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Abstract— In myoelectric machine learning (ML) based control, 

it has been demonstrated that control performance usually 

increases with training, but it remains largely unknown which 

underlying factors govern these improvements. It has been 

suggested that the increase in performance originates from 

changes in characteristics of the Electromyography (EMG) 

patterns, such as separability or repeatability. However, the 

relation between these EMG metrics and control performance has 

hardly been studied. We assessed the relation between three 

common EMG feature space metrics (separability, variability and 

repeatability) in 20 able bodied participants who learned ML 

myoelectric control in a virtual task over 15 training blocks on 5 

days. We assessed the change in offline and real-time performance, 

as well as the change of each EMG metric over the training. 

Subsequently, we assessed the relation between individual EMG 

metrics and offline and real-time performance via correlation 

analysis. Last, we tried to predict real-time performance from all 

EMG metrics via L2-regularized linear regression. Results showed 

that real-time performance improved with training, but there was 

no change in offline performance or in any of the EMG metrics. 

Furthermore, we only found a very low correlation between 

separability and real-time performance and no correlation 

between any other EMG metric and real-time performance. 

Finally, real-time performance could not be successfully predicted 

from all EMG metrics employing L2-regularized linear 

regression. We concluded that the three EMG metrics and real-

time performance appear to be unrelated. 

 
Index Terms — Electromyography, Machine Learning, Pattern 

Analysis, Prosthetics, Training 

 

I. INTRODUCTION 

Machine learning (ML) based control strategies have 

been suggested as an advanced control paradigm for 

myoelectric upper limb prostheses which could make 

prosthesis operation more intuitive and faster compared to 

conventional, direct control (DC) [1]–[7]. Nonetheless, recent 

studies suggest that user training and guidance by a coach is 

needed to learn ML prosthesis control [8]–[11]. 

It is yet not well understood which underlying factors and 
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mechanisms influence an individual’s ability to control a ML-

based myoelectric device. Such knowledge might help improve 

and individualize training of prosthetic users. It seems widely 

accepted that an individual’s ability to generate consistent and 

distinguishable patterns of electromyographic (EMG) signals is 

necessary for successful ML-based myoelectric control [10], 

[12]–[14]. However, the relation between such EMG signal 

characteristics and prosthesis control ability is hardly studied 

[12], [15]. 

In ML-based myoelectric control, most algorithms are 

trained with EMG features that are extracted from the time-

windowed raw EMG signals. The ML algorithm tries to 

distinguish the different movement classes in the EMG feature 

space and it has been shown that some characteristics of the 

EMG feature space, depicted by metrics which estimate EMG 

pattern qualities such as separability, are strongly related to the 

ML algorithm’s offline performance [15]. 

It has also been argued that such feature space characteristics 

reflect the user’s ability to control a myoelectric device and that 

changes in control ability might be related to changes in those 

characteristics [12], [14], [16]. Undeniably, EMG feature space 

characteristics might be a promising and suitable target in 

rehabilitation training since they are easy to define, quantify 

and monitor. Therefore, understanding the link between the 

EMG feature space and ML myoelectric control performance 

might offer theoretical support for designing training methods 

which address device controllability in rehabilitation training. 

However, whereas strong relations have been found between 

feature space characteristics and offline performance, 

inconclusive results have been found with regard to the relation 

between characteristics of the feature space and users‘ control 

ability in real time evaluations, i.e. with the user being in the 

control loop [12], [14]–[16]. This distinction between offline 

and real-time (i.e., online) performance is important as it has 

been shown that offline performance is a poor predictor of real 

time control ability [17]. Moreover, only few studies attempted 

to quantify the relation between EMG feature space 

characteristics and real time control ability [12], [15], [18]. 

The results of these studies on able-bodied persons showed a 

significant correlation between real-time performance and an 
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EMG feature space metric which estimated the separability 

between movement classes in the feature space [12], [15]. This 

separability index (SI) was moreover found to be significantly 

higher in subjects who had experience with ML myoelectric 

control, compared to naïve subjects [12]. However, the 

correlation between the separability index and real-time 

performance was only moderate in both studies (r = 0.53 and r 

= 0.54, respectively) and much lower than the correlation 

between the separability index and offline performance (r = 

0.94) [15]. Remarkably, both studies showed that several 

participants achieved high real time performance despite a low 

separability index. Moreover, in another recent work it was 

found that between-class separability changed after training, 

but the authors found no correlation between separability and 

real-time performance [18]. The same study found a significant, 

but low correlation between a metric for EMG pattern 

variability and real-time performance [18]. 

