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Rodolfo Reyes-Báez ∗ Arjan van der Schaft ∗

Bayu Jayawardhana ∗∗

∗ Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, P.O. Box 407, 9700 AK, Groningen, The

Netherlands ({r.reyes-baez, a.j.van.der.schaft}@rug.nl)
∗∗ Engineering and Technology Institute Groningen (ENTEG),

University of Groningen, Nijenborgh 4, 9747AG, The Netherlands
(b.jayawardhana@rug.nl)

Abstract: Based on recent advances in contraction methods in systems and control, in this
paper we present the virtual differential passivity based control (v-dPBC) technique. This is
a constructive design method that combines the concept of virtual systems and of differential
passivity. We apply the method to the tracking control problem of flexible joints robots (FJRs)
which are formulated in the port-Hamiltonian (pH) framework. Simulations on a two degrees of
freedom FJR are presented to show the performance of a controller obtained with this approach.
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1. INTRODUCTION

The problem of control of rigid robots has been widely
studied since they are instrumental in modern manufac-
turing systems. However, the elasticity phenomena in the
joints can not be neglected for accurate position tracking
as reviewed in Nicosia and Tomei (1995). For every joint
that is actuated by a motor, we need two degrees of
freedom joints instead of one. Such FJRs are therefore
underactuated. In Spong (1987) two state feedback control
laws based on feedback linearization and singular pertur-
bation are presented for a simplified model. Similarly, in
de Wit et al. (2012) a dynamic feedback controller for a
more detailed model is presented. In Loria and Ortega
(1995) a computed-torque controller for FJRs is designed,
which does not need jerk measurements. In Ailon and
Ortega (1993) and Brogliato et al. (1995) passivity-based
control (PBC) schemes are proposed. The first one is an
observer-based controller which requires only motor posi-
tion measurements. In the latter one a PBC controller is
designed and compared with backstepping and decoupling
techniques. For further details on PBC of FJRs we refer to
Ortega et al. (1998) and references therein. In Astolfi and
Ortega (2003), a global tracking controller based on the
I&I method is introduced. From a more practical point of
view, in Albu-Schäffer et al. (2007), a torque feedback is
embedded into the passivity-based control approach, lead-
ing to a full state feedback controller; with this acceleration
and jerk measurements are not required. In a recent work
of Avila-Becerril et al. (2016), they design a dynamic con-
troller which solves the global position tracking problem
of FJRs based only on measurements of link and joint
positions. The techniques mentioned above are designed
for FJRs modeled as second order Euler-Lagrange (EL)
systems. Most of these schemes are based on the selection

of a suitable storage function that together with the dissi-
pativity of the closed-loop system, ensures the convergence
of state trajectories to the desired solution.

As an alternative to the EL formalism, the pH framework
has been introduced in van der Schaft and Maschke (1995).
The main characteristics of the pH framework are the
existence of a Dirac structure (connects geometry with
analysis), port-based network modeling and a clear phys-
ical energy interpretation. For the latter part, the energy
function can directly be used to show the dissipativity of
the systems. Some set-point controllers have been pro-
posed for FJRs modeled as pH systems. For instance in
Ortega and Borja (2014) the EL-controller for FJRs in
Ortega et al. (1998) is adapted and interpreted in terms
of Control by Interconnection 1 (CbI). In Zhang et al.
(2014), they propose an Interconnection and Damping As-
signment PBC (IDA-PBC 2 ) scheme, where the controller
is designed with respect to the pH representation of the
EL-model in Albu-Schäffer et al. (2007). For the tracking
control problem of FJRs in the pH framework, to the best
of our knowledge, the only result is the one in Jardón-
Kojakhmetov et al. (2016), where a singular perturbation
approach is considered.

In this work we extend our previous results in Reyes-Báez
et al. (2017b,a), on v-dPBC of fully-actuated mechanical
systems, to solve the tracking problem of FJRs modeled as
pH systems. This method relies on the contraction prop-
erties of the so-called virtual systems, Forni and Sepulchre
(2014); Pavlov and van de Wouw (2017); Lohmiller and
Slotine (1998); Sontag (2010); Wang and Slotine (2005).

1 We refer interested readers on CbI to Ortega et al. (2008).
2 For IDA-PBC technique see also Ortega et al. (2002).
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EL-model in Albu-Schäffer et al. (2007). For the tracking
control problem of FJRs in the pH framework, to the best
of our knowledge, the only result is the one in Jardón-
Kojakhmetov et al. (2016), where a singular perturbation
approach is considered.

In this work we extend our previous results in Reyes-Báez
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positions. The techniques mentioned above are designed
for FJRs modeled as second order Euler-Lagrange (EL)
systems. Most of these schemes are based on the selection

of a suitable storage function that together with the dissi-
pativity of the closed-loop system, ensures the convergence
of state trajectories to the desired solution.

As an alternative to the EL formalism, the pH framework
has been introduced in van der Schaft and Maschke (1995).
The main characteristics of the pH framework are the
existence of a Dirac structure (connects geometry with
analysis), port-based network modeling and a clear phys-
ical energy interpretation. For the latter part, the energy
function can directly be used to show the dissipativity of
the systems. Some set-point controllers have been pro-
posed for FJRs modeled as pH systems. For instance in
Ortega and Borja (2014) the EL-controller for FJRs in
Ortega et al. (1998) is adapted and interpreted in terms
of Control by Interconnection 1 (CbI). In Zhang et al.
(2014), they propose an Interconnection and Damping As-
signment PBC (IDA-PBC 2 ) scheme, where the controller
is designed with respect to the pH representation of the
EL-model in Albu-Schäffer et al. (2007). For the tracking
control problem of FJRs in the pH framework, to the best
of our knowledge, the only result is the one in Jardón-
Kojakhmetov et al. (2016), where a singular perturbation
approach is considered.

