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Purpose: To assess the feasibility of magnetic resonance imaging (MRI)-only treatment planning for pho-
ton and proton radiotherapy in children with abdominal tumours.

Materials and methods: The study was conducted on 66 paediatric patients with Wilms’ tumour or neu-
roblastoma (age 4 + 2 years) who underwent MR and computed tomography (CT) acquisition on the same
day as part of the clinical protocol. MRI intensities were converted to CT Hounsfield units (HU) by means
of a UNet-like neural network trained to generate synthetic CT (sCT) from T1- and T2-weighted MR
images. The CT-to-sCT image similarity was evaluated by computing the mean error (ME), mean absolute
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S;ﬁ\tn;l(]e’;iz cT error (MAE), peak signal-to-noise ratio (PSNR) and Dice similarity coefficient (DSC). Synthetic CT dosi-
Deep learning metric accuracy was verified against CT-based dose distributions for volumetric-modulated arc therapy
Paediatric (VMAT) and intensity-modulated pencil-beam scanning (PBS). Relative dose differences (Dgif) in the

MRI internal target volume and organs-at-risk were computed and a three-dimensional gamma analysis

Wilms’ Tumour (2 mm, 2%) was performed.

Neuroblastoma Results: The average + standard deviation ME was —5 + 12 HU, MAE was 57 + 12 HU, PSNR was 30.3 + 1.
6 dB and DSC was 76 + 8% for bones and 92 + 9% for lungs. Average Dy were <0.5% for both VMAT (range
[-2.5; 2.4]%) and PBS (range [—2.7; 3.7]%) dose distributions. The average gamma pass-rates were >99%
(range [85; 100]%) for VMAT and >96% (range [87; 100]%) for PBS.
Conclusion: The deep learning-based model generated accurate sCT from planning T1w- and T2w-MR
images. Most dosimetric differences were within clinically acceptable criteria for photon and proton
radiotherapy, demonstrating the feasibility of an MRI-only workflow for paediatric patients with abdom-
inal tumours.
© 2020 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 153 (2020) 220-227 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Wilms' tumour (WT) and neuroblastoma (NBL) are two of the
most common abdominal solid tumours diagnosed in children.
Depending on the risk stratification, the treatment involves a com-
bination of surgery, chemotherapy and radiotherapy [1,2]. During
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radiotherapy treatment planning (RTP), magnetic resonance imag-
ing (MRI) scans are commonly acquired to define the target volume
thanks to their superior soft tissue contrast [3]. In addition, com-
puted tomography (CT) images are used for the computation of
patient-specific dose deposition maps [4] using the conversion of
the CT Hounsfield units (HU) to relative electron density for photon
therapy or to stopping power ratio relative to water for proton
therapy.

In the last decade, MRI-only workflows have been developed
using MRI-based synthetic CT (sCT) images to calculate the dose
deposition [5-7]. Such workflows are especially useful for ana-
tomies in which MRI-CT registration for contour propagation is
difficult [8]. By omitting the CT acquisition, systematic uncertain-

1is is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ties arising from the MRI-CT registration are eliminated and logis-
tics are simplified in the treatment preparation phase.

In the last few years, the use of sCT has been reported for RTP of
the brain [9], head and neck [10], lungs [11], prostate [12,13] and
abdomen [14,15] in adult patients. Specifically in the abdomen,
sCT images have been investigated for the treatment of liver
tumours using photon [14] and proton [15] therapies. For the pae-
diatric population, studies reporting sCT generation methods are
scarce [16,17], with only one approach generating sCT in children
with abdominal tumours [16]. Paediatric patients are certainly
challenging because of their substantial inter-patient morphologi-
cal variability. Nevertheless, they would potentially benefit the
most from the simplified MRI-only workflows, with a reduced time
under anaesthesia during treatment preparation.

In this study, we investigated the feasibility of an MRI-only
treatment planning workflow for children with abdominal
tumours using an end-to-end deep learning approach to generate
sCT from planning T1- and T2-weighted MR images. Dose calcula-
tions on the sCT images were compared against CT-based dose dis-
tributions for volumetric-modulated arc therapy (VMAT) and
intensity-modulated pencil beam scanning (PBS).

Materials and methods

This retrospective study was performed in accordance with the
institutional review board (WAG/mb/17/008865).

