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Abstract
Liver transplantation (LT) is a life-saving option for children with end-stage liver disease. However, about 50% of patients 
develop graft fibrosis in 1 year after LT, with normal liver function. Graft fibrosis may progress to cirrhosis, resulting in graft 
dysfunction and ultimately the need for re-transplantation. Previous studies have identified various risk factors for the post-
LT fibrogenesis, however, to date, neither of the factors seems to fully explain the cause of graft fibrosis. Recently, evidence 
has accumulated on the important role of the gut microbiome in outcomes after solid organ transplantation. As an altered 
microbiome is present in pediatric patients with end-stage liver diseases, we hypothesize that the persisting alterations in 
microbial composition or function contribute to the development of graft fibrosis, for example by bacteria translocation due 
to increased intestinal permeability, imbalanced bile acids metabolism, and/or decreased production of short-chain fatty acids 
(SCFAs). Subsequently, an immune response can be activated in the graft, together with the stimulation of fibrogenesis. Here 
we review current knowledge about the potential mechanisms by which alterations in microbial composition or function may 
lead to graft fibrosis in pediatric LT and we provide prospective views on the efficacy of gut microbiome manipulation as a 
therapeutic target to alleviate the graft fibrosis and to improve long-term survival after LT.

Abbreviations
ALD  Alcoholic liver disease
BMI  Body-mass index
DAMP  Damage-associated molecular pattern
DSA  Donor-specific antibody
ECM  Extracellular matrix
FMT  Fecal microbiota transplant
FXR  Farnesoid X receptor
HSC  Hepatic stellate cell
IRI  Ischemia–reperfusion injury
LT  Liver transplantation
LPS  Lipopolysaccharide
NAFLD  Non-alcoholic fatty liver disease

NF-κB  Nuclear factor kappa B
PAMP  Pathogen-associated molecular pattern
PRR  Pattern recognition receptor
PTLD  Post-transplantation lymphoproliferative 

disease
SCFA  Short-chain fatty acid
TGFβ  Transforming growth factor β
TLR  Toll-like receptor

Introduction

Pediatric liver transplantation (LT) has become a stand-
ard procedure for children with end-stage liver disease, for 
example due to biliary atresia or progressive familial intra-
hepatic cholestasis. The number of LTs performed globally 
has been reported to be 4 to 9 per million population younger 
than 18 years, with a 10-year survival rate higher than 80% 
(Bourdeaux et al. 2009; Fischler et al. 2019).

Notwithstanding the high survival rate of LTs, up to 50% 
of pediatric LT patients develop graft fibrosis in 1 year after 
transplantation, based on protocol biopsies. (Evans et al. 
2006; Scheenstra et al. 2009). Liver fibrosis is a well-known 
consequence of chronic liver injury occurring in a variety 
of liver diseases, including genetic diseases, hepatitis, and 
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metabolic diseases. Fibrosis is pathophysiologically consid-
ered as a wound healing response in reaction to repeated 
liver injury, leading to progressive accumulation of extra-
cellular matrix (ECM). Interestingly, pediatric patients with 
post-transplant graft fibrosis frequently do not have clear 
indications of graft complications or of (prior or ongoing) 
elevations in liver biochemistry, in contrast to conditions 
leading to liver fibrosis before LT. Thereby, graft fibrosis 
can be considered as a “silent fibrosis”. The clinical con-
sequence of graft fibrosis is not well known, but 29% of 
patients with graft fibrosis can progress to cirrhosis, which 
may result in graft dysfunction and ultimately the need for 
re-transplantation (Scheenstra et al. 2009). Therefore, under-
standing the underlying risk factors of graft fibrosis is clini-
cally important.

Many factors have epidemiologically been associated 
with graft fibrosis, including donor age, prolonged ischemia 
time, transplant‐related or immune-related factors such as 
biliary/vascular complications, subclinical rejection, and 
post-transplantation lymphoproliferative diseases (PTLD) 
(Chanpong et al. 2019; Rhu et al. 2020; Scheenstra et al. 
2009; Tokodai et al. 2018; Ueno et al. 2016). However, these 
factors do not provide a satisfactory explanation for the high 
incidence of graft fibrosis nor the underlying mechanisms.