In this work we extend our previous results in Reyes-Báez
et al. (2017b,a), on v-dPBC of fully-actuated mechanical
systems, to solve the tracking problem of FJRs modeled as
pH systems. This method relies on the contraction prop-
erties of the so-called virtual systems, Forni and Sepulchre
(2014); Pavlov and van de Wouw (2017); Lohmiller and
Slotine (1998); Sontag (2010); Wang and Slotine (2005).

1 We refer interested readers on CbI to Ortega et al. (2008).
2 For IDA-PBC technique see also Ortega et al. (2002).
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The paper is organized as follows: In Section 2, the
preliminaries are presented. Section 3 deals with some
properties of mechanical pH systems and the pH model
of FJRs, together with its associated virtual mechanical
system. A trajectory tracking v-dPBC scheme for FJRs is
presented in Section 4. In Section 5, The performance of
a v-dPBC controller is evaluated in simulation on a two-
degrees of freedom FJR. Finally, in Section 6 conclusions
and future research are stated.

2. CONTRACTION, DIFFERENTIAL PASSIVITY
AND VIRTUAL SYSTEMS

In this paper, we adopt the differential Lyapunov frame-
work for contraction analysis as in the paper Forni and
Sepulchre (2014), which unifies different approaches. Some
arguments will be omitted due to space limitation.

Let Σ be a nonlinear control system with state space X be
the state-space of dimension N , affine in the input u,

Σu :




ẋ = f(x, t) +

n∑
i=1

gi(x, t)ui,

yi = h(x, t),

(1)

where x ∈ X , u ∈ U ⊂ Rn and y ∈ Y. The vector
fields f, gi : X × R≥0 → TX are assumed to be smooth
and h : X × R≥0 → Y. The input space U and output
space Y are assumed to be open subsets of Rn. System (1)
in closed-loop with the uniformly smooth static feedback
control law u = Υ(x, t) will be denoted by

Σ :

{
ẋ = F (x, t),
y = h(x, t),

(2)

where the vector field F : X ×R≥0 → TX is smooth.

The variational system a long the the trajectory (u, x, y)(t)
is the time-varying system δΣu, given by


δẋ =
∂f

∂x
(x, t)δx+

n∑
i=1

ui
∂gi
∂x

(x, t)δx+
n∑

i=1

giδui,

δy =
∂h

∂x
(x, t)δx.

(3)

Definition 1. (Crouch and van der Schaft (1987)). The pro-
longed system of the control system Σu in (1), corresponds
to the system ΣδΣu

u , that is the system described by

ẋ = f(x, t) +

n∑
i=1

gi(x, t)ui,

y = h(x, t),

δẋ =
∂f

∂x
(x, t)δx+

n∑
i=1

ui
∂gi
∂x

δx+
n∑

i=1

gi(x, t)δui,

δy =
∂h

∂x
(x, t)δx.

(4)

The corresponding prolonged system to (2) is

ΣδΣ :





ẋ = F (x, t),
y = h(x, t),

δẋ =
∂F

∂x
(x, t)δx,

δy =
∂h

∂x
(x, t)δx.

(5)

with (u, δu) ∈ TU , (x, δx) ∈ TX , and (y, δy) ∈ TY.

2.1 Contraction and differential Lyapunov theory
Definition 2. (Forni and Sepulchre (2014)). A function V :
TX × R≥0 → R≥0 is a candidate differential or Finsler-
Lyapunov function if it satisfies, the bounds

c1F(x, δx, t)p ≤ V (x, δx, t) ≤ c2F(x, δx, t)p, (6)

where c1, c2 ∈ R>0, p is a positive integer and F(x, ·, t) :=
‖ · ‖x,t is a Finsler structure, uniformly in t.

Definition 3. Consider a candidate differential Lyapunov
function on X and the associated Finsler structure F . For
any subset C ⊆ X and any x1, x2 ∈ C, let Γ(x1, x2) be the
collection of piecewise C1 curves γ : I → X connecting
γ(0) = x1 and γ(1) = x2. The Finsler distance d : X ×
X → R≥0 induced by F is defined by

d(x1, x2) := inf
Γ(x1,x2)

∫

γ

F
(
γ(s),

∂γ

∂s
(s), t

)
ds. (7)

The following result gives a sufficient condition for con-
traction in terms of differential Lyapunov functions

Theorem 1. Consider system ΣδΣ as in (5), a connected
and forward invariant set C ⊆ X , and a function α :
R≥0 → R≥0. Let V be a candidate differential Lyapunov
function satisfying uniformly in t the condition

V̇ (x, δx, t) ≤ −α(V (x, δx, t)) (8)

for each (x, δx) ∈ TX . Then, on C, system Σ in (2) is

• incrementally stable (IS) if α(s) = 0 for each s ≥ 0;
• asymptotically IS if α is of class K;
• exponentially IS with rate β if α(s) = βs, ∀s ≥ 0.

Definition 4. (Contracting system). We say that Σ con-
tracts V in C if (8) is satisfied for α of class K. The
function V is called the contraction measure, and C is the
contraction region.