Data collection

Images of 66 children, treated for WT (n = 24) or NBL (n = 42) at
the Radiotherapy Department of the University Medical Centre
Utrecht (UMCU) between April 2015 and July 2020, were collected
for this study. Patients had a mean age (+ standard deviation (SD))
of 4 + 2 years old (range: [1; 9] years) at the time of scanning and
the female-to-male ratio was 28/38.

For treatment preparation, patients underwent four-
dimensional (4D)-CT and MR scanning less than an hour apart.
During the image acquisition, 54/66 patients were under general
anaesthesia and all patients were fixated in supine position in an
individualized vacuum mattress (Bluebag, Elekta, Stockholm, Swe-
den) with the arms wide along the body.

« Acquisition parameters

The 4D-CT images were acquired by means of a respiratory belt
(Philips Bellow System, Philips Medical System, Best, The Nether-
lands) from a 16-, 40-, or 64-channel detector scanner (Brillance,
Philips Medical Systems, Best, The Netherlands) with an in-plane
isotropic resolution ranging from 0.8 to 1.2 mm and a slice spacing
between 2 and 3 mm. The tube voltage varied between 90 and
120 kV and the tube current between 30 and 250 mA. The 4D-CT
was acquired in ten phases which were averaged to obtain the
planning-CT as per our institution clinical practice.

The MRI acquisition, performed on a 1.5T scanner (Achieva, Phi-
lips Medical Systems, Best, The Netherlands), included a T1-
weighted (T1w) 3D gradient-echo sequence and a T2-weighted
(T2w) 3D turbo spin echo sequence. T1lw-MR images were
obtained in the axial plane at a resolution of 0.7 x 0.7 x 1.5 mm®.
The echo/repetition times were 2.7 ms/5.4 ms with a flip angle of
10°. T2w-MR images were acquired in the coronal plane at a reso-
lution of 0.8 x 0.8 x 1.1 mm°. The echo/repetition times were
90 ms/454 ms with a flip angle of 90°. Respiratory motion artefacts
were reduced during MR scanning using the phase encoding arte-
act reduction (PEAR) method. Both MRI acquisitions were part of

1e clinical protocol and were not optimized for sCT generation.
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Data processing

« Pre-processing

MR images were independently and non-rigidly registered to
the planning-CT using the Elastix toolbox [18] in order to get the
best voxelwise match between modalities. The registration was a
composition of a translation, an Euler transform and a cubic B-
spline, optimized using mutual information and regularized with
arigidity penalty [19]. During registration, MR images were resam-
pled to the planning-CT resolution using a cubic B-spline
interpolation.

For the sCT generation only, MR and planning-CT images were
normalized independently and per volume. MR intensities were
clipped beyond the 95th percentile and the resulting intensities
were linearly mapped to [-1; 1]. CT intensities were linearly
mapped from [-1024; 3071] to [-1; 1].

« Synthetic CT generation

The proposed end-to-end deep learning sCT generation
approach is an extension of a previously reported model [20],
which used a neural network derived from a U-Net [21]. The net-
work used 3D patches from the registered T1w- and T2w-MR
images as inputs to generate sCT patches of the same resolution
as the planning-CT images.

The network was trained simultaneously on both T1w- and
T2w-MR images since it proved superior to models trained only
on T1w- or T2w-images (Supplementary material Table 1). Thus,
the model presented in [20] was slightly modified to first process
the Tlw- and T2w-MR images separately with two convolution
layers. The information extracted from the two images was con-
catenated before starting the standard encoding path of the U-
Net, as described in Fig. 1.

During the training phase, the generated sCT images were com-
pared to the planning-CT using a L1 loss (absolute voxelwise differ-
ence). The resulting error was minimized using a Nadam [22]
optimizer, given a learning rate of 107 The training was stopped
after 100,000 iterations. The remaining parameters were the same
as in [20]. Synthetic CT images were generated in two phases. First,
a 3-fold cross-validation (CV) was performed on 54 patients with
18 patients set aside for testing in each fold. Then a model was
trained on the 54 patients of the CV set and evaluated on a fully
independent test set consisting of 12 patients.