The intestinal microbiota in a human adult consists of 
 1013–1014 microorganisms and has been shown to play an 
active role in many aspects of health and disease (Lynch 
and Pedersen 2016; Sender et al. 2016; Valdes et al. 2018). 
Microbial dysbiosis refers to an “imbalance” in the gut 
microbial community that is associated with diseases, 
which is often characterized as lower diversity, an increase 
of potentially pathogenic taxa, and a decrease of beneficial 
taxa when compared to a healthy microbiota. The crosstalk 
between the gut and liver is increasingly being recognized 
(Albillos et al. 2020; Tripathi et al. 2018). Microbial dys-
biosis could be complicit in liver disease progression and 
has long been associated with various liver diseases, such 
as nonalcoholic fatty liver disease (NAFLD) (Boursier et al. 
2016; Schwimmer et al. 2019; Zhu et al. 2013), alcoholic 
liver disease (ALD) (Bajaj 2019), cirrhosis and its complica-
tions (Chen et al. 2011). Animal studies have demonstrated 
the transferrable phenotype of NAFLD (Yuan et al. 2019) 
and ALD (Llopis et al. 2016) via the transplantation of 
disease-associated fecal microbiota (fecal microbiota trans-
plant, FMT). Reversely, modulation of the microbiota could 
help ameliorate liver injury (Dhiman et al. 2014; Liu et al. 
2019). These observations support a causal contribution of 
microbiota to the pathogenesis of liver diseases. Further-
more, the gut microbiome has been reported to influence the 
success rate of solid organ transplantation, including renal 
and intestinal transplantation (Ardalan and Vahed 2017; 
Chenyang Wang 2018), and hematopoietic stem cell trans-
plantation (Peled et al. 2020).

From a perspective view, we herewith hypothesize that 
the gut microbiome is an important determinant for the 
development of liver graft fibrosis and that restoration/
manipulation of the gut microbiome after pediatric LT can 
mitigate or even prevent post-LT graft fibrosis. Microbial 
dysbiosis is already present in pediatric patients with end-
stage liver diseases. Due to the cross-talk along the gut-
liver axis, we expect a feed-back regulation between the gut 
microbiota and the liver. After LT, altered microbial com-
position and/or function can be ameliorated or even reversed 
due to the restoration of liver function. In turn, balanced gut 
microbiome is essential to maintain normal liver function. 
However, the microbial composition/function may not be 
fully restored after LT. If alterations persist post-transplanta-
tion, we hypothesize that they contribute to the development 
of graft fibrosis. This review aims to provide an overview of 
graft fibrosis after pediatric LT, to summarize the current-of-
state discoveries of the gut microbial associations before and 
after LT, to discuss potential mechanisms underlying the role 
of the gut microbiome in the development of graft fibrosis, 
and to suggest microbiome-targeted approaches to alleviate 
fibrosis. Finally, we propose an experimental framework to 
explore this perspective.

Graft fibrosis after pediatric LT

According to the primary location in the hepatic acinus, 
graft fibrosis has been differentiated into portal, sinusoidal 
and centrilobular fibrosis (Venturi et al. 2014). The differ-
ent locations of fibrosis have been associated with different 
biochemical profiles and risk factors. Portal fibrosis has been 
correlated with abnormal liver function, prolonged ischemia 
time, deceased donor grafts, and a history of PTLD or rejec-
tion while sinusoidal fibrosis was related to biliary compli-
cations and abnormal liver function (Baas et al. 2017; Rhu 
et al. 2020; Venturi et al. 2014). Centrilobular fibrosis was 
associated with vascular complications, presence of autoan-
tibodies, gamma-globulins levels, donor factors, and history 
of PTLD (Rhu et al. 2020; Venturi et al. 2014). Autoantibod-
ies are immunoglobulins that recognize host antigens and 
commonly associate with chronic liver injury. The presence 
of centrilobular inflammation and fibrosis therefore would 
suggest some form of chronic rejection in the allograft 
(Egawa et al. 2012; Hassoun et al. 2004; Sundaram et al. 
2006). Baas et al. (2017) confirmed the high prevalence of 
fibrosis post-LT and reported associations of the three acinar 
locations of fibrosis with different clinical variables, indi-
cating different mechanisms involving in graft fibrosis. For 
example, chronic, low-grade rejection could be involved in 
the development of graft fibrosis (Feng et al. 2018; Yamada 
et al. 2012). Graft rejection is mediated via pathways of 
allorecognition, the processing and presentation of donor 
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antigens to recipient cells. Especially, chronic rejection can 
contribute to graft injury via antibody-mediated or T cell-
mediated mechanisms (Lee 2017; Tedesco and Grakoui 
2018).

