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a b s t r a c t 

Direct numerical simulations of fully developed turbulent channel downflow at bulk Re equal to 6300, 

loaded with monodisperse bubbles at gas volume fractions α = 0 . 5% , α = 2 . 5% and α = 10% have been 

carried out. Bubble deformability, surface tension, as well as discontinuity in the material properties 

across the bubble interfaces are explicitly accounted for. A full-scale channel of size 4 πH × 2 H × 4 πH /3 in 

terms of the channel half-width H containing a number of bubbles up to O(10 3 ) is considered. The sta- 

tistical structure of the bubbles, the probability density function describing the bubble velocity and the 

liquid kinetic energy spectra have been determined. A close range preferential clustering of the bubbles 

was found with a maximum density independent of the gas volume fraction at a separation distance of 

about 2.2 R , with R the bubble radius. Preferential horizontal alignment and a general tendency to repul- 

sion is shown for separation distances smaller than 3 R . At larger separation distances a close to random 

distribution is observed for α = 2 . 5% and α = 10% , while tendency to vertical alignment is observed for 

α = 0 . 5% . The pdf of the bubble velocity fluctuations was found to be well approximated by a Gaussian 

distribution. The liquid kinetic energy spectra in the channel core do not show a marked −3 scaling, 

which was previously reported for homogeneous isotropic turbulence and pseudo-turbulence. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Turbulent bubble-laden channel flow is of great interest from

 fundamental point of view since it constitutes a confined en-

rgy system in which the essential features of turbulence and its

nteraction with dispersed bubbles can be studied. The simple ge-

metry of the channel featuring periodicity in the stream-wise and

pan-wise directions allows to represent average quantities as one-

imensional profiles along the wall normal direction, which leads

o a clear analysis of the flow statistics as documented over three

ecades of single-phase flow studies ( Kim et al., 1987; Moser et al.,

999; Vreman and Kuerten, 2014 ). 

Investigations of turbulent channel flows loaded with bubbles

re relatively scarce compared to the volume of literature present

or single-phase turbulence. Experiments on bubbly flows are par-

icularly challenging given the current limitations of non-intrusive

maging techniques ( Lau et al., 2013 ), often applicable only to very

ilute void fractions ( Mercado et al., 2010 ). In this respect, direct
∗ Corresponding author. 
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umerical simulation (DNS), where all the relevant scales of mo-

ion can be resolved on the computational grid at an appropriate

ime-step, offers numerous advantages ( Tryggvason et al., 2013 ). In

ddition to the 3D Eulerian velocity field, the position and shape of

ll the bubbles are available in full detail at any simulated time in-

tance, so that information on the bubble motion can be accurately

ollected. The considerable amount of required computational re-

ources, however, has limited numerical studies to rather small do-

ains and to a relatively small number of deformable bubbles in

he range between 10 and 100 ( Lu and Tryggvason, 2006; 2013 ).

his limitation may even lead to qualitative shortcomings in the

imulated flows. For example, in Roghair et al. (2011) lack of large-

cale flow circulations due to the limited domain size was at-

ributed to be the cause of considerable discrepancies between ex-

erimental and numerical results. In this paper we improve upon

his situation and present a first simulation of turbulent bubble-

aden downflow in which we generate the motion of a significant

umber of deformable bubbles in a large computational domain.

he computational methodology and its high-performance paral-

el implementation ( Cifani et al., 2018 ) allow a full detail analysis

f the flow and bubble statistics, which can serve as point of refer-

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103244
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103244&domain=pdf
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ence for further modeling of the properties of multiphase flow and

as benchmark for new developments in simulation approaches. 

The dynamics in a full-scale turbulent channel flow at bulk

Reynolds number 6300 at a low, an intermediate and a high gas

volume fraction of 0.5%, 2.5% and 10%, respectively, is investigated.

This choice of domain and Re constitutes a well established single-

phase reference flow to compare with ( Vreman and Kuerten, 2014 ).

The motion of the bubbles can be fully resolved in terms of track-

ing the two-phase interface. We account for bubble deformability

as well as discontinuities in the material properties and surface

tension. The simulations are carried out using the recently devel-

oped massively parallel bubbly-flow solver ( Cifani et al., 2018 ), tai-

lored to efficiently handle up to 10 4 bubbles in wall bounded tur-

bulence. This flow solver makes a detailed investigation of turbu-

lent bubble-laden channel flow possible over a wide range of gas

volume fractions and extended time intervals, so that also reliable

flow statistics can be determined. We simulate the multiple inter-

action of a significantly larger number of bubbles than previously

considered in literature up to 1280 bubbles for the densest case.

Furthermore, the analysis will not be limited to average liquid flow

statistics, but a thorough investigation, at an unprecedented level

of detail, of bubble structuring and scaling of the kinetic energy

will be carried out, documenting turbulence modification arising

from the embedded gas phase in the liquid flow. 

In this work the bubble-laden flow is mathematically described

by the so called “one-fluid formulation” of the governing equa-

tions ( Prosperetti and Tryggvason, 2007 ), where the volume frac-

tion field is used as a marker function of the second phase. This

defines the Volume of Fluid (VOF) method ( Hirt and Nichols,

1981; Rider and Kothe, 1998; Scardovelli and Zaleski, 1999 ) that

we employ. The latter constitutes a well-established and widely

used technique able to deliver a sharp gas-liquid interface by con-

struction while retaining the theoretical order of accuracy upon

grid refinement ( Scardovelli and Zaleski, 2003; Liovic et al., 2006;

Cifani et al., 2016 ). For completeness, we mention numerical stud-

ies of rising bubbles conducted by employing the Diffuse Interface

method ( Aland and Voigt, 2012; Wang et al., 2015 ) and the Lattice-

Boltzmann method ( Gupta and Kumar, 2008; Cheng et al., 2010;

Fakhari et al., 2016 ). While relevant in their own right, maintain-

ing sharp interfaces is challenging in both these latter approaches. 

A comprehensive review of DNS of bubbly flows is presented

in Tryggvason et al. (2013) . In the work by Lu and Tryggva-

son (2006) a relatively small channel at Re τ = 127 , referred to as

the minimum channel flow, was simulated for 18 to 72 bubbles.

The focus of this and successive studies of the same authors is

mainly on the influence of the bubbles on first and second order

flow statistics. Fundamentally different bubble organisation arises,

comparing downflow configurations with upflow configurations.

Some key observations are as follows. Migration of bubbles toward

the core of the channel was observed in downflow and attributed

to the lift force, leaving a bubble-free wall boundary layer. Also,

compared to single-phase flow at the same Reynolds number a

strong increase of the velocity fluctuations in the core of the chan-

nel was reported, which has been attributed to the generation of

bubble wakes. Conversely, in upflow systems nearly spherical bub-

bles are driven towards the walls ( Lu and Tryggvason, 2008 ). Fur-

thermore, in the latter study the effect of deformability is inves-

tigated and found to reduce the lateral lift for strongly deformed

bubbles. More recently, an upflow configuration for nearly spher-

ical bubbles at Re τ = 250 has been investigated ( Lu and Tryggva-

son, 2013 ), confirming clustering of the bubbles in the wall layer

region. Nonetheless, as pointed out by these authors, the use of a

minimum channel, in combination with the small number of bub-

bles (maximum equal to 140) raises questions about validity of the

findings beyond the simulated conditions. This is a strong motiva-

tion for our current study in which we vary important parameters
ver a much wider range of values, exploiting the parallel perfor-

ance of the developed method ( Cifani et al., 2018 ). 

Recently, Santarelli and Fröhlich (2015, 2016) considered up to

880 spherical bubbles in a larger channel. In these studies the

ubbles were treated as rigid spheres and a uniform mass den-

ity in the governing equations was assumed, simplifying the prob-

em. Here, we steer away from such simplifications while retaining

(10 3 ) deformable bubbles in a full-scale channel flow treated in

ull DNS detail. 