Treatment planning

For both WT and NBL patients, the clinical target and organs-at-
risk (OARs) delineated by a radiation oncologist were used in this
study. The gross tumour volume (GTV) consisted of the pre-
operative tumour extension, including pathologic lymph nodes
and residual disease if applicable. The clinical target volume was
created by expanding the GTV by 5 mm for NBL patients and by
10 mm for WT patients. To account for the respiratory motion,
an internal target volume (ITV) was delineated for each patient
by using the minimum and maximum 4D-CT phases and surgical
clips as motion surrogates [23]. OARs included the kidneys (di-
vided into ipsilateral and contralateral kidneys), the liver and the
spleen.

RTP was performed in RayStation (RaySearch Laboratories,
Stockholm, Sweden) for both VMAT and PBS dose distributions.
In accordance with the clinical protocol at the UMCU, VMAT plans
consisted of a 6MV full-arc. PBS plans were optimized for the pur-
pose of this study using 2-3 posterior-oblique irradiation fields to
exploit the dorsal location of the target. The number and direction
of the proton beams (range [120°; 240°]) were patient-specific. The
prescribed dose ranged from 10.8 to 36 Gy and was delivered in 6
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Fig. 1. Architecture of the U-Net. T1-weighted (T1w) and T2-weighted (T2w) MR patches of size 24 x 24 x 24 were input to the neural network separately. After two
convolutions, patches were concatenated to undergo the standard encoding—decoding process of the U-Net. Encoding was performed using max pooling and decoding with
nearest neighbour upsampling. The resulting sCT image has the same resolution as the planning-CT. The spatial dimension of each level is given on the left hand side.

to 20 fractions, depending on the histology and the presence of
residual disease.

3D plan optimization was performed using the planning-CT, a
uniform 3 mm dose grid, a collapse cone engine for VMAT and a
pencil-beam algorithm for intensity-modulated PBS dose distribu-
tions. To ensure a fair dosimetric comparison, both dose distribu-
tions were ITV-based robustly optimized and evaluated
accounting for a 5 mm patient set-up uncertainty and a 3% range
uncertainty (only for PBS). In addition, a relative biological effec-
tiveness of 1.1 was included during planning for PBS.

VMAT and PBS plans were optimized using a minimax opti-
mization method [24] whilst its robustness was evaluated using
a minimum evaluation dose map (Vwmin) [25]. Plans were consid-
ered robust if, in the Vynin, 98% of the ITV received at least 95%
of the prescribed dose [25]. In addition, to reduce the risk of asym-
metric skeletal growth, a homogeneous dose avoiding
left-right dose gradients higher than 5 Gy was aimed for the pri-
mary ossification centres of the vertebra volume adjacent to the
ITV [26].

Evaluation

e Technical evaluation
Synthetic CT images were compared against the planning-CT
using distance and structural metrics. The distance metrics con-
sisted of voxelwise differences between the HU of the planning-
CT and of the sCT, within the body contour, the soft tissue, the bone
and the lungs. In particular, mean error (ME) was computed to esti-
nate any systematic bias in the sCT generation and mean absolute
rror (MAE) to estimate the overall error.

222

Structural metrics included Dice similarity coefficient (DSC)
[27] and peak-signal-to-noise ratio (PSNR). DSC measured the
overlap of bone and lungs between the planning-CT and sCT
images. PSNR measured the reconstruction quality and was com-
puted as:

1N (e (i) — ICT(i))?

All metrics were computed only in regions where T1w-, T2w-
MR and CT information was available. Regions where HU > 200
were labelled as bone and regions where —200 < HU < 200 were
labelled as soft tissue. Lungs were segmented independently on
the planning-CT and sCT images using a dedicated in-house clinical
tool [28].

2
PSNR — 10log, ( 4095 )

« Dosimetric evaluation

To evaluate the dosimetric acceptability of sCT, CT-based VMAT
and PBS dose distributions were re-calculated on the sCT images.

Planning-CT and sCT dose differences were compared using
dose-volume histogram (DVH) metrics and 3D global gamma anal-
ysis [29]. DVH metrics included Dggs, Dsgy, Doy and Vgse, for the ITV
as well as mean dose (Dyean) and Dog for the OARs. CT-sCT DVH
dose differences in the target and OARs smaller than 2% at a 95%
confidence interval were considered clinically acceptable, as pro-
posed by Korsholm et al. [30]. 3D global gamma pass-rates were
computed using the CT dose as reference, multiple dose thresholds
(10%, 50%, 90%), a 2 mm distance to agreement and a 2% dose dif-
ference (2 mm, 2%). Gamma pass-rates were calculated within a
body mask excluding the arms to neglect CT-MR mismatch in this
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region (eg. registration errors, arms not in the field of view of one
image). In addition, the correlation between the DVH and gamma
results and the use of anaesthesia during image acquisition was
verified using a two-tailed student’s t-test at a 0.05 significance
level.