2.2 Differential passivity

Definition 5. (van der Schaft (2013)). Consider a nonlin-
ear control system Σu given by (1) together with its
prolonged system ΣδΣu

u given by (4). Then, Σu is called
differentially passive if there exist a differential storage
function function W : TX → R≥0 satisfying

dW

dt
(x, δx) ≤ δy�δu, (9)

for all x, δx, u, δu. Furthermore, system (1) is called differ-
entially loss-less if (9) holds with equality.

If additionally, the differential storage function is required
to be a differential Lyapunov function, then differential
passivity implies contraction when the input is u = 0.

Lemma 1. Consider system Σu in (1). Suppose there exists
a differential transformation δx̃ = Θ(x, t)δx such that the
variational dynamics δΣu in (3) takes the form

δ ˙̃x = [Ξ(x̃, t)−Υ(x̃, t)] Π(x̃, t)δx̃+Ψ(x̃, t)δu,

δỹ = Ψ(x̃, t)�Π(x̃, t)δx̃,
(10)

where Π(x̃, t) is a Riemannian metric, Ξ(x̃, t) = −Ξ�(x̃, t),
Υ(x̃, t) = Υ�(x̃, t) and δy the variational output. If the
following inequality holds

δx̃�
[
Π̇(x̃, t)− 2Π(x̃, t)Υ(x̃, t)Π(x̃, t)

]
δx̃ ≤ −α(W ) (11)

with α of class K. Then, Σu is differentially passive from
δu to δỹ with respect to the differential storage function

W (x̃, δx̃) =
1

2
δx̃�Π(x̃, t)δx̃. (12)
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2.3 Contraction and differential passivity of virtual systems

Definition 6. (Virtual system). Consider systems Σ and
Σu, given by (2) and (1), respectively. Suppose that Cv ⊆
X and Cx ⊆ X are connected and forward invariant sets.
A virtual system associated to Σ is defined as the system

Σv :

{
ẋv = Φv(xv, x, t),
yv = hv(xv, x, t),

(13)

in the state xv ∈ Cv and parametrized by x ∈ Cx, where
Φ : Cv × Cx × R≥0 → TX and hv : Cv × Cx × R≥0 → TX
satisfy the condition

Φv(x, x, t) = F (x, t) and hv(x, x, t) = h(x, t), (14)

for all t ≥ t0. Similarly, a virtual control system for Σu is
defined as the control system

Σuv :

{
ẋv = Γ(xv, x, u, t),
yv = hv(xv, x, t), ∀t ≥ t0,

(15)

in the state xv ∈ X and parametrized by x ∈ X , the
output yv ∈ Y, where hv : Cv × Cx × R≥0 → Y and
Γ : Cv × Cx ×R≥0 → TX satisfy

Γ(x, x, u, t) = f(x, t) +G(x, t)u,

hv(x, x, t) = h(x, t), ∀u, ∀t ≥ t0.
(16)

Theorem 2. (Virtual contraction). Consider Σ and Σv in
(2) and (13), respectively. Let Cv ⊆ X and Cx ⊆ X be two
connected and forward invariant sets. Suppose that Σv is
uniformly contracting with respect to xv. Then, for any
x0 ∈ Cx and xv0 ∈ Cv, each solution to Σv asymptotically
converges to the solution of Σ.

If Theorem 2 holds, then the actual system Σ is said to be
virtually contracting. In case of the virtual control system
Σuv is differentially passive, then the actual control system
Σu is said to be virtually differentially passive.

2.4 Virtual differential passivity based control

The design procedure 3 of virtual differential passivity
based control (v-dPBC) is divided in three main steps:

(1) Design the virtual system (15) for system (1).
(2) Design the feedback u = η(xv, x, t) + ω for (15) such

that the closed-loop virtual system is differentially
passive for the input-output pair (δyv, δω) and has a
desired trajectory xd(t) as steady-state solution.

(3) Define the controller for system (1) as u = η(x, x, t).

Trajectory tracking control via v-dPBC The above
method can be directly applied to solve the trajectory
tracking problem, which for system (1) is stated as follows:

Tracking problem: Given a desired trajectory xd(t), design
a control law u(x, t) for system (1) such that x(t) → xd(t)
as t → ∞, uniformly.

Proposed solution: in above step (2), split the control as

η(xv, x, t) := uff (xv, x, t) + ufb(xv, x, t) (17)

such that

• The feedforward-like term uff ensures that the
closed-loop virtual system has the desired trajectory
xd(t) as particular solution.

3 The use of virtual systems for control design was already consid-
ered in Jouffroy and Fossen (2010) and Manchester et al. (2015).

• The feedback action ufb commands the closed-loop
system to be differentially passive in a connected and
forward complete set C ⊆ X .

3. MECHANICAL PORT-HAMILTONIAN SYSTEMS

Ideas in the previous section will be applied to mechanical
pH systems framework,van der Schaft and Maschke (1995).

Definition 7. A port-Hamiltonian system with N dimen-
sional state space manifold X , input and output spaces
U = Y ⊂ Rm, and Hamiltonian function H : X → R, is
given by

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u

y = g�(x)
∂H

∂x
(x),

(18)

where g(x) is a N ×m input matrix, and J(x), R(x) are
the interconnection and dissipation N ×N matrices which
satisfy J(x) = −J�(x) and R(x) = R�(x) ≥ 0.

