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This paper proposes a new class of nonlinear interval models for interval-valued time series. By
matching the interval model with interval observations, we develop a nonlinear minimum-distance
estimation method for the proposed models, and establish the asymptotic theory for the proposed
estimators. Superior to traditional point-based methods, the proposed interval modelling approach
can assess the change in both the trend and volatility simultaneously. Within the proposed interval
framework, this paper examines the impact of the 2016 US presidential election (henceforth Trump
election) on the US stock market as a case study. Considering the validity of daily high-low range as
a proxy of market efficiency, we employ an interval-valued return to jointly measure the fundamental
value movement and market efficiency simultaneously. Empirical results suggest a strong evidence
that the Trump election has increased the level/trend and lowered the volatility of the S&P 500
index in both ex ante and ex post analysis. Furthermore, a longer half-life period for the impact on
fundamental value (62.4 days) than high-low range (15.9 days) has shown that the impact of Trump’s
victory on fundamental value is more persistent than its impact on market efficiency.

Keywords: Interval dummy variables; Interval time series; Nonlinear minimum-distance estimator;
Range volatility; Trump election

JEL Classification: C2, C13

1. Introduction

Political uncertainty has drawn increasing attention in
economics and finance over the last few decades; see
Bloom (2009), Baker et al. (2014, 2016), Brogaard and
Detzel (2015), and Basu and Bundick (2017). In financial
markets, political risks broadly refer to the uncertainty of
return on investment caused by the instability of political
policies and arrangements; see Bernanke (1983) and Pastor
and Veronesi (2005). It is widely acknowledged that political
risks are important sources of systematic risks, which cannot
be hedged by investment diversification. As a typical exam-
ple, the relationship between the Trump election and financial
performance in US stock market is analyzed in this paper.
In September 2016, the Financial Times columnist Wolf-
gang Münchau pointed out that the victory of Donald Trump
might occur and it could be the most cataclysmic global
political event of that year. Therefore, this paper attempts

*Corresponding author. Email: qiaokenan@amss.ac.cn

to understand the impacts of Trump’s election on financial
variables regarding assets’ fundamental values and market
efficiency.

Different from most other political risks, Trump’s election
can be regarded as an exogenous shock to the stock market. In
many cases, the strong co-movement between economic vari-
ables and political policies strongly motivates us to examine
the impact of political uncertainty. An appropriate approach
should enable us to assess political risks’ impacts under the
control of other correlated macro-economic variables. It is
an intractable problem that different choices of control vari-
ables may lead to different results. However, one convenient
method to study the impact of Trump’s election is that the co-
movement between election and macro-economic variables is
expected to be very weak. Unlike many events which affect
stock markets (e.g. rights issues, take-overs, wars, etc.), the
date of an election (once announced) is known and only its
outcome is uncertain (e.g. Gemmill 1992). Actually, this out-
come is quite contrary to many people’s expectation. For
instance, the probability of Clinton winning on Betfair was
83%, while on the day of the election, the FiveThirtyEight
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forecast,† which gave Trump the highest probability of win-
ning still puts the Clinton odds at almost 71%; see Wagner
et al. (2017). Hence, Trump’s victory can be regarded as an
exogenous shock which is barely reflected by any macro-
economic variables in the short-term.

Recently, there is a growing body of literature that attempts
to assess Trump election’s impacts on financial markets.
Wolfers and Zitzewitz (2016) compare the financial per-
formance before and after Clinton and Trump’s presiden-
tial debate event on September 26, 2016. Their results
reveal that Trump’s victory will reduce assets’ prices and
increase volatility in international stock markets. Bouoiyour
and Selmi (2017) examine the fluctuation of various stock
indices in US stock market surrounding the election day, and
find that Trump’s victory divides the investors into losing and
winning sectors. Wagner et al. (2017) utilize individual firms’
data to investigate the Trump election’s effect on US financial
markets, and conclude High-Beta firms and High-Tax firms
are boosted by this unexpected outcome. Born et al. (2017)
analyze the relation between Trump’s tweets and financial
market’s reaction, and confirm that common stocks’ abnor-
mal returns indeed respond to Trump’s tweets positively. Hoe
and Nippani (2017) attempt to study Trump election’s impact
on China’s stock market, but they do not attain any conclusive
results.

However, the aforementioned literature, which mainly
focuses on Trump election’s impact on assets’ prices, does
not give enough consideration to market efficiency. Market
efficiency is commonly defined as financial market’s ability
to reflect assets’ intrinsic values. The traditional efficient mar-
ket hypothesis (EMH) states that assets’ prices fully reflect
all available information. This implies that observed assets’
prices should be equal to fundamental values. A potential
issue is that the extreme version of the efficient market
hypothesis rarely holds. Imperfect market potentially drives
prices to deviate from fundamental values, e.g. asymmetric
information, illiquidity, micro-noise and investors’ sentiment;
see DeLong et al. (1991), Barberis et al. (1998), Easley et
al. (2002), and Lewellen and Shanken (2002).

Most existing tests for efficient market hypothesis lead
to powerful results only if the equilibrium pricing models
(e.g. Fama-French three-factor model) are correctly specified.
However, the result of market anomaly may be ambigu-
ous, since those tests are joint tests for both efficient market
hypothesis and model setting. It is possible that the anomaly
is caused by market inefficiency or a misspecified pricing
model, as Fama (1991) points out. Different from these tra-
ditional tests, intra-day high-low range is firstly considered
as a proxy of market efficiency in this paper. One advan-
tage of this method is that little restriction is imposed on
the model setting. This idea is in the light of two findings
from existing literature. On one hand, overnight returns reflect
more information about assets’ fundamental values, while
intra-day price fluctuation reflects more information about
micro-noise and investors’ sentiment. Apparently, most of the
micro-noises are merely observable in intra-day price fluctua-
tions, e.g. bid-ask bounce and order imbalance. Undoubtedly,
high-low range is the ideal choice to capture the market

† https://projects.fivethirtyeight.com/2016-election-forecast

inefficiency caused by these micro-noises. Additionally, the
daytime returns reflect more information about investors’
sentiment than overnight returns, and overnight returns are
mainly driven by assets’ fundamental value movements. For
more discussions on investor’s sentiment, see Tetlock (2007).
On the other hand, it is widely acknowledged that assets’
prices should fluctuate around their fundamental values. The
fundamental value of an asset on a given day is expected to
lie in the interval between the lowest price and highest price
of the day. Then, the high-low range sets an upper bound
for maximal deviation of asset’s prices from its fundamen-
tal value. Therefore, it is highly desirable to utilize daily
high-low range to gauge market efficiency.

However, it has been frequently noticed that the
aforementioned literature generally concerns the event
impacts using the point-valued closing price data, which
might suffer from the loss of volatility information
(Yang et al. 2012, 2016, Lin 2013, Lin and González-
Rivera 2016, 2019), not to mention not examining market
efficiency. Instead, a main advantage of the interval time
series (ITS) modelling approach over traditional point-based
approaches is that interval-valued inputs can capture the evo-
lution in both the level and range of an asset price process
simultaneously (Yang et al. 2013, Han et al. 2016, Sun
et al. 2018, 2019, Qiao et al. 2019). For discussions on
the range/volatility of an ITS and the associated tools for
modelling, see Chou (2005), Engle and Gallo (1982) and
Martens and Van Dijk (2007). ITS-based approaches can be
roughly grouped into two categories: bivariate models and
set models. The idea of bivariate models is to consider an
ITS as two point-valued processes, see Neto and de Car-
valho (2008, 2010), Brito and Duarte Silva (2012), González-
Rivera and Lin (2013), and Teles and Brito (2015). To some
extent, the bivariate-based method is not very well-suited for
utilizing information efficiently because it is unable to relate
various interval processes within a unified model (see Blanco-
Fernández et al. 2011, Yang et al. 2016). Thus, this paper uses
set models to analyze ITS. Set models are proposed by Han et
al. (2016) to model an interval dataset as a random set, which
is an inseparable unity generated from the sample space. Sub-
sequently, Sun et al. (2018) propose a parsimonious threshold
autoregressive interval (TARI) model to capture the nonlinear
feature within an ITS system. Thus, we expect more power-
ful statistical inference by using the ITS returns rather than
using the point-valued closing prices to consider the impact
of Trump’s election.