Several observations do support the contribution of 
antibody-mediated immunity processes to the develop-
ment of fibrosis. For example, donor-specific antibodies 
(DSA), either present before transplantation or de novo 
generated after transplantation, is associated with both 
chronic rejection and graft fibrosis (Jackson et al. 2020; 
Miyagawa-Hayashino et al. 2012; Tokodai et al. 2018). 
Post-transplant de novo DSA are associated with a highly 
mismatched graft and/or with under-immunosuppression 
(Zhang 2018). According to this concept, increasing immu-
nosuppression would be expected to inhibit graft rejec-
tion and thereby attenuate fibrosis in pediatric LT patients. 
However, the benefit of increasing immunosuppression on 
graft histological results has not been unequivocally clear. 
Evans et al. reported that steroid therapy decreased histo-
logical hepatitis, but not the degree of fibrosis (Evans et al. 
2006; Venturi et al. 2014). In a long-term follow-up trial 
focused on pediatric LT (Scheenstra et al. 2009), the graft 
fibrosis was not significantly correlated to either rejection 
or chronic hepatitis, nor to the presence of a calcineurin 
inhibitor in the immunosuppressive regimen. Finally, the 
presence of DSA, as a marker of alloimmunity, has not 
been confirmed in all studies as a predictor of the develop-
ment of fibrosis. Vandevoorde et al. described in patients at 
10 years post-LT that severe fibrosis was present in 11.1% 
of DSA-positive and 10.3% of DSA-negative patients (Van-
devoorde et al. 2018). Thus, although immune phenomena 
may play a role in graft fibrosis, its precise function and 
mechanism, as well as its relative contribution to other 
factors is still unclear.

As indicated above, prolonged cold and warm ischemia 
time was reported as risk factor for portal graft fibrosis after 
pediatric LT (Chanpong et al. 2019; Scheenstra et al. 2009; 
Venturi et al. 2014). Ischemia–reperfusion injury (IRI) has 
long been recognized to induce the release of endogenous 
molecules from apoptotic and necrotic cells, named danger- 
or death-associated molecular patterns (DAMPs), which may 
play a role in fibrogenesis (Mihm 2018). However, it is not 
clear whether this IRI is indeed mechanistically involved in 
“silent” graft fibrosis detected by protocol biopsies years 
after transplantation. Similarly, the mechanisms by which 
high donor age, partial grafts or deceased donor organs spe-
cifically contribute to a higher prevalence of graft fibrosis 
after pediatric LT has not been resolved. (Chanpong et al. 
2019; Scheenstra et al. 2009; Venturi et al. 2014). In sum-
mary, much of the research up to now has been descriptive 
in nature, displaying argumentative results and thus the risk 
factors indicated above still need elucidation of the patho-
genic mechanisms.

Altered microbial composition/function in patients 
undergoing LT

Pediatric patients with end-stage liver diseases, such as due 
to biliary atresia or other cholestatic diseases, often have an 
altered microbial composition (Guo et al. 2018; Wang et al. 
2020a; Wang et al. 2019). Such alteration in the microbi-
ome would possibly lead to gut barrier disruption, to bac-
terial translocation and to triggering of the host’s immune 
and metabolic responses in the liver (De Minicis et al. 2014; 
Fouts et al. 2012). For instance, infants with biliary atresia 
have lower microbial diversity and higher intestinal perme-
ability than healthy infants (Wang et al. 2020a). In particu-
lar, patients showed a decrease in the relative abundance of 
genera which are considered beneficial, i.e., Bifidobacterium 
and Faecalibacterium (Guo et al. 2018; Wang et al. 2019), as 
well as an imbalance in the components of bile acids (Wang 
et al. 2019). The surgical procedure of LT may temporarily 
increase the intestinal permeability and allow some pathogenic 
bacteria to enter the portal or systemic circulation and initi-
ate the immune response (Okumura and Takeda 2018). The 
administration of prophylactic antibiotics and of immunosup-
pressants at the perioperative and early post-LT period can 
also decrease microbial diversity (Kato et al. 2017; Lu et al. 
2013) and induce colonization of multidrug-resistance bacte-
ria (Annavajhala et al. 2019), contributing to the risk of post-
LT infections. Antibiotic treatment showed various effects on 
intestinal permeability upon using different antibiotic classes 
(Tulstrup et al. 2015). Mice with long-term exposure to low 
doses of penicillin, exhibited accelerated fibrogenesis in 
response to a high-fat diet compared with control mice, indi-
cating that the combination of antibiotics and a high-fat diet 
increased liver fibrosis in an NAFLD model (Mahana et al. 
2016). Similarly, in mouse models of chronic liver injury, liver 
fibrosis was more common in germ-free mice than in conven-
tional mice (Mazagova et al. 2015). These data suggested that 
existence of hepatoprotective microbiota might help prevent 
or mitigate liver fibrosis in vivo. In human studies, rifaximin, 
a non-absorbable antibiotic commonly used in advanced liver 
diseases, may exert beneficial impact by shifting the microbial 
functionality (Ponziani et al. 2015). One clinical trial of rifaxi-
min has been proposed to assess the effect of gut microbiota 
on liver fibrosis in humans, however results have not yet been 
published (Madsen et al. 2018).