In the specific case of a standard mechanical system with
generalized coordinates q on the configuration space Q
of dimension n and velocity q̇ ∈ TqQ, the Hamiltonian
function is given by the total energy

H(x) =
1

2
p�M−1(q)p+ P (q), (19)

where x = (q, p) ∈ T ∗Q := X is the state, P (q) is the
potential energy, p := M(q)q̇ is the momentum and the
inertia matrix M(q) is symmetric and positive definitive.
Then, the pH system (18) takes the form

[
q̇
ṗ

]
=

[
0 I
−I −D(q)

]
∂H

∂q
(q, p)

∂H

∂p
(q, p)


+

[
0

B(q)

]
u,

y = B�(q)
∂H

∂p
(q, p),

(20)

with matrices

J(x) =

[
0 I
−I 0

]
;R(x) =

[
0 0
0 D(q)

]
; g(x) =

[
0

B(q)

]
, (21)

where D(q) = D�(q) ≥ 0 being the damping matrix and
I and 0 are the n× n identity, respectively, zero matrices.
The input force matrix B(q) has rank m ≤ n.

3.1 Alternative representation of mechanical pH systems

In this part, we propose an alternative representation 4

for mechanical pH systems by exploiting their structural
properties. This motivated by the work of Arimoto and
Miyazaki (1984) on EL systems. Consider the relation

− ∂

∂q

(
1

2
q̇�M(q)q̇

)
=

[
SL(q, q̇)−

1

2
Ṁ(q)

]
q̇. (22)

where SL(q, q̇) is a skew-symmetric matrix whose (k, j)-th
element of matrix SL(q, q̇) is given by

SLkj(q, q̇) =
1

2

n∑
i=1

{
∂Mki

∂qj
(q)− ∂Mij

∂qk
(q)

}
q̇i. (23)

In order to express (22) on T ∗Q, the Legendre transforma-
tion of the kinetic (co-)energy in the brackets of the left
hand side of (22) and the definition of momentum implies

4 Similar ideas are addressed in Stadlmayr and Schlacher (2008),
Sarras et al. (2012) and Zada and Belda (2016).
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2.3 Contraction and differential passivity of virtual systems

Definition 6. (Virtual system). Consider systems Σ and
Σu, given by (2) and (1), respectively. Suppose that Cv ⊆
X and Cx ⊆ X are connected and forward invariant sets.
A virtual system associated to Σ is defined as the system

Σv :

{
ẋv = Φv(xv, x, t),
yv = hv(xv, x, t),

(13)

in the state xv ∈ Cv and parametrized by x ∈ Cx, where
Φ : Cv × Cx × R≥0 → TX and hv : Cv × Cx × R≥0 → TX
satisfy the condition

Φv(x, x, t) = F (x, t) and hv(x, x, t) = h(x, t), (14)

for all t ≥ t0. Similarly, a virtual control system for Σu is
defined as the control system

Σuv :

{
ẋv = Γ(xv, x, u, t),
yv = hv(xv, x, t), ∀t ≥ t0,

(15)

in the state xv ∈ X and parametrized by x ∈ X , the
output yv ∈ Y, where hv : Cv × Cx × R≥0 → Y and
Γ : Cv × Cx ×R≥0 → TX satisfy

Γ(x, x, u, t) = f(x, t) +G(x, t)u,

hv(x, x, t) = h(x, t), ∀u, ∀t ≥ t0.
(16)

Theorem 2. (Virtual contraction). Consider Σ and Σv in
(2) and (13), respectively. Let Cv ⊆ X and Cx ⊆ X be two
connected and forward invariant sets. Suppose that Σv is
uniformly contracting with respect to xv. Then, for any
x0 ∈ Cx and xv0 ∈ Cv, each solution to Σv asymptotically
converges to the solution of Σ.

If Theorem 2 holds, then the actual system Σ is said to be
virtually contracting. In case of the virtual control system
Σuv is differentially passive, then the actual control system
Σu is said to be virtually differentially passive.

2.4 Virtual differential passivity based control

The design procedure 3 of virtual differential passivity
based control (v-dPBC) is divided in three main steps:

(1) Design the virtual system (15) for system (1).
(2) Design the feedback u = η(xv, x, t) + ω for (15) such

that the closed-loop virtual system is differentially
passive for the input-output pair (δyv, δω) and has a
desired trajectory xd(t) as steady-state solution.

(3) Define the controller for system (1) as u = η(x, x, t).

Trajectory tracking control via v-dPBC The above
method can be directly applied to solve the trajectory
tracking problem, which for system (1) is stated as follows:

Tracking problem: Given a desired trajectory xd(t), design
a control law u(x, t) for system (1) such that x(t) → xd(t)
as t → ∞, uniformly.

Proposed solution: in above step (2), split the control as

η(xv, x, t) := uff (xv, x, t) + ufb(xv, x, t) (17)

such that

• The feedforward-like term uff ensures that the
closed-loop virtual system has the desired trajectory
xd(t) as particular solution.

3 The use of virtual systems for control design was already consid-
ered in Jouffroy and Fossen (2010) and Manchester et al. (2015).

• The feedback action ufb commands the closed-loop
system to be differentially passive in a connected and
forward complete set C ⊆ X .

3. MECHANICAL PORT-HAMILTONIAN SYSTEMS

Ideas in the previous section will be applied to mechanical
pH systems framework,van der Schaft and Maschke (1995).