In this paper, we firstly propose a class of general nonlinear
models for an ITS, which is essentially an interval generaliza-
tion of the classical nonlinear model for a point-valued time
series. A nonlinear minimum-distance estimation method is
developed and the asymptotic theory of the proposed estima-
tors is established. In empirical application, an interval-valued
return is constructed for capturing the movements of assets’
fundamental values and market efficiency. Its left bound is
the difference between logarithmic lowest price of a trading
day and logarithmic closing price of the previous trading day,
and its right bound is calculated as the difference between
the logarithmic highest price of a trading day and logarith-
mic closing price of the previous trading day. Intuitively, the
level of this interval-valued return reflects the asset’s return
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on fundamental values, and its range can proxy market effi-
ciency. Instead of traditional point-valued data regression, the
ITS modelling approach is firstly proposed in this paper to
simultaneously capture the evolution of assets’ fundamental
values and market efficiency.

The proposed interval model in this paper and linear inter-
val regression proposed by Yang et al. (2012, 2016) are
employed in a case study which analyzes the Trump elec-
tion’s impacts from two aspects: ex post analysis and ex ante
analysis, respectively. For ex ante analysis, a linear interval
regression model is used to examine the Trump election’s
impacts on the S&P500 index’s expected return and high-low
range before the election. Meanwhile, for ex post analysis, a
nonlinear interval regression model is developed for investi-
gating the Trump victory’s impacts on the S&P500 index’s
expected return and high-low range simultaneously after the
election. Furthermore, these impacts’ duration is estimated as
well. Our findings reveal that interval dummy variables can
measure the shifts in both the level and range of interval-
valued returns of the S&P 500 index. Specifically, ex ante
analysis shows that the Trump election has an insignificantly
negative impact on the S&P500’s expected return before the
election, while its range is significantly reduced. This result
can be explained by the gradually eliminated uncertainty
of an election’s outcome as it approaches the election day.
Besides, ex post analysis indicates that Trump’s victory had
a significantly negative impact on the S&P 500’s range after
the election, while it had a positive impact, which is rel-
atively persistent from ex ante, on the S&P500’s expected
return.

Compared to the existing literature, this paper has some
appealing features. First, the proposed model can capture
the impacts of an event on both assets’ return and market
efficiency, which is proxied by the high-low range of interval-
valued asset return, due to the informational gain of an ITS
over a point-valued observation. Second, ITS might avoid
undesirable noises included in high-frequency point-valued
observations and capture information hiding in intra-day price
fluctuations. Specifically, point-valued time series vary signif-
icantly due to certain disturbances, whose variations may be
considered to be noise and can affect the tendency of an asset’s
returns. Third, there is no theoretical guidance to select the
optimal event window, since different event windows give dif-
ferent parameter estimates and economic interpretations. This
can raise concerns about whether satisfactory results were
obtained by data snooping or by coincidence. This issue is
addressed in this paper by using the decay rate to analyze the
influence of the event over time.

The rest of this paper proceeds as follows: Section 2 pro-
poses a general nonlinear interval model and establishes the
asymptotic theory of the proposed nonlinear minimum dis-
tance estimators. Data and some preliminary analysis are
described in Section 3. The results of empirical analysis are
presented in Section 4 and Section 5 concludes.

2. Statistical model

To capture possible nonlinear dynamics of an ITS, we pro-
pose a class of nonlinear interval regression models for the

interval-valued {Yt}:

Yt = h(Zt, θ) + ut, (1)

where {Yt = [YL,t, YR,t]}∞t=1 is an ITS process, YL,t and YR,t are
the left and right bounds of this ITS process, Zt is a vector of
interval-valued variables, and θ is a vector of unknown scalar-
valued parameters. Suppose that {ut} is an interval martingale
difference sequence (IMDS) with respect to the information
set It−1, that is, E(ut | It−1) = [0, 0] almost surely.

Note that {Yt}, {ut} and {Zt} are allowed the left bound of
an ITS to be larger than the right bound, namely, extended
random interval process. It is different from conventional
intervals in bivariate models. In the classical or traditional
interval analysis, an interval has been considered as a set of
ordered numbers, with the lower bound smaller than the upper
bound. In this paper, we extend the concept of an interval to
the concept of an extended interval, which is a set of ordered
numbers. Specifically, an extended random interval Y on a
probability space (�, F, P) is a measurable mapping Y : � →
IR, where IR is the space of closed sets of ordered numbers
in R, as Y (w) = [YL(w), YR(w)], where YL(w), YR(w) ∈ R for
w ∈ � denote the left and right bounds of Y (w), respectively.
This includes regular intervals and extended intervals where
the left-bound may not be smaller than the right bound. In fact,
the idea of extended interval has been considered in interval
algebra by Kaucher (1980), so-called generalized interval.

This extended interval can cover more applications in
economics and finance, since the interval-valued economic
variables with the reserved order for the boundaries are not
uncommon. We allow, for instance, intervals consist of risk-
free rates and asset returns, and thus an interval version of
the capital asset pricing model (CAPM). One may argue that
such an interval CAPM has no economic interpretation. How-
ever, from our interval CAPM, one can derive a point-valued
model, which is the difference between the right bound and
left bound of the interval. This range model is the conven-
tional CAPM (where the dependent variable is the asset return
minus risk-free rate), which has meaningful economic inter-
pretations. The main advantage of our interval modelling
approach is that we estimate the model using interval data,
which contains more information than the range data. Thus,
we can obtain more efficient estimates even if our final interest
is the range model.

The nonlinear interval-valued regression model is an inter-
val generalization of the popular nonlinear regression for a
point-valued time series, which is a nonlinear function of the
parameters θ . It can be used to infer the conditional mean
dynamics and to forecast intervals of the interval process.
It can also be generalized to capture the conditional mean
dynamics of a general set-valued time series. For instance, let
θ = (θ1, θ2, θ3)

′. If h(Zt, θ) = Ztθ1I(Zr,t < θ3) + Ztθ2I(Zr,t >

θ3), it is an interval-based threshold regression. This model
can display asymmetric patterns in the declining and rising
stages of the process. If h(Zt, θ) = θ1 + θ2 exp(θ3)Zt, it can
capture an exponential form of parameters in the regression
model. What differentiates these examples from the linear
regression model is that the conditional mean cannot be writ-
ten as a linear function of the parameter vector θ . Sometimes,
nonlinear regression is adopted because the functional form
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h(Zt, θ) is suggested by an economic theory. See Section 2.1
for more discussion.

2.1. Special case: event study

In this section, we consider a special case of the proposed
general interval model, as follows:

Yt = α0 + β0I0 + �
p
i=1βiYt−i + �s

l=1δ
′
lXt−l

+ �N
n=1 e−ρnm(t−T0,n)γnmDnm,t

+ �N
n=1 e−ρnr(t−T0,n)γnrDnr,t + ut,

n = 1, . . . , N , (2)

where Xt−l is q × 1 interval-valued exogenous variables for
l = 1, . . . , s; α0, βi, i = 0 · · · , p, γnm, γnr are scalar-valued
unknown parameters; δl = (δ1

l , . . . , δq
l )

′ is a parameter vector
of size q × 1 with elements being scalar-valued parameters;
ρnm and ρnr denote the decay rate of the trend and range when
the nth event occurs, respectively; I0 = [− 1

2 , 1
2 ] is a constant

unit interval; α0 + β0I0 = [α0 − 1
2β0, α0 + 1

2β0] is an interval
intercept; ut = [uL,t, uR,t] is an interval innovation, assumed
as an IMDS with respect to the information set It−1, that
is, E(ut | It−1) = [0, 0] almost surely; Dnm,t = [1, 1]1{t∈[T0,n,T]},
Dnr,t = [− 1

2 , 1
2 ]1{t∈[T0,n,T]}, 1{·} is an indicator function and

t0,n is the time point when the nth event occurs. Let Zt =
([1, 1], I0, Yt−1, . . . , Y1, X′

t−1, . . . , X′
1, D1m,t, . . . , Dnm,t, D1r,t,

. . . , Dnr,t)
′ and θ = (α0, β0, β1, . . . , βp, δ′

1, . . . , δ′
s, ρ1m, . . . ,

ρNm, ρ1r, . . . , ρNr, γ1m, . . . , γnm, γ1r, . . . , γnr)
′.

This model is employed to quantify and assess the Trump
election on the stock index based on the ITS modelling. A
main advantage of the proposed nonlinear interval models is
that our model captures the impacts of events on both trend
and volatility of an ITS in a given time period by directly
modelling an ITS as a random set. Specifically, it is a set pro-
cess and results in parsimonious models for an ITS, where the
derived two boundary processes are generated by just one set
of parameters under the proposed model.