In summary, there is some support for a link between EMG 

feature space metrics and real-time performance, but the results 

so far remain inconclusive and the correlations which have been 

found were only low to moderate. Moreover, no attempt has 

been made so far to investigate the relation between a 

combination of feature space metrics and real-time 

performance, although it has been shown that changes in EMG 

feature space characteristics can greatly differ between 

individuals, thus the relevant feature space metric combinations 

might vary considerably between persons [14]. 

The goal of this study was to establish whether a relation 

exists between the EMG feature space metrics and offline as 

well as real-time performance in individuals who learn ML 

myoelectric control during repeated training sessions. We 

focused on the EMG feature space metrics which were 

suggested in the literature, i.e. metrics related to separability, 

variability and repeatability of the movement classes in the 

feature space. We first examined whether any of the 

performance measures and the EMG feature space metrics 

changed during the training. Subsequently, we assessed the 

relation between the performance measures and each of the 

three EMG metrics. Finally, we analyzed whether real-time 

performance could be predicted from all EMG feature space 

metrics via L2-regularized linear regression. 

We hypothesized that both, offline and real-time performance, 

would increase during the training. Furthermore, we 

hypothesized that separability would increase and variability as 

well as repeatability would decrease as a response to the 

training. We also hypothesized that strong correlations would 

be found between offline performance and separability, but 

only a low to moderate correlation would be found between any 

of the EMG metrics and real-time performance. In contrast, we 

hypothesized that real-time performance could be predicted 

with the help of machine learning methods when taking all 

EMG feature space metrics into account. 

II. METHODS 

A. Ethical approval 

The local ethics committee approved the study 

(ECB/2017.01.12_1). All participants were informed about 

content, procedure and goal of the study. All subjects gave 

written consent prior to the start of the experiment. 

B. Subjects 

Twenty able-bodied university students (mean age in years: 

22(± 2.8), 11 females) were recruited. Handedness was assessed 

by completing the handedness questionnaire of the Edinburgh 

inventory [19], [20]. Exclusion criteria were any neurological 

pathologies or musculoskeletal complaints interfering with 

study outcomes. 

C. Myoelectric machine learning system 

Eight commercially available double differential electrodes 

were used (13E200=50 AC, Otto Bock Healthcare Products 

GmbH, Vienna, Austria), which pre-amplified and band-pass 

filtered the EMG signals. The electrodes were placed at equal 

distances around the thickest part of the forearm. EMG data 

were sampled at 1000 Hz and streamed to a laptop computer via 

Bluetooth connection. Software provided by Otto Bock 

Healthcare Products GmbH (Vienna, Austria) was used to 

record EMG data, to train a classifier and to run a match-prompt 

test. EMG data were divided into sliding time-windows of 128 

ms with a 32 ms overlap. Four time-domain features (mean 

absolute value, waveform length, slope sign changes and zero 

crossings) were extracted, yielding a 32-dimensional feature 

space [21]. A linear-discriminant-analysis (LDA) classifier was 

used to classify each feature vector as one of seven movement 

classes (wrist supination, wrist pronation, wrist flexion, wrist 

extension, hand open, fine pinch grip, and lateral thumb grip) 

and a “rest” class [2], [21]. Moreover, a proportionality 

estimator was employed to facilitate proportional control. 

Details of the system are described in Amsuess et al. [5]. The 

overall system delay was 150 ms, which is considered within 

the optimal range for myoelectric control [22], [23]. 

 

D. Study Protocol 

The experiment was conducted over five consecutive days. 

Each day, subjects completed a session of 45-60 minutes which 

consisted of three blocks. Hence, each participant completed 15 

blocks in total. Each block consisted of one system training and 

a following match prompt test. The ML system was retrained 

with one data set of movements only, thus data from prior 

blocks or prior days were not used during system training. This 

procedure was chosen to enable us to study the precise relation 

between one set of EMG system training data and the 

corresponding performance in a match-prompt test (See D.2: 

Match-prompt test). Before the start of the experiment, all 

subjects received a general introduction to myoelectric ML 

control by one of the experimenters. It was explained what 

myoelectric signals are and how pattern recognition in 

myoelectric control works. Furthermore, the concepts of pattern 

separability, variability, and repeatability were explained. 