Definition 7. A port-Hamiltonian system with N dimen-
sional state space manifold X , input and output spaces
U = Y ⊂ Rm, and Hamiltonian function H : X → R, is
given by

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u

y = g�(x)
∂H

∂x
(x),

(18)

where g(x) is a N ×m input matrix, and J(x), R(x) are
the interconnection and dissipation N ×N matrices which
satisfy J(x) = −J�(x) and R(x) = R�(x) ≥ 0.

In the specific case of a standard mechanical system with
generalized coordinates q on the configuration space Q
of dimension n and velocity q̇ ∈ TqQ, the Hamiltonian
function is given by the total energy

H(x) =
1

2
p�M−1(q)p+ P (q), (19)

where x = (q, p) ∈ T ∗Q := X is the state, P (q) is the
potential energy, p := M(q)q̇ is the momentum and the
inertia matrix M(q) is symmetric and positive definitive.
Then, the pH system (18) takes the form

[
q̇
ṗ

]
=

[
0 I
−I −D(q)

]
∂H

∂q
(q, p)

∂H

∂p
(q, p)


+

[
0

B(q)

]
u,

y = B�(q)
∂H

∂p
(q, p),

(20)

with matrices

J(x) =

[
0 I
−I 0

]
;R(x) =

[
0 0
0 D(q)

]
; g(x) =

[
0

B(q)

]
, (21)

where D(q) = D�(q) ≥ 0 being the damping matrix and
I and 0 are the n× n identity, respectively, zero matrices.
The input force matrix B(q) has rank m ≤ n.

3.1 Alternative representation of mechanical pH systems

In this part, we propose an alternative representation 4

for mechanical pH systems by exploiting their structural
properties. This motivated by the work of Arimoto and
Miyazaki (1984) on EL systems. Consider the relation

− ∂

∂q

(
1

2
q̇�M(q)q̇

)
=

[
SL(q, q̇)−

1

2
Ṁ(q)

]
q̇. (22)

where SL(q, q̇) is a skew-symmetric matrix whose (k, j)-th
element of matrix SL(q, q̇) is given by

SLkj(q, q̇) =
1

2

n∑
i=1

{
∂Mki

∂qj
(q)− ∂Mij

∂qk
(q)

}
q̇i. (23)

In order to express (22) on T ∗Q, the Legendre transforma-
tion of the kinetic (co-)energy in the brackets of the left
hand side of (22) and the definition of momentum implies

4 Similar ideas are addressed in Stadlmayr and Schlacher (2008),
Sarras et al. (2012) and Zada and Belda (2016).
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∂

∂q

(
1

2
p�M−1(q)p

)
=

[
SH(q, p)− 1

2
Ṁ(q)

]
M−1(q)p.

(24)
where SH(q, p) := SL(q,M

−1(q)p) is skew-symmetric.
With above, (20) takes the following structure

[
q̇
ṗ

]
=

[
0 I
−I −(E(q, p) +D(q))

]
∂P

∂q
∂H

∂p


+

[
0
B

]
u,

yE =
[
0 B�]



∂P

∂q
∂H

∂p


 ,

(25)

with E(x) := SH(q, p) − 1
2Ṁ(q). System (25) keeps the

(cyclo-)passivity with respect to the storage function (19).

3.2 Virtual mechanical systems

A virtual system associated to (20) is given by

ẋv =

[
0n I
−I −(E(x) +D(q))

]
∂P

∂qv
(qv)

∂H

∂pv
(xv)


+

[
0

B(q)

]
u

yv =
[
0 B�(q)

]


∂P

∂qv
(qv)

∂H

∂pv
(xv)


 ,

(26)

in the state xv = (qv, pv) ∈ T ∗Q and parametrized by the
state variable x, which has as particular solution xv = x.
Remarkably, for every state trajectory x(t) of (25), the
virtual system (26) is also (cyclo-)passive with respect to
storage function given by

Hv(xv, t) =
1

2
p�v M

−1(q)pv + P (qv). (27)

Notice that for the storage function (27), ∂Hv

∂qv
= ∂P

∂qv
holds.

Then, the virtual system (26) can be rewritten as

ẋv = [Jv(x)−Rv(x)]
∂Hv

∂xv
(xv, t) + g(x)u

yv = g�(x)
∂Hv

∂xv
(xv, t),

(28)

with g(x) as in (21) and matrices

Jv(x) =

[
0n I
−I −SH

]
, Rv(x) :=

[
0 0

0 (D − 1

2
Ṁ)

]
, (29)

where Jv = −J�
v qualifies as interconnection matrix and

Rv = R�
v . However, Rv ≥ 0 is not required; we say that

system (28) is a mechanical pH-like system.

4. TRAJECTORY TRACKING CONTROLLER OF
FLEXIBLE-JOINT ROBOTS

4.1 Flexible-joints Robots as port-Hamiltonian systems
Flexible rotational joints robots are a particular class of
mechanical systems (21), where the generalized position
is split as q = [q�� , q

�
m]� ∈ Q = Qn�

× Qnm , where q�
and qm are the n�− links and the nm−motors general-
ized positions, respectively; with dimQ = n� + nm. The
inertia and damping matrices are partitioned into M(q) =
diag{M�(q�),Mm(qm)} andD(q) = diag{D�(q�), Dm(qm)},

where M�(q�) and Mm(qm) are the link and motors iner-
tias; similarly D�(q�) and Dm(qm) are the link and motor
damping matrices, respectively. The potential energy is

P (q) = P�(q�) + Pm(q), (30)

which is the sum of the links potential energy P�(q�)
and the joints potential energy Pm(q) = 1

2ζ
�Kζ, with

ζ := qm−q� andK ∈ Rn×n a symmetric, positive definitive
matrix of stiffness coefficients. The input acts only in the
motor state, that is rank(B(q)) = nm. We follow the
standard structural assumptions in Spong (1987)

• The relative displacement ζ (deflection) at each joint
is small, such that the spring’s dynamics is linear.