Among the two possible configurations for vertical channel

ows, i.e., upflow and downflow, we focus on the latter. The rea-

on is twofold. First of all, research in the past has mainly been

ocused on upflow configurations. Moreover, studies that do con-

ern downflow configurations report a lower Reynolds number,

imited domain size and smaller range of bubble sizes. Secondly,

n important feature of bubble-laden downflow is the accumu-

ation of bubbles in the core of the channel, which has the ef-

ect of increasing the homogeneity of flow features compared to

ingle-phase channel flow. This offers a compelling opportunity to

ompare simulation results with homogenous bubbly flow studies

nvolving pseudo-turbulence, both numerically ( Bunner and Tryg-

vason, 20 02a; 20 02b; Roghair et al., 2011 ) and experimentally

 Mercado et al., 2010 ). Furthermore, liquid kinetic energy spectra

n channel core will be compared with those obtained in very re-

ent experiments ( Prakash et al., 2016 ), in which bubbles were

njected into approximately homogeneous isotropic turbulence. In

iew of these reasons, our study extends the earlier investigations

n downflow and provides robust statistical data for the validation

f turbulent bubble-laden flow models. 

The paper is structured as follows. In Section 2 the problem

efinition and numerical approach will be described. A short in-

roduction of the governing equations and the employed numer-

cal methods will be given in Section 2.1 . The description of the

imulations and the choice of parameters is given in Section 2.2 .

imulation findings are gathered in Section 3 . Liquid flow statis-

ics are collected and analysed in Section 3.1 . Subsequently, the

ubbles microstructuring is investigated in Section 3.2 . Moreover,

he probability density functions of bubble velocity fluctuations

nd the scaling of the liquid kinetic energy spectra are analysed

n Section 3.3 and Section 3.4 , respectively. Finally, the main find-

ngs and an overview of possible future developments are provided

n Section 4 . 

. Problem definition and numerical approach 

In this section we present the governing equations and numer-

cal method in Section 2.1 and discuss the set-up of the simulated

ases in Section 2.2 . 

.1. Governing equations and discretisation methods 

The mathematical model used for resolved bubble-laden flows

s based on the so called “one-fluid formulation” of the governing

quations ( Prosperetti and Tryggvason, 2007 ). A single set of equa-

ions is solved for the whole field with differences in the material

roperties and interfacial terms (e.g., surface tension) accounted

or with the help of a marker function f . The non-dimensional in-

ompressible Navier-Stokes equation and continuity equation are

sed for the simulation of the turbulent flows: [
∂u 

∂t 
+ ∇ · ( uu ) 

]
= −∇p + 

1 

F r 2 
(ρ − ρ0 ) ̂  g + 

1 

Re 
∇ · ( 2 μD ) 

+ 

1 

W e 
k n δ(n ) , (1)

 · u = 0 , (2)
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Fig. 1. Sketch of the downflow channel configuration used in this paper. 
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here u is the velocity, p the pressure, t the time, k the curva-

ure of the interface between gas and liquid, n the normal vector

o the interface, D the deformation tensor, F r = u/ 
√ 

gL the Froude

umber with L a reference length, Re = UL/νl the Reynolds number

ith U a reference velocity and νl = μl /ρl the kinematic viscosity

f the liquid in terms of the liquid’s dynamic viscosity μl and liq-

id mass density ρ l . Moreover, W e = LU 

2 ρl /σ is the Weber num-

er with surface tension of the bubble interface σ . Throughout, the

omain ρ and μ are respectively the non-dimensional mass den-

ity and dynamic viscosity defined as 

= 1 · (1 − f ) + 

ρg 

ρl 

f, (3)

= 1 · (1 − f ) + 

μg 

μl 

f, (4)

here ρg , μg are the mass density and the dynamic viscosity of

he gas phase, respectively. The additional force − 1 
F r 2 

ρ0 ̂  g balances

he weight of the mixture ( Bunner and Tryggvason, 2002a ), which

eads to ρ0 = 

1 
V 

∫ 
ρdV with V the volume of the domain. 

In the presence of more than one bubble, an individual marker

unction f i is assigned to each bubble, with f i = 1 wherever bubble

 is located and f i = 0 elsewhere. Given N bubbles, an equal num-

er of hyperbolic equations is solved: 

∂ f i 
∂t 

+ u · ∇ f i = 0 i = 1 , . . . , N. (5)

This formulation, referred to as multiple-marker formulation

 Coyajee and Boersma, 2009 ), introduces a convenient numerical

etting to account for bubble-bubble interaction and avoid numer-

cal coalescence. According to ( Coyajee and Boersma, 2009 ) the

lobal volume fraction f is derived from the individual markers

 i as f = max ( f i ) . Whenever two or more interface segments lie

ithin the same computational cell the total contribution of the

urface tension will be the sum of the individual surface tension

erms. Before the total surface tension term in Eq. (1) is assem-

led, curvature and interface normal are computed from the single

arker functions. This is an advantage of the multiple-marker for-

ulation, which allows to reconstruct the geometry of closely in-

eracting bubbles from separate f i and hence avoid inaccuracy oth-

rwise present if the geometry would be deduced from the locally

ombined f . In Kwakkel et al. (2013) the multiple-marker formu-

ation has been employed to simulate collisions and breakups in

roplet-laden flows. While the dynamics of the film between im-

acting droplets is unresolved, the overall dynamics of the droplets

s well captured and a good agreement with experimental studies

as been obtained for bouncing, merging and near head-on sepa-

ating collisions. Similarly, in Cifani et al. (2018) a grid convergence

tudy has been conducted on a head-on collision of droplets re-

ealing close to theoretical convergence rate. Moreover, an overlap-

ing region of the two marker functions limited to about one grid

ell was found in all simulated resolutions. This gives confidence

hat the multiple-marker formulation is suitable for flows where

ouncing collisions are relevant. The latter is the regime that we

eek to analyse in this work. 

Eqs. (1) –(5) are numerically solved by employing the massively

arallel code detailed in Cifani et al. (2018) . The latter solver has

een specifically designed to efficiently handle wall-bounded tur-

ulent bubbly flows loaded with a large number of deformable

ubbles. The time marching of the momentum equation is car-

ied out by a fully explicit second-order Adams-Bashforth (AB2)

cheme ( Wesseling, 2009 ). The discrete fields are arranged on a

taggered grid. The velocity components are defined at the cell

aces while the pressure field and the volume fraction fields are

efined at the cell centres. The convective term ∇ · ( uu ) is discre-

ised in a second-order energy conserving form, as described in

reman (2014) . The pressure and viscous term are discretised by
tandard second-order central finite differences. The values of den-

ity and viscosity needed at the cell faces are linearly interpolated

rom the cell centres. The surface tension is mapped onto the Eu-

erian grid by means of the volume fraction gradient in such a way

hat a discrete balance between ∇p and ∇f ( Francois et al., 2006;

opinet, 2009; 2018 ) is obtained. For a staggered grid this simply

orresponds to standard finite-differences across a cell face. For ex-

mple, the x -component of the volume fraction gradient will be

f i +1 , j,k − f i, j,k 

)
/h c,i where i, j, k indicates a control volume and h c,i 

s the grid spacing between node i + 1 and i . An accurate curvature

omputation of the bubbles is achieved by using the Generalised

eight Function method ( Popinet, 2009; Cifani et al., 2018 ). 

The transport of f , being the volume fraction in the VOF

ethod, is carried out by a geometrical reconstruction algorithm

 Cifani et al., 2016 ) which ensures sharpness of f throughout the

ntire simulation time. The multiple-marker formulation requires

he advection of N hyperbolic equations as in Eq. (5) . In order to

imit computational time and memory usage, each marker function

 i is solved on a local rectangular box that fits around the bubble

nd moves along with it. The details of the computational perfor-

ance of the VOF solver are provided in Cifani et al. (2018) . 

Continuity equation Eq. (2) leads to a Poisson equation for pres-

ure with variable coefficients given by the inverse of density.

owever, the same equation can be transformed into a constant-

oefficient Poisson equation, which makes it possible to use fast

oisson solvers ( Dodd and Ferrante, 2014 ). The semi-discrete form

f the pressure equation then reads: 

 

2 p n +1 = ∇ ·
[ (

1 − ρg 

ρn +1 

)
∇ ̂

 p 

] 
+ ∇ ·

(
ρg 

u 

∗


t 

)
(6)

here ∇ ̂  p is an approximation of ∇ ̂  p n +1 and u 

∗ the discrete ve-

ocity field computed from Eq. (1) . Particular care has to be taken

hen discretising the pressure derivatives in Eq. (6) since the pres-

ure field is discontinuous across the two-phase interface due to

urface tension. In particular, as shown in Cifani (2019) , by ap-

ropriately combining the extrapolated pressure gradient with a

atching volume fraction an accurate numerical solution at high

ensity ratios can be achieved. This is also the method employed

n this work. 