Equation (2) is in essence an interval version for the classic
nonlinear model in point-based time series analysis. Specif-
ically, by taking the difference between the left and right
bounds, we obtain the point-valued range model to capture
the range volatility:

Yr,t = β0 + β1Yr,t−1 +
s∑

l=1

δ′
lXr,t−l

+ �N
n=1 e−ρnr(t−T0,n)γnrDnr,t + ur,t, (3)

where Yr,t and Xr,t are the difference between the left bound
and right bound of the corresponding interval-valued vari-
ables, respectively. This delivers an alternative method for
modelling the range dynamics of a time series. One can make
use of the interval sample information, rather than the range
sample only, to estimate the parameters more efficiently, even
if the interest is range modelling.

Similarly, the trend model for Ym,t is obtained as follows:

Ym,t = α0 + β1Ym,t−1 +
s∑

l=1

δ′
lXm,t−l

+ �N
n=1 e−ρnm(t−T0,n)γnmDnm,t + um,t, (4)

where Ym,t and Xm,t are the midpoints between the left bound
and right bound of the corresponding interval-valued vari-
ables, respectively. This can be used to capture some well-
known phenomenon in time series, e.g. level effect. For
instance, if Ym,t is the stock return, β1 < 0 indicates that a
level higher than zero at time t is likely to be followed by
another level lower than zero in the next time period, and vice
versa. This is the so-called mean reversion.

To illustrate how the interval dummy variable represents
an event and how to measure the shift of an ITS due to the
occurrence of this event, we consider a simple case for an
event D1. Let an ITS be {Y ∗

t | Y ∗
t = [Y ∗

L,t, Y ∗
R,t]} as the random

interval without the effects of events. γm and γr measure the
marginal effects of Dm,t and Dr,t on Y ∗

t , respectively, when the
event D1 happens. Based on the interval operations in Han
et al. (2016), the occurrences of a set of events induce Y ∗

t to
become Yt as

Yt = Y ∗
t + e−ρ1m(t−T0,1)γ1mD1m,t + e−ρ1r(t−T0,1)γ1rD1r,t

= Y ∗
t + [e−ρ1m(t−T0,1)γ1m, e−ρ1r(t−T0,1)γ1r]

= [Y ∗
m,t + e−ρ1m(t−T0,1)γ1m, Y ∗

r,t + e−ρ1r(t−T0,1)γ1r]. (5)

Specifically, when γ1m > 0, the trend of the ITS moves
towards the right with γ1m units at time point T0,1. The impact
of an event D1 on the range Yr,t is determined by γ1r, when the
event occurs. Besides, when t is larger than T0,1, the marginal
effects of the event on the trend or the range decays exponen-
tially with a rate ρ1m or ρ1r, respectively. This is consistent
with the conventional wisdom that the recent information has
a larger impact on today than the remote past information
(Engle 1982).

There are various patterns of event’s impacts in existing lit-
erature, e.g. increasing linearly, exponentially decaying and
even exponentially rising. See more discussions in Box and
Tiao (1975), Montgomery and Weatherby (1980), and Izen-
man and Zabell (1981). Here, the exponential decaying is
most suitable for this study, since the expected effect of
this event would be to produce a gradual reduction in S&P
500. Figure 1 shows the 10 days moving average curve for
the ranges of S&P 500 index from Nov 7th 2016 to Feb
28th 2017. In spite of some local peaks and valleys, it dis-
plays a general trend that S&P 500 index’s ranges sharply
decline within the first two weeks after the election, and then
slowly move down until the end of our sample. It can be
seen that the impact of Trump election on S&P 500 decays
gradually over time, with a potential exponentially declin-
ing scheme. This pattern provides us with a heuristic guess
that exponential function may properly capture the evolution
of Trump election’s impact due to its satisfactory goodness
of fit.
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Figure 1. Average return of SP500 over 10 days.
Note: The average stock return is the moving average of returns over every 10 days. The sample is from November 6th, 2016 to March 6th,
2017.

2.2. Half-life period

It is widely acknowledged that the magnitudes of impacts are
sensitive to the choice of the event window, pointed out by
MacKinlay (1997) and Asgharian et al. (2011). For instance,
short-horizon methods are powerful only if the abnormal
performance is concentrated in the event window, while long-
horizon methods are more appropriate when the impact of
event has a long duration. Thus, one critical and practical issue
with event study is how many observations should be used.
However, in the existing literature, the length of event window
is often determined by researchers, either in an ad hoc manner
or based on empirical experience. For short-period studies, the
event window is set to 3-days, 5-days and 7-days in Dahiya et
al. (2003), while it is set to 1-day in Billett et al. (1995). For
long-period studies, Zenios and Ziemba (2007) use an event
window of one year data, while Yang et al. (2016) choose a
window length equal to three years. However, there has been
no theoretical guidance to choose the optimal event window
in event studies, which may raise concerns about whether the
reported satisfactory results were obtained simply by chance
or by data snooping. The robustness of the empirical results
may be subject to suspect because it is likely that only the
results from successful windows have been reported.

In this paper, we assume that the impact of the event decays
exponentially as t increases. Based on equation (2), the simple
derivation is obtained as follows

d e−ρ1m(t−T0,1)

e−ρ1m(t−T0,1)
= −ρ1m dt,

d e−ρ1r(t−T0,1)

e−ρ1r(t−T0,1)
= −ρ1r dt, (6)

where ρ1m and ρ1r are decay rates of initial impacts on
S&P500 index’s expected return and volatility when the event
D1 occurs, respectively. The half-life periods of midpoints

or ranges are obtained as t − T0,1 = ln 2/ρ1m or t − T0,1 =
ln 2/ρ1r, respectively. This implies that it takes ln 2/θ days
for the impact of the event to decay away to half. These half
periods can be considered as event windows, which are hardly
sensitive to the sample length. Since the decay rates θm and θr

can be self-adaptively estimated with the associate sample, the
problem of event window selection is avoided.

3. Estimation and hypothesis testing

Without losing generality, equation (1) is used to show the
nonlinear minimum DK-distance estimation. Suppose that an
ITS sample {Yt}T

t=1 is generated from equation (2) with the
true parameter θ0 and an interval sample {Zt}T

t=1. We derive
the minimum DK-distance estimator θ̂ by minimizing the sum
of squared residuals Q̂T (θ) of the interval model, namely

θ̂ = arg min
θ∈


Q̂T (θ), (7)

with associated first order condition

g(̂θ) = − 2

T

T∑
t=1

〈sYt−h(Zt ,̂θ), s ∂h(Zt ,̂θ)

∂ θ̂

〉K = 0,

where Q̂T (θ) = 1
T

∑T
t=1 qt(θ) and qt(θ) = 〈sYt−h(Zt ,θ),

sYt−h(Zt ,θ)〉K , i.e. the DK-distance between the interval-valued
residual ût and the zero interval [0, 0].

Note that our approach is essentially a nonlinear least
square approach, based on the distance between interval-
valued data, namely, DK distance, which is developed by
Körner (1997) and Körner and Näther (2002). As a special
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case of random sets, the DK metric for any pair of intervals
A, B ∈ IR is given by

DK(A, B) =
√∫

(u,v)∈S0
[sA(u) − sB(u)][sA(u) − sB(v)] dK(u, v)

=
√

〈sA−B, sA−B〉K = ‖A − B‖K ,

where the unit space S0 = {u ∈ R1, |u| = 1} = {−1, 1}, sA(u)

is the support function, in the univariate interval context,
which is defined as sA(u) = AR if u = 1, sA(u) = −AL if
u = − 1 for the unit space S0, ‖A − B‖K is the norm for inter-
val A−B with respect to the DK-distance, 〈·, ·〉 indicates the
inner product in S0 with respect to kernel K(u, v). See Sun et
al. (2018) for more discussions.

3.1. Asymptotic theory

To establish the consistency and derive the asymptotic distri-
butions of θ̂ , we impose some regularity conditions.

Assumption 1 {Yt} is an interval stochastic process with
E‖Yt‖4

K < ∞, and it follows an interval regression in
equation (1), where the exogenous variable is stationary ITS.

In Assumption 1, {Yt} is an ITS with finite fourth moments
with respect to DK-distance, which follows a nonlinear regres-
sion h(Zt, ·) with stationary exogenous interval-valued vari-
ables. h(Zt, ·) essentially has various forms, such as exp(Zt, ·),
sin(Zt, ·) and Z·

t, which results in nonlinear behaviors in {Yt}.
Assumption 2 The interval innovation {ut} is an IMDS with
respect to the information set It−1, i.e. E(ut | It−1) = [0, 0],
almost surely, and E‖ut‖2

K < C, where C is some positive
constant.

