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X-ray spectroscopy is an important tool for scientific analysis. While the earliest demonstration experi-
ments were realised in the laboratory, with the advent of synchrotron light sources most of the experi-
ments shifted to large scale synchrotron facilities. In the recent past there is an increased interest to
perform X-ray experiments also with in-house laboratory sources, to simplify access to X-ray absorption
and X-ray emission spectroscopy, in particular for routine measurements. Here we summarise the recent
developments and comment on the most representative example experiments in the field of in-house
laboratory X-ray spectroscopy. We first give an introduction and some historic background on X-ray
spectroscopy. This is followed by an overview of the detection techniques used for X-ray absorption
and X-ray emission measurements. A short paragraph also puts related high energy resolution and res-
onant techniques into context, though they are not yet feasible in the laboratory. At the end of this sec-
tion the opportunities using wavelength dispersive X-ray spectroscopy in the laboratory are discussed.
Then we summarise the relevant details of the recent experimental laboratory setups split into two sep-
arate sections, one for the recent von Hamos setups, and one for the recent Johann/Johansson type setups.
Following that, focussing on chemistry and catalysis, we then summarise some of the notable X-ray
absorption and X-ray emission experiments and the results accomplished with in-house setups. In a third
part we then discuss some applications of laboratory X-ray spectroscopy with a particular focus on chem-
istry and catalysis.

� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The field of X-ray spectroscopy underwent a dramatic evolution
during the past decades and there have been enormous develop-
ments and technological improvements, experimentally as well
as in theory and modelling [1,2]. Nowadays X-ray spectroscopy is
employed in almost every thinkable field of technology and
research. To give just a few examples, applications range from fun-
damental research in chemistry [3–8], physics [9–15] and material
science[16,17], to environmental research [18,19], architecture
[20], art [19,21,22], archeology [19,23–25] and industrial applica-
tions [19], to even forensics [19], security systems [26,27] and
astronomy [28–31]. In a scientific context X-ray spectroscopy is
also known as core-level- or core-spectroscopy [32,33] and it has
become an essential tool for the study of a vast number of systems.
Two of the key attributes of X-rays are the intrinsic elemental
selectivity due to the characteristic energy of the core-level transi-
tions and, especially for hard X-rays, the methods are bulk sensi-
tive, referring to the ability to penetrate a material allowing one
to ’look inside’. Over the years many books on core-spectroscopy
have been written making it essentially impossible to create a
complete list, hence we only refer to a few example sources
[1,2,19,32,34] for the interested reader.

Historically, in most cases W.C. Röntgen is with his article Uber
eine neue Art von Strahlen, published in 1895 [35,36], credited for
the discovery of X-rays. For his work he received in 1901 the Nobel
Prize in Physics in recognition of the extraordinary services he has
rendered by the discovery of the remarkable rays subsequently named
after him [37]. However, as Lederman [38] and Grubbé [39] point
out others have used X-rays prior to Röntgen and much of the
ground work had been done several years before by Plücker
(1859) [40,41], Crookes (1875) and Lenard (1893) (both cited by
Grubbé [39]). Nonetheless, in German speaking countries X-rays
are called ’Röntgenstrahlung’ crediting Röntgen as the discoverer
of this new kind of light.

In the early days X-rays were a physical curiosity and mostly
used only for therapeutical or medical applications [39]. The last
years of the 19th and the first decades of the 20th century were
a revolutionary time in physics with a lot of controversy [42]. Dur-
ing these years, among the well-known figures including Planck,
Heisenberg and Einstein many others such as Born [43,44], Som-
merfeld [45,46] and Bohr [42,47] made significant contributions
laying the foundation of quantum-mechanics and the fundamental
understanding of the atomic structure. This was the beginning of
modern physics and core spectroscopy as we know it today.

One of the fundamental discoveries relevant to the field of X-
rays came from Lawrence Bragg and his father William H. Bragg
which they published in 1913 [48]. They systematically studied
The Reflection of X-rays by Crystals, for which they both received
the Nobel price in physics in 1915, and Bragg’s law was subse-
quently named after them. Also in 1913 DeBroglie published his
remarkable article Recherches sur la diffraction des rayons de Rönt-
gen par les milieux cristallins [49] in which he uses Bragg’s law
employing salt crystals (NaCl and K3[Fe(CN)6]) to disperse the
emission of an X-ray tube and to measure one of the first X-ray
absorption spectra (XAS). Other early notable spectroscopic experi-
ments with X-rays were carried out in the laboratory by Coster
[50,51], Sommerfeld [45,46], Siegbahn [52] and Kronig [53] in
the 1920s and 30s.

One of the first reports of an X-ray Emission Spectrum (XES),
published by Lundquist [54] in 1925, was based on measurements
using an X-ray tube with a copper anode, operating at approxi-
mately 200 Watts. In this early experiment the dispersive compo-
nent was a natural calcite (CaCO3) crystal employed for the
investigation of the Kb emission lines of phosphorus (P) and potas-
sium (K). This experiment done almost one century ago is in its
essence still one of the important methods in regard to chemical
speciation [3].

As in recent years some notable developments took place with
respect to laboratory X-ray spectroscopy setups, we take the
opportunity here to summarise and comment on the most notable
developments and publications in this field.

1.1. X-ray sources and X-ray detection

Before we discuss the existing in-house setups, we review in
this section the essential techniques required for the production
and detection of X-rays. Due to the fact that hard X-rays can be
used at ambient conditions, while measurements in the soft X-
ray energy range typically require a vacuum setup, we focus on
the hard X-ray energy range. However, some of the sources men-
tioned are employed for the generation of soft X-rays and where
appropriate we also give some references with respect to the soft
energy range.

Nowadays, there are various kinds of X-ray sources. Though we
will focus here on laboratory sources, we cannot omit the most
important source of X-rays today, being the third and fourth gen-
eration of modern and highly brilliant synchrotron light sources,
which have boosted the advance of high-resolution spectroscopies
in the X-ray energy range [17].

In 1974 the first machine designed as dedicated X-ray light
source using a 300 MeV storage ring was built in Japan [55–57].
Though some earlier machines did exist, they were not designed
as light sources and the light was rather used in a parasitic mode.
Since these early days of synchrotron radiation huge improve-
ments have been made. Most importantly the development of
the so-called insertion devices (wigglers, undulators) around 1980
can be considered as one of the big milestones for modern X-ray
spectroscopy leading to a broad application in many research fields
[57–59].

Since then great efforts have been made to improve and use the
various unique properties of synchrotron radiation. For example
the increased intensity across a broad energy range, the high
coherence and low angular divergence (brilliance), but also the
tunability using undulators and sophisticated single and double
bounce monochromators, and taking advantage of the intrinsic
pulsed time structure and high degree of polarisation are impor-
tant properties of synchrotron light [57]. All these properties are



Fig. 1. A comparison of the Flux and coherence for difference X-ray sources. (Image reused from Bartzsch [73] published Open Access/CC3.0).
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often highly desirable making the currently existing third and
fourth generation of synchrotron light sources still irreplaceable
for many applications and without doubt an essential tool in mod-
ern research. Hence, we are now seeing some of theses machines
being either in the planning-phase or in the process to be upgraded
to deliver even higher brilliance and coherence (ERSF upgrade
completed in 2020 [60], SOLEIL upgrade planned for 2022–25
[61], SLS upgrade planned for 2021–24 [62]).