Results

For an example patient with a MR matrix of size 429x429x149,
sCT images were generated under 200 s on a GeForce GTX 1080 Ti
(NVIDIA, California, USA) graphics processing unit.

Table 1 summarizes the average ME, MAE, DSC and PSNR
obtained separately for both CV and test set patients and across
the entire population. Notably, no differences were found in terms
of technical performance between the CV and test patients with
metrics within the same range in both sets. Most errors occurred

Table 1

Radiotherapy and Oncology 153 (2020) 220-227

in the bone with HU largely underestimated on the sCT images,
as indicated by the high ME. Large errors were also found in the
lungs, despite a high overlap of their bulk structure between CT
and sCT.

Fig. 2, which compares planning-CT and sCT images for two
patients, shows that voxelwise differences were partially caused
by inter-scan differences. This includes differences originating
from patient positioning during image acquisition (i.e skin outline,
clavicle position), breathing motion (i.e volume and internal struc-
tures of the lungs and ribs) and physiological changes (i.e bowel
filling) that were not corrected by the registration.

Relative dose differences of clinically relevant DVH parameters
between the planning-CT and sCT dose distributions are shown in
the box-and-whisker plots in Fig. 3(a) for the ITV and in Fig. 3(b),(c)
for the OARs. Similarly to the technical performance, no differences
were found between the CV and test patients results with DVH
metrics within the same range in both sets.

Average t standard deviation (SD) of the mean error (ME), mean absolute error (MAE), Dice similarity coefficient (DSC) and peak signal-to-noise ratio (PSNR) computed between
the planning-CT and sCT across the cross-validation (CV) set, the test set and the entire population.

Metric Body site Average (+SD [Range])
CV (n=54) Test (n = 12) Overall (n = 66)
ME (HU) Body -5+11 [-30; 42] ~-7+13 [-22;15] -5+12
Soft tissue 0+8 [-17; 27] 1+12 [-10; 35] 0+9
Bone 114 + 59 [-12; 307] 132 +35 |66; 178] 117 £ 55
Lungs -9 +61 [-155; 146] -5+77 [—200; 90] -9+ 67
MAE (HU) Body 56 + 11 [35; 86] 62 +13 [39; 86] 57 £12
Soft tissue 33+6 [22; 55] 36+8 [26; 53] 33+7
Bone 156 + 43 [79; 322] 167 + 22 [118; 198] 158 + 40
Lungs 105 + 33 [50; 212] 104 + 38 [66; 215] 105 + 34
DSC (%) Bone 76 +7 [50; 87] 76 + 6 [65; 83] 76 + 8
Lungs 92+9 [45; 99] 88+7 [71; 94] 92+9
PSNR (dB) Body 304 +16 [26.7; 33.7] 30.0+18 [27.7; 34.3] 303 +16

-900 1500

HU

‘ig. 2. T1-weighted MR, T2-weighted MR, planning-CT and sCT images in the sagittal and coronal planes for two example patients from the cross-validation set (a) and from
1e independent test set (b). The error map (A [CT-sCT]) on the right shows the difference in Hounsfield units (HU) between the planning-CT and sCT images.
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Fig. 3. Box-and-whisker plots of the dose-volume histogram (DVH) parameters relative differences between the planning-CT, used as reference, and the sCT dose
distributions for VMAT (left) and PBS (right) for patients from the cross-validation (CV) (in white) and test (in grey) sets. (a) ITV DVH parameters differences (b) Mean dose
(Dmean) differences for the OARs (c) D2y differences for the OARs. Crosses indicate differences per patient. Values are presented as a percentage of the respective prescribed

dose. Abbreviations: Kidney, = ipsilateral kidney; Kidney = contralateral kidney.

For the ITV, DVH parameters differed on average by less than
0.5% (range [—2.1; 1.9]%) for VMAT and by less than 0.1% (range
[-1.1; 1.2]%) for PBS dose distributions for all patients (Fig. 3(a)).
For the OARs, average DVH differences were under 0.3% for both
VMAT and PBS dose distributions (Fig. 3(b),(c)). Dyean differences
ranged from [-1.1; 0.6]% for VMAT and [-1.4; 1.3]% for PBS. Sim-
ilarly, D,y differences ranged from [-2.5; 2.4]% for VMAT and
[-2.7; 3.7]% for PBS.