.2. Case definition 

The domain of interest, sketched in Fig. 1 , is a vertical chan-

el of size L x = 4 πH, L y = 2 H and L z = 4 / 3 πH, where x, y, z are

he stream-wise, the wall normal and the span-wise directions, re-

pectively. The size parameter H equals 1. The direction of grav-

ty is aligned with the stream-wise direction, hence configuring

 downflow. Periodic boundary conditions are applied along the
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stream-wise and the span-wise directions, while no-slip bound-

aries are applied at the two walls. The flow is driven by a pres-

sure gradient, which is dynamically adjusted in order to keep the

volumetric flow rate constant. The bulk Reynolds number Re 2 H 
based on the channel height and the average liquid velocity is

approximately 6300. 

Starting from the velocity field of a fully developed single-phase

turbulent channel flow, three different gas volume fractions are

simulated until an approximate statistically steady state is reached.

In particular, gas volume fractions of α = 0 . 5% , α = 2 . 5% and of

α = 10% are considered corresponding to a number of bubbles

N b = 64 , N b = 320 and N b = 1280 , respectively. The bubbles, fully

deformable, are of equal size and initialised as spheres of diameter

D = H/ 4 . Here, we are interested in the statistically steady state,

which is independent of the initial bubble distribution. This was

numerically verified in Cifani (2017) where two different initial ar-

rays composed of the same number of bubbles were evolved in

time until a statistically steady state. Both cases were found to

yield the same flow statistics. The average bubble Reynolds num-

ber varies, depending on the gas volume fraction, from Re b = 160

for the most dilute case to Re b = 90 for the most dense case.

The latter, together with the Eötvös number, Eo = ρl gD 

2 /σ = 0 . 67 ,

places the bubble deformability in the nearly spherical/ellipsoidal

range ( Grace, 1973 ). This physically prevents break-ups and the for-

mation of small satellites. However, events of bubble coalescence,

depending on flow conditions, may still be present and could in-

fluence the bubble size distribution at statistically steady state.

Numerically, this can be accounted for by assigning an additional

marker function to the newly formed agglomerate of bubbles, as

detailed in Kwakkel et al. (2013) . In this work coalescence is nu-

merically prevented. Finally, the density ratio ρ l / ρg and the dy-

namic viscosity ratio μl / μg have been set to 20. 

The choice of the material properties requires additional expla-

nation. High density and viscosity ratios are numerically demand-

ing, often leading to extreme grid refinements around the two-

phase interface in order to avoid large numerical errors. Prelimi-

nary results showed that, for high ρ l / ρg and μl / μg , in the event of

bubble collisions unphysical velocities, confined to a few grid cells,

appear around the bubble interface, hinting at an unresolved ve-

locity field on the available grid. The dynamics of dispersed light

objects (as in bubbly flows) is, however, mainly dictated by the

forces transferred from the liquid phase to the interface. At high

density and viscosity ratios ( � 50), the contribution to these forces

exerted by the gas phase becomes negligible ( Bunner and Tryg-

gvason, 2002a ). This suggests that for the present choice of ma-

terial properties the bubble motion is dominated by the liquid

flow. 

The computational domain is discretised by n x = 1152 , n y =
240 and n z = 384 evenly spaced grid points along each direction.

This corresponds to a grid size, scaled by the wall unit, equal to


x + = 1 . 96 , 
y + = 1 . 48 and 
z + = 2 . 16 . These resolution char-

acteristics ensure a well resolved bubble shape over the whole

domain, with approximately 25 grid points per bubble diameter

( Cifani et al., 2018 ). Simulation of a single-phase channel flow, at

the same resolution in terms of wall units, has been carried out in

Cifani et al. (2018) and compared against an independent and well

established spectral method ( Vreman and Kuerten, 2014 ). First and

second order statistics of the velocity field were obtained with a

maximum relative error around 1%. As for the resolution required

by the flow and wakes around the bubbles, a point of reference can

be found in Lu and Tryggvason (2006) where an average of 16 grid

points per bubble diameter were used for approximately the same

Re b simulated here. Additionally, the grid refinement study carried

out in Uhlmann (2008) for rigid spheres at Re b = 136 showed an

error of about 7% for second-moment fluid statistics when com-

paring results with ≈ 13 grid points per diameter with those from
26 grid points per diameter. Since we concentrate on bubbles

ith nearly spherical/ellipsoidal shape, these findings confirm the

dequateness of the employed resolution for the quantities of in-

erest in this paper. 

. Flow statistics, bubble structures and spectral properties 

In order to gain insight in the modulation of turbulence by

he presence of a dispersed gas phase as well as to understand

ubble motion and microstructure, a number of Eulerian and La-

rangian quantities have been gathered in the statistically steady-

tate regime. The results are divided into two groups. The first

roup, presented in Section 3.1 , is concerned with first and sec-

nd order statistics of the liquid velocity. These quantities have

een averaged over a period of T = 20 H/u τ for volume fractions

= 0 . 5% , 2% and over a period of T = 13 H/u τ for volume fraction

= 10% . Here, u τ is the friction velocity. This corresponds to ap-

roximately 27 and 18 flow-through times of the selected channel,

espectively. 

A second set of quantities, aimed to understand bubble cluster-

ng, preferential direction of alignment, probability density func-

ions of the bubble velocity as well as scaling of the kinetic en-

rgy spectra is reported in Sections. 3.2 –3.4 . These quantities have

een post-processed for a period T = 5 H/u τ with a sampling rate

t s = 1 · 10 −2 H/u τ , corresponding to approximately a distance of

.14 D travelled by a bubble in time 
t s with respect to the sur-

ounding liquid. The statistical convergence of the latter results is

hown in Appendix A . 

.1. First and second-order fluid statistics 

A measure of the proximity of the flow to a statistically steady

tate is the average wall shear stress τw 

, which balances the to-

al weight of the mixture and the imposed driving force ( Lu and

ryggvason, 2006 ). Fig. 2 shows the total shear stress as a func-

ion of time for different gas volume fractions. The statistics of the

ensest case ( α = 10% ), collected for a period T = 13 H/u τ , were

ound to converge faster than those related to the more dilute

ows. For very low gas volume fractions, due to random velocity

uctuations, bubbles may tend to reside longer at a certain wall-

ormal coordinate y compared to its symmetric position 2 H − y . In

rder to ensure well converged average profiles, the simulations for

= 0 . 5% and α = 2 . 5% were carried out for a longer period equal

o 20 H / u τ . 

For α = 0 . 5% and α = 2 . 5% the shear stress at the wall is on av-

rage close to the value of the corresponding single-phase flow.

emarkably, for α = 10% an increase of τw 

of about 17% is ob-

erved. In order to investigate the effect of buoyancy on τw 

we

ave performed an additional simulation at α = 10% where gravity

as numerically set to zero. An increase of τw 

approximately equal

o that measured for the buoyant case was observed. This suggests

hat, in this setup, τw 

increases mainly due to the stirring of the

ubbles, which penetrates deeper into the near wall region with

ncreasing volume fractions (see the mean volume fraction profile

f Fig. 3 ). 

The statistics of the liquid phase can be computed by appro-

riately sampling the velocity field based on the volume fraction

alues. To this end, the definition used in Cifani et al. (2018) and

eported here for completeness is employed: 

 q > = 

c · q 

c 
, (7)

ms (q ′ ) c = 

√ 

cq 2 

c 
−

(
cq 

c 

)2 

, (8)
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Fig. 2. Total instantaneous wall-averaged shear stress as a function of time for α = 

0 . 5% (solid line), α = 2 . 5% (dotted line) and α = 10% (dash-dotted line). τ w of the 

corresponding single-phase flow at t = 0 is reported by the dashed black line. 
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here c = 1 − f, q is the quantity of interest, q ′ its fluctuation, and

(·) indicates the average over time and the homogenous directions.

n Fig. 3 the mean volume fraction and the mean stream-wise ve-

ocity < u > are shown for different α. The profiles have not been

veraged over the two halves of the channel, as in Lu and Tryggva-

on (2006) , but the profiles over the entire height of the channel

re shown. The high degree of symmetry observed, even for the

mallest number of bubbles, is indicative of well-converged statis-

ical quantities. 