In Assumption 2, E(ut | It−1) = [0, 0] implies that the lin-
earity of the support function sA satisfying E(sut | It−1) = 0
a.s., and the cross product satisfies E(〈sZ t , sut 〉K | It−1) = 0.
We note that our IMDS assumption includes conditional het-
eroscedasticity, which can cover more applications in finance.
This setting is weaker than i.i.d. condition and a conditional
homoscedastic assumption for {uL,t, uR,t}.
Assumption 3 The parameter space 
 is a finite-dimensional
compact space of Rτ , where τ is the size of θ0. θ0 is an interior
point in 
, which is the true parameter vector value given in
equation (1).

Assumption 4 h(Zt, θ) has continuous second partial deriva-
tive functions near θ0.

Assumption 4 is a smoothness condition on h(Zt, ·) for θ . It
requires that the second order derivative of h(Zt, ·) exists and
is continuous, which is necessary for the Taylor expansion of
h(Zt, ·) near θ0.

Assumption 5 The square matrices

E〈s ∂h(Zt ,θ)

∂θ
, s′

∂h(Zt ,θ)

∂θ

〉K and E[〈s ∂h(Zt ,θ)

∂θ
, sut(θ)〉K 〈sut(θ), s ∂h(Zt ,θ)

∂θ
〉K]

are positive definite for all θ in a small neighborhood of θ0.

Assumption 5 is necessary to derive the asymptotic dis-
tribution of θ̂ via a Taylor series expansion. Firstly, the
consistency of θ̂ is established.

Theorem 1 Under Assumptions 1–4 and if the model is cor-
rectly specified, the nonlinear minimum DK-distance estima-
tor defined by equation (1) is consistent, i.e.

θ̂ − θ0 P→ 0.

Intuitively, from the first order condition of Q̂t(θ), it is
easy to obtain the difference, i.e. θ̂ − θ0. Under these certain
regularity conditions, it can be shown that the estimator θ̂ con-
verges in probability to θ0 uniformly in 
 as T → ∞. Next,
the asymptotic normality of θ̂ is derived.

Theorem 2 Suppose Assumptions 1–5 and if the model is
correctly specified, then

√
T (̂θ − θ0) ∼ N(0, M−1(θ0)V(θ0)M−1(θ0)),

where

M(θ0) = E〈s ∂h(Zt ,θ0)

∂θ

, s′
∂h(Zt ,θ0)

∂θ

〉K , and

V(θ0) = E〈s ∂h(Zt ,θ0)

∂θ

, sut 〉K〈sut , s′
∂h(Zt ,θ0)

∂θ

〉K .

Remark Note that various selections of kernel K will result
in different minimum DK-distance estimators θ̂ , which are
consistent for θ0 in probability. Different kernels imply dif-
ferent weighting functions of all possible pairs of points
in intervals. For instance, if K = (1, 1, 1), it measures the
distance between the ranges of two intervals, while K =
( 1

4 , − 1
4 , 1

4 ) measures the distance between the midpoints of
two intervals. To address this uncertainty of kernel selec-
tion, we follow the spirit of Han et al. (2015) to use the
two-stage minimum kernel K, which is asymptotically most
efficient among all symmetric positive definite kernels with
the minimum asymptotic variance. Specifically, a two-stage
minimum DK-distance estimation method is proposed as fol-
lows: in the first step, a preliminary choice of kernel K
is used to estimate parameters and obtain the estimated
residuals ût (̂θ). In the second step, the optimal kernel K̂opt

is used to estimate the model parameters, where K̂opt =
(T−1�T

t=1̂u2
L,t, T−1�T

t=1̂uL,t (̂θ)̂uR,t (̂θ), T−1�T
t=1̂u2

R,t). Intuitively,
the optimal Kopt is proportional to the covariance matrix of
the residuals, which discounts the sample squared distance
components with larger variance.

A key difference of our nonlinear interval model from a
bivariate point-valued modelling is that by treating an interval
as a set, we are able to develop a new estimation method for
the proposed interval model, through minimizing the distance
between the interval model and interval data. Interestingly,
our minimum-distance estimator can be interpreted as fol-
lows: It employs not only the information on the distances
between the bounds of intervals, but also the information on
distances between interior points, with appropriate weighting.
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3.2. Inference

Following the spirit of Han et al. (2015), the Wald statis-
tics is used to examine the significance of the coefficients in
interval models. We consider the special case of equation (2).
The result of the general case is similar. In this case, the null
hypothesis H0 is Rθ0 = r, where R is a b × τ nonstochastic
matrix of full rank b ≤ τ , r is a b × 1 nonstochastic vector,
and τ = 2 + p + sq + 4N is the dimension of parameter θ in
the interval regression model with interval dummy variables
in equation (2). The statistics of Wald testing is:

W = [T(Rθ̂ − r)′][RM̂−1
T (̂θ)V̂T (̂θ)M̂−1

T (̂θ)R′]−1[(Rθ̂ − r)],
(8)

where M̂T (̂θ), V̂T (̂θ), and θ̂ are the estimators of MT (θ),
VT (θ) and θ in Theorem 2.

The Wald statistic used here has good size in finite samples
and reasonable power; see more detailed discussions in Han
et al. (2015) and Yang et al. (2016).

Most importantly, the Wald statistics is employed to test
the significance of the coefficients of interval-valued dummy
variables, which studies the impact of the occurrence of an
event on ITS. Here, H0 : γnm = 0 (or γnr = 0), which exam-
ines the impact of the nth event on the midpoint (or the range)
of the ITS. Specifically, the null hypothesis H0 suggests that
the midpoint (or the range) of the ITS is hardly affected by
the nth event. If H0 is rejected and γnm > 0 (or γnr > 0), it
implies that the nth event increases the midpoint or the range
of the ITS.

4. Simulation studies

This section studies the finite sample properties of the pro-
posed two-stage minimum DK-distance estimators. We con-
sider the nonlinear interval regression model as data generat-
ing process:

Yt = α0 + β0I0 + β1Xt1 + λ exp−ρt Xt2 + εt, (9)

where θ = (α0, β0, β1, ρ, λ)′ = (0.1, 0.2, 0.12, 0.3, −0.5)′, two
boundaries of Xt1 and Xt2 follow i.i.d ., bivariate normal distri-
bution f (μ, I), with μ = (2, 2) and I is 2 × 2 identity matrix
and εt are interval innovations. Following the spirit of Han et
al. (2016) and Sun et al. (2018), the interval innovations εt are
obtained from ACI model:

Y=α0 + β0I0 + β1Yt−1 + ut, (10)

where parameter values are obtained from a two-stage min-
imum DK-distance estimation with a preliminary kernel Kab

with a/b = 2/1 in the first stage. The data used in ACI model
is daily S&P 500 price index from January 1st, 2015 to Octo-
ber 31th, 2017. The interval innovations {εt} are obtained
via a naive bootstrap from the estimated residuals {̂ut =
Yt − (̂α0 + β̂0I0 + β̂1Yt−1)}, with the sample size T = 200,
500, respectively. For each sample size T, we perform 1000
replications.

Table 1. Bias, SD and RMSE of estimators for parameters (10−2).

T = 200 T = 500

Bias S.D RMSE Bias S.D RMSE

α0 − 0.99 2.35 2.55 − 0.29 1.42 1.45
β0 − 0.76 1.85 2.00 0.60 0.80 1.00
β1 3.50 4.22 5.48 1.83 2.32 2.96
ρ − 3.08 2.41 3.91 − 1.48 1.83 2.36
λ − 4.92 4.23 6.49 − 1.91 2.74 3.34

Note: Bias, SD and RMSE of each parameter are computed based
on 1000 bootstrap replications.

We compute the bias, standard deviation (SD), and root
mean square error (RMSE) for each estimator:

Bias(θ̂i) = 1

1000

1000∑
n=1

(θ̂
(m)
i − θ0

i ), SD(θ̂i)

=
[

1

1000

1000∑
n=1

(θ̂
(m)
i − θ i)

2

]1/2

, RMSE(θ̂i)

= [Bias2(θ̂i + SD2(θ̂i))]
1/2,

where θ i = 1
1000

∑1000
m=1 θ̂

(m)
i , and θ̂i = α̂0, β̂0, β̂1, ρ̂, γ̂ , respec-

tively. Table 1 shows that the RMSE for all estimators
decrease as T increases, which is consistent with Theorems 1–
2 that the convergence rate of estimation depends on the
sample length T. Similarly, as T increases, Bias and SD of
parameters decrease significantly as expected.

5. Empirical preliminary

5.1. Data and preliminary analysis

To investigate the effects of the 2016 election on US equity
market, we construct interval-valued daily returns on S&P
500 index as Yt = [YL,t, YR,t], from January 1st, 2015 to
October 31th, 2017, where YL,t and YR,t are calculated as
YL,t = ln(PL

t /PC
t−1), YR,t = ln(PH

t /PC
t−1), respectively. Note

that informational gain is obtained in the ITS sample, since an
interval data captures both the trend and variation information
of a price process in a given day.