Synchrotrons are and will be for the foreseeable future irre-
placeable for many applications. However, as access to large scale
infrastructure is limited and highly competitive, we are seeing in
the recent years more efforts being made to bring the know-how
from the synchrotron back into the lab in order to simplify access
and to increase the available measurement time. Hence, modern
lab sources are being utilised as a valuable alternative for some
applications, or as a means to allow for preliminary tests for X-
ray spectroscopic studies. Moreover, lab-based spectrometers also
enable to perform different types of experiments, such as for exam-
ple long-term measurements or the study of systems which are
toxic or dangerous and hence not allowed at many synchrotrons.
[63,64] Thus, there are attempts by Lyncean to employ ’mini syn-
chrotrons’ in the lab, which they call Compact Light Source (CLS).
[65–67].

The most common laboratory sources in the hard X-ray energy
range are, due to their relatively simple working principle the clas-
sic, though highly improved [68] X-ray tubes using various anode
materials. It is well known that X-ray tubes convert only about
1% of the energy applied to the anode into radiation, while the
majority of 99% is lost due to the conversion into thermal energy.
[68,2] Thus a 100W tube (f.e. with an acceleration potential of
U ¼ 25 kV and an electron beam current of I ¼ 4 mA) delivers only
1W of light across its entire spectrum. This translates to an order of
magnitude of roughly 1012 � 1013 photons per second integrated
over all energies. The result is, depending on the photon energy
and aperture of the slits used, approximately 102 � 104 photons
per second when monochromatised to a sub-eV bandwidth. The
characteristic lines, however, of course yield notably higher count
rates. Overall this illustrates that X-ray tubes are obviously a very
inefficient source of radiation.
Since most of the energy transferred to the anode dissipates as
heat, in fact, the melting point of the anode material sets the limit
for the maximum power of the tube, making substantial cooling
necessary for high-power X-ray tubes [2]. To address this problem,
rotating and even liquid metal anodes are used as a target in high-
power X-ray tubes [69–71]. An alternative approach is presented
by Tuohimaa et al. [72] who introduced a methanol jet as a non-
metal liquid target excited by an electron beam. A promising
recent development are so-called Line Focus X-ray Tubes (LFXTs)
which employ an extremely small focal spot in one direction. It
is essentially a very thin line allowing for a much more efficient
heat dissipation when compared to conventional point source X-
ray tubes. The photon flux and coherence length of such a LFXT
is predicted to be comparable to inverse Compton scattering
sources (see Fig. 1) [73].

Yet another approach addressing the issue of heat-dissipation is
offered by Sigray, who have developed a microstructured anode
material comprised of arrays of metal, such as copper (Cu) or tung-
sten (W), embedded in a diamond substrate. This allows for highly
localised and large thermal gradients for rapid passive cooling.
Additionally the linear accumulation across the embedded
microstructures notably increases the emitted photon flux pro-
duced by the source [74]. A different approach is to use laser driven
X-ray sources, though they are typically limited to the soft X-ray
energy range E < 500 eV. Their working principle is essentially that
a very intense laser creates a plasma from various target materials,
which then recombines under emission of X-rays, hence they are
called Laser Plasma Source (LPS) or more specifically Laser Plasma
X-ray Source (LPXS) [75–79]. One of the major advantages of a
LPS is that a Laser can create well-defined pulses translating into
pulses of X-rays which then enable time-resolved X-ray
experiments.

An overview with various details on X-ray sources, the detec-
tion of X-rays and more can be found in the textbooks Handbook
of Practical X-ray Fluorescence Analysis [19] and in X-ray Absorption
and X-ray Emission Spectroscopy [2].

Also the detection of X-rays has dramatically improved during
the last century [80]. On the one hand there are Energy Dispersive
X-ray (EDX) detectors, such as solid state Silicon Drift Detectors



Fig. 3. Johansson and von Hamos geometry: Point to point focussing Johansson
geometry, and point to line focussing in the von Hamos geometry. (Image reused
from Bauer [100] published under CC3.0).
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(SDDs) with an energy resolution up to DE � 120eV (due to the
Fano limit [2,81,82]), and even spatially resolving 1D line and 2D
area EDX pixel detectors [83–86]. The latter ones are essentially
a ’color camera’ for the X-ray energy range. Typically EDX detectors
can cover a large energy range, from approximately 1 keV to
40 keV [87].

Wavelength Dispersive X-ray (WDX) detection on the other hand
is commonly used to achieve the highest possible energy resolu-
tion by trading flux for resolution. WDX configurations take advan-
tage of Bragg’s law [48], where a grating or crystal is used to
spatially disperse the photons wavelength selectively. In the soft
X-ray energy range below 2 keV, gratings are usually preferred,
while at higher energies for hard X-rays crystal analysers are used
[76,82]. Under ideal conditions they can reach a sub-eV energy res-
olution in the hard and a few tens of meV in the soft X-ray range
[82,88,89]. Considering the most recent developments at the SIX
beamline at NSLS-II, they now reach a DE ¼ 14meV at an energy
of E ¼ 1 keV, translating to a E=DE � 71500 [90]. The downside of
theWDX based detection is that each (crystal) configuration covers
a relatively small energy range, say a few hundred eV in the soft
energy range to a few keV in the hard energy range. Another aspect
is that due to the cot hBð Þ relation the resolving power decreases
notably for measurements at low Bragg angles hB [91,92]. For
example comparing a measurement at hB ¼ 80� with a measure-
ment at hB ¼ 65� means the resolution at hB ¼ 65� is approximately
2:6 times lower (cot 65ð Þ

cot 80ð Þ � 2:64) than the resolution at hB ¼ 80�.

A flat crystal spectrometer employed in a scanning approach
provides the highest resolution, because curved crystals suffer
from geometrical aberrations related to imperfections in the crys-
tal when it is bent. Though, the strain in the crystal can be reduced
with the ’strip-bent’ method [93]. The spherically bent crystals
(SBC) used in Johann and Johansson Rowland circle geometry give
a luminosity enhancement of the order of 102—103 due to an
increased solid angle, but at the cost of some losses in the resolu-
tion due to the geometrical aberrations [94]. For both types of crys-
tals, flat and curved, two types of spectrometer exists: Laue type
(transmission) and Bragg type (reflection) instruments. Most
reflection type instruments using curved crystal spectrometers
are either operated in the Johann/Johansson geometry where the
crystal is aligned in Rowland geometry, or in the slightly different
von Hamos geometry. The transmission type instruments are most
Fig. 2. Johann vs Johansson crystal illustrating that the focus does not lie exactly on th
from Wiley).
commonly using curved crystals employed in the DuMond and
Cauchois geometry [94].

A reflection type spectrometer essentially consists of three
parts:

1. Source of the emission, e.g. X-ray tube or illuminated sample.
2. Crystal as the wavelength dispersive element.
3. Detector, to measure the X-ray intensity.