• The i−th motor, which drives the i − th link, is
mounted at the (i− 1)-th link.

• Each motor center of mass is on the rotation axes.
• Motors angular velocity is due to their own spinning.

Thus, a flexible-joints robot can be modeled as an under-
actuated pH system of the form (21), given by

q̇�
q̇m
ṗ�
ṗm


 =




0n�
0nm

In�
0nm

0n�
0nm

0n�
Inm

−In�
0nm

−D� 0nm

0n�
−Inm

0n�
−Dm


 ∂H

∂x
+




0n�

0nm

0n�

Bm(qm)


u,

y = Bm(qm)�
∂H

∂pm
(x),

(31)

where p� and pm are the links and motors momenta,
p = [p�� , p

�
m]� and Bm(qm) is the input matrix associated

to the motors. System (31) can be rewritten as (25), with

E(x) =



S�(q�, p�)−

1

2
Ṁ� 0nm

0n�
Sm(qm, pm)− 1

2
Ṁm


 , (32)

with S�
� = −S� and S�

m = −Sm. With this specification,
the virtual system (26) corresponding to (31) is

ẋv =




0n�
0nm

In�
0nm

0n�
0nm

0n�
Inm

−In�
0nm

−(E� +D�) 0nm

0n�
−Inm 0n�

−(Em +Dm)


 ∂Hv

∂xv
+ gu

yv = g�(x)
∂Hv

∂xv
(xv, t).

(33)

4.2 Tracking controller design for FJRs

Notice that the link dynamics in (31) is fully-actuated by
the forceKζ. This is rewritten asKζ = K(qmv−qmd)+u�,
where qmd = q� +K−1u� and u� is given in Lemma 2

Lemma 2. (Reyes-Báez et al. (2017b)). Suppose qmv =
qmd. Consider a smooth trajectory x�d = (q�d, p�d) ∈
T ∗Q�, with n� = dimQ�. Introduce the change coordinates

x̃�v :=

[
q̃�v
σ�z

]
=

[
q�v − q�d
p�v − p�r

]
, (34)

and define the auxiliary momentum reference as

p�r := M�(q�)(q̇�d − φ�(q̃�v)), (35)

with φ� : Q → TQ� and a positive definite Riemannian
metric Π� : Q� ×R≥0 → Rn�×n� satisfying the inequality

Π̇�(q̃�v, t)−Π�(q̃�v, t)
∂φ�

∂q̃�v
(q̃�v)−

∂φ�
�

∂q̃�v
(q̃�v)

×Π�(q̃�v, t) ≤ −2β�(q̃�v, t)Π�(q̃�v, t),

(36)
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with β� > 0, uniformly in t. Suppose that the i-th row of Π�

is a conservative vector field. Consider the link dynamics
in (31), its corresponding link virtual system in (33) and
the composite control u�(x�v, x�, t) := u�ff + u�fb with

u�ff = ṗ�r +
∂P�

∂q�
+
[
E� +D�

]
M−1

� (q(t))p�r,

u�fb = −
∫ ˜q�v

0n�

Π�(ξ�v, t)dξ�v −K�dM
−1
� σ�v + ω�,

(37)

where K�d > 0 and ω� is an external input. Then, the
link virtual system of (33) in closed-loop with (37) is
differentially passive for the input-output pair (δω�, δyσ�v

),
with δyσ�v

= B�
� M−1

� δσ�v and differential storage function

V�(x̃�v, δx̃�v, t) =
1

2
δx̃�

�v

[
Π�(q̃�v, t) 0n�

0n�
M−1

�

]
δx̃�v. (38)

Proposition 1. Consider the virtual system of FJRs in
(33). Suppose that the hypotheses in Lemma 2 hold for
the link dynamics with the controller u� given by (37). Let
the motor reference state be given by xmd = (qmd, pmd) ∈
T ∗Qm, with qmd = q� + K−1u� and nm = dimQm.
Consider the following change of coordinates

x̃mv :=

[
q̃mv

σmv

]
=

[
qmv − qmd

pmv − pmr

]
, (39)

and define the auxiliary motor momentum reference as

pmr := Mm

[
q̇md − φm(q̃mv)−Π−1

m K�M�
� σ�v

]
, (40)

where φm : Qm → Tq̃vQm and a positive definite Rieman-
nian metric Πm : Qm ×R≥0 → Rnm×nm satisfying

Π̇m(q̃mv, t)−Πm(q̃mv, t)
∂φm

∂q̃mv
(q̃mv)−

∂φ�
m

∂q̃mv
(q̃mv)

×Πm(q̃mv, t) ≤ −2βm(q̃mv, t)Πm,

(41)

with βm(q̃mv, t) > 0. Suppose that the i-th row of Πm

is a conservative vector field. Consider also system (31),
its corresponding virtual system (33) and the control law
given by u(xz, x, t) := umff + umfb with

umff = ṗmr + kζ +
[
Em +Dm

]
M−1

m (qm)pmr,

umfb = −
∫ ˜qmv

0nm

Πmdξmv −KmdM
−1
m σmv + ω,

(42)

where Kmd > 0 and ω and external input. Then,
the closed-loop virtual system (33) is differentially pas-
sive with respect to input-output pair (δω, δyσmv