The descriptive statistics for the interval-valued S&P 500
index are reported in table 2. The results suggest that the infor-
mational gain of the ITS over the induced point-valued data.
Firstly, the average of interval-valued daily return is about
[-0.0045,0.0043], which captures the S&P500 index’s level
(i.e. midpoint) and intra-day volatility (i.e. range) simulta-
neously. Secondly, the standard deviation of two bounds are
0.64% and 0.54%, respectively. Notice that the averages and
standard deviations of the two bounds of the interval-valued
returns have roughly the same scale, whereas closing price-
based daily returns often present a standard deviation more
than ten times its average. Hence, interval-valued return is
more stable than common daily return based on closing prices.
Thirdly, the intra-day volatility (i.e. Yr,t) and the two bound-
aries of returns (i.e. YL,t and YR,t) appear to have different
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Table 2. Summary statistics of interval-valued returns.

PL
t PH

t YL,t YR,t Return Yr,t

Mean 7.6777 7.6865 − 0.0045 0.0043 0.0003 0.0088
Median 7.6519 7.6589 − 0.0032 0.0029 0.0003 0.0070
Maximum 7.8525 7.8567 0.0087 0.0396 0.0383 0.0512
Minimum 7.5011 7.5213 − 0.0541 − 0.0066 − 0.0402 0.0017
Std. Dev. 0.0804 0.0768 0.0064 0.0054 0.0079 0.0060
Skewness 0.4003 0.4817 − 2.2386 1.5504 − 0.3937 2.1357
Kurtosis 2.3107 2.2930 12.0100 6.9932 6.3095 10.2966

Notes: This table reports some basic statistical analysis on the attributes of interval-valued S&P 500 returns. The sample is from January 1st,
2015 to October 31st, 2017. The interval-valued daily returns on S&P 500 index is defined as Yt = [YL,t, YR,t]. YL,t and YR,t are calculated
as YL,t = ln(PL

t /PC
t−1), YR,t = ln(PH

t /PC
t−1) respectively, and Yr,t= = YR,t − YL,t. Return is the logarithm difference of the daily S&P 500

closing prices.

skewness and kurtosis properties. For instance, the intra-day
volatility Yr,t of the ITS has a larger skewness and kurtosis
than its right bound (i.e. YR,t), which are smaller than its left
bound (i.e. YL,t). This implies that only partial information can
be explained if just one of these point-valued processes (i.e.
YL,t, YR,t and Yr,t). Thus, a parsimonious model for the ITS,
in which an interval observation is considered as an insep-
arable unit, is expected to efficiently utilize the information
contained in the ITS and derive more efficient estimation and
more powerful inference than point-based models.

5.2. Control variables

The choice of explanatory variables (except for the dummy
variables) is discussed in our interval regression models. It is
widely acknowledged that oil future prices, along with cur-
rencies and gold, are the main drivers of world economy.
They respond significantly to the economic or political shocks
(e.g. Popescu 2016). Thus, these three interval-valued returns
are considered in this paper, including West Texas Interme-
diate (WTI) crude oil future prices, dollar index and New
York Commodities Exchange (COMEX) gold future prices.
Be aware that these interval-valued control variables are sim-
ply constructed by the same method used in S&P 500 returns
(i.e. Yt). For the summary statistics of these variables, see
table 3.

Specifically, in terms of WTI returns, there seems to be
a significant correlation between the S&P 500 stock mar-
ket and the oil future market. This is confirmed in Zhang
and Wei (2010). Besides, a number of literature in recent

years studies the effects of exchange rates on stock mar-
kets and suggests a significant relationship between these
two markets (e.g. Granger et al. 2000, Phylaktis and Ravaz-
zolo 2005, Andersen et al. 2007, Ehrmann et al. 2011). In this
paper, the interval dollar index is used as a proxy to measure
the volatility in the foreign exchange markets.

Furthermore, VIX index, a proxy of S&P500 index’s
implied volatility, is considered as a control variable in this
paper. Specifically, VIX index is an integrated measure of
the expected volatility implied by S&P500 index options.
Previous studies have found that there is a statistically sig-
nificant relationship between the returns of the stocks and
VIX index; see Giot (2005). Different from other volatility
indices based on realized values of returns, VIX index reflects
investors’ expectation of the risk in stock market. Hence, VIX
is also known as Fear Index. It is involved in our model
as a control variable to capture the evolution of investors’
sentiment. We expect that higher VIX is accompanied with
lower market efficiency due to more pessimistic investors’
sentiment. An interval-valued VIX variable is constructed as
IVIXt = [− 1

2 VIXt, 1
2 VIXt]. Note that the midpoint of the inter-

val is constantly zero. It implies that we potentially make the
assumption that investors’ sentiment affects market efficiency,
but cannot affect assets’ fundamental values.

5.3. Model specification

Based on the preliminary analysis of the ITS of S&P
500 index and the selected control variables, we use the
interval-valued models for the ITS affected by 2016 election.

Table 3. Summary statistics of main control variables.

OilL,t OilR,t IndexL,t IndexR,t IVIXL,t IVIXR,t GoldL,t GoldR,t

Mean − 0.0178 0.0185 − 0.0037 0.0037 − 1.3296 1.3296 − 0.0066 0.0068
Median − 0.0143 0.0135 − 0.0028 0.0030 − 1.3107 1.3107 − 0.0054 0.0051
Maximum 0.0870 0.1582 0.0044 0.0381 − 1.1091 1.8536 0.0084 0.0788
Minimum − 0.0881 − 0.0071 − 0.0329 − 0.0041 − 1.8536 1.1091 − 0.0473 − 0.0067
Std. Dev. 0.0168 0.0177 0.0037 0.0034 0.1281 0.1281 0.0058 0.0066
Skewness − 0.7142 2.2143 − 2.2427 2.4005 − 0.7906 0.7906 − 1.7483 3.2781
Kurtosis 6.6097 11.0149 12.6869 17.7140 3.4183 3.4183 8.9671 27.5004

Notes: This table reports some basic statistical analysis on the attributes of interval-valued control variables. The sample is from January 1st,
2015 to October 31st, 2017. Indext = [IndexL,t − Indexc,t−1, IndexR,t − Indexc,t−1] is logarithm US dollar index return in an interval format;
IVIXt = [− 1

2 VIXt, 1
2 VIXt] is the interval-valued volatility index. Goldt = [GoldL,t − Goldc,t−1, GoldR,t − Goldc,t−1] is the daily interval-

valued logarithm Comex gold future return.
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Specifically, for ex ante analysis, a linear interval-valued data
regression model is proposed as follows,

Yt = α0 + β0I0 + β1Yt−1 + β2Oilt + β3Indext

+ β4IVIXt + β5Goldt

+ γ1mDt,m + γ1rDt,r + ut, (11)

where Yt = [YL,t, YR,t] is the interval-valued logarithm daily
return on S&P 500 index, namely YL,t = ln(PL,t/Pc,t−1),
YR,t = ln(PR,t/Pc,t−1); Indext = [IndexL,t − Indexc,t−1, IndexR,t

− Indexc,t−1] is logarithm US dollar index return in an inter-
val format; IVIXt = [− 1

2 VIXt, 1
2 VIXt] is the interval-valued

volatility index. Goldt = [GoldL,t − Goldc,t−1, GoldR,t −
Goldc,t−1] is the daily interval-valued logarithm Comex gold
future return. In addition, interval-valued dummy variable
Dt,m = [1, 1] (or Dt,r = [− 1

2 , 1
2 ]) is included in the one-month

event window before the election, otherwise Dt,m = [0, 0] (or
Dt,r = [0, 0]); Dt,m measures 2016 election’s impact on trend
of S&P500 index’s return, while Dt,r reflects its impact on
range of S&P500 index’s return. We will focus on coefficients
γm’s and γr’s significance and magnitude.

Different from ex ante analysis, a nonlinear interval-valued
data regression model is suggested for ex post analysis as
following,

Yt = α0 + β0I0 + β1Yt−1 + β2Oilt + β3Indext

+ β4IVIXt + β5Goldt

+ γm e−ρm(t−T0)Dm,t + γr e−ρr(t−T0)Dr,t + ut, (12)

where Dm,t and Dr,t are in the same sense as the above;
Dm,t = [1, 1] and Dr,t = [− 1

2 , 1
2 ] if trading day t is no earlier

than election day, otherwise Dt,m = [0, 0] and Dt,r = [0, 0]; T0

refers to the election day. It is worth noting that, when t = T0,
the trend term, γmDt e−ρm(t−T0), equals to γm, and volatility
term, γrDt e−ρr(t−T0), equals to γr. Therefore, coefficients γm

and γr can measure the initial impacts of Trump’s victory on
S&P500’s expected return and volatility, respectively.