Fig. 4 shows relative dose difference maps for three example
patients. For the VMAT dose distributions, larger dosimetric differ-
ences were seen due to (1) changes in the position of air cavities
between the body outline and the ITV (Fig. 4(b),(c)) and (2)
changes in the CT-sCT body outline (Fig. 4(c)). For the PBS dose

224

distributions, because posterior irradiation fields were used, CT
to sCT dose differences were predominantly resulting from a
different positioning of air cavities in the vicinity of the ITV
(Fig. 4(b),(c)).

Gamma pass-rates (2%, 2 mm) obtained between the planning-
CT and sCT dose distributions are given in Table 2. Average gamma
pass-rates were above 99% for VMAT and above 96% for PBS dose
distributions. Individual gamma pass-rates were lower than 90%
for 2 patients on the VMAT and for 3 patients on the PBS dose dis-
tributions (example patients in Fig. 4(b),(c)).

In addition, no significant statistical differences were found in
the dosimetric DVH and gamma results between patients imaged
with and without anaesthesia (p > 0.05).
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Fig. 4. Dose maps optimized on the planning-CT and re-calculated on the sCT images for VMAT and PBS dose distributions for three example patients from the cross-
validation (a, b) and independent test (c) sets. The last column displays the dose difference maps (CT-sCT) overlaid on the planning-CT image. The scale is expressed as a
percentage of the prescribed dose (21.6 Gy for (a, b) and 10.8 Gy for (c)). Patients in (b) and (¢) had gamma pass-rates below 90% as a result of (1) CT-sCT different air cavities

distributions and (2) CT-sCT body outline differences.

Discussion

In this study, the feasibility of a deep learning-based sCT gener-
ation method for photon and proton treatment planning in paedi-
atric patients with abdominal tumours was evaluated. We
presented an end-to-end method to generate sCT from planning
T1w- and T2w-MR images. We found clinically acceptable differ-
ences between the planning-CT and sCT dose distributions for both
photon and proton therapy on this morphologically heterogeneous
dataset. To the authors’ knowledge, the present study is the first
waluating the feasibility of performing dose calculations on

deep-learning based sCT for children younger than 10 years old
with abdominal tumours.

Facing the low number of patients treated per year and the eth-
ical adversities within the children population to acquire imaging
data, datasets including both CT and MR images in treatment posi-
tion for over 60 patients in a single institute are rare. To thoroughly
exploit the entire population, technical and dosimetric evaluation
of the sCT images were performed on both a CV and a fully inde-
pendent test sets. No differences were found between the CV and
test sets in terms of technical and dosimetric results, confirming
the generalization performance of the proposed network.
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Table 2

Average + standard deviation [range| gamma pass-rates using a 2% and 2 mm criterion with multiple dose thresholds (10%, 50%, 90%) for VMAT and PBS dose distributions
optimized on the planning-CT and re-calculated on the sCT across the cross-validation (CV) set, the test set and the entire population.

Threshold VMAT (%) PBS (%)
CV (n =54) Test (n = 12) Overall CV (n=54) Test (n = 12) Overall
10% 99.7 + 0.5 [96.2; 100] 99.7 + 0.3 [99.2; 100] 99.7 £ 0.5 97.4 + 2.9 [87.5; 100] 96.2 + 4.0 [86.8; 100] 972 +3.1
50% 99.7 + 1.0 [94.1; 100] 99.8 + 0.5 [98.4; 100] 99.7 £ 0.9 99.4 + 1.1 [94.8; 100] 98.6 + 2.0 [94.4; 100] 992+1.3
90% 99.5 + 2.4 [85.4; 100] 99.5 + 1.5 [94.9; 100] 995+23 99.6 £ 1.1 [93.6; 100] 99.2 + 1.1 [97.2; 100] 995 +1.1