Clearly, the bubbles tend to accumulate in the core of the chan-

el. According to Lu et al. (2006) this phenomenon is caused by

he lift force exerted on the bubbles. As α increases to 10%, f 

ecomes approximately constant from y = 0 . 5 , while showing a

haracteristic peak in the transition from the near-wall region to

he core. This same trend was also shown in Lu and Tryggva-

on (2006) for α = 6% , for a smaller channel and lower Re . As

or < u > , no significant differences are present for α = 0 . 5% with

espect to the single-phase flow. When the gas volume fraction

quals α = 10% a clear uniform velocity region is formed within

he same range of the plateau shown by f . The mean shear be-

omes zero at equilibrium, preventing the lateral migration of the

ubbles ( Lu et al., 2006; Lu and Tryggvason, 2006 ). 

Fig. 4 shows the rms of u ′ , the rms of v ′ and the rms of w 

′ . The

tream-wise velocity fluctuations for α = 0 . 5% and α = 2 . 5% ad-

ere closely to the corresponding single-phase velocity fluctuations

p to y = 0 . 15 . Beyond this point a gradual decrease for the case

f α = 2 . 5% is observed until reaching an approximately constant

alue of about 1.0, which is about 1.2 times higher than the level

f single-phase velocity fluctuation at the center line. The devia-

ion from the single-phase profile for the case of α = 10% is much
ig. 3. Average gas volume fraction field (left panel) and average stream-wise velocity (ri

s in Fig. 2 . The dashed black line in the right panel is the mean velocity profile for the c
tronger and starts close to the wall around y = 0 . 03 . The peak is

eached at y = 0 . 08 , i.e., at approximately the same location as the

orresponding single-phase profile. However, the maximum, equal

o 1.9, is about 1.4 times lower for α = 10% . In addition, an ap-

roximate constant value, slightly higher than that of α = 2 . 5% , is

bserved from y = 0 . 42 . 

The introduction of a significant number of bubbles generates

 homogeneous region in the core of the channel, which broadens

s α increases. For the highest gas concentration analysed a strong

urbulent intensity reduction is observed close to the wall. The

all-normal velocity fluctuations, reported in Fig. 4 , show a de-

reasing intensity for α = 0 . 5% for all values of y . At the highest gas

olume fraction, however, a value of about 1.3 times larger than

hat of the corresponding single-phase flow is reached in the core

f the channel. Turbulence attenuation at the wall is also clearly

isible. Analogous considerations apply to the rms of w 

′ . 

.2. Bubble distribution 

The formation of preferential clustering and dominant direc-

ions of alignment within the flow can be analysed by means

f the pair probability distribution function G ( r, θ ), defined as

 Bunner and Tryggvason, 2002a ) 

 (r, θ ) = 

V 

N b (N b − 1) 

〈 ∑ 

i =1 ,N b 

∑ 

j=1 ,N b i � = j 
δ(r − r i j ) 

〉 
, (9)

hich states the probability of the distance vector r ij between the

entroids of two bubbles i and j having norm r and forming an an-

le θ with respect to a reference direction. The latter is chosen to

e equal to the stream-wise direction. In (9) , V is the volume con-

aining N b bubbles. In wall bounded flows G ( r, θ ) is, in general, also

 function of the wall-normal coordinate. However, as illustrated in

ection 3.1 , with α increasing a fairly homogeneous region forms

n a large part of the bulk of the channel where the gas volume

raction is essentially independent of y . Even for the dilute case the

ubbles are concentrated in the core region. Thus, we investigate

he dependency of the pair probability distribution function only

n r and θ , making the analysis directly comparable with pseudo-

urbulent studies ( Bunner and Tryggvason, 2002a ). This is also the

hoice of Santarelli and Fröhlich (2015) . 

The radial pair distribution function G ( r ), shown in Fig. 5 , is

btained by integrating (9) over a thin shell of width 
r and

adius r . 

For randomly distributed bubbles G ( r ) equals one. However, due

o the lack of bubbles in those sampling volumes whose bound-

ries exceed the walls, G ( r ) deviates from 1 decreasing with r . For

his reason, as a point of reference, the radial distribution func-

ion of 1280 randomly distributed bubbles averaged over 500 sam-

les has been included in Fig. 5 . Moreover, the maximum sepa-
ght panel) as a function of the wall-normal coordinate. The line legend is the same 

orresponding single-phase flow. 
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Fig. 4. Second order velocity statistics, normalised by the friction velocity, as a function of the wall normal coordinate for different α: rms of the stream-wise velocity 

fluctuations (left-top panel), rms of the wall-normal velocity fluctuations v ′ (right-top panel), rms of the span-wise velocity fluctuations w 

′ (bottom panel). The line legend 

is the same as in Fig. 3 . 

Fig. 5. Radial pair distribution as a function of the scaled radius r / R , with R the 

bubble radius, for α = 0 . 5% (line with crosses), α = 2 . 5% (line with triangles), α = 

10% (line with circles). The same quantity for randomly distributed bubbles is rep- 

resented by the dashed line. 
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ration distance investigated has been limited to H ( Santarelli and

Fröhlich, 2015 ). Given the deformability of the bubbles, G ( r ) > 0 for

r / R < 2. The latter holds true also for α = 0 . 5% indicating the oc-

currence of a significant amount of bubble collisions also for the

most dilute case. Remarkably, a maximum is observed at r/R = 2 . 2

independent of the gas volume fraction investigated, which indi-

cates the presence of agglomeration of bubbles at small separation

distances. 

The formation of localised clusters is also qualitatively visible

from the snapshots reported in Fig. 6 . This tendency for bubbles

to attract each other is well documented ( Bunner and Tryggva-

son, 2002a ). According to potential flow theory, the pressure inside

the gap between two bubbles is lower than the surrounding pres-

sure driving the bubbles to collide. An additional attractive effect

is given by the bubble wakes. A bubble in the wake of another up-

stream bubble tends to move towards the latter. Experiments con-
ucted at similar Re b for in-line air-bubbles have shown the same

ttractive behaviour ( Katz and Meneveau, 1996 ). 

For α = 0 . 5% subsequent peak is observed at r/R = 3 . 8 , hint-

ng at a longer range bubble interaction. On the contrary, for the

igher gas volume fractions G ( r ) monotonically decreases towards

he random distribution profile. Noticeable differences arise with

tudies on pseudo-turbulence conducted by Bunner and Tryggva-

on (2002a) . In their results, at α ≈ 2% the close distance peak at

/R = 2 . 2 is absent. Furthermore, the peaks at the corresponding

as volume fractions are shifted towards larger r . In down-flow

hannel configurations, the additional effect of the lift force, which

rives the bubbles towards the core, could explain the enhanced

lustering even at the lowest values of simulated α. As the gas vol-

me fraction increases, however, the profile of G ( r ) approaches that

f pseudo-turbulence with a sharp decay after the maximum and

 close to random distribution for r / R > 4. 

The angular pair distribution, G ( θ ), is constructed by integrat-

ng (9) along the azimuthal direction of a spherical sector be-

ween radius r − 
r and r + 
r having angular width 
θ . The

esulting profiles, shown in Fig. 7 , have been normalised so that
 1 
0 G (θ ′ ) dθ ′ = 1 , with θ ′ = θ/π, as reported in the experimental

esults ( Mercado et al., 2010 ). 

At small distances a strong horizontal alignment is observed

or all examined gas volume fractions, also qualitatively visible

rom Fig. 6 . At r/R = 2 . 5 the maximum peak around θ = π/ 2 de-

reases as α increases. At longer distances G ( θ ) approaches 1,

eaning that the bubbles are approximately randomly distributed.

owever, as r increases a tendency for vertical alignment ap-

ears, which was not found in the studies of homogeneous bubbly

ow ( Bunner and Tryggvason, 2002a ). This behaviour is more pro-

ounced for α = 0 . 5% , adhering more closely to the experimental

tudies ( Mercado et al., 2010 ). As for the radial pair distribution,

ignificant differences are present for the intermediate gas concen-

ration α = 2 . 5% with respect to the findings of Bunner and Tryg-

vason (2002a) . At r/R = 4 , G ( θ ) is essentially uniform and close

o 1, while in Bunner and Tryggvason (2002a) a strong horizon-
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Fig. 6. Isosurfaces of f = 0 . 5 in the developed statistically steady state of bubbles located at 0.7 H ≤ y ≤ 1.3 H for α = 0 . 5% (left panel), α = 2 . 5% (center panel) and for α = 10% 

(right panel). 