After that, two hypothesis are used to explore the influence
of the event on the trend and the range of the ITS, respectively.
One tests H0 : γm = 0 and HA : γm = 0 for the trend of the
ITS. The other examines H0 : γr = 0 for the marginal effect
of the range caused by the Trump election event.

6. Estimation results

6.1. Ex ante analysis

Table 4 reports the two-stage minimum DK-distance estima-
tors and the P-values for ex ante analysis on 2016 election.
Firstly, we focus on the coefficient of the midpoint dummy
variable, namely γm. The estimator of expected return term
γm is insignificantly positive (about 0.05%) at 10% level. This
implies that we cannot reject the null hypothesis that Trump
election has no influence on S&P 500 index in a short period
(one month) before the election day. Nevertheless, its sign is
consistent with our expectation. Indeed, the uncertainty of the
election’s outcome is gradually reduced as time approaches
the election day. For instance, on September 26, 2016, Clin-
ton and Trump participated in a presidential debate hosted
by Hofstra University. After the debate, Clinton’s odds of
election increased from 63% to 69% in Betfair Prediction
Market. To some extent, the enlarged gap between Trump’s
and Clinton’s approval ratings reduces the uncertainty of elec-
tion’s outcome, see Wolfers and Zitzewitz (2016). Thus, the
political risk in US stock market is gradually decreased in
the event window. Additionally, Referring to Campbell and
Hentschel (1992), volatility potentially produces a discount
on asset’s fundamental value. This is known as volatility feed-
back effect. Hence, the decrease of market risk is expected to
raise S&P500 index’s level and produce a positive impact on
S&P500 index’s return. This is confirmed by the sign of γm’s
estimator, although this effect is not statistically significant.

Secondly, the estimator of volatility’s coefficient γr is
around − 0.20 % and significantly negative at 5% level. This
suggests a negative impact on S&P500 index range, which
implies a rise of market efficiency in the event window. This
finding is also consistent with our expectation. As a contro-
versial political event, Trump election may cause investors’ to
have heterogeneous beliefs. Properly speaking, investors have
heterogeneous expectation on the probability distribution of
election’s result, which leads to lower market efficiency. The
heterogeneity is gradually reduced until the election result is
released, which then causes the market efficiency to improve.

Furthermore, some other interesting findings are presented
as well. Firstly, the coefficients of the interval-valued crude oil
prices and dollar index, i.e. β2 and β3, are significantly posi-
tive, which implies that the volatility in stock market is highly
linked to that of crude oil prices and dollar index. Specifically,
the higher volatility the gold price has, the higher volatility
the S&P500 has. This suggests a significant transmission and

Table 4. Ex ante analysis on S&P500 index’s daily return.

γm γr

Coef (%) 0.05 − 0.20∗∗
(p-value) (0.56) (0.04)

β1 β2 β3 β4 β5 α0 β0

Coef 0.00 0.12∗∗∗ 0.18∗ 0.02∗∗∗ − 0.18∗∗∗ 0.00 − 0.03∗∗
(p-value) (0.96) (0.00) (0.06) (0.00) (0.00) (0.43) (0.00)

Notes: This is the model for equation (4.1). γm and γr capture the impact of Trump victory on the midpoints and ranges of the interval-valued
returns. Results are reported under the titles of ‘Coef’ and ‘P-value’ that represent the parameter estimates and the corresponding P-values,
respectively. Asterisks ∗∗∗, ∗∗, ∗ denote rejections of the null hypothesis at 1%, 5% and 10% significant levels, respectively.
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volatility spillover among the S&P 500 index and commodity
markets. Another noticeable result is that VIX has informa-
tion in explaining S&P 500 index before the Trump election,
confirmed by the statistically significant estimates of β5 at 1%
level.

6.2. Ex post analysis

Tables 5–7 report the nonlinear minimum DK-distance esti-
mators and the P-values for ex post analysis on Trump’s
victory’s impact on S&P500 index. Tables 5–6 also report
the estimation results with a decreasing number of interval-
valued exogenous variables for equation (4.2). This gives an
insight on the robustness of our results under various interval-
valued control variables, which help explain the dynamics of
interval-valued S&P 500 returns. The P-values for testing the
impact on the trend and range of interval-valued returns, i.e.
to test whether γm and γr are significantly larger than zero, are
also collected in tables 5–7.

From table 5, we observe that the initial impact on S&P500
index’ expected return, i.e. γm, is significantly positive,
around 0.24%. This finding indicates that Trump’s victory
positively affects the fundamental value of aggregated US
stock market. This situation is common, since the overall mar-
ket have a historic tendency to rise after elections. Secondly,
its decay rate ρm is around 1.11%, which implies that this

initial impact will be reduced by 1.11% per trading day. A
half-life period, which is calculated as τ = ln 2/ρm = 62.4
days, suggests that the impact on S&P500 index’s expected
return will be reduced to half of its initial value in one and
half week. Thus, Trump’s victory has a fairly durable impact
on US stock market’s expected return.

Besides, Trump’s victory’s initial impact on S&P500
index’s intra-day volatility γr is significantly negative
( − 1.86%). This finding suggests that Trump’s victory effec-
tively decreases S&P500 index’s intra-day volatility on the
election day. Additionally, its decay rate θr suggests that this
impact will be reduced by 4.35% per trading day. Hence we
can conclude that Trump’s victory has an extremely durable
negative impact on US stock market’s intra-day volatility. Its
half-life period is τ = ln 2/ρr = 15.9 days, namely, it will
take one month to reduce this impact to half of its initial
value. One possible reason is that domestic and international
society are generally optimistic on the outlook for US econ-
omy due to some of the policies claimed by Trump, including
positive fiscal expansion and tax cuts. This is consistent with
findings in Wagner et al. (2017), who point out that both
growth prospects and expectations of a major corporate tax
cut are viewed positively by the stock market. Indeed, the
stock market was up so dramatically when Trump’s victory
occurred, which implies that many relative losers (e.g. health-
care, medical equipment, textile, etc) actually increased in
price, but not nearly as much as relative winners (e.g. heavy

Table 5. Ex post analysis on daily return.

ρm ρr γm γr

Coef (%) 1.11∗ 4.35∗∗∗ 0.24∗∗∗ − 1.86∗∗∗∗∗
(P-value) (0.06) (0.01) (0.00) (0.01)

β1 β2 β3 β4 β5 α0 β0

Coef − 0.04∗∗∗ 0.02 0.02 0.02∗∗ − 0.04∗∗ − 0.00∗∗∗ − 0.04
(P-value) (0.41) (0.14) (0.90) (0.00) (0.48) (0.14) (0.00)

Notes: This is the model for equation (11). γm and γr capture the impact of Trump victory on the midpoints and ranges of the interval-valued
returns. Results are reported under the titles of ‘Coef’ and ‘P-value’ that represent the parameter estimates and the corresponding P-values,
respectively. Asterisks ∗∗∗, ∗∗, ∗ denote rejections of the null hypothesis at 1%, 5% and 10% significant levels, respectively.

Table 6. Ex post analysis on daily return from Jan 2015 to Oct 2017.

M-2 M-3 M-4 M-5

Coef P-value Coef P-value Coef P-value Coef P-value

α0 0.00∗ 0.10 0.00 0.27 0.00 0.45 0.00 0.51
β0 − 0.02∗∗∗ 0.00 0.01∗∗∗ 0.00 0.01∗∗∗ 0.00 0.01∗∗∗ 0.00
β1 0.01 0.83 − 0.16∗∗∗ 0.00 0.04 0.32 0.01 0.78
β2 0.07∗∗∗ 0.00 0.09∗∗∗ 0.00 0.12∗∗∗ 0.00 0.10∗∗∗ 0.00
β3 − 0.02 0.87 0.18∗ 0.05 − 0.04 0.64
β4 0.01∗∗∗ 0.00
β5 − 0.14∗∗∗ 0.00
ρm 0.00 1.00 6.63 0.35 0.73 0.87 0.01 1.00
ρr 2.87∗∗∗ 0.00 0.17∗ 0.06 0.61∗∗ 0.01 2.25∗∗∗ 0.00
γm 0.00 0.98 0.24 0.19 0.02 0.77 0.00 0.98
γr − 1.65∗∗∗ 0.00 − 0.51∗∗∗ 0.00 − 0.52∗∗∗ 0.00 − 1.19∗∗∗ 0.00

Notes: γm and γr capture the initial impact of the Trump election on the trends and ranges of the interval-valued stock returns. ρm and ρr
capture the decay rate as t increases. M-2, M-3, M-4 and M-5 represent four nonlinear interval regression models. Results for each model
M-i (i = 2, 3, 4, 5) are reported in two columns under the titles of ‘Coef’ and ‘P-value’ that represent the parameter estimates and the
corresponding P-values, respectively. Asterisks ∗∗∗, ∗∗, ∗ denote rejections of the null hypothesis at 1%, 5% and 10% significant levels,
respectively.