The Johann and Johansson geometries are almost identical, the
main difference being the different crystals. Johansson crystals are
bent to twice the radius of curvature of the spectrometer circle,
and the inner surface is then ground away to match the radius equal
to that of the spectrometer circle. The effect is that the angle of inci-
dence equals the angle of reflection while the Bragg angle remains
constant over the entire surface of the crystal. This leads essentially
to a perfect focus with a high diffraction intensity (Fig. 2). Therefore,
a Johansson crystal gives a better resolution over the entire spec-
trometer range than the Johann crystals [95].

While Johansson crystals must be bent and ground, the Johann
crystal is just bent. Hence Johansson crystals are typically more
expensive due to additional difficulties in the manufacturing pro-
cess. More details on the differences between Johann and Johans-
e detector in Johann geometry. (Image reused from Kowalska [96] with permission
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son are discussed in more detail by Kowalska [96] and Kvashnina
[97].

One important attribute in WDX spectroscopy is the effective
solid angle. A larger solid angle directly translates into a higher
intensity due to the collection of more photons. Hence, a common
approach is to combine a number of crystals for a larger effective
solid angle of detection. The first multi-crystal experimental setup
used six crystals and was developed by Wang in 1997 [98]. Today
there are several experimental setups operating at synchrotron
facilities using an arrangement of multiple SBC to increase the solid
angle [99–101]. Alonso-Mori [101] mentions for example the ESRF
(beamline BM30B/CRG-FAME XAS, 5 analysers [102], and beamline
ID26, 5 analyzers [103]), SSRL (beamline 6–2 using 14 analyzers
[4]) the SLS (SuperXAS beamline uses 5 crystals) [104], and NSLS
(beamline X21, uses 9 crystals) [105].

While the detectable countrate can be increased with multiple
crystals, it typically also reduces the resolution due to small
misalignments between each crystal. Furthermore, not all emis-
sions from the sample are necessarily isotropic. Fluorescence emis-
sion is typically assumed to be isotropic, but especially resonant
techniques or experiments with polarised light can show a strong
angular dependence [106–108]. In other words, increasing the
solid angle with multiple crystals comes at the cost of potentially
loosing information of the angle of emission, which can be relevant
for polarisation dependent experiments or resonant techniques
[10,11,13,106–108].
Table 1
Comparison of three experimental XES setups with different sources and WDX spectrome
refers to a commercial laboratory Johann setup from EasyXAFS using an X-ray tube as sourc
II. Most notable are the different acquisition times, where the synchrotron light source allow
ratio.

a) LabXES at TUB/MPI b) EasyXES100 at MPI

Source
Brand Excillium Varex VF80-JM
Type MetalJet X-ray tube
Target/source Ga target W and Pd anode
Max Power 250 W 100 W (Imax ¼ 4 mA; Um

Energies Ga Ka 9:2 keV W La 8:3 keV
Pd Ka 21 keV; La 2:8 ke

Photons/s ca. 2:0 � 109 1011 � 1012 (total count
Optics 50lm Be window 0:5—2mm (source slit in

focussing polycapillary
Spotsize 30� 30 lm2 10� 10 mm2 (without s

Spectrometer
Type von Hamos circular Johann
Mode spatially dispersive scanning mode
Crystal cylindrical HAPG SBCA

(Highly Annealed Pyrolytic Graphite) Ge110, Ge211, Ge310, S
Si553

Crystal radius R ¼ 30 cm (full cylinder) R ¼ 1 m
Dimension radius r ¼ 30 cm, width d ¼ 30 mm radius r ¼ 5 cm
Solid angle 1 . . .3 msr pr2=R2 � 8 msr
Energy range 2:6 . . .9 keV (ClKa - ZnKa) 5:5 . . .12 keV (TiKb - Pb
Resolution DE 1 . . .2eV; E=DE � 4000 0:5 . . .1:5 eV
Spectral

window
20 . . .100 eV 100 . . .200 eV

pressure 10�6 mbar He chamber (up to 1 ba

Detector 25� 25 mm2 Princeton Instruments
CCD

Silicon Drift Detector

Sample-
Environment GloveBox, RT, 70 K Cryo solid samples, RT
Distance to polycapillary: 22:5 mm exit window: 3 . . .5 mm

Typical P Kb1;3 (KH2PO4): 30 h CoKb1;3 (CoO): 30 min
acquisition KKb1;3 (KCl): 7 h CoVtC (CoO): 3–10 h
times CaVtC (CaCO3): 18 h CuVtC (CuII acetat): 12
Another approach, of particular importance for time-resolved
measurements, is the von Hamos geometry. It is based on a cylin-
drically bent crystal (CBC) which disperses the polychromatic light
on a spatially resolving pixel detector (see Fig. 3, right) [3,101,100].

As such, the von Hamos setup enables one to acquire a spec-
trum without any moving components, implying a significant
reduction of the measurement time per spectrum [101]. According
to Bauer this comes at the cost of reduced energy resolution and
lower signal intensities [100], while Alonso-Mori reports the signal
to background ratio to be lower when compared with the one
obtained in a Rowland based spectrometer [101]. However, this
could be due to an insufficiently optimised setup, as Szlachetko
states that the von Hamos setup provides a good energy resolution
often below 1 eV at relatively large Bragg angles [3]. Furthermore, a
von Hamos spectrometer can be built relatively compact due to the
use of short curvature radiuses without loss on energy resolution.
Importantly, both von Hamos and the Johansson geometries, can
yield an absolute energy resolution significantly below the lifetime
of characteristic emission lines, which is crucial for a detailed anal-
ysis of spectral features [3]. Something of more practical relevance
is, that for the Johann/Johansson geometry one does not need a
very tightly focused beam, because slits can be used to optimise
the resolution of the instrument. For example, the Johann/Johans-
son type spectrometer works well with a source spot-size of
approximately 0.5–1 mm, while the von Hamos geometry requires
a good focus in the dispersion direction of approximately 50 lm.
ters. a) refers to a laboratory von Hamos setup with a Ga metal-jet source [5] and b)
e, [123,125] and c) refers to a von Hamos setup installed at the PINK beamline at BESSY
s for much faster measurement due to the higher brilliance and better signal-to-noise

c) PINK XES at BESSY II

–
Synchrotron
U17 cryo undulator

ax ¼ 35 kV) –
2—10 keV (tunable)

V

s) 1013 � 1016; 1014 at 6 keV
XES mode) multilayer DCM (E=DE ¼ 10� 100)

lits) 20 Vð Þ � 500 Hð Þlm2

von Hamossegment
spatially dispersive
cylindrical, dised

i110, Si551, Si100, Si110, Si111, Si310, Ge100, Ge110, Ge111, Quartz
(1012)
R ¼ 25 cm and R ¼ 30 cm
50� 100 mm2

0:005 . . .0:1 msr

La) 2:1 . . .9:5 keV (e.g. PKb. . .Cu Kb)
0:2 . . .0:9 eV
20 . . .100 eV

r) He bag, 10�5 mbar
7� 26 mm2 CCD (2—5 keV),

Mythen (5:5—10 keV), Eiger (4—10 keV)

1 . . .10 mbar, RT, He, 15 K Cryo
exit window: 16 mm

PKb1;3 (KH2PO4): 3 min
PdLa1;2 (Pd foil): 10 s

–24 h RuLb1;2 (Ru(bpy) FP6): 2 h
K Kb1;3 (KCl): 1 min
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Comparing the two geometries in terms of efficiency, the
Johann approach is essentially always wasting a large fraction of
photons, because it is always just looking at one energy at a time
determined by the slit in front of the detector. Thus, though it
introduces other limitations, the vonHamos approach appears to
be the better choice in regard to the detection efficiency and acqui-
sition times as it does not require scanning the spatially dispersed
spectrum, but instead it simultaneously collects the photons of all
energies.