Fig. 7. Angular pair distribution function at r/R = 2 . 5 (a), r/R = 3 (b), r/R = 4 (c), r/R = 5 (d) as a function of θ / π . The lines with crosses correspond to α = 0 . 5% , the lines 

with triangles correspond to α = 2 . 5% , the lines with circles correspond to α = 10% . 
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al alignment is still present. The absence of large horizontal rafts,

ypically formed by a swarm of buoyant bubbles at high values of

, can be related to the interaction with the underlying turbulence

enerated by the channel flow, which would tend to disrupt large

orizontal structures. A confirmation of the influence of turbulence

n the bubbles motion is given by the probability density functions

f the bubble velocity reported in Figs. 11 and 12 . The latter are

n good agreement with the normal distribution. On the contrary,

ignificant deviation from the Gaussian distribution have been re-
orted for pseudo-turbulence, both numerically ( Bunner and Tryg-

vason, 2002a ) and experimentally ( Mercado et al., 2010 ). 

The mechanisms of attraction and repulsion can studied by

nalysing the relative velocity of bubble pairs. Following the

ethodology used in Bunner and Tryggvason (2002a) , we look at

he probability of the relative radial velocity V r and the tangential

elocity V θ of being positive. The latter is defined as the meridian

omponent of the relative velocity in a spherical coordinate system

s shown in Fig. 8 . 
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Fig. 8. Sketch of positive relative radial velocity V r and the tangential velocity V θ at 

a given meridian angle θ . The circle represents the surface of a reference bubble. 
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P ( V r > 0) is shown in Fig. 9 . 

A tendency to mild repulsion is observed at all investigated α
around θ = π/ 2 , analogously to the findings of Bunner and Tryg-

gvason (2002a) . As θ → π a reversed behaviour is in general ob-

served, with attraction being more likely than repulsion. At high

gas volume fractions however, the dependency of P ( V r > 0) on the

various angular positions for r / R ≥ 4 is rather weak and V r can be

considered, in first approximation, to have equal probability of be-

ing positive or negative. 

In the study of two vertically aligned spherical bubbles

( Yuan and Prosperetti, 1994 ) two effects were identified to influ-

ence the relative motion of the bubbles. A first contribution is

due to the wake effect which drives the bubbles to collide and a

second contribution is due to inertial effects which tend to push

the bubbles apart. The former is dominant at long separation dis-
Fig. 9. P ( V r > 0) at r/R = 2 . 5 (a), r/R = 3 (b), r/R = 4 (c), r/R = 5 (d) as a function of θ . Th

α = 2 . 5% , the lines with circles correspond to α = 10% . The dashed lines indicate probabi
ances, the latter is dominant at small separation distances. Hence,

n equilibrium value of r can be found. According to Yuan and

rosperetti (1994) , for our study this value ranges from 4 R to 5 R ,

hich would result in a repulsive behaviour at practically all inves-

igated r . A tendency to repulsion is indeed observed for the very

ilute case at θ = π . Nevertheless, the system investigated here is

ubstantially different from the test case of two symmetric bub-

les analysed by Yuan and Prosperetti (1994) . The combined pres-

nce of turbulence and the interaction between multiple bubbles

ppears to largely reduce the correlation of the motion of bubble

airs for r / R > 4. 

Fig. 10 shows P ( V θ > 0) as a function of θ at the same radii anal-

sed for P ( V r > 0). 

At close distances, P ( V θ > 0) is higher than 0.5 for θ < π /2 and

ower than 0.5 for θ > π /2, for α = 2 . 5% and α = 10% . This indi-

ates the tendency of bubbles to rotate from a given θ towards

orizontal alignment, consistently with the findings observed for

 ( θ ) ( Fig. 7 ). As r increases, P ( V θ > 0) tends to 0.5 independently

f θ with virtually no correlation for r / R > 3. At close distances, for

= 0 . 5% there is an inversion of behaviour with P ( V θ > 0) < 0.5 in-

icating that two bubbles are more likely to rotate around each

ther towards the poles ( θ = 0 , π ). Nonetheless, the latter trend

s confined to a small spherical sector and, as such, less probable

ith respect to horizontal alignment. 

.3. Pdf of bubble velocity fluctuations 

We next quantify the bubble motion in terms of the probability

ensity function (pdf) of the bubble velocity fluctuations. The bub-

le velocities are calculated by using the individual marker func-

ions. For example, the bubble velocity along the stream-wise di-

ection is computed as 

 i = 

1 

V b 

∫ 
V 

f i u dV (10)

ith U i the velocity of bubble i and V b its volume. The span-

ise and the wall-normal bubble velocity are defined analogously.
e lines with crosses correspond to α = 0 . 5% , the lines with triangles correspond to 

lity equal to 0.5. 
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Fig. 10. P ( V θ > 0) at r/R = 2 . 5 (a), r/R = 3 (b), r/R = 4 (c), r/R = 5 (d) as a function of θ . The line with crosses correspond to α = 0 . 5% , the lines with triangles correspond to 

α = 2 . 5% , the lines with circles correspond to α = 10% . The dashed lines indicate probability equal to 0.5. 

Fig. 11. Probability density functions of the bubble velocity fluctuations u ′ 
b 

(a), v ′ 
b 

(b) and w 

′ 
b 

(c) normalised by their standard deviation σ u , σ v and σ w , respectively. The lines 

with crosses correspond to α = 0 . 5% , the lines with triangles correspond to α = 2 . 5% , the lines with circles correspond to α = 10% . The dashed lines indicate the Gaussian 

distribution. 
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ig. 11 shows the stream-wise, wall-normal and span-wise bub-

le velocity fluctuations indicated by u ′ 
b 
, v ′ 

b 
, w 

′ 
b 

and normalised by

heir standard deviation σ u , σ v and σ w 

, respectively. The pdf of

he Gaussian distribution is also reported for comparison. 

The distributions of v ′ 
b 

and w 

′ 
b 

tend to closely adhere to the

aussian as the gas volume fraction increases, being well approx-

mated by the normal distribution even for the most dilute case

nvestigated. The velocity fluctuations along the stream-wise di-
ection are asymmetric with a mean value shifted towards nega-

ive values. At α = 0 . 5% a maximum of about 0.46 is reached be-

ween −0 . 3 ≤ u ′ 
b 
/σu < 0 . At α = 10% the profile regains symmetry

losely matching the Gaussian. The predominance of a rise velocity

ower than the mean has been explained by Bunner and Tryggva-

on (2002b) as the result of preferential horizontal clusters (also

onfirmed by our results on channel flow of Fig. 7 ) characterised

y lower drift velocity than the average. However, the pdf pro-
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Fig. 12. Probability density functions of the bubble velocity fluctuations u ′ 
b 

(a), v ′ 
b 

(b) and w 

′ 
b 

(c) normalised by their standard deviation σ u , σ v and σ w , respectively. A semi 

logarithmic scale has been used. The description of the lines is the same as in Fig. 11 . 
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files reported here appear to match more closely the normal dis-

tribution, especially at higher α, whereas in Bunner and Tryggva-

son (2002b) significant differences are reported also at high gas

volume fractions. 

In order to highlight the behaviour of the tails of the pdf we

present in Fig. 12 the same results as in Fig. 11 in a semi logarith-

mic scale. 

The pdf of u ′ 
b 

appears to significantly differ from a Gaussian

distribution in the tails for | u ′ 
b 
/σu | > 2 with predominant posi-

tive fluctuations. The pdf’s of v ′ 
b 

and w 

′ 
b 

can in good approxi-

mation be considered Gaussian. This is in neat contrast with the

pdf of pseudo-turbulence ( Mercado et al., 2010 ), which show non-

Gaussian tails. Thus, the difference reported here is attributed to

the interaction with the bubble motion and the base turbulence

supplied by the channel flow. This could also explain the differ-

ences observed in Fig. 11 with the findings of Bunner and Tryggva-

son (2002b) . 

3.4. Liquid kinetic energy spectrum 

The motion of large-sized bubbles strongly influences the ki-

netic energy spectrum by generating what in the pioneering work

of Lance and Bataille (1983) has been referred to as pseudo-

turbulent perturbations. A modification of the behaviour in the

high-frequency range has been observed, with the progressive re-

placement of the Kolmogorov energy cascade mechanism by a

−8 / 3 power law ( Lance and Bataille, 1983 ). In the same work, it

was argued that the kinetic energy can be estimated from the dis-

sipation rate being a fraction of the work exerted by the drag force

experienced by the bubbles. This, together with the observation

that the eddies related to the bubble wakes dissipate before frag-

menting into smaller scales, led to a −3 scaling. Since then, the lat-

ter scaling has been reported in several works ( Riboux et al., 2010;

Mercado et al., 2010; Roghair et al., 2011; Riboux et al., 2013 ). 