 

1) System Training 

Subjects were seated on a comfortable chair with their arms 

resting on an armrest, yielding an elbow flexion angle of 

approximately 90 degrees. EMG data were recorded from the 

participant’s non-dominant arm. Moreover, wrist and fingers 

were splinted with a medical brace to avoid the effects of joint 

movements on the EMG data [24]. Before the start of each 

block, the RMS of each electrode was briefly visually inspected 

in an 8-axis plot (Top left panel in Figure 1) to ensure that there 
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was no noise or “dead channel” e.g. due to bad electrode-skin 

contact. The experimenter furthermore monitored the RMS of 

all electrodes during each block to ensure that there were no 

abnormalities in the signals. Each system training started with 

a calibration where participants were instructed to perform each 

movement at 100% maximum voluntary contraction (MVC) 

while avoiding arm trembling or muscle pain. Subsequently, 

participants were asked to repeat each movement at 30%, 60% 

and 90% proportion of their MVC. Thus, in total, the 

participants performed 21 movements (7 different movements 

at 3 different contraction strength levels each), and three 

repetitions without any muscle contractions (rest). Continuous 

feedback about their EMG pattern was provided by an 8-axis 

plot which displayed the root mean square of each electrode on 

one axis (Figure 1, top-left panel). Continuous feedback about 

the contraction strength was provided through a red dot, which 

moved up and down proportionally to the achieved percentage 

of their MVC. The red dot moved over time from left to right in 

front of a blue trapezoid shape. Participants were asked to try to 

follow the blue line by adjusting their contraction strength. 

(Figure 1, top-right panel). After data collection, the LDA 

classifier was trained. The offline performance was calculated 

from the system training data only (see E: performance 

metrics). 

 

 

Figure 1: Recording of training data. The eight axes in the top left figure 

correspond to the eight electrodes’ root mean square (where the center of the 

figure represents zero activity and the outer boundary represents 100% of their 

MVC). The blue line in the right top shows the target contraction strength, 
whereas the red dot shows the participants’ achieved contraction strength 

(indicated as percentage of their MVC). The picture in the lower middle 

shows the target movement. 

 

2) Match Prompt Test 

After each system training, participants completed a match 

prompt test (Figure 2), which was similar to the motion test by 

Kuiken et al. [25]. The participants were asked to perform one 

out of the seven different movements, at one out of the three 

different contraction strength levels (yielding in total 21 

different cues in each match prompt test). The prompted 

movement was presented as a picture on the screen, the 

expected contraction strength was presented as marks on a 

vertical bar. The movement which was predicted by the LDA 

classifier was continuously presented as a picture. The 

contraction strength was continuously displayed in the form of 

a vertical bar (Figure 2). 

Participants were given three seconds to perform the 

corresponding movement. Importantly, there was a two-second 

pause after each prompt, which allowed the participants to 

study the prompted movement. Moreover, the participants were 

told that the three-second timer didn’t start to run as long as the 

“rest” class was classified. This meant that additionally to the 

two-second pause, the participants could take their time to focus 

on the prompted movement and decide when they would start 

their attempt to perform the corresponding contraction. The 

next cue was presented when the three-second timer had passed 

or when participants managed to continuously hold the correct 

movement and the prompted contraction strength level for two 

seconds. The contraction strength was considered correct if the 

estimated level was within a defined margin of the prompted 

level. Those margins were 15%, 20% and 30% for the prompted 

levels of 30% MVC, 60% MVC and 90% MVC, respectively. 

The real-time performance was calculated based on the match-

prompt data only (see E: performance metrics). 

 

 

Figure 2: Match prompt test. Left panel: The eight axes correspond to the 

eight electrodes’ root mean square (where the center of the figure represents 

zero activity and the outer boundary represents 100% of the participant’s 
MVC). The black line continuously displayed the current EMG activation 

pattern, whereas the colored line displayed the mean EMG pattern of the 

movement which was classified. 
Right panel: The prompted movement is shown in the left picture, whereas the 

classified movement is shown in the right picture. The prompted contraction 

strength level is shown in the left green bar, whereas the achieved contraction 

strength is indicated by the right green bar. The contraction strength tolerance 

level is indicated by the two white blocks in between both green bars. The 

growing red circle displayed the time which was available to complete the 
current attempt, the growing blue circle indicated the duration of how long the 

correct movement and the correct contraction strength were maintained. 
 

3) Feedback After Match Prompt Test 

After each match prompt test, the participants received 

feedback about their EMG patterns. This feedback was based 

on visual inspection of the EMG patterns in an 8-axis plot 

(similar to the left panel in Figure 2) and three different EMG 

metrics. These metrics were calculated from the EMG data of 

the most recent system-training and match prompt test. They 

reflected the following three characteristics of EMG data: (1) 