In Table 1 we compare three examples of wavelength dispersive
X-ray (WDX) setups. The table contains the specifications of two
laboratory setups, a von Hamos setup with a metal-jet source
and a commercial Johann setup from EasyXAFS using an X-ray tube
as source, and another von Hamos setup installed at the PINK
beamline at BESSY II. The table gives an overview of the differences
in the configuration, and compares the countrates and energy
ranges covered by the different sources and spectrometers. At
the bottom of the table a few selected examples of typical acquisi-
tion times are given to enable for a rough comparison of lab-based
measurements versus measurements using a synchrotron light
source.

More details on the different geometries can also be found in
the Handbook of Practical X-ray Fluorescence Analysis (page 296ff)
[19]. Focussing on the various detection methods Heald [109] is
comparing different detector techniques. He discusses crystal
analysers and solid state detectors, as well as the combination
of the two, and the application of filters to improve signal
quality.

Since the initial original publications by Johann [110], Johans-
son [111] and von Hamos [112], there have been many publica-
tions [5,2,82,94,100–102,113–124] discussing and illustrating
variations and improvements, though some articles describe set-
ups at large scale facilities such as a free electron laser or syn-
chrotron. This list, however, is just meant to be a starting point
for the interested reader with no claim to be complete or
exhaustive.
1.2. X-ray absorption and emission spectroscopy

Before going into more detail regarding in-house X-ray spec-
trometers, we first introduce the basics of X-ray Absorption Spec-
troscopy (XAS) and X-ray Emission Spectroscopy (XES), and the
nomenclature used in this field.

In XAS the absorption of energy, typically carried by a photon,
promotes an electron from a core-level to an empty orbital, thus
one usually says that ‘‘XAS probes the empty levels”. In XES on the
other hand, one observes the decay of a previously created core–
hole via a radiative decay process from an occupied upper shell,
thus one says that ‘‘XES probes the occupied levels”. This may appear
trivial but it emphasises the complementary nature of the two
spectroscopies. In other words, the two spectroscopies yield com-
plementary information about the local electronic structure as
we will discuss below.

Some recommended sources for those looking for more detailed
information on XAS and XES going beyond our summary, we refer
for example to the textbooks X-ray Absorption and X-ray Emission
Spectroscopy [2] and Core-Level Spectroscopy [32], the article High-
Resolution X-ray Emission and X-ray Absorption Spectroscopy [126]
and with a more specific focus on X-ray Absorption Fine Structure
(XAFS) spectroscopy we recommend the two books XAFS for Every-
one [127] and Introduction to XAFS: A Practical Guide to X-ray
Absorption Fine Structure Spectroscopy [128]. And, with a focus on
catalysis but highly recommended Reactivity of Surface Species in
Heterogeneous Catalysts Probed by In Situ X-ray Absorption
Techniques [129].
1.2.1. XAS background
XAS is a well-established technique which can provide informa-

tion on the oxidation state, site symmetry, and coordination envi-
ronment of a selected analyte in the gas, liquid or solid phase
[2,6,8,3–5,7,32,33,126,128,127,129,130]. Transmission XAS experi-
ments are the most direct way to measure the absorption as it does
not suffer from self-absorption effects, where the latter is the case
in most fluorescence yield detected XAS (FY-XAS) experiments
[33,131,132]. However, transmission experiments can suffer from
other effects, for example the pinhole effect caused by inhomoge-
neous concentrations or densities. Thus they require careful sam-
ple preparation and relatively concentrated samples, ideally in a
light matrix. In contrast dilute samples, or systems with heavy
matrices are better measured with fluorescence yield detected
methods. Transmission XAS is a one-step process which can be
modelled using Fermi’s Golden Rule [133]. Most XAS experiments
are performed at large scale synchrotron facilities acting as a
highly brilliant (low divergence, highly monochromatic, high
intensity) tunable source of photons.

While XAS is a more general term referring to the absorption of
photons, we are focussing here on the specific case where the XAS
is used to study the X-ray Absorption Fine Structure (XAFS). Hence,
in our review the two terms may be used interchangeably unless
specific differences are emphasised. In a typical XAFS experiment,
the incident beam is usually monochromatic and the energy is
scanned through an absorption edge of interest to selectively probe
the unoccupied levels. The importance of the monochromatic exci-
tation in XAFS measurements becomes clear when considering
incident energies E0 above the ionisation level Eion, which leads
to the emission of photoelectrons with a well defined kinetic

energy Ekin ¼ E0 � Eion ¼ p2

2me
and hence a well defined de Broglie

wavelength kB ¼ h
p. In solids the deBroglie wave of the photoelec-

tron is then coherently scattered by the atoms around the analyte,
typically the first few coordination shells around the analyte. These
coherently scattered photoelectron waves are then – dependent on
their energy Ekin - constructively and destructively interfering and
thus modulating the effective absorption cross section of the
absorbing site (XAFS scattering model) [53,33,127,128,134]. This
modulation of the effective absorption cross section creates the
typical oscillations of the intensity often visible in XAFS spectra
which then yield information on the local atomic structure around
the analyte.[134].

However, there are exceptions to this monochromatic incident
beam approach where XAFS spectra can also be acquired when
the incident beam is not monochromatic. The approach is often
called Energy Dispersive XAS (EDXAS), which should not be con-
fused with the ‘energy dispersive’ detection using solid-state
detectors. In fact, one uses a wavelength dispersive curved crystal
polychromator to spatially disperse the polychromatic X-ray beam
and focus it onto the sample (see Fig. 4). In other words, the poly-
chromatic beam is spatially dispersed in such a way that photons
of different energies are passing through the sample at different
angles [8,129,130,135–138].

Hence, perhaps Polychromatic Dispersive XAS (PDXAS) would be
a better name, as it avoids the confusion with the EDX based detec-
tion, while it emphasizes that the polychromatic incident beam is
sent through the sample in a spatially dispersed manner. Such
experiments are especially useful for fast time-resolved XAS exper-
iments where one is interested in the dynamics of a system,
because it enables one to acquire a complete spectrum in a single
shot as the time consuming energy scan of the incident beam is not
required [138,139]. An implicit requirement, for all XAFS measure-
ments but in particular in PDXAS (because the polychromatic
focussing leads to a higher intensity) is that absorbing sites must
be well separated, such that there is no overlap between the photo



Fig. 4. Scheme illustrating the Polychromatic Dispersive XAS approach. (Image reprinted from Bordiga [129] with permission from American Chemical Society.).