Restoration of altered microbial composition/
function by LT

So far, studies on the microbial response to LT are scarce 
in pediatric patients. Several LT studies in adults have sug-
gested that LT positively impact on the gut microbiome 
by improving the microbial diversity and composition 
(Table 1). For instance, Sun et al. assessed fecal microbiome 
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in pre-LT and post-LT fecal samples from 9 LT patients, as 
well as in 15 healthy controls (Sun et al. 2017). They found 
that the microbiome in pre-LT patients was significantly dif-
ferent from that in post-LT ones and in healthy controls, 
while no significant difference observed between the latter 
two groups. This study provides indications that LT, at least 
partially, restores the composition of the intestinal micro-
bial community. Compared to pre-LT samples, the post-LT 
microbiome showed a decrease in the relative abundances of 
Actinobacillus, Escherichia and Shigella, but an increase in 
the abundance of Micromonosporaceae and Akkermansia. 
Interestingly, Akkermansia muciniphila is associated with 
gut-barrier integrity and the reduction in the abundance of 
A. muciniphila was correlated with thinning of the mucus 
layer and increased liver inflammation (Everard et al. 2013; 
Grander et al. 2018; Wu et al. 2017). Similarly, Bajaj et al. 
(2017, 2018a) also showed that LT increased microbial 
diversity, decreased potentially pathogenic bacteria taxa, 
such as the genera belonging to Enterobacteriaceae, and 
increased potentially beneficial taxa, such as Ruminococ-
caceae, along with amelioration in cognition and life quality 
of patients.

Contribution of altered microbial composition/
function to graft fibrosis

Generally speaking, LT has a positive impact on the gut 
microbiome (Bajaj et  al. 2017, 2018a; Sun et al. 2017) 
(Table 1). However, some post-LT patients may display 
persistently altered microbial composition/function, which 
in turn influences the liver (Bajaj et al. 2017; Lu et al. 2019). 
Below we discuss several potential underlying mechanisms 
through which persistently altered microbial composition/
function could contribute to the risk of post-LT graft fibrosis 
(Fig. 1).

Translocation of PAMPs due to higher intestinal 
permeability

One mechanism could be that altered microbial composi-
tion results in impaired gut barrier integrity, increases the 
translocation of microbes and microbial products across 
the gut epithelium, such as pathogen-associated molecu-
lar patterns (PAMPs) (Fouts et al. 2012). With increased 
intestinal permeability, harmful pathogens and/or products 
originating from the gut lumen travel across the gut bar-
rier and reach the local mesenteric lymph nodes, which are 
unable to provide an adequate clearance when the amount 
of translocated PAMPs surpasses their surveillance activity 
(Albillos et al. 2020; Fouts et al. 2012). In that condition, 

translocated microbes and their products can translocate to 
the liver through the portal vein, initiating and aggravating 
an innate immune activation in the transplanted organ (Seki 
and Schnabl 2012) (Fig. 2).

PAMPs, i.e., lipopolysaccharide (LPS), microbial DNA, 
peptidoglycans, and lipopeptides, are then recognized via 
pattern recognition receptors (PRRs) in the liver (Chen et al. 
2019; Seki et al. 2007). Toll-like receptors (TLRs), which 
are expressed in all cell types in the liver, are the most stud-
ied PRRs. The interaction between PAMPs and TLRs elic-
its host immunological responses via Kupffer cells, either 
MyD88-dependent or MyD88-independent, resulting in the 
activation of nuclear factor-kappa B (NF-κB) and the pro-
duction of inflammatory cytokines and chemokines (Seki 
et al. 2007). As such, the downstream inflammasome‐medi-
ated pathways (e.g., TGFβ signaling) stimulate the synthesis 
of ECM by hepatic stellate cells (HSCs), potentially leading 
to hepatic inflammation and fibrosis. Several TLR deficient 
mouse strains or cells were protected against liver injury 
and fibrosis (Gabele et al. 2008; Hartmann et al. 2012; Seki 
et al. 2001, 2007), supporting the importance of microbiota 
in mediating liver fibrogenesis.