Separability, i.e. the distance between two different classes in 

the feature space, (2) variability, i.e. the variance around the 

class mean, and (3) repeatability, i.e. the similarity between a 

class in the training data and its repetition in the match prompt 
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test [12]. Separability and variability were calculated within the 

training data set, whereas the repeatability was calculated 

within training and test data. The test data only contained those 

parts of the EMG data where the three-second timer was 

running, i.e. where the participants were attempting to perform 

a prompted movement. The definitions of these metrics are 

described in F) Feature space metrics. The participants were 

told which class showed the lowest separability, which class 

showed the highest variability, and which class showed the 

highest repeatability. This procedure was chosen so that the 

participants could focus on the most problematic classes, and to 

not overwhelm the participants by showing three metrics for all 

of the seven movement classes. The participants were then 

asked to focus in the next block on these specific movement 

classes to make them less variable (“try to hold the contraction 

in a more stable manner for this movement”) and more 

repeatable (“for this movement, try to repeat the same 

contraction in the match prompt test, compared to the training 

phase”). Moreover, they received guidance on how to alter one 

movement to make it more separable from a conflicting 

movement based on suggestions in the literature [13], [14]. In 

order to illustrate a simplified version of the feature space, the 

participants were shown the root-mean-square of the raw EMG 

for each class, displayed in an 8-axis plot (similar to the left 

panel in Figure 2). For each class, the average of the three 

different contraction strength level was shown as a static line, 

and each class was depicted in a different color. The 

participants then had up to two minutes to inspect how their 

EMG patterns corresponded to changes in the contraction.  

 

E. Performance Metrics 

1) Offline performance 

The software which was used during the system training and the 

match prompt test did not offer an offline-analysis framework. 

Therefore, the offline analysis of EMG training data was 

performed in BioPatRec, an open-source EMG pattern 

recognition software suite [26]. The features were calculated 

from consecutive time windows of 128 ms, with a 32 ms 

overlap. The feature vectors of different contraction strength 

levels belonging to the same movement class were then added 

to form one movement class. Subsequently, the feature vectors 

were randomly assigned to a training, validation and testing set. 

This procedure was repeated 10 times as a cross-validation to 

remove any bias of the randomly assigned feature vectors [15], 

[26]. 

Offline accuracy (OffAcc) was then defined as the ratio of 

correct predictions over total predictions: 

 

𝑂𝑓𝑓𝐴𝑐𝑐 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

 

2) Real-time performance 

The real-time performance was based on the EMG data from 

the match prompt test and defined as the online accuracy 

(OnAcc). It was calculated as the percentage of time-windows 

where the predicted movement matched the prompted 

movement. 

 

𝑂𝑛𝐴𝑐𝑐 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑖𝑛 𝑚𝑎𝑡𝑐ℎ 𝑝𝑟𝑜𝑚𝑝𝑡 𝑡𝑒𝑠𝑡)

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑖𝑛 𝑚𝑎𝑡𝑐ℎ 𝑝𝑟𝑜𝑚𝑝𝑡 𝑡𝑒𝑠𝑡)
 

F. Feature Space Metrics 

For all feature space metrics, data recorded from different 

contraction strength levels belonging to one movement were 

added to form one movement class. Moreover, for the feedback 

provided after each match-prompt test, the feature space metrics 

were calculated for every class individually to identify the 

movement which showed the worst result in each metric. 

However, for the data analysis, the feature space metrics were 

always averaged over all seven movement classes. 

 

1) Separability Index 

The Separability Index (SI) was suggested to reflect distances 

between different movement classes in the EMG feature space 

[12]. It was calculated as the average distance of all movement 

classes to their most conflicting neighbor. In the initial 

definition only the covariance of one movement class was taken 

into account [12]. We used an adapted version of the 

separability index where the covariance of both compared 

movement classes is considered [15]. The adapted SI was then 

defined as: 

𝑆𝐼_𝑎𝑑𝑎𝑝𝑡𝑒𝑑 =
1

7
∑ (

1

2
√(𝜇𝑗 − 𝜇𝐶𝑗)

𝑇
𝑆−1 (𝜇𝑗 − 𝜇𝐶𝑗))

7

𝑗=1

 

 

Where 𝜇𝑗 is the centroid of class j, 𝜇𝐶𝑗 is the centroid of the 

most conflicting class (with respect to class j), and S is defined 

as: 

 

𝑆 =
𝑆𝑗 + 𝑆𝐶𝑗

2
 

 

Where 𝑆𝑗  is the covariance of class j, and 𝑆𝐶𝑗  is the covariance 

of the most conflicting class (with respect to class j). 

 

2) Mean-semi-principal axis (MSA) 

The MSA was proposed as a measure for intra-class variability 

[12]. It considers the feature vectors of each class as a cluster in 

the shape of a hyper-ellipsoid. The size of the cluster is 

approximated through singular value decomposition of the 

feature vector and subsequently calculating the geometric mean 

of the singular values. 

