze problemen vanuit het perspectief van “data informa-
tiviteit". Dit betekent dat we geïnteresseerd zijn in het karakteriseren van de data-
eigenschappen die datagestuurde analyse en regelaar-ontwerp mogelijk maken.
We geven een algemene definitie van de informativiteit van data. Vervolgens
bestuderen we verschillende datagestuurde analyseproblemen zoals stabiliteit,
stabiliseerbaarheid, regelbaarheid en dissipativiteit. Daarnaast bestuderen we
regelproblemen zoals stabilisatie, H2 en H∞ regeling. We karakteriseren de infor-
mativiteit van data voor elk van deze analyse- en regelproblemen. In het geval
van de regelproblemen geven we ook ontwerpmethodes om regelaars direct uit
data te vinden. We beschouwen zowel de situatie waarin de data exact zijn, als de
situatie waarin de data beïnvloed zijn door ruis. In de tweede situatie leidt ons
onderzoek tot een nieuw dualisatielemma en een S-lemma voor matrixvariabelen.
Deze resultaten vinden wellicht ook nog andere toepassingen in de algemene
richting van robuuste regeltechniek.

Daaropvolgend onderzoeken we het probleem van graafidentificatie van net-
werksystemen. Een netwerksysteem (of netwerk) is een collectie van gekoppelde
dynamische systemen. Netwerken worden vaak gerepresenteerd door een graaf,
waarin knopen corresponderen met dynamische systemen en zijden koppeling
tussen systemen weergeven. In veel echte netwerken is de onderliggende graaf-
structuur van het netwerk onbekend. Dit is bijvoorbeeld het geval in neurale
netwerken en in netwerken van gekoppelde aandeelprijzen. Zodoende is graafi-
dentificatie een relevant probleem. Het doel hiervan is om de netwerkgraaf te
identificeren op basis van metingen van (een deel) van de gekoppelde syste-
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men. We bestuderen graafidentificatie voor algemene heterogene netwerken
van lineaire systemen, waarbij de individuele systemen mogelijk verschillend
zijn en meerdere ingangen en uitgangen hebben. We behandelen zowel het
identificeerbaarheids- als het reconstructie-aspect van graafidentificatie. Iden-
tificeerbaarheid is begaan met de vraag of er een dataset bestaat waarmee we
de netwerkgraaf uniek kunnen bepalen. Reconstructie, op zijn beurt, beslaat de
ontwikkeling van algoritmes die de netwerkgraaf kunnen identificeren op basis
van data. We geven voorwaarden voor graafidentificeerbaarheid, waarbij we
reeds bestaande voorwaarden als speciale gevallen terugvinden. Onze reconstruc-
tiemethode combineert Willems’ fundamentele lemma met de oplossingen van
zekere veralgemeniseerde Sylvestervergelijkingen en identificeert op deze wijze
de netwerkgraaf. We beschouwen ook graafidentificatie in het speciale geval van
autonome netwerken die beschreven worden door enkele integratordynamica. In
dit geval laten we zien dat de graaf kan worden gereconstrueerd door een zekere
Lyapunov-vergelijking op te lossen.

Naast het bestuderen van graafidentificatie, bestuderen we ook de identificeer-
baarheid van netwerken met bekende graafstructuur. De aanname dat de graaf
bekend is, is bijvoorbeeld geoorloofd in waterdistributienetwerken. We focussen
eerst op een klasse van netwerksystemen waarin de interacties tussen knopen
worden beschreven door overdrachtsfuncties en elke knoop wordt beïnvloed
door een onafhankelijk ingangssignaal, maar slechts een deel van de uitgangssig-
nalen van de knopen wordt gemeten. Identificeerbaarheid houdt dan in dat de
overdrachtsfuncties in het netwerk uniek geïdentificeerd kunnen worden, ge-
bruikmakend van de kennis van de graafstructuur en metingen van de ingangs-
en uitgangssignalen van het netwerk. We behandelen dit probleem vanuit een
puur graaftheoretisch oogpunt. Daarom definiëren we een zogenaamde notie
van globale identificeerbaarheid. Vervolgens introduceren we een nieuw concept
dat het graafvereenvoudigingsproces heet. Door middel van dit concept is het
mogelijk om nodige en voldoende graaftheoretische voorwaarden te geven voor
globale identificeerbaarheid. We bestuderen ook een vergelijkbare notie van
globale identificeerbaarheid voor een klasse van ongerichte netwerken beschreven
door toestandsruimtemodellen. In dit geval blijkt het mogelijk te zijn om identi-
ficeerbaarheid te garanderen met een beperkt aantal ingangs- en uitgangsknopen.