), with
δyσmv

= B�
mM−1

m δσmv and differential storage function

V (x̃v, δx̃v, t) =
1

2
δx̃�

v

[
Π(q̃v, t) 0n

0n M−1(q)

]
δx̃v, (43)

with Π = diag{Π�(q̃�v),Πm(q̃mv)}. Furthermore, the
closed-loop variational dynamics of (33) preserves the
structure of (10) in coordinates x̃v, with

Π(x̃v, t) = diag
{
Π,M−1(q)

}
,

Ξ(x̃v, t) = diag

{
∂φ

∂q̃v
Π

−1
, [E(x) +D(q) +Kd]

}
,

Υ(x̃v, t) =




0n�
0nm In�

0nm

0n�
0nm −Π−1

m K� Inm

−In�
KΠ−1

m 0n�
0nm

0n�
−Inm

0n�
0nm


 ,

(44)

where φ(q̃v) = [φ�
� , φ

�
m]� and Kd = diag{K�,Km}.

Remark 1. From (44), it follows that the closed-loop vir-
tual variational dynamics of the differentially passive sys-
tem (33) can be written as the feedback interconnection

between the variational link and motor dynamics; as stated
in van der Schaft (2013).

Corollary 1. (Tracking controller for FJRs). Consider the
controller (42). Then, all solutions of (31) in closed-loop
with the controller u(x, x, t) converges exponentially to the
desired trajectory xd(t) with rate

β = min{min{β�, βm}, λmin{D +Kd}λmin{M−1}}. (45)

5. EXAMPLE: A FLEXIBLE-JOINTS RR ROBOT

We consider a FJR with n� = nm = 2 in (31). The
parameters of the system are shown in Table 1,

Parameter Value Parameter Value

m�1 1.510kg r�2 0.00055m

m�2 0.873kg ��1 0.343m

I�1 0.0392kg ·m2 ��2 0.267m

I�2 0.00808kg ·m2 D�1 0.8 N · s/m
r�1 0.00159m D�2 0.55N · s/m
mm1 0.23kg Dm1 0.2 N · s/m
mm2 0.01kg Dm2 0.2N · s/m
K1 90N/m K2 90N/m

φ� Λ�q̃�v φm Λmq̃mv

Λ� diag{10, 5} Λm diag{15, 7}
Π� Λ� Πm Λm

K�d diag{10, 5} Kmd diag{8, 3}
Table 1. Simulation parameters.

The link dynamics inertia matrix is given by

M�(q�) =

[
a1 + a2 + 2b cos(q�2) a2 + b cos(q�2)

a2 + b cos(q�2) a2

]
(46)

with constants a1 = m�1r
2
1 + m�2�

2
1 + I�1; a2 = m�2r

2
�2 +

I�2; b = m�2��1r�2, and motor inertia is Mm(qm) =
diag{mm1,mm2}. The performance of the closed-loop sys-
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Fig. 1. Closed-loop trajectories and control signal.

tem is shown in Figure 1; both, the position and momen-
tum error converge to zero and the control is bounded.
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with β� > 0, uniformly in t. Suppose that the i-th row of Π�

is a conservative vector field. Consider the link dynamics
in (31), its corresponding link virtual system in (33) and
the composite control u�(x�v, x�, t) := u�ff + u�fb with

u�ff = ṗ�r +
∂P�

∂q�
+
[
E� +D�

]
M−1

� (q(t))p�r,

u�fb = −
∫ ˜q�v

0n�

Π�(ξ�v, t)dξ�v −K�dM
−1
� σ�v + ω�,

(37)

where K�d > 0 and ω� is an external input. Then, the
link virtual system of (33) in closed-loop with (37) is
differentially passive for the input-output pair (δω�, δyσ�v

),
with δyσ�v

= B�
� M−1

� δσ�v and differential storage function

V�(x̃�v, δx̃�v, t) =
1

2
δx̃�

�v

[
Π�(q̃�v, t) 0n�

0n�
M−1

�

]
δx̃�v. (38)

Proposition 1. Consider the virtual system of FJRs in
(33). Suppose that the hypotheses in Lemma 2 hold for
the link dynamics with the controller u� given by (37). Let
the motor reference state be given by xmd = (qmd, pmd) ∈
T ∗Qm, with qmd = q� + K−1u� and nm = dimQm.
Consider the following change of coordinates

x̃mv :=

[
q̃mv

σmv

]
=

[
qmv − qmd

pmv − pmr

]
, (39)

and define the auxiliary motor momentum reference as

pmr := Mm

[
q̇md − φm(q̃mv)−Π−1

m K�M�
� σ�v

]
, (40)

where φm : Qm → Tq̃vQm and a positive definite Rieman-
nian metric Πm : Qm ×R≥0 → Rnm×nm satisfying

Π̇m(q̃mv, t)−Πm(q̃mv, t)
∂φm

∂q̃mv
(q̃mv)−

∂φ�
m

∂q̃mv
(q̃mv)

×Πm(q̃mv, t) ≤ −2βm(q̃mv, t)Πm,

(41)

with βm(q̃mv, t) > 0. Suppose that the i-th row of Πm

is a conservative vector field. Consider also system (31),
its corresponding virtual system (33) and the control law
given by u(xz, x, t) := umff + umfb with

umff = ṗmr + kζ +
[
Em +Dm

]
M−1

m (qm)pmr,

umfb = −
∫ ˜qmv

0nm

Πmdξmv −KmdM
−1
m σmv + ω,

(42)

where Kmd > 0 and ω and external input. Then,
the closed-loop virtual system (33) is differentially pas-
sive with respect to input-output pair (δω, δyσmv