The technical accuracy of the sCT generated in this study, with
average MAE,qqy 0of 57 HU, MAEf tissue Of 33 HU, MAEqqe of 158
HU and MAE,ngs of 105 HU, compared favourably with literature.
A study in adult patients with hepatic cancer [15] reported
a MAEpoqy of 73 + 18 HU, a MAEye of 217 + 63 HU and a
MAEsoft tissue Of 59 # 31 HU. A previous study, performed on a
subset of this dataset [16], obtained a MAE,. of 212 + 40 HU,
a MAEgft tissue Of 53 £ 7 HU and a MAEjypgs of 125 * 24 HU using
a combined atlas- and voxel-based method. Although performed
on similar anatomies, these two studies had different MRI-to-CT
registration techniques, using rigid [16] or non-rigid [15] registra-
tion, which make them difficult to compare. In the present study,
we made the choice to non-rigidly register the planning-CT and
MR images aiming for an optimal voxelwise match between
modalities while minimizing distortions with a rigidity penalty.
Therefore, dose differences related to registration errors were min-
imized to focus on the HU differences between CT and sCT. Note
that for a prospective clinical use of the model, only a standard
rigid registration between the T1w- and T2w-MR images would
be required. Despite the non-rigid registration, registration errors
were still observed, especially for the body outline and for the
bones and lungs, which resulted in blurring [31].

The dosimetric accuracy of the generated sCT was evaluated for
both VMAT and PBS dose distributions optimized using the
planning-CT. Clinically acceptable dose differences (<2%) were
obtained for all patients on the ITV and for 61/66 patients on the
OARs for both VMAT and PBS. Differences larger than 2% were only
obtained for the D,y points. Nevertheless, these D,y dose differ-
ences are not clinically significant since the tolerance doses for
these OARs are far from being reached using the clinical prescribed
doses. For the ITV, larger differences between the planning-CT and
sCT doses were detected for the VMAT dose distributions due to
bowel filling variations and body outline differences between
images (Fig. 4). A potential reduction of these differences could
be expected if a posterior partial arc and/or air density override
during optimization of the VMAT dose distributions were used.
For PBS, results showed that when using posterior-oblique irradia-
tion fields, the differences between planning-CT and sCT dose dis-
tributions on the ITV were minimized (Fig. 4). For the OARs, larger
dosimetric differences were observed for both VMAT and PBS dose
distributions especially for the liver and spleen as a result of their
location in the vicinity of the lungs. At soft tissue-to-air interfaces
(i.e lungs, skin), higher HU variations can arise due to misalign-
ments introduced by motion or registration errors between the
planning-CT and MR images. Concerning the skin outline, previous
studies [16,32,33] have applied the skin outline extracted from the
planning-CT on the sCT to correct for these misalignments and
lower the CT-to-sCT dose difference. In this study, the planning-
CT outline information was not used for the dose re-calculation
on the sCT images. Thus, the present CT-sCT skin outline misalign-
ment might have led to an overestimation of the observed dosi-
metric differences.

In terms of gamma pass-rates, both VMAT and PBS showed clin-
cally acceptable results with average gamma pass-rates over 96%

o a (2%, 2 mm) criterion. Photon gamma pass-rates with a (2%,
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2 mm) criterion and a 10% dose threshold obtained in this study
(99.7 + 0.5%) compared favourably with the literature, reporting
pass-rates of 97.7 + 2.2% for the same patient category [16]. Simi-
larly, proton gamma pass-rates in this study (97.2 £ 3.1%) were in
agreement with values reported in literature with pass-rates of
97.0 + 2.9% for liver cancer treatment [15] and of 87.1 + 5.4% for
the same patient category [ 16]. Nevertheless, for a reduced number
of patients, gamma pass-rates were below 90% for both VMAT
(n=2)and PBS (n = 3) potentially due to (1) target size and location
(i.e at the lungs interface) and (2) inter-scan differences (i.e body
outline, bowel filling). Because of these inter-scan differences,
which would not be present in a clinical setting, the dosimetric dif-
ferences showed in this study might be interpreted as an overesti-
mation of the real difference between the planning-CT and sCT.
Overall, the results of this study demonstrated that MRI-only
photon and proton dose calculations on the generated sCT images
were clinically feasible, even when using MR images not optimized
for the sCT generation. The deep learning methodology used to
generate sCT enabled the creation of a model which coped with
the morphological variability of the paediatric population. With
an application in the abdominal region, in which MRI-CT registra-
tion is particularly hard, this method is promising for radiotherapy
treatment planning and would ease the clinical workflow for pae-
diatric population whilst potentially improving its accuracy.
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