The aforementioned works prevalently deal with pseudo-

turbulence. A system closer to the one investigated here, is the

very recent work of Prakash et al. (2016) , which offers a com-

pelling chance for a comparison against the numerical results pre-
ented here. This experiment, in fact, accounts for the contribution

f bubble induced fluctuations as well as for the underlying tur-

ulence. The set-up investigated in Prakash et al. (2016) consists

f a homogeneous and isotropic turbulent flow of water in which

ir bubbles, in the range of 2 to 5 mm diameter, are inserted.

t should be noted, however, that the corresponding single-phase

ow Reynolds number based on the Taylor macroscale, Re λ, inves-

igated in Prakash et al. (2016) is equal to 170, which is higher than

hat of our numerical simulation at y = H ( Re λ = 34 ) ( Vreman and

uerten, 2014 ). Furthermore, Re b = O 

(
10 3 

)
has been simulated in

rakash et al. (2016) . Despite the difference in Re and in the ma-

erial properties, the core of the channel resembles characteris-

ics of homogeneous turbulence, even more so when bubbles are

resent at high volume fraction ( Fig. 4 ). Bearing in mind the im-

ortant differences mentioned above, it is still interesting to qual-

tatively compare the results of our simulation with this experi-

ental study. In addition, here we extend the investigation to a

as volume fraction of 10%, which is significantly higher then those

nalysed in Prakash et al. (2016) . 

.4.1. Two- and one-dimensional spatial power spectra 

The computation of the liquid kinetic energy spectrum requires

articular attention. A straightforward approach would be to mul-

iply the velocity field by the marker function (1 − f ) , to sam-

le only liquid region at a given time instance. However, the re-

ulting spectrum would be convoluted with the spectrum of the

tep function, which is well known to introduce unphysical high

requencies. This phenomenon can be mitigated by replacing the

harp volume fraction field by a smooth equivalent ˜ f , which we

ere construct as the convolution integral of f with a Gaussian fil-

er. The two-dimensional power spectrum of the stream-wise ve-

ocity, multiplied by (1 − ˜ f ) , is analysed in the mid vertical plane

 = H. Fig. 13 shows the latter quantity for different volume frac-

ions and for the single-phase flow as a function of the stream-

ise wavenumber k x . A Gaussian filter of width equal to 6 compu-

ational cells, which corresponds to about D /4, was used. Here, the

avenumbers are defined as the reciprocal of the wavelengths λ,

ather than 2 π / λ. 
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Fig. 13. Two-dimensional power spectra of u x (1 − ˜ f ) at the plane y = H as a func- 

tion of the stream-wise wavenumber k x . The solid black line is the profile for 

α = 0 . 5% , the dotted line is the profile for α = 2 . 5% , the dashed-dotted line is the 

profile for α = 10% . The corresponding single-phase spectrum is indicated by the 

blue line. The power spectrum of (1 − ˜ f ) for α = 2 . 5% is indicated by the dotted 

red line for comparison. Slope k −3 is indicated as a reference. The vertical line indi- 

cates the wavenumber corresponding to 1/ D , with D the bubble diameter.. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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For all examined volume fractions the spectra consist of an ini-

ially approximately constant profile followed by a decay well ap-

roximated by the -3 slope, which is subsequently replaced by a

aster decay at higher wavenumbers. This profile is largely influ-

nced by the power spectrum of the marker function, as is evi-
ig. 14. Contours of the stream-wise velocity at y = H for α = 2 . 5% (left panel) and for t

ubble positions. An example of sampled stream-wise and span-wise liquid filaments is i
ent from the red dotted line reporting the spectrum of (1 − ˜ f )

or α = 2 . 5% , which is also included in the figure. A model for the

3 scaling obtained by using the employed windowing technique

s given in Appendix B . 

An alternative way, which entirely avoids the influence of the

indowing on the spectrum of the velocity signal, is that of com-

uting the spectra of one-dimensional liquid filaments along the

eriodic directions ( Ma et al., 2017 ). In Fig. 14 (left panel) an ex-

mple of sampling of liquid filaments is shown. The correspond-

ng single-phase stream-wise velocity is also shown (right panel of

ig. 14 ) for qualitative comparison. 

The presence of low velocity regions due to the rising motion of

he bubbles with respect to the liquid, the formation of wakes and

heir flow structure are clearly recognisable. As the volume frac-

ion increases, the number of uninterrupted liquid filaments along

he stream-wise direction drastically decreases, given the increased

ikelihood of finding a gas region along this path. Furthermore, the

akes are mainly aligned along the x -direction with the bubble

aths and hence stream-wise liquid filaments may not contain in-

ormation on the flow structures of the wakes. It is then of interest

o also consider span-wise liquid filaments, which are more likely

o account for the bubble wakes since the latter are crossed mainly

rthogonally. The one-dimensional velocity signal of the filaments

epresented in Fig. 14 is shown in Fig. 15 and compared with the

orresponding single-phase flow. 

The presence of the wakes is clearly recognisable in the low ve-

ocity regions around z ≈ 2.3 and 3.4. This feature is expected to in-

uence the velocity power spectra. The latter, indicated as E xx , are

eported in Fig. 16 . In order to have a relevant number of samples,

he velocity signals have been collected in a core region equal to

.85 H < y < 1.15 H and 0.5 H < y < 1.5 H for α = 2 . 5% and α = 10% , re-
he single-phase flow (right panel). The contour f = 0 . 5 is also shown to locate the 

ndicated by the black lines. 
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Fig. 15. Stream-wise velocity signal along the stream-wise (left panel) and the span-wise (right panel) direction of the filaments reported in Fig. 14 for α = 2 . 5% (black line) 

and for the single-phase flow (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. E xx spectra as a function of the stream-wise wavenumber k x and span-wise wavenumber k z . The solid black lines are the profile for α = 0 . 5% , the dotted lines are 

the profile for α = 2 . 5% , the dashed-dotted line is the profile for α = 10% . The corresponding single-phase spectra are reported by the blue lines. Slopes k −3 and k −5 / 3 are 

indicated as a reference. The vertical line indicates the wavenumber corresponding to 1/ D , with D the bubble diameter. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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spectively. For the most dilute case only the mid-plane velocity sig-

nals were computed. From the results presented in Section 3.1 we

deduce that turbulence is approximately homogenous in those re-

gions, which guarantees statistical equivalence of the considered

velocity signals. In all cases, the spectra have been averaged over

a number of segments > 50 0 0 0. No liquid filament was obtained

for α = 10% along the stream-wise direction, hence only E xx ( k z ) is

available for the most dense case. 

At sufficiently high Reynolds numbers the span-wise spectra of

u follow Kolmogorov’s −5 / 3 law in the inertial range, as shown in

Bernardini et al. (2014) at y/H = 0 . 3 for Re τ = 40 0 0 . In the same

work, the stream-wise spectra are found to closely follow a less

steep slope according to a fit based on Re λ. In our study, both

the stream-wise and the span-wise spectra of the single-phase

flow do not show a marked power law, but rather a continuously

varying slope, which is attributed to low-Reynolds-number effects

given that Re τ is an order of magnitude lower than that anal-

ysed in Bernardini et al. (2014) . The profile of E xx ( k x ) for α = 0 . 5%

closely adheres to the corresponding single-phase spectrum un-

til k x ≈ 1.6. At higher volume fraction ( α = 2 . 5% ), the stream-wise

spectra show the −5 / 3 slope at wavenumbers 0.4 < k x < 1.6. This

is consistent with the fact that the presence of bubbles enhances

the turbulence intensity towards the core of the channel, as shown

in Fig. 4 . The −5 / 3 law of single-phase flow then transitions into

a close to −3 slope in the narrow range from k ≈ 1.6 up to k ≈ 4.

The latter k value corresponds to the wavenumber k D = 1 /D . This

appears to be a cut-off point in our simulation from which the

energy associated with smaller structures more rapidly decays to-

ward the dissipative range. It should be pointed out, that the afore-

mentioned scaling exists only for a very narrow wavenumber band

and a marked scaling law could not be established. 
As argued above, the span-wise spectra E xx ( k z ) are expected to

nclude a more significant portion of the bubble wakes compared

o the stream-wise spectra. This is deducible from the right panel

f Fig. 16 where a more significant deviation of E xx ( k z ) from the

ingle-phase span-wise spectrum is found also for the very dilute

ase. As α increases an initial and approximately constant spec-

rum is formed followed by a decay faster than k −3 . 