𝑀𝑆𝐴 =  
1

7
∑ (∏ 𝑎𝑗𝑘

𝑛

𝑘=1

)

1
𝑛7

𝑗=1

 

 

 

Where 𝑎𝑗𝑘is the kth of n singular values of class j and n is equal 

to the number of dimensions (i.e. in this study, n was equal to 

32, as EMG was measured with eight electrodes and four time-

domain features were calculated). 

 

3) Repeatability Index 

The repeatability index measures how well the participants 

reproduced EMG patterns in the match prompt test (test data), 
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compared to the EMG pattern they produced during the system 

training procedure (training data) [12]. It was calculated as half 

the Mahalanobis distance between the feature vector centroid 

of a movement class in the training data and the feature vector 

centroid of the same movement class in the test data, averaged 

over all seven movement classes. Similarly to the adapted SI, 

we used an adapted version of the RI, where the covariance of 

both classes is taken into account: 

 

𝑅𝐼_𝑎𝑑𝑎𝑝𝑡𝑒𝑑 =
1

7
∑ (

1

2
√(𝜇𝑇𝑅𝑗 − 𝜇𝑇𝐸𝑗)

𝑇
𝑆−1(𝜇𝑇𝑅𝑗 − 𝜇𝑇𝐸𝑗))

7

𝑗=1

 

 

Where 𝜇𝑇𝑅𝑗 is the centroid of class j in the training data, 𝜇𝑇𝐸𝑗 

is the centroid of class j in the test data, and 𝑆 is defined as: 

 

𝑆 =
𝑆𝑇𝑅𝑗 + 𝑆𝑇𝐸𝑗

2
 

 

 

Where 𝑆𝑇𝑅𝑗 is the covariance of class j in the training data and 

𝑆𝑇𝐸𝑗 is the covariance of class j in the test data. 

 

G. Statistics and analysis 

During the experiment it was discovered that for the first eight 

participants, the feedback given after each match-prompt test 

was wrongly calculated due to a coding error. The SI_adapted, 

RI_adapted, and MSA were calculated based on one feature 

only (mean absolute value) instead of the whole feature set, as 

we intended. This was then corrected so the remaining 

participants received feedback based on the entire feature set.  

However, before conducting any further analysis of the data, 

we first assured the validity of the data by assessing if the 

differences in feature selection had any effect on the real-time 

performance improvements over time (see next paragraph). 

The corresponding methods and results are described in the 

appendix at the end of the paper. As we found no effect of the 

feature selection difference on real-time performance, we 

performed the main data analyses based on all participants. 

For all the analyses reported the significance level was set to 

0.05. 

 

 

1) Change in performance outcomes and EMG feature space 

metrics 

To test whether any of the performance outcomes and the EMG 

feature space metrics changed over the 15 blocks, we performed 

planned comparisons (linear contrast) in five separate one-way 

repeated measure ANOVAs on each performance outcome and 

each EMG metric, with block (block 1, block 2,… block 15) as 

within-subject factor. If Mauchly’s test indicated that the 

sphericity assumption was violated, the Greenhouse-Geisser 

correction was used to estimate the degrees of freedom. Effect 

sizes were calculated using generalized eta-squared statistics 

[27]. We were primarily interested in the planned linear 

contrast, but to provide as much information as possible, we 

also report the significant omnibus effect. 

 

2) Partial correlation Between Performance Outcomes and 

EMG Feature Space Metrics 

We assessed the strength of the relation between each EMG 

feature space metric and each performance outcome by 

calculating the Pearson’s product-moment correlation 

coefficient for each pair of performance outcome and EMG 

feature space metric. 

 

3) Predicting real-time performance from all EMG feature 

space metrics 

To test whether real-time performance could be predicted from 

the combination of all EMG feature space metrics, we 

attempted to fit a linear function via L2-regularized linear 

regression that predicted the real time performance using the 

three EMG feature space metrics generated from test and 

training data. Results were generated using 10-fold cross 

validation, with the fitting of the regularization parameter done 

by an inner loop with 3-fold cross-validation. To see whether 

we were successful at predicting real-time performance, we 

calculated the correlation of the predicted performances with 

the real performances. Significance was calculated via 

permutation-based null distribution testing with 100 

permutations: the true correlation coefficient was compared 

against correlation coefficients calculated based on data where 

the true labels were shuffled, and the p-value reflects what 

percentage of shuffled data correlation coefficients were larger 

than the true one. 

III. RESULTS 

Twenty participants completed all 15 blocks, for a total of 300 

blocks (i.e. system trainings and match-prompt tests) being 

performed. Data of four blocks of different participants were 

not saved correctly and one block was removed from the 

analysis, as the participant achieved 12.4% online accuracy and 

we believe that such low real-time performance was due to a 

lack of focus or that the participant mixed up some of the 

movements. Therefore, in total 295 blocks were analyzed.  