Imbalanced bile acid metabolism

Bile acids form a class of cholesterol-derived amphipathic 
compounds that circulate between the gut and the liver in 
the so-called enterohepatic circulation. Bile acids have 
important physiological roles in dietary lipid absorption, 
microbiome modulation, metabolism, liver function, and 
bile production (de Boer et al. 2018). A healthy bile acid 
metabolism requires both hepatic and microbial metabolism 
and indeed, an altered microbial composition has been asso-
ciated with corresponding changes in bile acid level or com-
position (Sayin et al. 2013; Wang et al. 2020b). Bile acids 
are the endogenous ligands of farnesoid X receptor (FXR), 
a nuclear bile acid receptor, which enhances the epithelial 
barrier integrity (Gadaleta et al. 2011) and provides nega-
tive feedback on hepatic de novo bile acids synthesis (Li 
et al. 2017; Schumacher et al. 2020). Studies showed that 
FXR agonists exert an anti-fibrotic role in animal models 
via suppression of NF-κB signaling (Verbeke et al. 2016; 
Wang et al. 2008). Imbalance of so-called primary (i.e., syn-
thesized by the liver) and secondary (i.e., having undergone 
structural modifications by the intestinal microbiome) bile 
acids might exert regulatory effects on the liver inflamma-
tory response and the gut barrier function via FXR signal-
ing. Interestingly, in a recent study, the administration of 
probiotics to restore intestinal microbial composition could 
mitigate the liver fibrosis through inhibiting FXR mediated 
hepatic bile acid synthesis (Liu et al. 2019).
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Decreased production of short‑chain fatty acids (SCFAs)

SCFAs, including acetate, propionate and butyrate, are the 
main end products after degradation of dietary fiber by 
gut microbiota and have several beneficial impacts on host 
health. SCFAs have an important role in maintenance of host 
intestinal barrier integrity (Wang et al. 2012), the immune 
system and metabolism (Bach Knudsen et al. 2018; Mörkl 
et al. 2018; Schulthess et al. 2019). The immune regulatory 
function of SCFAs has been described in several studies, 
which involves the activation of NF-ĸB signaling, the pro-
duction of proinflammatory cytokines and the activity of 
regulatory T-cells (Tregs) (Arpaia et al. 2013; Smith et al. 
2013; Usami et al. 2008). Fecal and circulating SCFAs have 
immunomodulatory functions, and have been related to 
type 2 diabetes, inflammatory bowel diseases and NAFLD 
(Ding et al. 2019; Müller et al. 2019; Parada Venegas et al. 
2019). Supplementing dietary of SCFAs or stimulating 
SCFA producing bacteria via probiotic approaches could 
have therapeutic effects (Segain et al. 2000; Weitkunat et al. 
2017). Microbial dysbiosis could also be characterized by 
the reduction of SCFA producing microbiota, which is also 
indicated in adult LT recipients (Lu et al. 2019). If alteration 
in microbial composition/function was not restored post-
LT, several vital functions of SCFAs for the host, includ-
ing maintaining intestinal barrier integrity and immune 

regulation, can be disrupted, which could subsequently lead 
to liver damage.

Modulation of microbial composition/function 
to prevent graft fibrosis

The gut microbiome is to some extent a modifiable entity 
(Caporaso et al. 2011). During early life, children may be 
more sensitive to changing the composition of the microbi-
ome by diet or other factors, due to the still underdeveloped 
microbial colonization in pediatric gut (Derrien et al. 2019). 
Understanding the role of the gut microbiome in the devel-
opment of graft fibrosis post-LT can open new avenues for 
the development of microbiome-based biomarkers for early 
diagnosis and microbiome-targeting approaches for dis-
ease prevention. Such approaches include dietary interven-
tion, administration of probiotics/prebiotics, and even fecal 
microbiota transplantation.

Diet recommendation and nutrition advice post LT

Nutritional support is very crucial in children undergo-
ing LT. Infants with end-stage liver diseases often exhibit 
growth failure due to impaired absorption of nutrition (Yang 
et al. 2017). LT outcomes improve if malnutrition can be 
resolved before surgery and a good nutritional status should 

Fig. 1  Possible mechanisms of persistent dysbiosis in liver fibro-
sis. DAMP damage-associated molecular pattern, ECM extracellular 
matrix, FXR farnesoid X receptor, PAMP pathogen-associated molec-

ular pattern, SCFA short-chain fatty acid, TGFβ transforming growth 
factor β, TLR toll-like receptor
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Fig. 2  Translocation of PAMPs due to higher intestinal permeabil-
ity. Alteration of the intestinal microbiome, caused by liver diseases, 
administration of antibiotics or potential post-LT complications, is 
hypothesized to contribute to the graft fibrogenesis. Thus, the altered 
microbial composition/function leads to increased intestinal permea-
bility and translocation of bacteria along with PAMPs to liver via the 

portal vein. Translocated PAMPs activate TLRs on hepatic Kupffer 
cells to induce the proinflammatory pathways, further resulting in 
the activation of HSCs. HSCs produce the ECM and initiate the liver 
fibrogenesis. ECM, extracellular matrix, HSC hepatic stellate cell, 
PAMP pathogen-associated molecular pattern, TLR toll-like receptor



716 Human Genetics (2021) 140:709–724

1 3



717Human Genetics (2021) 140:709–724 

1 3

be maintained post-LT (Yang et al. 2017). In addition, sup-
plementing fiber and probiotics to LT recipients decreased 
postoperative infections (Rayes et al. 2002). The impact 
of nutrition on fibrosis could (partly) be mediated through 
affecting the microbiome composition or function. Depend-
ent on the age of children, fibers (especially oligosaccha-
rides) are important sources of SCFAs and promote the 
growth of beneficial bacteria. The American Health Foun-
dation recommends that children over 2 years old should 
take as daily amount of fiber their weight in years +5 to 
+10 g/d (Catzola and Vajro 2017). In general, supplementing 
fiber-containing diet post-LT might improve the gut health 
in infants. It is tempting to speculate that this could also 
prevent or mitigate graft fibrosis.