Uncertainty shocks of Trump election 875

Table 7. Ex post analysis on daily return from Nov 2015 to Oct 2017.

M-1 M-2 M-3 M-4 M-5

Coef P-value Coef P-value Coef P-value Coef P-value Coef P-value

α0 0.00∗ 0.07 0.00∗∗ 0.05 0.00∗∗ 0.05 0.00 0.54 0.00∗∗ 0.03
β0 − 0.03∗∗∗ 0.00 − 0.03∗∗∗ 0.00 0.01∗∗∗ 0.00 0.01∗∗∗ 0.00 0.01∗∗∗ 0.00
β1 − 0.02 0.72 0.06 0.19 0.04 0.36 0.00 0.97 0.05 0.25
β2 0.10∗∗∗ 0.00 − 0.01 0.28 0.13∗∗∗ 0.00 0.13∗∗∗ 0.00 0.09∗∗∗ 0.00
β3 − 0.01 0.97 0.02 0.79 − 0.03 0.75 0.03 0.77
β4 0.01∗∗∗ 0.00 0.02∗∗∗ 0.00
β5 − 0.03 0.62 − 0.13∗∗∗ 0.01
ρm 0.01 1.00 0.01 1.00 0.01 1.00 0.48 0.62 0.01 1.00
ρr 2.46∗ 0.09 3.07∗∗ 0.03 0.25∗∗∗ 0.01 0.01 0.97 0.21∗∗ 0.04
γm 0.01 0.85 0.01 0.86 0.01 0.85 0.06 0.33 0.01 0.85
γr − 0.56∗∗ 0.04 − 0.63∗∗ 0.01 − 0.46∗∗∗ 0.00 − 0.12∗ 0.06 − 0.39∗∗∗ 0.00

Notes: γm and γr capture the initial impact of the Trump election on the trends and ranges of the interval-valued stock returns. ρm and ρr
capture the decay rate as t increases. M-1, M-2, M-3, M-4 and M-5 represent four nonlinear interval regression models. Results for each
model M-i (i = 1, 2, 3, 4) are reported in two columns under the titles of ‘Coef’ and ‘P-value’ that represent the parameter estimates and
the corresponding P-values, respectively. Asterisks ∗∗∗, ∗∗, ∗ denote rejections of the null hypothesis at 1%, 5% and 10% significant levels,
respectively.

industries, financial firms, etc). Although, one may argue that
many policies (e.g. tax policy and trade policy) proposed by
Trump that would ultimately be implemented were uncer-
tain, since they required Congressional approval. However,
it is clear that President Trump wants to cut corporate taxes
significantly below its current 35% level, and is very likely
to succeed, given that the Republican holds a majority in
congress. In addition, many Democratic legislators, have the
same preference (Wagner et al. 2017).

Next, we discuss the estimates of other interval control vari-
ables. From tables 5–7, we observe that the trend of interval-
valued returns tend to move towards an equilibrium state, as
it is driven by its range in the last period. This confirms mean
reversion in Poterba and Summers (1988). Another noticeable
result is that the coefficient of IVIXt, i.e. β4, is significantly
negative at 1% level. Volatility index (VIX) shows the mar-
ket’s expectation of 30-day volatility. It implies that higher
VIX, more risk, higher range, and further causing inefficiency
of stock market. This finding is different from equity volatil-
ity puzzle, which is proposed by Shiller (1981). Shiller (1981)
concluded that the greater volatility of the stock market could
plausibly be explained by any rational view of the future,
which is possibly caused by poor market efficiency. Our result
supports that the increase in volatility further decreases the
market efficiency, which is another supplemental explanation
to Shiller’s findings.

Finally, we conduct various robustness check to determine
whether our results are sensitive to different sample sizes
and choices of control variables. This shows that our inter-
val methodology has a robust performance when the sample
size is small.

6.3. Alternative explanation

6.3.1. Market efficiency. To gain the insight on the infor-
mational advantage of using interval data, we discuss one
feature of ITS, a measure of volatility. Volatility analysis
has drawn growing attention over the last few decades, see
Engle (2001, 2002, 2008). Unlike other volatility measures

frequently employed in the existing literature, high-low range
is an ideal choice to proxy the market efficiency. It is expected
that high-low range performs differently from other classical
volatility measures.

We consider the following GARCH-in-mean model

Rt = c0 + α0σ
2
t + εt,

σ 2
t = c1 + α1ε

2
t−1 + β1σ

2
t−1 + β2Roil,t + β2Rindex,t

+ β4VIXt + β5RGold,t + γ Dummyt,

(13)

where Rt is the daily return on S&P 500; c0 and c1 are con-
stants; Roil,t, Rindex,t, Rglod,t are the daily returns of NYMEX
WTI, US dollar index and Comex gold future, respectively;
Dummyt is the dummy variable, which is zero before Trump’s
victory and one after Trump’s victory.

Table 8 reports the estimation results in equation (13). We
consider two estimation samples, i.e. January 2015–October
2017, and November 2015–October 2017. The results are
quite similar. We then take the latter sample as an exam-
ple. We observe that the coefficient of the dummy variable
Dummyt, i.e. γ , is significantly positive at 5% significance
level, and γ̂ is around 0.05 ∗ 10−4 for different sample sizes.
This indicates that the Trump election has a significant pos-
itive impact on S&P 500 index’s volatility. However, this is
different from our results in tables 6 and 7. According to our
previous result, Trump victory’s positive impact on the range
of S&P 500 index is significantly negative. That is to say,
the high-low range is essentially different from the inter-day
volatility.

The aforementioned analysis reveals different aspects of
asset prices’ evolution. GARCH model attempts to gauge the
volatility of assets’ fundamental values, while high-low range
reflects more information about market efficiency. The fun-
damental value movements are mostly presented in opening
prices of assets, as pointed out by Tetlock (2007). On the
other hand, intra-day fluctuation of assets’ prices is mainly
attributed to micro-noise and investors’ sentiment. This sug-
gests that the fundamental values of assets rarely change
during the trading periods between the trading periods from
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Table 8. S&P500 index’s daily return under GARCH models.

Jan,2015-Oct,2017 Nov,2015-Oct,2017

Coefficient SD P-value Coefficient SD P-value

α0 2.01 6.40 0.75 − 1.61 8.68 0.85
c0(%) 0.06 0.03 0.03 0.07 0.03 0.02

Variance equation Variance equation

c1(%) − 0.01 0.00 0.00 − 0.01 0.00 0.00
α1 0.11 0.04 0.00 0.09 0.04 0.04
β1 0.44 0.08 0.00 0.51 0.08 0.00
β2(10−4) 0.09 0.52 0.86 0.08 0.53 0.88
β3(10−4) 0.64 1.27 0.62 0.46 1.20 0.70
β4(10−4) 0.60 0.09 0.00 0.48 0.08 0.00
β5(10−2) 0.06 0.02 0.00 0.05 0.02 0.00
γ (10−4) 0.05 0.03 0.06 0.05 0.02 0.04

Notes: The GARCH model used here is

Rt = c0 + α0σ
2
t + εt,

σ 2
t = c1 + α1ε

2
t + β1σ

2
t + β2Roil,t + β2Rindex,t + β4VIXt + β5RGold,t + γ Dummyt,

where Rt is the daily return on S&P 500; c0 and c1 are constants; Roil,t, Rindex,t and Rglod,t are the daily returns of NYMEX WTI, US dollar
index and Comex gold future, respectively; Dummyt is a dummy variable, which is zero before the Trump victory and one after the Trump
victory.

the market opening to closing. Besides, it is widely acknowl-
edged that observed prices of assets should fluctuate around
the fundamental value. This implies that high-low range sets
an upper bound for the maximal variation of observed prices’
from the fundamental value. Therefore, high-low range is an
desirable proxy of market efficiency.