Moreover, due to an issue with the automatic naming of the 

EMG files from the motion test, these files were often 

overwritten and therefore not stored permanently, so the 

repeatability index (RI, adapted) could only be computed for 

115 blocks. The missing files were randomly distributed over 

participants and blocks. 

 

A. Change in performance outcomes and EMG feature space 

metrics 

The repeated measure ANOVA for the offline performance 

showed a significant effect for block (F(14, 266) = 2.277; p = 

.006; 𝜂𝐺
2  = 0.107) but the planned linear contrast of blocks 

showed no significant difference. No significant effects were 

found in the separate repeated measure ANOVAs for any of the 

three EMG feature space metrics. The repeated measure 

ANOVA for real-time performance revealed a significant effect 

of block (F(14, 266) = 11.256; p < .0001; 𝜂𝐺
2  = 0.372). The 

planned linear contrast of blocks showed a significant 

difference (F(1, 19) = 50.437; p < .0001; 𝜂𝐺
2  = 0.726).  Figure 3 

shows data of all performance outcomes and EMG feature 

space metrics for all blocks. 
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B. Partial correlation between the EMG feature space metrics 

and offline/real-time performance 

A significant correlation between the SI (adapted) and offline 

accuracy was found (r = 0.72, p < 0.0001, 95% CI [0.71, 0.78]). 

No significant correlation was found between the other two 

EMG feature space metrics and offline accuracy (Figure 4, left 

panels).  

There was a low but significant correlation between the SI 

(adapted) and real-time performance (r = 0.27, p < 0.0001, 95% 

CI [0.10, 0.26]). No significant correlation was found between 

the other two EMG feature space metrics and real-time 

performance (Figure 4, right panels).   

 

C. Predicting real-time performance from all EMG feature 

space metrics 

The predicted real-time performance showed only poor 

correlations to the true online accuracy for the movements 

wrist-extension (r = 0.13) and fine-pinch (r = 0.2). No 

significant correlations were found between the predicted real-

time performance and the true real-time performance for all 

other movements. Figure 5 shows the correlations between 

predicted and true real-time performance for each individual 

movement (panel 1 to panel 7), and for the average of all seven 

movements (panel 8), respectively. 

IV. DISCUSSION 

 

Our aim was to establish whether a relationship existed between 

three common EMG feature space metrics and offline as well 

as real-time performance in myoelectric ML based control. 

Whereas a strong correlation was found between offline 

performance and separability, none of the three EMG feature 

space metrics showed a strong correlation with real-time 

performance. Moreover, real-time performance could not be 

predicted from the three EMG feature space metrics with the 

help of machine learning methods. Our findings suggest that the 

EMG feature space characteristics which were estimated with 

the three metrics SI (adapted), RI (adapted) and MSA do not 

appear to accurately reflect the gains in real-time performance 

in ML myoelectric control. 

 

A. Improvements in real-time performance vs. no changes in 

offline performance or EMG feature space metrics 

Our analyses showed that real-time performance (depicted by 

the online accuracy) increased over the 15 blocks, which 

indicates that the participants’ skill in controlling the output of 

the myoelectric ML system improved. It should be noted that 

all participants were naïve to myoelectric control and the match 

prompt test. Therefore, the increase in online accuracy indicates 

that the participants got more familiar with the task and found 

ways to improve their performance. However, neither the 

offline-performance, nor any of the EMG feature space metrics 

showed a significant change over the 15 blocks. This finding 

suggests that offline performance appears to be unrelated to 

real-time performance [17]. Moreover, this finding is in 

agreement with [12], where it was found that none of the three 

metrics showed a significant change over two days of training 

myoelectric ML control.  

 

However, our results differ from two other studies, where 

changes of the EMG feature space were studied during repeated 

training [16], [18]. He et al. [16] found that the repeatability of 

movement classes decreases over training, whereas the 

separability between movement classes did not show a 

significant change. The participants in the study of He et al. 

received no feedback about their EMG, which might explain the 

different findings with regard to our study. This interpretation 

is supported by Kristoffersen et al. [18], where groups who 

received different types of feedback showed different changes 

in EMG characteristics. In agreement with the literature, the 

current study shows that real-time performance increases with 

training, but it appears that changes in EMG feature space 

characteristics as a response to training are strongly dependent 

on the type of feedback. The absence of change in any of the 

EMG metrics in our study is particularly surprising because the 

participants were specifically coached to improve EMG pattern 

separability, variability and repeatability. This might imply that 

explicitly providing feedback about these EMG metrics is not 

effectively making individuals change their EMG patterns. 