Fig. 5. Illustration of the XAFS energy range: On the left an example XAFS spectrum and its separation into the XANES and EXAFS range. And on the right the corresponding
energy level diagram with the associated transitions. (Image reused from Kowalska [96] with permission from Wiley.).

Fig. 6. K-edge XANES of manganese oxides illustrating the almost linear correlation between the oxidation state and the edge position, where an increase of the oxidation
state shifts the absorption edge to a higher energy. (Image republished from Kuo [143] with permission of Royal Society of Chemistry.).
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electron scattering spheres of each site. For example, if the incident
photon density (intensity) would be so high that neighbouring
sites each absorb a photon of different energy, then the photo elec-
tron scattering spheres would overlap and the XAFS structure
would be altered due to the local interferences being disturbed
by the interaction between the de Broglie waves of the neighbour-
ing sites. However, such high intensities are typically only achiev-
able at Free Electron Lasers (FELs) and certainly not (yet)
achievable in the laboratory; this could explain why this aspect
is usually not discussed at all.

XAFS spectra are commonly separated into the X-ray Absorption
Near Edge Structure (XANES) covering the energy range
approximately from 50 eV below to 100 eV above the main absorp-
tion edge, and the Extended X-ray Absorption Fine Structure (EXAFS)
starting above the XANES region reaching up to several hundreds
of eV above the main edge (see Fig. 5).

XANES spectra can be further split into the pre-edge region and
the main edge. The K pre-edge for 3d transition metals corresponds
to the promotion of an electron from the 1s orbital (K-shell) into a
3d orbital (M-shell). Thus, neglecting non-local and local pd-
mixing, it rigorously refers to the local 1s? 3d quadrupole transi-
tion. In reality, however, local pd- and non-local orbital mixing
between the metal and the ligand can be significant and thus
allows the pre-edge to serve as a sensitive probe of the electronic
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structure of the system [12,14,140,141]. This is not only, but
specifically interesting in coordination chemistry and catalysis as
the electronic structure and occupation of the valence shells is
characteristic for these systems [134]. For studies focussing on
the investigation of the pre-edge structure, often resonant tech-
niques such as RIXS or HERFD are used (see Section 1.3).

The K main edge of 3d transition metals refers to the local 1s?
4p dipole transition and for higher photon energies (Eph > Eion) also
to transitions into the continuum as mentioned above
[7,32,128,134,141]. Typical applications of XANES include ‘‘finger-
print analysis” and the determination of the oxidation state of the
analyte. Fingerprinting essentially means that one measures the
XANES of known reference samples and subsequently compares
the shape and structure of the spectrum with the XANES of an
unknown system [142]. Using a more advanced analytic approach
one can also perform a fit with a linear-combination of known ref-
erences to derive the relative contributions in mixed systems. The
determination of the oxidation state, or the change thereof, on the
other hand typically refers to a shift of the main absorption edge
(see Fig. 6) [7,127,128,143–145,134,141]. We want to point out
that there are various ways to determine the ‘‘edge position”, the
most common is to use the maximum of the first derivative of
the XANES spectrum.

Another nice example illustrating the relation between the oxi-
dation and the energy position of various edge features is shown in
a publication from Wong et al. (Fig. 5 therein) [141]. This shift of
the absorption edge can be understood when considering that a
change of the oxidation state implies the addition (chemical reduc-
tion, anionic) or the removal (chemical oxidation, cationic) of an
electron, which means that the local charge changes with respect
to the neutral metal state. The shift of the absorption edge occurs
due to the change of the effective charge Zeff of the nucleus. In other
words, changing a neutral atom to a positive ion notably increases
the binding energy of the core electrons[146]. Hence the energy
required to promote an electron from a core-level into an empty
orbital results in a shift of the absorption edge to higher (oxidation)
or lower (reduction) energy [146,147]. This appears especially con-
clusive when considering that the frontier orbitals (HOMO,LUMO)
lie for the 3d transition metals typically in the 3d shell, while the
K-main edge typically arises from the 1s? 4p dipole transition.
Hence, in a simple picture the edge position in K-edge XANES
can be a direct measure of the analytes valence state
[33,146,148]. Although XANES and EXAFS are part of same exper-
iment, their respective analyses provide complementary informa-
tion. While XANES is sensitive to oxidation state and geometrical
structure around the central atom, EXAFS provides quantitative
information on the local structure defined by bond distances, coor-
dination numbers, and disorder around the probed atom.
Table 2
K-edge XES transitions in the Siegbahn and IUPAC notations [154]. The bottom part of th
metal–ligand hybridised molecular orbitals (MO). The transitions with the comment VtC X

Electron Transitions X-ray Not

Shells Orbitals Siegbahn

L3 ? K 2p3=2 ? 1s Ka1

L2 ? K 2p1=2 ? 1s Ka2

M3 ? K 3p3=2 ? 1s Kb1
M2 ? K 3p1=2 ? 1s Kb3
M5 ? K 3d3=2 ? 1s Kb05
M4 ? K 3d5=2 ? 1s Kb005

3p3d? 1s Kb0

3dL2s? 1s Kb00

3dL2p? 1s Kb2;5
1.2.2. XES background
A XES measurement refers to the observation of radiative

decays after the creation of a core–hole, which is complementary
to the non-radiative decay spectroscopies such as Photo-Electron
Spectroscopy (PES) or Auger Electron Spectroscopy (AES). It is a
second order process as it requires the creation of a core–hole first
before the decay as second step can occur [149]. In general XES
includes many decay processes covering the hard X-ray energy
range filling the lowest core-levels, as well as the soft X-ray range
filling vacancies in shells close to the valence levels. To distinguish
the transitions we shortly introduce the labels and notations used.

In 1911 Barkla was the first to introduce labels for X-ray emis-
sion lines. Assuming that future discoveries would reveal ’more
absorbing and more penetrating’ radiation he wanted to leave alpha-
betically some space in either direction, hence he started with the
letter K for the - as we know today – innermost shell [150]. Subse-
quently the higher shells where then labelled alphabetically, and
these labels are relating to the principle quantum number n as
we use them today, where n ¼ 1;2;3;4 . . . corresponds to the K,L,
M,N,. . .atomic shells. If Barkla would have known already that
there is no lower level, the 1s orbital would have the letter A
instead of K [150]. The most common notations in X-ray spec-
troscopy are the Siegbahn notation [151,152] (first introduced by
Moseley in 1913 [153]) and the IUPAC notation [154]. In Table 2
we summarise some of the transitions in K-edge XES.

However, we want to emphasise that spin–orbit coupling (SOC)
as well as local Coulomb interactions and exchange coupling usu-
ally lead to an orbital mixing, such that their nature is not pure
anymore. Thus the assignment of the orbitals involved in each
transition typically refers to the dominant contribution only
[32,155]. The true contributions strongly depend on the particular
system such that the Kb XES can also have significant metal 4p
contributions as discussed by Tsutsumi et al. [156].

IUPAC explicitly recommends to use the hyphen to separate the
initial and final state levels (indicating the vacancy/electron hole),
thus one should always write for example K-L2;3 or K-L2L3 instead
of KL2;3 or KL2L3. It is furthermore suggested to use K-L2;3 instead of
K-L2L3 in cases where the experimental resolution is not sufficient
to distinguish the K-L2 transition from the K-L3 transition.[154] In
the following we will continue to use the Siegbahn notation as it
allows also for a distinct assignment of non-diagram transitions
involving the molecular orbitals which relate to the so-called
satellites.