Probiotics and prebiotics

Probiotics refer to living bacteria that can benefit the health 
of the host, such as Lactobacillus and Bifidobacterium. 
Prebiotics are compounds in diet that induce the growth 
or activity of beneficial microorganisms. The beneficial 
role of probiotics and prebiotics in liver diseases has been 
documented in animal and human studies (Dhiman et al. 
2014; Liu et al. 2017; Liu et al. 2019; Shi et al. 2017; Vajro 
et al. 2011). In murine models of liver fibrosis, adminis-
tration of prebiotics reduced fibrosis and inflammation by 
reversing gut dysbiosis, decreasing production of inflam-
matory cytokines and downregulating expression of fibro-
genic genes (Liu et al. 2017; Shi et al. 2017). Lactobacillus 
rhamnosus GG, a specific probiotic strain, prevents bile acid 
associated liver injury and fibrosis in mice (Liu et al. 2019). 
In human studies, probiotic supplementation also showed 
a beneficial effect. Corresponding to animal studies, probi-
otic treatment with Lactobacillus rhamnosus GG in obese 
children (Vajro et al. 2011) revealed a significant decrease 
in alanine aminotransferase, irrespective of changes in BMI 
(body-mass index). In another randomized controlled study, 
children receiving VSL#3 (a mixture of 8 probiotic strains) 
once daily for 4 months showed significant improvement 
in fatty liver disease severity, and a substantial reduction 
in BMI (Alisi et al. 2014). In transplant-related studies, 
administration of probiotics and prebiotics has beneficially 
impacted the liver graft in the short term (Jorgenson et al. 
2018; Rayes et al. 2002). Pre-LT probiotic/prebiotic use 

reduced the postoperative infection rate as well as the length 
of hospitalization and of antibiotic use, based on a meta-
analysis of four controlled studies (Sawas et al. 2015). Early 
biochemical tests of graft function improved although the 
long-term outcome appeared not different (Grat et al. 2017). 
Administration of probiotics in mouse LT model helped 
alleviate the acute rejection after surgery by improving the 
immune parameters, such as Treg cells (Xie et al. 2014). 
Probiotic/prebiotic administration warrants consideration as 
a therapeutic tool to treat gut dysbiosis with minimal side 
effects, and to reconstruct a healthy microbiome community, 
possibly alleviating liver injury and fibrosis.

Fecal microbiome transplant (FMT)

FMT is emerging as a powerful therapeutic approach for 
the treatment of C. difficile infection (Smits et al. 2016), 
as well as in patients with solid organ transplants (Cheng 
et al. 2019b; Kelly et al. 2014; Lin et al. 2018a; Shogbesan 
et al. 2018). LT recipients are more susceptible to C. difficile 
due to immunosuppression therapy, antibiotic treatment, and 
prolonged hospitalizations (Lin et al. 2018b). The efficacy 
and safety of FMT treatment have been proven in several LT 
cases (Lin et al. 2018b; Schneider et al. 2018). Notably, a 
recent multicenter study suggested repeated FMT with/with-
out antibiotics therapy in LT recipients would improve the 
cure rate comparable to immunocompetent patients (Cheng 
et al. 2019a). Moreover, FMT has also been implemented 
for the treatment of metabolic disorders, like type 2 dia-
betes (Vrieze et al. 2012), NAFLD (Yuan et al. 2019), and 
decompensated cirrhosis (Bajaj et al. 2018b). This is based 
on the evidence that the restoration of the gut microbiome 
via FMT can impact on host’s metabolism. In a phase 1 
clinical trial, decompensated cirrhosis patients received 
5 days of broad-spectrum antibiotics followed by FMT from 
a donor enriched in Lachnospiraceae and Ruminococcaceae 
(Bajaj et al. 2018b). In 15 days, FMT has restored the anti-
biotic-associated disruption of microbiota composition and 
improved fecal SCFA and BA profile. Thus we postulate that 
the simultaneous or consecutive transplantation of a healthy 
liver and healthy gut microbiome in patients with end-stage 
liver disease can reduce the risk of infection and help re-
establish the healthy gut-liver axis, thereby increasing the 
prognosis rate of the liver graft.