Moreover, the absence of change in EMG metrics in parallel 

with a significant change in real-time performance implies that 

these EMG metrics and real-time performance seem to be 

unrelated. 

 

B. Correlation between EMG feature space metrics and real-

time performance 

We found that neither the repeatability, nor the within-class 

variance showed a significant correlation to real-time 

performance. Furthermore, in contrast to Bunderson et al. [12] 

and Nilsson et al. [15], we only found a low correlation between 

separability and real-time performance, despite an identical 

separability definition in our study and that of Nilsson et al. It 

is noteworthy however that Nilsson et al. used time-to-

completion as real-time performance metric, which is different 

from online accuracy, which was used in our study and 

Bunderson et al. Nonetheless, the two above studies and our 

study appear to show a similar pattern with regard to the 

separability, that is: whereas the overall probability of 

achieving high real-time performance seems to increase with 

higher separability, the latter does not guarantee high 

performance and there is large variance in the correlation. 

Furthermore, high real-time performance is possible despite 

relatively low separability. It appears that none of the EMG 

metrics studied here have high predictive power with regard to 

real-time performance. A possible explanation for the absence 

of any strong correlation between the EMG metrics and real-

time performance might be that rather than a straightforward 

relation, there is a complex interplay between the EMG feature 

space characteristics which determines real-time performance. 

In order to test this hypothesis, we tried to predict the real-

time performance from all three EMG feature space metrics via 

L2 regularized linear regression. However, we found that the 

real-time performance could not be successfully predicted, as 

we found no, or only poor correlations between the predicted 

and the true real-time performance. Altogether, these results 
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Figure 3: Performance outcomes and EMG feature space metrics over all blocks. The edges of the blue boxes indicate the 25th and the 75th percentiles, 
respectively. The white circles in the blue boxes indicate the median. The blue whiskers indicate the most extreme datapoints (which are not considered outliers), 

whereas the blue circles indicate outliers. 
 

 
 
Figure 4: Correlations between the three feature space metrics and offline accuracy are shown in the three plots on the left side. Correlations between the three 
feature space metrics and online accuracy are shown in the three figures on the right side. Significance of correlations is indicated by asterisks: ** p < 0.01. 

Abbreviations: SI: separability index. MSA: mean-semi-principal axis. RI: repeatability index.  
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Figure 5: Correlation between predicted online accuracy and true online accuracy for each individual movement class and for the average over all seven 

movement classes, respectively. Significance of correlations is indicated by asterisks: *p < 0.05, ** p < 0.01. 

 

show that none of the EMG feature space metrics alone, or in 

combination, appear to be predictive with regard to real-time 

performance. 

 

C. Absence of strong correlations between EMG feature space 

metrics and real-time performance 

Both our study and the study of Nilsson et al. [15] showed 

strong correlations between separability and offline 

performance, but only low to moderate correlations between 

separability and real-time performance. It appears that as soon 

as the user is in the control loop and receives feedback about 

the output of the machine learning algorithm, the EMG patterns 

are affected and the relation between EMG characteristics and 

performance changes. Indeed, Nilsson et al. noted a shift in 

distributions between the time when data was recorded and the 

time when the match-prompt test was executed [15]. Similarly, 

we found that the repeatability is on average nearly twice as 

high as the separability (see panel 3 and 5 in Figure 3), which 

means that the distance between a movement class in the 

training data and the same class in the match-prompt test data 

is considerably larger than the distance between a movement 

class in the training data and its most conflicting neighbor class. 

Nilsson et al. attributed this shift in distributions to the time 

between the recording of the training data and the execution of 

the match-prompt test. However, this time gap was very short 

in our experiment (usually less than two minutes). Moreover, 

the experiment was carried out in a highly controlled lab 

condition, where able-bodied participants were comfortably 

seated and had their arm in a relaxed position. Therefore, we 

believe that it is the feedback during the match-prompt test and 

the participants’ continuous response and adaptation to that 

feedback which caused the drift in distributions and therefore a 

relatively large repeatability. This interpretation is supported by 

the results of He et al. [16], who found that the repeatability 

index significantly decreased (i.e. improved) over time when 

participants received no feedback. Such a distribution drift 

might also explain why the EMG feature space metrics such as 

the separability and the variability of movement classes in the 

training data are of little predictive power with regard to real-

time performance. 