The presented spectra agree, at best, only qualitatively with the

xperimental results of Prakash et al. (2016) . Several differences

rise. First, in the simulations we observe a gradual transition of

he spectra from single-phase flow to the alterations in the most

ense bubbly flow. This is consistent with the physical observa-

ion that, at low gas volume fractions, the turbulent kinetic energy

ontent due to the liquid component is largely dominant over the

ubbly energy content. In contrast, Prakash et al. (2016) reported a

udden change of the spectra regardless of the void fraction. Sec-

ndly, the −3 slope of the spectra found in Prakash et al. (2016) ,

ven though only approximately, extends for more than a decade,

hile here we observe a sharper decay towards zero energy con-

ent. This discrepancy could be explained by the higher Re con-

idered in Prakash et al. (2016) with a corresponding shift of the

olmogorov length scale towards higher k . Moreover, a transition

requency associated with the relative bubble velocity and the bub-

le diameter was proposed in Prakash et al. (2016) to explain the

hange of slope from −5 / 3 to −3 . The findings presented here sug-

est that this transition occurs at wavelengths higher than D , even

hough only of approximately a factor 2.5 and hence of the same

rder of magnitude of that predicted by Prakash et al. (2016) . It

hould also be noted that in Prakash et al. (2016) bubbles are po-

idispersed, which may have an influence on the cut-off wavenum-

er. 
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. Conclusions 

In this paper we have studied a fully developed turbulent chan-

el flow at bulk Re equal to 6300, loaded with deformable spher-

cal/ellipsoidal bubbles for three gas volume fractions: α = 0 . 5% ,

= 2 . 5% and α = 10% . In particular, a downflow channel, that is

hen the mean stream-wise velocity is aligned with gravity, was

nvestigated. The latter configuration is characterised by a homo-

eneous region which extends wider in the core of the channel as

he gas volume fraction increases. This allowed for a comparison

ith available studies on swarms of buoyant bubbles in a peri-

dic cell at finite Re , referred to as pseudo-turbulence, both nu-

erically ( Bunner and Tryggvason, 20 02a; 20 02b ) and experimen-

ally ( Mercado et al., 2010 ). By means of direct numerical simula-

ion we accounted for all relevant physical mechanisms, including

nertia, viscous effects and bubble deformability. With respect to

revious studies on turbulent bubbly channel flow ( Lu and Tryg-

vason, 2006; 2013 ), here we have considered a larger computa-

ional domain and included an order of magnitude more bubbles

n the simulation making the statistical analysis more reliable. Fur-

hermore, following the approach used by Bunner and Tryggvason

2002a,b) a detailed investigation of the bubble microstructure in 

erms of preferential bubble clustering and orientation has been

arried out in the presence of underlying developed turbulence.

he main findings are summarised in the following. 

The liquid flow statistics, analysed in Section 3.1 , show a mod-

rate increase of the velocity fluctuations in the core of the chan-

el especially pronounced for the rms of span-wise and wall-

ormal velocity fluctuations. A clear homogeneous region is ob-

erved in the core of the channel, which extends wider as the vol-

me fraction increases. For the highest volume fraction ( α = 10% )

 strong turbulence attenuation close to the wall is found. 

The radial pair distribution function showed the formation of

lusters at close separation distances with a peak at r/R = 2 . 2 , in-

ependently of the gas volume fraction. This suggests a close range

ttractive tendency among the bubbles that increases the short

ange coherency in the flow. On the contrary, in the profile re-

orted by Bunner and Tryggvason (2002a) at α = 2% the maximum

as found to be absent at close distances with a corresponding

ow probability of collision. The different behaviour at low vol-

me fractions has been attributed to the additional effect of the

ift force, which drives the bubbles towards the core enhancing the

lustering. 

An inspection of the angular pair distribution function showed

referential horizontal alignment, more strongly at separation dis-

ances r / R < 3. While this is also observed in pseudo-turbulent

tudies ( Bunner and Tryggvason, 2002a ), significant differences

re present for α = 2 . 5% . At r/R = 4 , G ( θ ) is essentially uniform

nd close to 1, while in Bunner and Tryggvason (2002a) a strong

orizontal alignment is still present. Moreover, as r increases,

 general tendency for vertical alignment was found. This be-

aviour is more pronounced for the most dilute case investi-

ated ( α = 0 . 5% ), qualitatively matching the experimental studies

f Mercado et al. (2010) . The larger number of bubbles and in-

reased domain size may be important differences with earlier

tudies in this respect. 

Attraction and repulsion between bubbles have been studied by

nalysing the probability of the relative radial velocity of a bubble

air being positive ( Bunner and Tryggvason, 2002a ). For α = 0 . 5%

 tendency to repulsion was observed for vertically aligned bub-

les. This result is consistent with the theory and numerical find-

ngs of Yuan and Prosperetti (1994) for the motion of two verti-

ally aligned bubbles. At the investigated Re b (varying with α from

60 to 90), according to Yuan and Prosperetti (1994) an equilib-

ium distance can be found at values of r / R from approximately

 to 5, below which the repulsive inertial effects are dominant. As
he gas volume fraction increases, our results deviate from the the-

ry of Yuan and Prosperetti (1994) , with no significant dominant

endency to attraction or repulsion for r / R > 4. This highlights the

nfluence of bubble interactions and of the underlying turbulence.

rom the same analysis on the meridian relative velocity of bubble

airs, we observed a general tendency for bubbles to rotate around

ach other and align horizontally, similar to what was reported in

unner and Tryggvason (2002a) . 

The probability density functions of the bubble velocity fluctu-

tions were found to be well approximated by the Gaussian dis-

ribution. This is in contrast with the pdf of pseudo-turbulence,

hich was shown to present significant differences from the nor-

al distribution ( Bunner and Tryggvason, 2002b; Mercado et al.,

010 ). We attribute the differences reported here to the interac-

ion between the bubble motion and the base turbulence supplied

y the channel flow. 

In Section 3.4.1 the kinetic energy spectra of the liquid phase

ere investigated. First, we showed how a −3 slope of the power

pectra can be an artificial effect of the windowing technique used

o sample the liquid velocity. This issue was circumvented by col-

ecting only one-dimensional spatial liquid segments providing a

lear interpretation of the resulting spectra. Both stream-wise and

pan-wise power spectra were computed. The latter account for

he presence of bubble wakes best. Our findings only resemble the

xperimental results on homogeneous and isotropic turbulence of

rakash et al. (2016) , where a −5 / 3 law is gradually replaced by

 −3 scaling. A marked scaling law was, in fact, not found in the

nalysed turbulent channel flow. Whether the differences observed

ere for bubbly turbulence with respect to previous studies on ho-

ogenous turbulence are due to the presence of the walls or due

o lower Re remains an open question which will be the subject of

uture investigations. 
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ppendix A 

In this appendix we provide an estimate of the statistical con-

ergence of g ( r ), g ( θ ) and the pdf’s of the bubble velocity fluctua-

ions, analysed in Sections 3.2 and 3.3 , respectively. The following

elative error measure is used: 

 r = 

1 

J 

∑ 

j 

( 

| q n +1 
j 

− q n 
j 
| 

| q n 
j 
| 

) 

, (A.1) 

here n corresponds to the simulation time over which the quan-

ity q has been computed and j = 1 , ., J is the index of the point

n the domain definition of q . The total averaging time and sam-

ling rate have been specified in Section 3 . Fig. A.17 shows error
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Fig. A .17. Error (A .1) of G ( r ) (left column) and G ( θ ) (right column) as a function of the averaging time. The top figures refer to α = 0 . 5% , the center figures refer to α = 2 . 5% 

and the bottom figures refer to α = 10% . For the angular pair distribution the following separation distances are shown: r/R = 2 . 5 (lines with circles); r/R = 3 (lines with 

triangles); r/R = 4 (lines with squares); r/R = 5 (lines with crosses). 
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E r of the radial and angular pair distribution function for α = 0 . 5% ,

α = 2 . 5% and α = 10% . 

All the profiles show a relative error � 1% approaching zero

faster as α increases, which indicates well converged statistical

quantities. 