Experimental framework to study the microbial role 
in fibrosis

As indicated above, the alteration of gut microbiome com-
position/function can be an important determinant in graft 
fibrosis after pediatric LT (Fig. 3a). Despite the high poten-
tial of microbiota-modulating approaches in preventing or 
mitigating graft fibrosis post LT, the supporting observations 

Fig. 3  Experimental framework to understand the role of microbial 
composition/function on the development of graft fibrosis post LT. a 
Hypothesis that altered gut microbial composition/function contrib-
utes to the development of graft fibrosis in pediatric LT; b Experi-
mental framework containing three objectives to systematically evalu-
ate various aspects of the hypothesized role of the gut microbiome on 
graft fibrosis after pediatric LT. FMT fecal microbiota transplant, LT 
liver transplantation, PAMP pathogen-associated molecular pattern; 
SCFA short-chain fatty acid

◂
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obtained so far have all been indirect. To date, there is no 
study evaluating the role of gut microbiota in the develop-
ment of graft fibrosis in pediatric LT. To assess the hypoth-
esis in a targeted study and, if positive, move towards clini-
cal applications, we propose an experimental framework that 
contains three specific objectives to systematically deter-
mine various aspects of the intestinal microbiota on graft 
fibrosis (Fig. 3b).

Objective 1: a longitudinal human study in pediatric liver 
transplant patients to identify the microbial signature 
of graft fibrosis post LT

The prevalence of graft fibrosis is ~ 50% at 1 year after pedi-
atric LT. To identify an early microbial signature of graft 
fibrosis, it is essential to have a longitudinal study up to at 
least 1 year after pediatric LT, including a protocol liver 
biopsy for detailed analysis of liver histology and graft fibro-
sis. Detailed patient’s characteristics should be recorded 
before and after LT, such as age, gender, weight, diet, and 
drug usage. Blood samples can be collected at baseline, as 
well as every 3 months after LT, following a regular stand-
ardized protocol. Fecal samples can be collected more fre-
quently, for instance at baseline and monthly after LT. There 
are two commonly used sequencing technologies to deter-
mine the gut microbial composition: 16 s rRNA sequencing 
and shotgun metagenomic sequencing. 16 s rRNA sequenc-
ing is also known as amplicon sequencing, in which a spe-
cific, variable region of 16 s rRNA gene (e.g., V1, V3 or 
V4 region) is amplified and then subjected to sequencing 
(Weinstock 2012). The shotgun metagenomic sequencing 
refers to whole genome-wide sequencing, while bacterial 
genomes are fragmented to small species for sequencing. 
The use of 16 s rRNA sequencing has been approved to be 
an efficient and cost-effective strategy for microbial profil-
ing. However, metagenomics sequencing clearly has sev-
eral advantages over 16 s rRNA sequencing (Malla et al. 
2019; Tessler et al. 2017). Firstly, 16 s rRNA sequencing 
can only identify bacteria, generally up to the genus level. 
Metagenomic sequencing can identify all kinds of microor-
ganisms at the species and even strain level, including bac-
teria, viruses, and fungi. Secondly, metagenomic sequencing 
identifies the abundance of bacterial genes that can directly 
refer to bacterial functionality, which information cannot 
be directly obtained by 16 s rRNA sequencing. Thirdly, 
metagenomics sequencing offers us an opportunity to iden-
tify unknown organisms via de novo assembling, which is 
impossible for 16 s rRNA sequencing. After metagenomic 
sequencing, various analysis tools, such as MetaPhlan and 
Humman2 (Franzosa et al. 2018; Segata et al. 2012), can be 
employed to identify the abundance of different bacterial 
species and their metabolic pathways. This approach allows 

us to characterize the diversity of the microbial community. 
In such a way, the change of microbial compositions and 
their functional profile after LT can be monitored and it can 
be assessed to what extent the gut microbiome at baseline 
and its changes after transplantation can be associated with 
the occurrence and severity of graft fibrosis. Notably, both 
the development of graft fibrosis and the gut microbiome 
are complex. The possible confounding effects from other 
factors, such as diet and drug usage, need to be taken into 
account in assessing the microbial association with the 
development of graft fibrosis using multivariate analysis.