The Ka1 and Ka2 lines, often just called Ka lines, refer to the
radiative decay of a K-shell (1s orbital) vacancy being filled with
an electron from the L2L3-shells (2p orbitals) [157]. Thus, it is
dipole allowed having the highest transition probability for a 1s
vacancy, leading the brightest emission in K-edge XES [154]. The
e table lists ’non-diagram’ transitions relating to the 3p3d-exchange interaction and
ES refer to Valence-to-Core decays, also called Kb satellite emissions (see also Fig. 7).

ations

IUPAC Comment

K-L3 brightest emission line in K-edge XES
K-L2 spin–orbit split from Ka1

K-M3 approx 5-10x weaker than Ka1

K-M2 approx 100x weaker than Ka1

K-M5 weak quadrupole, part of VtC XES
K-M4 weak quadrupole, part of VtC XES

Kb1;3 low-energy shoulder, pd exchange
VtC XES, MO with ligand 2s orbitals
VtC XES, MO with ligand 2p orbitals



Fig. 7. Energy level diagram with the associated transitions and illustration of relative intensities of the K emission lines. (Image reused from Kowalska [96] with permission
from Wiley.).

Fig. 8. Kb main lines: Kb1;3 with the Kb0 shoulder in iron compounds illustrate the spin sensitivity due to the local exchange interaction in the M-shell. The shoulder Kb0 is
almost absent in low-spin, while it is pronounced as separate peak on the low-energy side in high-spin compounds. (Image reprinted with permission from Lee [163].
Copyright American Chemical Society.).

Fig. 9. Kb main line spectra of iron compounds demonstrating significant differ-
ences in the appearance of the Kb0 shoulder, despite all compounds being high spin
Fe(III). (Image reprinted with permission from Pollock [159]. Copyright American
Chemical Society.).
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Ka emission is dominated by the 2p spin–orbit interaction, sepa-
rating the Ka1 and Ka2 lines [158–160]. The Kb main emission
results when an electron from a 3p orbital refills a 1s core hole.
The transition is dipole allowed, but with a notably smaller transi-
tion probability with respect to the Ka emission. The Kb main line
consists of the Kb1;3 main peak and a Kb0 shoulder on the low-
energy side as shown in Fig. 7 (right) and Fig. 8. The Kb1;3 doublet
typically appears as a single peak due to the small spin–orbit inter-
action in the 3p valence shell (see Table 2) [158,159,161,162]. The
separation between the Kb1;3 and Kb0 feature is dominated by pd-
exchange coupling, while further perturbation of the spectra
results from a 3p SOC contribution being typically an order of mag-
nitude smaller that the pd-exchange.

A comparison of some iron compounds in high-spin and low-
spin (see Fig. 8) suggests that the appearance of the Kb0 shoulder
could be used as a fingerprint for the spin-state of a system
[163,161,162,96,159,158].

The apparent difference of the Kb0 shoulder between high-spin
and low-spin complexes shown in Fig. 8 can be explained with
the 3p3d exchange coupling in the valence shell, which typically
dominates the other intra-atomic interactions in the valence shell.
This creates a large energy splitting between an unpaired 3p elec-



Fig. 10. Iron Kb satellites: The different ligands appear with notable differences in
the ligand 2p to metal 1s transitions (Kb2;5). The ligand 2s to metal 1s transitions
(Kb00) are shifting by approximately 8 eV for F, O and N ligation. (Image adapted
with permission from Lancaster [175] and Lee[163].).
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tron with the spin parallel to the 3d electrons (Kb1;3 line) and the
states arising from the 3p electrons with anti-parallel spin (Kb0

line) [96,149,160,159,158,162]. Furthermore, through a systematic
analysis of the energy splitting between the Kb1;3 and Kb0 lines one
can acquire information on the number of unpaired electrons and
metal–ligand covalency [96,159].

As illustrated by Pollock et al. [159] with a series of high-spin
iron compounds, the Kb main line, and especially the Kb0 shoulder,
can notably be modulated by the covalency of the ligand (see
Fig. 9). This contradicts the common picture of the pure atomic
nature of the Kb main line, where the Kb main emission is assigned
to local intra-atomic transitions. In fact this shows that one must
consider both, exchange coupling and covalency, when modelling
and analysing the Kb main emission comprising the Kb1;3 and Kb0

lines [159,162].
From a theoretical point of view it has been found that the Kb

main lines can be modelled within a crystal field multiplet
approach, though its empirical nature limits the information one
can extract. Whereas the non-empirical nature of DFT based calcu-
lations offers a significant advantage over the multiplet methodol-
ogy, but it can get computationally more expensive [159].

The Ka and Kb main emissions are nowadays commonly known
and measured routinely. One can extend the transition rules to
include also the molecular orbitals which are created by the
hybridisation between the local atomic orbitals and the ligand’s
orbitals (see Table 2 bottom) [164]. These inter-atomic transitions
will then yield information about the molecular electronic struc-
ture and the ligands involved [100,149,155,157,165,162]. There-
fore we will in the following shortly introduce the so-called
satellite emissions, which have first been reported by Sommerfeld
and Wentzel in the early 1920s as spark lines in the X-ray spectrum
[45,52,166,167].

We do not want to omit that also the Ka decays can show satel-
lites, however, we will focus here on the Kb satellites as they
involve the valence orbitals which are usually of greater interest.
For more information on the Ka satellites we refer to Torres-
Deluigi et al. [157]. The Kb satellite emission lines are the Kb2;5

and Kb00, which appear on the high-energy side of the Kb1;3 main
line (see Table 2 and Fig. 7). Their relative intensity is usually only
10�2 to 10�3 with respect to the Kb1;3 main line. Hence the term
’satellite’, as they are weak lines in the vicinity of a strong parent
emission [157]. These satellites carry ligand information via the
molecular orbitals created by the hybridisation between the metal
and the ligand [76,96,149,155,161,164,168,163,169,162]. In other
words, the satellite emission lines do not correspond to the energy
difference of two energy levels of the same atom, instead they are
transitions involving metal–ligand mixed molecular orbitals (see
Fig. 7 and Table 2).[96] The measurement of these satellite emis-
sions is sometimes also summarised under the term Valence-to-
Core XES (VtC-XES) [100,149,155,165]. However, where appropri-
ate we use the Siegbahn labels Kb2;5 and Kb00 to clearly distinguish
the two.