Error (A.1) of the pdf’s of the bubble velocity fluctuations is

shown in Fig. A.18 . The maximum relative error at the final av-

eraging time is shown by the pdf of u ′ x at α = 0 . 5% , being equal to

1.4%. All the other pdf’s present a relative error ≤ 1%. 

Appendix B 

In this appendix we wish to illustrate the effect on the power

spectrum of the windowing technique. To this end, a smooth win-

dow is built whose smoothing length is controlled by the convolu-

tion of the rectangular window with a Gaussian filter. In particu-

lar, an approach analogous to that employed in Risso (2011) is fol-

lowed. Consider a one dimensional signal composed of a sequence

of N rectangular windows: 

h (x ) = 

N ∑ 

n =1 

H [ (x − x̄ n ) + δn ] − H [ (x − x̄ n ) − δn ] , (B.1)

where H is the Heaviside function, while x̄ n and δn are the position

and the width of the n −th step, respectively. Function (B.1) can be
nterpreted as a typical one-dimensional marker function as well

s the indicator function of a time signal extracted from an ex-

erimental probe ( Lance and Bataille, 1983; Mercado et al., 2010 ).

he Fourier transform of the convolution integral of h ( x ) with the

aussian filter g(x ) = 

√ 

a 
π e −ax 2 reads: 

 (h ∗ g) = 

N ∑ 

n =1 

sin (2 πkδn ) 

πk 
e −2 π ik ̄x n e −π2 k 2 /a , (B.2)

ith a a constant and k the wavenumber, here defined as the re-

iprocal of the wavelength. Multiplication of (B.2) by its complex

onjugate yields the power spectrum 

 (k ) = 

e −
2 π2 k 2 

a 

π2 k 2 

[
N ∑ 

n =1 

sin (2 πkδn ) 
2 

+ 

N ∑ 

n =1 

∑ 

m =1 ,N 
m � = n 

sin (2 πkδn ) sin (2 πkδm 

) cos (2 πk ( ̄x n − x̄ m 

)) 

]
. 

(B.3)

As in Risso (2011) , the parameters δn , δm 

, x̄ n and x̄ m 

are as-

umed to be independent random variables whose variation is in-

ependent of n . The ensemble average of s ( k ) can be calculated as
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Fig. A .18. Error (A .1) of the pdf of stream-wise (lines with circles), the wall-normal (lines with crosses) and the span-wise (lines with triangles) bubble velocity fluctuations 

as a function of averaging time. The top-right figure are the results for α = 0 . 5% ; the top-left figure are the results for α = 2 . 5% and the bottom figure are the results for 

α = 10% . 
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Fig. B.19. Power spectrum (B.6) as a function of the wavenumber. The −3 slope 

is indicated by the red line. The vertical line is the wavenumber k s , as defined in 

(B.7) . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ollows: 

 s (k ) 〉 = 

∫ δn,max 

δn,min 

∫ δm,max 

δm,min 

∫ x̄ n,max 

x̄ n,min 

∫ x̄ m,max 

x̄ m,min 

×s (k ) p δd(δn ) p δd(δm 

) p x̄ d( ̄x n ) p x̄ d( ̄x m 

) , (B.4) 

here p δ and p x̄ are the probability density functions of the width

nd position of the Heaviside function, respectively. Assuming a

niform distribution of the latter parameters, Eq. B.4 reduces to

 s (k ) 〉 = 

∫ δn,max 

δn,min 

∫ δm,max 

δm,min 

∫ x̄ n,max 

x̄ n,min 

∫ x̄ m,max 

x̄ m,min 

s (k ) 
d(δn ) 


δ

d(δm 

) 


δ

d( ̄x n ) 


x̄ 

d( ̄x m 

) 


x̄ 
.

(B.5) 

Analogously to the derivation of Risso (2011) , the contribution

o (B.5) of the second term of (B.3) can be made arbitrarily small

y increasing the domain size 
x̄ while keeping N/ 
x̄ constant.

ence, only the contribution from the first term of (B.3) is consid-

red. The integral (B.5) reduces then to 

 s (k ) 〉 = 

Ne −
2 π2 k 2 

a 

8 π3 k 3 
δ
×[ sin (4 πkδmin ) − sin (4 πkδmax ) + 4 πk (δmax − δmin ) ] . 

(B.6) 

A Taylor expansion around k = 0 shows that 〈 s ( k ) 〉 is approx-

mately constant at low wavenumbers. For k → ∞ the spectra de-

ays exponentially due to the Gaussian filter. There may exist, how-

ver, an intermediate range in which the exponential is still well

pproximated by unity and the term between square brackets in

q. (B.6) is about constant. This leads to a local −3 scaling of

he spectra. Assuming δmin ≈ 0 , the term − sin (4 πkδmax ) approxi-

ately balances the increase due to the term 4 πkδmax from each

rest to valley of the sinusoid. Thus, the starting wavenumber of

he −3 scaling is approximately found at the first maximum of the
ine function given by the condition − sin (4 πkδmax ) = 1 , which

ields 

 s = 

3 

8 δmax 
. (B.7) 

This region may be further widened by the initial decay of the

xponential which approximately compensates for the increase of

he term between brackets of (B.6) . 

An example of 〈 s ( k ) 〉 is shown in Fig. B.19 for δmax = 0 . 15 ,

min = δmax / 20 , N = 10 0 0 and a = 2 · 10 3 . 

Is is worth noting that the −3 slope does not always appear.

hen the smoothing length of the filter increases, the damping of

he Gaussian spectrum becomes dominant also at low wavenum-

ers hiding the −3 scaling. Vice-versa, as a increases the expo-

ential decay is only relevant toward the far end of the spectrum.

he −3 slope is, thus, quickly replaced by a −2 scaling, given by

he ratio of the linear and the cubic term of Eq. (B.6) at high
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Fig. B.20. One-dimensional power spectrum of (1 − f s ) u x (dashed-dotted line), of f s 
(solid black line) and the analytical power spectrum (B.6) (blue line). The numerical 

spectra have been computed from segments in the mid-plane y = H and scaled so 

to have the same underlying area. The red line indicates the −3 slope while the 

vertical line indicates the wavenumber k s , as defined in (B.7) . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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enough values of k . In general, the intermediate range illustrated

in Fig. B.19 will be present when the wavenumber at which the

exponential decay starts to deviate from 1 is of the same order

of magnitude as k s . The latter requirement is mathematically ex-

pressed by e −
2 π2 k 2 s 

ā = 1 − ε, with ε a small number, from which a

corresponding value of a can be determined: 

ā = − 2 π2 

ln (1 − ε) 

(
3 

8 

)2 1 

δ2 
max 

. (B.8)

An additional requirement on the smoothing parameter a can

be set by defining the spatial width of the Gaussian filter to be a

fraction w of the maximum width of the rectangular window. In

particular, at a distance wδmax the Gaussian is imposed to be qual

to 10 −p g(x = 0) , with 10 −p a small number. The latter leads to 

¯̄a = 

p ln (10) 

(wδmax ) 2 
. (B.9)

Equating (B.8) to (B.9) yields 

w = 

√ 

− p ln (10) ln (1 − ε) 

2 π2 

(
8 

3 

)2 

. (B.10)

As an example, setting 1 − ε = 0 . 963 and p = 2 , a value of

w ≈ 1/4 is obtained. The same value of w was used in the results

presented in Fig. 13 . 

An illustration of the effect of the windowing on the velocity

field power spectrum is shown in Fig. B.20 . The one-dimensional

stream-wise power spectra of u x , premultiplied by a smooth vol-

ume fraction field (1 − f s ) , have been computed and averaged over

the plane y = H for α = 2 . 5% (solid black line). The smoothing

function f s is obtained by the convolution of f with a Gaussian fil-

ter having a smoothing length equal to D /5. The spectra have been

scaled so as to have the same energy content. Solution (B.6) well

approximates the numerically computed spectra of f s , as well as

the starting wavenumber of the −3 slope. Furthermore, it is evi-

dent that the spectra of the liquid velocity is largely influenced by

that of f s . 

Numerous sampling windows exist in literature, different from

the one analysed here and often combined with averages of the

periodigrams (Welch method ( Welch, 1967 )) for noise reduction.

It is not the aim of this paper to generalise the above analysis to

all such methods but rather to show how an artificial −3 scaling

can be the result of signals selectively sampled with windows hav-

ing a uniform width distribution. It would seem, thus, advisable to

quantify this effect when employing such techniques. 
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