Objective 2: multi‑omics integration to gain insight 
into the underlying mechanisms

Once the microbial association with graft fibrosis is estab-
lished in objective 1, the next logical step is to understand 
through which mechanistic routes the (persistent or emerg-
ing) altered microbial composition/function contributes to 
the development of graft fibrosis. Multi-omics combined 
with systemic biology approaches have been considered to 
be a powerful approach to decipher the underlying molecular 
basis (Hasin et al. 2017). Firstly, it is important to identify 
microbial products that can impact the host’s immunity and 
metabolism, such as SCFAs, bile acids and PAMPs that 
were discussed above. It needs to be assessed whether graft 
fibrosis-associated microbial alterations are also associated 
with abnormal levels of these microbial products. Secondly, 
it then needs to be understood how these microbial products 
can affect the host, thereby contributing to the development 
of graft fibrosis. This requires deep omics profiling in LT 
patients, including transcriptomics, proteomics, and metabo-
lomics, in addition to the profiling of previously established 
fibrosis risk factors and biomarkers, such as autoantibodies 
(Venturi et al. 2014), serum fibrosis markers (e.g., hyalu-
ronic acid, alpha-smooth muscle actin, tissue inhibitor of 
matrix metalloproteinase) (Varma et al. 2017; Voutilainen 
et al. 2017), proinflammatory cytokines and microRNAs 
(Kelly et al. 2016). A historical approach is needed to iden-
tify all downstream molecular factors that can be affected 
by the gut microbiome, followed by pathway and network 
analysis to converge these factors into molecular pathways. 
Unfortunately, multi-omics integration often encounters 
technical challenges related to statistical methods and power 
issues (Hasin et al. 2017; Misra et al. 2018). Such challenges 
are even more severe as cross-kingdom omics integration 
has been recently proposed to understand host-microbe 
interactions (Chen et al. 2018), in which host omics data 
are integrated with metagenome-based omics data, namely 
meta-transcriptomics, meta-proteomics, and meta-metabo-
lomics. Such an analysis would definitely need a huge sam-
ple size to ensure satisfying analysis power. This highlights 
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the importance of biobanks and large human cohorts in the 
big data era.

Objective 3: moving from associations to causality 
and clinical applications

The last step is to address the postulated causal role of the 
gut microbiome in graft fibrosis. Mouse models can be a 
useful tool to investigate causality, by observing the pheno-
typic consequences of microbiome manipulation in gnoto-
biotic mice (Kubelkova et al. 2016). Several experimental 
mouse models have been developed to study liver fibrosis 
(Yanguas et al. 2016). However, when we use mouse mod-
els to understand host-microbe interactions in humans, the 
differences between human and mouse need to be consid-
ered. For instance, bile acids profiles are remarkably differ-
ent between human and mouse, due to the murine-specific 
cyp2c70 gene that produces α-muricholic acid (MCA) (de 
Boer et al. 2018). Recently, a cyp2c70 knock-out mouse 
model has been developed, with a humanized bile acid pro-
file (de Boer et al. 2020). Such a model, particularly when 
germ-free, would be appropriate to investigate the role of the 
gut microbiome in liver fibrosis via the mechanistic route 
of bile acids. Nevertheless, it is well known that mouse 
models frequently fall short in predicting human physiol-
ogy. In recent years, microfluidic organ-on-a-chip (OoC) 
technology has been emerging as an innovative, animal 
alternative method to study human physiology and disease 
mechanisms (Sun et al. 2019). This technology allows to 
engineer a microfluidic chip and to create a microenviron-
ment for human cells so that they can behave as they do 
inside a human body, thereby recapitulating the physiology 
of a specific organ. Liver-on-a-chip has been employed to 
identify human-specific drug toxicity (Jang et al. 2019). 
Another major advantage of the OoC technology is the pos-
sibility to employ human genetics into disease etiology, by 
combining OoC with human pluripotent induced stem cell 
technology (Rowe and Daley 2019; Workman et al. 2018). 
With the advance in bacterial culture technique (Lagier et al. 
2018), these cutting-edge technologies offer us an opportu-
nity to understand the host-microbe interactions in human 
disease, including graft fibrosis. Such knowledge is badly 
needed for developing microbiome-targeting approaches to 
prevent or at least mitigate the development of graft fibrosis 
and improve the wellbeing of patients.

Conclusions

Pediatric LT is a life-saving option for children with end-
stage liver diseases. However, about of 50% of patients 
develop graft fibrosis within 1 year after transplantation. 
Enormous efforts have been made to find ways to prevent 

or mitigate liver graft fibrosis, unfortunately, so far without 
much success. In recent years, accumulating observations 
suggest that the altered microbial composition/function is 
an important player in liver diseases and possibly is related 
to graft fibrosis after pediatric LT. Here we provide a pro-
spective view on the role of the gut microbiome in graft 
fibrogenesis after pediatric LT and highlight the potential 
of microbiome-based approaches for early diagnosis, pre-
vention and treatment. To realize this potential, collective 
efforts from clinical doctors, bioinformaticians, molecu-
lar biologists and microbiologists are required to test the 
hypothesis and, if positive, to obtain direct evidence and 
to uncover the underlying mechanisms.
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