It has been found that the Kb00 line typically involves the molec-
ular orbitals with ligand ns-type atomic orbitals (e.g. ligand 2s?
metal 1s), while the Kb2;5 line is particularly sensitive to valence
changes of the orbitals and primarily related to molecular orbitals
with ligand np-type atomic character (e.g. ligand 2p ! metal 1s,
see also Fig. 7) [170,96,160,163,164,171,172,149,161,168,173,
174]. To be more clear, it is only ligand 2s/2p for the ligand ele-
ments with atomic number Z ¼ 5 to 9 (B,C,N,O,F), hence, to be
more general we refer above to ligand ns/np orbitals. As Joe et al.
[76] discuss, the centroid position of the Kb2;5 feature for example
relates to the oxidation state and spin state of the analyte. The
centroid and the intensity of the weak Kb00 feature can be used to
identify bond lengths and the element species of the ligands, which
can be understood via the characteristic energy of the ligand’s 2s
level. Though entirely based on different mechanisms, VtC-XES is
somewhat related to EXAFS in the sense that both spectroscopies
yield information on the local atomic structure around the absorb-
ing atom [157,171]. However, while difficult with EXAFS, as dis-
cussed in several publications VtC-XES enables to distinguish
different ligands with similar atomic numbers Z such as carbon
(C, Z ¼ 6), nitrogen (N, Z ¼ 7), oxygen (O, Z ¼ 8) and fluorine (F,
Z ¼ 9) as the example shown in Fig. 10 nicely illustrates
[149,157,160,163,171,175,176].

Other recent studies have shown that the XES satellites can
reveal even more detailed information on the ligand-based valence
molecular orbitals. It has been shown for manganese complexes
that the VtC region (Kb00 and Kb2;5) is sensitive to the relative con-
tributions of the donor orbitals [170]. Another recommended study
on copper complexes shows the sensitivity for the oxygen ligand
O-O bondlengths [173]. A similar study on iron complexes shows
the sensitivity to the nitrogen ligand N-N bondlengths [174].

And finally, although we will not discuss here in detail we also
want to mention that for some elements with higher atomic num-
bers (Z > 28) [177], also the La and Lb emission lines, which fill a
vacancy in the L-shell, can show satellites. This has been already
reported for Tantalum (Ta, Z ¼ 73), Osmium (Os, Z ¼ 76), Iridium
(Ir, Z ¼ 77), Gold (Au, Z ¼ 79) and Uranium (U, Z ¼ 92) by Richt-
myer et al. in the 1930s.[177–179] Especially for those L-
satellites also the Coster-Kronig transitions play an important role,
which refer in an over-simplified way to an intra-shell electron
reordering process [180].

Altogether, XES can provide valuable information on the
absorbing species as well as information about the ligand environ-
ment and covalency, and even discriminate between different
dimers with different protonation states [76,145,162,126,181,100,
155,96,149,157].

Considering that XES often aims at the detection of very weak
signals (satellites), which are often having a relative intensity of
10�12 with respect to the incident flux, it is understandable that
XES came into broader use only with the advent of highly brilliant
synchrotron light sources [5,2]. Therefor most publications on XES
and especially VtC-XES are based on synchrotron experiments.

An overview of XES measurements, although focussing on syn-
chrotron experiments, including an overview of different spec-
trometers can be found in chapter 6 of the textbook X-ray
Absorption and X-ray Emission Spectroscopy [182]. Another good
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article on Kb XES (including satellites) of various iron compounds
discussing high-spin and low-spin states was published by Lee
et al.[163] More details on the analysis of VtC-XES based on syn-
chrotron measurements is discussed by Delgado-Jaime et al.
[155] Two other highly recommendable publications by Pollock
et al. [174,169], also focussing on synchrotron VtC-XES, discuss
its use to better understand the underlying mechanisms via the
study of the chemical structure based on a molecular orbital pic-
ture. While often difficult to obtain with other methods, VtC-XES
allows to (i) assess the identity and number of ligands bound to
a metal center, (ii) quantify the degree of bond activation, and
(iii) get information about the protonation state of donor atoms
[169].

Yet another interesting publication is an article from Torres-
Deluigi et al. [157] While most articles refer only to the Kb satellite
emission, they also discuss the Ka satellites. Focussing on chem-
istry Kawai et al. [183] discuss Chemical effects in the satellites of
X-ray emission spectra. And finally the review by Kowalska et al.
[96] on X-ray absorption and emission spectroscopy is comparing
also high resolution XAS and Total Fluorescence Yield (TFY) mea-
surements, as well as applications for non-resonant XES measure-
ments. A dedicated section gives insights into the different
spectrometer geometries with some illustrations.
1.3. High-Resolution WDX Spectroscopies

Typically WDX techniques are associated with high-resolution
photon-in/photon-out spectroscopies, such as for example High
Energy Resolution Fluorescence Detected X-ray Absorption Spec-
troscopy (HERFD-XAS), or Resonant X-ray Emission Spectroscopy
(RXES) and Resonant Inelastic X-ray Scattering (RIXS).

All these spectroscopies require a monochromatic incident
beam for the excitation of the system, combined with a high-
resolution detection of the subsequent radiative decays. In other
words, a combination of two WDX monochromators is required,
one for the incident beam, and one for the photons emitted from
the sample. And, as one trades in any WDX approach intensity
for resolution, each of the two monochromators leads a notable
reduction of the available flux. Additionally, intrinsic effects such
as the photo absorption cross-section in the first step, and the pho-
ton yield in the second step further reduce the detectable coun-
trate. This altogether emphasizes why resonant photon-in/
photon-out spectroscopies are very photon–hungry, making an
intense source necessary for such measurements. Although in prin-
Fig. 11. Comparison of transmission XAS and non-resonant XES experiments using a WD
is used to disperse the polychromatic emission from the source for the monochromatic ex
spectrum from the sample. (Image reused from Mortensen [125], Published in the Journ
ciple also possible in the lab, to the best of our knowledge, RXES/
RIXS and HERFD-XAS experiments can to date only be performed
at synchrotron facilities where insertion devices deliver a suffi-
ciently intense incident beam [76,184].

In non-resonant XES, however, one can use a ’white light excita-
tion’ such as an X-ray tube spectrum for example, hence the term
’non-resonant’. The polychromatic excitation makes the absorption
step more efficient, and only one WDX spectrometer is required to
enable for a high-resolution detection of the XES. This makes non-
resonant XES a suitable method for laboratory measurements.
However, as shown by Kopelent et al. [185] there can be substan-
tial differences between non-resonant XES and resonant XES (RXES).

In resonant XES (RXES), as well as in RIXS, the excitation energy
is tuned to be in and around a resonance of a specific feature in the
region of interest. This resonant excitation can make quantum
mechanical interference effects relevant (! Kramers-Heisenberg
[13]). But because elucidating resonant techniques in detail goes
far beyond the scope of this review, we would like to refer to other
publications discussing HERFD-XAS and RXES/RIXS in more detail
[9,12,14,15,32,140,186–190,184,103,100,13,185,76,96,162].

Before we focus in the following on laboratory experiments
only, we want to clarify that high-resolution laboratory spec-
troscopy is to date mainly limited by the low intensities of avail-
able laboratory sources. Therefore transmission XAS and non-
resonant XES are the most commonWDX techniques in the labora-
tory. Nonetheless, recent developments show that at least total and
partial fluorescence yield XAS experiments, using an energy dis-
persive Silicon Drift Detector (SDD), are becoming feasible in the
lab [191]
1.4. Opportunities with laboratory-based WDX spectrometers

LaboratoryWDX setups enable one to perform non-resonant XES
with white light excitation and transmission XAS experiments in
the laboratory. Therefor a single dispersive element (crystal) is
used to monochromatise either the incident beam for transmission
XAS experiments or the emitted light in non-resonant XES experi-
ments (see Fig. 11).