 

D. Implications 

It appears that the metrics which have proven useful in 

predicting a machine learning algorithm’s offline performance 

(e.g. separability) [15], are of little use in predicting the real-

time performance of myoelectric ML based control. Therefore, 

these metrics might be ill-suited to assess an individual’s skill 

in controlling a myoelectric ML device, even though it is 

commonly assumed that, for successful ML myoelectric 

control, EMG patterns must be separable, consistent and 

repeatable. However, it is important to note that the overall 

offline accuracies in this study were relatively high from the 

start (between 85% and 95%). Such high offline accuracies 

have been found to generally yield well controllable systems 

[28]. Therefore, the lack of predictive power of the chosen 

EMG metrics might be specific for individuals and control 

systems who achieve such high offline accuracies. Also, the 

finding that the participants’ improvements in real-time control 

were not governed by changes in the chosen EMG metrics does 

not imply that changes in these metrics cannot lead to 

improvements in real-time control. Therefore, the field of ML 

myoelectric control might benefit from further studies which 

explore the changes in EMG characteristics as a function of 

training and investigate the relation between EMG 
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characteristics and real-time performance. Such knowledge 

could prove crucial in improving the training paradigms for ML 

myoelectric control. 

Likewise, it would be important to deepen the knowledge of 

how EMG patterns are affected by feedback [18]. Many studies 

about ML myoelectric control were conducted on offline data 

without the user in the loop, but it remains questionable how 

well offline scenarios predict real-time control performance. 

There is evidence for a correlation between offline accuracy and 

completion rate in able-bodied who perform the Target 

Achievement Test [23], [28]–[30], whereas other studies 

conclude that offline analyses are poorly connected to real-time 

performance [15], [17], [31]. One of the reasons for 

inconclusive results and a potential lack of correlation might be 

the response of individuals to feedback and therefore a change 

in the EMG activity during real-time control, causing a drift in 

the feature space distributions [15].  

Finally, we also encourage researchers to explore new routes in 

the training paradigms. Our results suggest that providing 

explicit feedback about the EMG feature space characteristics 

and qualitative feedback about the EMG is not very effective in 

causing a corresponding change in the EMG. It might be that 

the improvements in real-time performance which we observed 

are merely the result of repeatedly performing the task, rather 

than the result of our specific coaching. This interpretation is 

supported by studies which show that performance can increase 

during training without feedback [16], [18]. Therefore, it might 

be fruitful to explore serious-games or other training 

approaches which can facilitate implicit learning strategies. 

 

E. Limitations 

The results might be specific for individuals with intact limbs 

and not directly transferrable to individuals with amputation, 

since the altered anatomy and physiology of affected limbs 

might have an effect on the characteristics of EMG [32]. 

Therefore, we cannot rule out that the absence of a correlation 

between the EMG feature space metrics and the real-time 

performance reported here, would be different in individuals 

with amputation. 

This study used a virtual match-prompt test to assess real-time 

performance which is different from actual prosthetic use, the 

ultimate goal of rehabilitation training [10], [31]. However, we 

chose the match prompt task to avoid the influence of 

confounding factors on performance, such as skin/electrode 

shift or the effects of upper limb kinematics on the EMG. 

Finally, we used a classic (LDA) pattern recognition system as 

this has become the golden standard in the field and is the most 

widely used type in commercial ML myoelectric control. 

However, it might be that the relation between EMG feature 

space metrics and real-time performance is strongly dependent 

on the type of machine learning algorithm, so the results might 

not be directly transferrable to fundamentally different 

algorithms, e.g. regression-based or neural-network techniques. 

APPENDIX 

To test whether the difference in feature selection had an effect 

on real-time performance, we carried out the following 

analysis: The participants were divided into two groups; one 

group which had received feedback based on one feature only 

(group: “one-feature-feedback”) and a group which had 

received feedback based on the entire feature set (group “all-

features-feedback”). Then, a mixed-model ANOVA was 

performed with block (block 1, block 2, … block 15) as within-

subject factor and feedback (one-feature-feedback vs. all-

features-feedback) as between-subject factor on real-time 

performance (online accuracy). If Mauchly’s test indicated that 

the sphericity assumption was violated, the Greenhouse-

Geisser correction was used to estimate the degrees of freedom. 

Effect sizes were calculated using generalized eta-squared 

statistics [27]. If the feature selection difference in the feedback 

would have had an effect on the performance, we expected the 

main effect of feedback as well as the interaction effect to be 

significant. 

The mixed-model ANOVA results showed a significant main 

effect for block on the real-time performance: F(14, 252) = 

10.251; p < 0.0001; 𝜂𝐺
2 =0.363. No significant effect of group on 

real-time performance was found: F(1, 18) = 3.824; p = 0.66; 

𝜂𝐺
2 = 0.175 and no significant interaction effect between block 

and group was found: F(14, 252) = 0.555; p = 0.898; 𝜂𝐺
2  =0.30. 

Based on these results we concluded that the real-time 

performance was not influenced by the differences in feature 

selection. Most importantly, they did not appear to have an 

impact on performance improvements over time. 
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