), with
δyσmv

= B�
mM−1

m δσmv and differential storage function

V (x̃v, δx̃v, t) =
1

2
δx̃�

v

[
Π(q̃v, t) 0n

0n M−1(q)

]
δx̃v, (43)

with Π = diag{Π�(q̃�v),Πm(q̃mv)}. Furthermore, the
closed-loop variational dynamics of (33) preserves the
structure of (10) in coordinates x̃v, with

Π(x̃v, t) = diag
{
Π,M−1(q)

}
,

Ξ(x̃v, t) = diag

{
∂φ

∂q̃v
Π

−1
, [E(x) +D(q) +Kd]

}
,

Υ(x̃v, t) =




0n�
0nm In�

0nm

0n�
0nm −Π−1

m K� Inm

−In�
KΠ−1

m 0n�
0nm

0n�
−Inm

0n�
0nm


 ,

(44)

where φ(q̃v) = [φ�
� , φ

�
m]� and Kd = diag{K�,Km}.

Remark 1. From (44), it follows that the closed-loop vir-
tual variational dynamics of the differentially passive sys-
tem (33) can be written as the feedback interconnection

between the variational link and motor dynamics; as stated
in van der Schaft (2013).

Corollary 1. (Tracking controller for FJRs). Consider the
controller (42). Then, all solutions of (31) in closed-loop
with the controller u(x, x, t) converges exponentially to the
desired trajectory xd(t) with rate

β = min{min{β�, βm}, λmin{D +Kd}λmin{M−1}}. (45)

5. EXAMPLE: A FLEXIBLE-JOINTS RR ROBOT

We consider a FJR with n� = nm = 2 in (31). The
parameters of the system are shown in Table 1,

Parameter Value Parameter Value

m�1 1.510kg r�2 0.00055m

m�2 0.873kg ��1 0.343m

I�1 0.0392kg ·m2 ��2 0.267m

I�2 0.00808kg ·m2 D�1 0.8 N · s/m
r�1 0.00159m D�2 0.55N · s/m
mm1 0.23kg Dm1 0.2 N · s/m
mm2 0.01kg Dm2 0.2N · s/m
K1 90N/m K2 90N/m

φ� Λ�q̃�v φm Λmq̃mv

Λ� diag{10, 5} Λm diag{15, 7}
Π� Λ� Πm Λm

K�d diag{10, 5} Kmd diag{8, 3}
Table 1. Simulation parameters.

The link dynamics inertia matrix is given by

M�(q�) =

[
a1 + a2 + 2b cos(q�2) a2 + b cos(q�2)

a2 + b cos(q�2) a2

]
(46)

with constants a1 = m�1r
2
1 + m�2�

2
1 + I�1; a2 = m�2r

2
�2 +

I�2; b = m�2��1r�2, and motor inertia is Mm(qm) =
diag{mm1,mm2}. The performance of the closed-loop sys-
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6. CONCLUSION

The v-dPBC method solved the tracking control in FJRs.
The closed-loop virtual system preserves the variational
dynamics form (10), which can be seen as the feedback
interconnection of two differentially passive subsystems.
The controller u(x, x, t) solves the tracking problem in
FJRs. Simulations confirm the theoretical results. A major
implementation drawback of our controller presented here
is that we require acceleration and jerk measurements.
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Reyes-Báez, R., Van der Schaft, A.J., and Jayawardhana,
B. (2017b). Virtual differential passivity based control
for a class of mechanical systems in the port-hamiltonian
framework. In preparation.

Sarras, I., Ortega, R., and Van Der Schaft, A. (2012). On
the modeling, linearization and energy shaping control
of mechanical systems. In LHMNLC 2012, volume 4.

Sontag, E.D. (2010). Contractive systems with inputs. In
Perspectives in Mathematical System Theory, Control,
and Signal Processing, 217–228. Springer.

Spong, M.W. (1987). Modeling and control of elastic joint
robots. Journal of dynamic systems, measurement, and
control, 109(4), 310–319.

Stadlmayr, R. and Schlacher, K. (2008). Tracking control
for port-hamiltonian systems using feedforward and
feedback control and a state observer. IFAC Proceedings
Volumes, 41(2), 1833–1838.

van der Schaft, A. and Maschke, B. (1995). The hamilto-
nian formulation of energy conserving physical systems
with external ports. Archiv fr Elektronik und bertra-
gungstechnik, 49.

van der Schaft, A.J. (2013). On differential passivity. IFAC
Proceedings Volumes, 46(23), 21–25.

Wang, W. and Slotine, J.J.E. (2005). On partial contrac-
tion analysis for coupled nonlinear oscillators. Biological
cybernetics, 92(1).

Zada, V. and Belda, K. (2016). Mathematical modeling
of industrial robots based on hamiltonian mechanics. In
17th International Carpathian Control Conference.

Zhang, Q., Xie, Z., Kui, S., Yang, H., Minghe, J., and Cai,
H. (2014). Interconnection and damping assignment
passivity-based control for flexible joint robot. In In-
telligent Control and Automation (WCICA), 2014 11th
World Congress on, 4242–4249. IEEE.

IFAC LHMNC 2018
Valparaíso, Chile,  May 1-4, 2018

174