Tenslotte bestuderen we sterke structurele regelbaarheid van lineaire syste-
men. We bestuderen een algemene versie van dit probleem, waarin de exacte
waarde van elk element van de systeemmatrices onbekend is, maar waar van
ieder element wel bekend is of het nul, niet-nul of arbitrair is. Sterke structurele
regelbaarheid houdt dan in dat alle systemen met deze nul/niet-nul/arbitrair
structuur regelbaar zijn in de klassieke zin. We geven algebraïsche nodige en
voldoende voorwaarden voor sterke structurele regelbaarheid in termen van volle
rangeigenschappen van symbolische matrices. Daarnaast geven we graaftheoreti-
sche voorwaarden in termen van een kleurregel. Naast regelbaarheid bestuderen
we ook sterke structurele ingang-toestand waarneembaarheid en uitgangsregel-
baarheid. Voor beide problemen bedenken we algebraïsche voorwaarden in
termen van volle rangeigenschappen van sommen en producten van symbolische
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matrices. We geven ook meer gespecialiseerde resultaten voor sterke structurele
uitgangsregelbaarheid van netwerksystemen. In dit geval geven we zowel een vol-
doende als een nodige voorwaarde voor sterke structurele uitgangsregelbaarheid,
en een methode om ingangen te selecteren die uitgangsregelbaarheid garanderen.


	Introduction
	From data to controllers
	From data to network topology
	From structure to identifiability
	From structure to controllability
	Outline and relations between chapters
	Publications and origin of the chapters
	General notation

	Willems' fundamental lemma for multiple datasets
	Introduction
	Notation

	Willems et al.'s fundamental lemma
	Extension to multiple trajectories
	Examples
	Identification with missing data samples
	Data-driven LQR of an unstable system

	Conclusions

	Data informativity for analysis and control
	Introduction
	Problem formulation
	Data-driven analysis
	Control using input and state data
	Stabilization by state feedback
	Informativity for linear quadratic regulation
	From data to LQ gain

	Control using input and output data
	Stabilization using input, state and output data
	Stabilization using input and output data

	Conclusions and future work

	Data-based parameterizations of suboptimal controllers
	Introduction
	Suboptimal control problems
	The suboptimal LQR problem
	The H2 suboptimal control problem

	Problem formulation
	Data-driven suboptimal LQR
	Data-driven H2 suboptimal control
	Illustrative example
	Conclusions

	Control from noisy data via the matrix S-lemma
	Introduction
	Data-driven stabilization
	Assumption on the noise
	Problem formulation
	Our approach

	The matrix-valued S-lemma
	Recap of the classical S-lemma
	S-lemma with matrix variables

	Data-driven stabilization revisited
	Inclusion of performance specifications
	H2 control
	H control

	Simulation examples
	Stabilization using bounds on the noise samples
	H2 control of a fighter aircraft

	Discussion and conclusions

	Data informativity for dissipativity
	Introduction
	Dissipativity of linear systems
	Informativity: a vocabulary
	Main results
	A necessary condition for informativity
	Informativity and noiseless data
	Informativity and noisy data

	Conclusions
	Proofs of auxiliary results
	Proof of Lemma 6.1
	Proof of Lemma 6.2
	Proof of Proposition 6.2


	Topology identification of heterogeneous networks
	Introduction
	Problem formulation
	Conditions for topological identifiability
	Topology identification
	Identification of Markov parameters
	Topology identification
	Solving the generalized Sylvester equation
	Robustness analysis

	Conclusions

	Topology reconstruction of autonomous networks
	Introduction
	Preliminaries
	Systems theory
	Graph theory
	Consensus dynamics

	Problem formulation
	Solvability of the reconstruction problem
	Solvability for general K
	Solvability for K = Q
	Solvability for K = -L and K = A

	The network reconstruction problem
	Network reconstruction for general K
	Network reconstruction for K = Q
	Network reconstruction for K = -L and K = A

	Illustrative example
	Conclusions

	Network identifiability and graph simplification
	Introduction
	Preliminaries
	Rational functions and rational matrices
	Graph theory

	Problem statement and motivation
	Rank conditions for identifiability
	The graph simplification process
	Identifiability and graph simplification
	Constrained vertex-disjoint paths
	Conclusions
	Some proofs
	Proof of Lemma 9.2
	Proof of Theorem 9.5


	Network identifiability of undirected networks
	Introduction
	Preliminaries
	Graph theory
	Zero forcing sets
	Dynamical networks
	Network identifiability

	Problem statement
	Main results
	Higher-order node dynamics
	Conclusions

	A unifying framework for structural controllability
	Introduction
	Preliminaries
	Problem formulation
	Main results
	Discussion of existing results
	Graph-theoretic conditions
	Algebraic conditions

	Proofs
	Proof of Theorem 11.1
	Proof of Theorem 11.2
	Proof of Theorem 11.3
	Proof of Theorem 11.4
	Proof of Lemma 11.1

	Conclusions

	Properties of pattern matrices
	Introduction
	Pattern matrices
	Applications
	Controllability of linear DAE's
	Input-state observability
	Output controllability

	Conclusion

	A Distance-based approach to target controllability
	Introduction
	Preliminaries
	Qualitative class and pattern class
	Subclass of distance-information preserving matrices
	Zero forcing sets
	Output controllability of linear systems
	Targeted controllability of systems defined on graphs

	Problem statement
	Main results
	Sufficient condition for targeted controllability
	Sufficient richness of Qd(G)
	Necessary condition for targeted controllability
	Leader selection algorithm

	Illustrative example
	Conclusions

	Conclusions
	Contributions
	Outlook

	Bibliography
	Summary
	Samenvatting