6.3.2. Time-varying coefficient. A time series dynamics
usually suffers from abrupt structural breaks or smooth struc-
tural changes due to external factors, including policy shifts,
technology progress and preference switch. To handle such
instability, instead of using all available observations, it is
quite common to use only the most recent observations

Figure 2. Coefficient estimators for dummy variables.
Note: The rolling estimators of coefficients (i.e. γm and γr) are listed. The sample starts from 1st January 2015 to 8th November 2016 to
estimate parameters at 8th November 2016, and this is so-called fixed rolling window. After that, we estimate parameters increasing a new
observation and removing the earliest one. The procedure ends when the sample set is extended to the last day of October 2017.
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to estimate the parameters (the so-called rolling estimation
method). Rolling estimation always drops the earliest obser-
vation as an additional observation is used, which is a sim-
ple way to update the sample information. This implicitly
assumes that the underlying model parameters are time-
varying. So it is a simple tool to capture the evolutionary
behavior of economic and financial time series. Thus, we
use this estimation method to visually present whether the
impact of Trump election on the interval-valued stock returns
is exponentially decaying.

We consider the linear interval-valued regression:

Yt = α0 + β0I0 + β1Yt−1 + β2Oilt + β3Indext

+ β4IVIXt + β5Goldt

+ γmDt,m + γrDt,r + ut, (14)

where the interval dummy variables take the nonzero inter-
vals, i.e. Dt,m = [1, 1] and Dr,t = [− 1

2 , 1
2 ], during the event

window from November 8th, 2016 to October 31st, 2017.
Rolling estimation is employed in equation (14). The sam-
ple starts from January 1st, 2015 to November 8th, 2016
to estimate the parameters at November 8th, 2016. This is
so-called fixed rolling window. After that, we estimate param-
eters increasing a new observation and removing the earliest
one. The procedure ends when the sample set is extended to
the last day of October 2017. The movement of coefficients γr

and γm is shown in figure 2.
Figure 2 reports the estimations of γm and γr after Trump

election. From this figure, we can see that the decaying pro-
cess of these coefficients resembles an exponential function.
This is consistent with our model setting. Specifically, we
observe parameters estimators of two large peaks (i.e. γr

and γm) are most close to the election day. After that, both
of these two curves display a sharp downward pattern. The
estimators of γm constantly stay in a small neighborhood
near zero, after its half-life period of 62.4 days. Besides, the
estimators of γr declines dramatically relative to γm. After
almost 15.9 days, which is its half-life period, the estimator
γr has dropped below zero and stays at a relatively low level,
although the subsequent sample shows a slightly upward pat-
tern. These findings support the appropriate model setting (i.e.
an exponential function) in this paper.

7. Conclusions

This paper firstly proposes a new class of nonlinear inter-
val models and develops the nonlinear minimum DK-distance
estimator. The asymptotic theory regarding consistency,
asymptotic normality and efficiency of the proposed esti-
mators is established. The proposed model is employed to
analyze the impacts of the Trump election on stock markets.
Furthermore, the Wald statistic is used to quantify the changes
in direction and magnitude of both the trend and volatility of
the ITS.

In the empirical application, a time series of interval-valued
returns on financial assets are constructed as highest, lowest
and closing prices of every trading day. We argue that the
range of interval-valued return can be considered as a proxy

of market efficiency, and its midpoint reflects the return driven
by fundamental value movement. Ex ante analysis indicates
that the S&P 500 index’s fundamental value rises insignifi-
cantly in a one-month window prior to the election day, while
the market efficiency is improved due to a significantly neg-
ative impact on the S&P500 index’s interval-valued return
in our event window. Ex post analysis finds that the Trump
election had a significantly positive impact on the return of
the S&P500 index on the election day, but this impact was
reduced by 1.11% per trading day. Moreover, the Trump elec-
tion also improved market efficiency, having a significantly
negative impact on the S&P500 index’s interval-valued return
on election day. However, this impact was also reduced by
4.35% per trading day.

There are several possible extensions for subsequent work.
Firstly, the inherent connections between the interval-valued
variables should be analyzed, e.g. the Granger causality
test can be extended to ITS to examine whether one inter-
val variable is useful in forecasting another. Secondly, it is
widely acknowledged that the economy may behave differ-
ently if some variable lies in one region rather in another. For
instance, the link between financial markets is stronger during
the crisis period than during normal periods. It may be suit-
able to use the nonlinear interval model with different regimes
to analyze the linkages between financial markets, which are
all affected by Trump’s election. Third, model selection is an
important aspect of statistical modelling, while most works on
interval modelling use traditional tools (Akaike Information
Criterion and Bayesian Information Criterion) to select the
best bivariate regression model by treating intervals as two
points. It is highly desirable to propose a new model selec-
tion method for interval-valued data, which efficiently utilizes
information contained in intervals. Furthermore, it is possi-
ble to combine this approach with other interval predictive
models (e.g. Han et al. 2015, Sun et al. 2018) to improve the
forecast accuracy of future volatility in equity, commodity and
foreign exchange markets. This could provide some important
insight for portfolio hedgers and authorities in making optimal
portfolio allocations and engaging in risk management.
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Appendix

Proof of Theorem 1 The first order condition is

g(̂θ) = − 2

T

T∑
t=1

〈sYt−h(Zt ,̂θ), s ∂h(Zt ,̂θ)

∂θ

〉K = 0. (A1)

In the more general cases, this equation is a set of nonlinear equations
that do not have an explicit solution.

Applying Taylor expansion of θ̂ in equation (2.3), we get (θ is
between θ̂ and θ0)

0 = 1

T

T∑
t=1

〈
sYt−h(Zt ,θ

0)− ∂h(Zt ,θ)

∂θ
|θ=θ (̂θ−θ0)

, s ∂h(Zt ,θ)

∂θ
|θ=θ + ∂2h(Zt ,θ)

∂θ
|θ=θ (̂θ−θ0)

〉
K

= 1

T

T∑
t=1

〈
sut− ∂h(Zt ,θ)

∂θ
|θ=θ (̂θ−θ0)

, s ∂h(Zt ,θ)

∂θ
|θ=θ

〉
K

+ (s.o.), (A2)

where (s.o.) denotes smaller order terms.
Thus,

θ̂ − θ0 = [T−1
T∑

t=1

〈s ∂h(Zt ,θ)

∂θ
|θ=θ

, s′∂h(Zt ,θ)

∂θ
|θ=θ

〉K ]−1〈s ∂h(Zt ,θ)

∂θ
|θ=θ

, sut 〉K

Based on Assumption 2, θ̂ − θ0 = op(1) (in fact, θ̂ − θ0 =
Op(T−1/2)). �

Proof of Theorem 2 Applying Taylor expansion of θ̂ in equation
(2.3), we get (θ is between θ̂ and θ0)

0 = 1

T

T∑
t=1

〈
sYt−h(Zt ,θ

0)− ∂h(Zt ,θ)

∂θ
|θ=θ (̂θ−θ0)

, s ∂h(Zt ,θ)

∂θ
|θ=θ + ∂2h(Zt ,θ)

∂θ
|θ=θ (̂θ−θ0)

〉
K

= 1

T

T∑
t=1

〈
s
ut− ∂h(Zt ,θ0)

∂θ
|θ=θ (̂θ−θ0)

, s ∂h(Zt ,θ)

∂θ
|θ=θ

〉
K

+ (s.o.), (A3)

where (s.o.) denotes smaller order terms. Re-arrange equation (A3)
and based on Theorem 3.2 in Han et al. (2015), we obtain

√
T (̂θ − θ0) =

[
T−1

T∑
t=1

〈s ∂h(Zt ,θ)

∂θ
|θ=θ

, s′∂h(Zt ,θ)

∂θ
|θ=θ

〉K

]−1

T−1/2

×
T∑

t=1

s ∂h(Zt ,θ)

∂θ
|θ=θ

, sut 〉K + (s.o.)

→ N(0, E(〈s ∂h(Zt ,θ0)

∂θ

, s′
∂h(Zt ,θ0)

∂θ

〉K)−1

× E〈s ∂h(Zt ,θ0)

∂θ

, sut 〉K〈sut , s′
∂h(Zt ,θ0)

∂θ

〉K

× E(〈s ∂h(Zt ,θ0)

∂θ

, s′
∂h(Zt ,θ0)

∂θ

〉K)−1

= N(0, M−1(θ0)V(θ0)M−1(θ0)).�


	1. Introduction
	2. Statistical model
	2.1. Special case: event study
	2.2. Half-life period

	3. Estimation and hypothesis testing
	3.1. Asymptotic theory
	3.2. Inference

	4. Simulation studies
	5. Empirical preliminary
	5.1. Data and preliminary analysis
	5.2. Control variables
	5.3. Model specification

	6. Estimation results
	6.1. Ex ante analysis
	6.2. Ex post analysis
	6.3. Alternative explanation
	6.3.1. Market efficiency
	6.3.2. Time-varying coefficient


	7. Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