Being intrinsically element specific the detection of the
X-ray Absorption Fine Structure (XAFS) and XES has found many
applications in the natural sciences. Due to its ability to penetrate
materials it is especially useful in catalysis for in situ and
operando studies [63]. As discussed above XAFS can give direct
information on the oxidation state, symmetry and coordination
X spectrometer and an X-ray tube as source. In the XAS configuration (left) the SBCA
citation. In non-resonant XES (right) the SBCA is used to disperse the X-ray emission
al of Physics under CC3.0).
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of the analyte. XES, namely the shape of the Kb lines and its
satellites (i.e. Kb00;Kb2;5) can reveal ligand information
[162,100,192,183,96,157,2]. Due to the low photon yield suchmea-
surements are usually performed at a synchrotron to take advan-
tage of the highly brilliant and intense incident beam.

However, the limited availability of measurement time and the
competition for the few large scale facilities, makes it very appeal-
ing to bring the gained knowledge back to the lab. This is especially
interesting for experiments on dangerous or toxic materials such
as the actinides for example, which are only allowed at very few
selected beamlines around the globe. Additionally, long time sta-
bility tests over weeks or even months are virtually impossible to
be realised at a synchrotron.

Assuming a stable source and stable sample, and neglecting
non-linear effects, repeating and averaging several measurements
is equal to a measurement with an increased intensity. Thus one
can counter a lower flux by extending the measurement time when
using a lab-based setup. For example, to reduce the statistical error
by a factor of

ffiffiffiffi
N

p
one has to do N repetitive measurements.

Because noise reduction goes with
ffiffiffiffi
N

p
, i.e. averaging four identical

measurements gives an SNR twice as good; 100 measurements
yield a 10� better SNR. In other words, this quickly becomes very
time consuming and it shall be clear that this requires a stable
and reliable source.

While the acquisition times in the lab can be expected to be
notably higher, the application to solids and liquids is especially
interesting for the study of materials and reactions in homoge-
neous and heterogeneous catalysis. Either in order to do long-
term in situ measurements, or simply to perform preliminary mea-
surements in preparation of and to optimise a measurement at a
synchrotron.

Conventional energy-dispersive X-ray (EDX) spectroscopy using
Silicon-Drift-Detectors (SDDs), typically referred to as X-ray Fluo-
rescence (XRF) spectroscopy, is already for many years a well estab-
lished lab technique for elemental analysis. In recent years the
employment of wavelength-dispersive X-ray (WDX) spectrometers
has become more common in laboratory setups making nowadays
also high-resolution spectroscopies accessible in the lab. The main
limitation are typically the photon sources available in the labora-
tory, as their intensity and especially their brilliance is usually sev-
eral orders of magnitude less with respect to the highly brilliant
synchrotron light sources.[19,193].

The most accessible high-resolution spectroscopy in the labora-
tory is non-resonant XES. The three main reasons are 1.) one can use
the entire white-light spectrum of an X-ray tube for the excitation
implying that no photons are wasted by monochromatizing the
incident beam, 2.) it does not require a normalisation to the energy
dependent incident flux (I0 normalisation) and 3.) it can be used to
measure virtually any kind of sample, including optically thick
samples.

XAS experiments on the other hand, here we are focussing on
XAFS (XANES and EXAFS), are typically performed in transmission
to avoid spectral deformations due to self-absorption [33,131,194].
To realise a transmission XAS measurement an optically thin sam-
ple is required, where a reduction of the intensity to 1=e � 37% at
the main absorption edge is considered to be optimal. For highly
concentrated liquid or powder samples the transmission can in
many cases be adjusted by dilution (i.e. powders are often diluted
with cellulose or boron-nitride, BN). But this is not always possible,
i.e. solid samples such as single crystals, and ordered or multi-
layered structures cannot be diluted in this way. Furthermore,
one must ensure that the sample does not undergo any reaction
with the diluting substance which could result in an altered sam-
ple, i.e. cellulose can be burnt in high temperature in situ experi-
ments, and though BN has a low reactivity, several reaction paths
exist with salts. And BN also reacts at high temperatures (800 �C)
with water forming boron trioxide and ammonia [195].

For low concentration samples (6 3% analyte) on the other hand
the contrast at the absorption edge (height of the step) can be too
small. For samples with a light matrix the sample thickness can be
increased, but the scattering background of the matrix of low-
concentration analyte samples can reduce the signal-noise ratio
(SNR) below an acceptable level. In other words, there are practical
limits to increasing the thickness of such low concentration sam-
ples. Overall this means, that for transmission XAS experiments
very specific sample conditions must be met.

Furthermore, all XAS experiments require an accurate measure-
ment of the incident flux to compute the absorption of the sample
using the Lambert–Beer relation:

IT ¼ I0 � exp ��ð Þ
) � ¼ � ln IT

I0

� �

I0 and IT are the incident and transmitted intensity respectively and
� in the extinction of the sample for the energy (or wavelength)
dependent transmission T ¼ IT

I0
. To avoid confusion, we empathise

that in this form � includes not only the photo-absorption cross sec-
tion s, but also the elastic and inelastic scattering cross section, rela

and rinela respectively [19].
An accurate I0 measurement and subsequent normalisation is a

crucial aspect especially when X-ray tubes are used as a source.
Because in contrast to synchrotron sources the intensity of X-ray
tubes has an intrinsic spectral shape, leading to intensity changes
by several orders of magnitude due to the characteristic lines from
the anode material. In other words, whenever possible one should
choose an anode material where the characteristic lines do not lie
in the energy range where the measurements will be performed
(region of interest, ROI). This does of course still not allow to omit
the I0 normalisation, but on the one hand this helps to avoid satu-
ration effects of the detector (i.e. when a characteristic line of the
anode lies in the ROI) and on the other hand a rather constant inci-
dent flux improves the overall quality of the measured spectrum.

Fluorescence yield (FY) detected measurements (i.e. Total Fluo-
rescence Yield (TFY) or Partial Fluorescence Yield (PFY) using an
SDD) enables to perform XAFS experiments on optically thick sam-
ples, but this requires a sufficiently intense source. Mostly because
the incident beam has to be monochromatic, and the two-step pro-
cess (photon-in/photon-out) with its intrinsic competition
between radiative and non-radiative decays (! photon yield) fur-
ther reduces the detectable intensity. However, as Honkanen et al.
[191] demonstrate, with a sufficiently intense photon source, FY-
XAS experiments are now becoming also accessible in the labora-
tory. And, though often ignored, it has been shown that FY detected
spectra can differ from the real cross section measured in transmis-
sion XAS. Apart from saturation effects and self-absorption, there
are also intrinsic mechanisms related to the fluorescence decay
process which are altering the spectra [132]. This is why transmis-
sion XAS experiments are considered to be the most direct way to
measure the real absorption.

Altogether, this makes nowadays non-resonant XES and trans-
mission XAS experiments the most commonly performed high-
resolution X-ray spectroscopies using an in-house laboratory setup
[134]. As already emphasised above, one major limitation is cer-
tainly the limited incident flux when compared to synchrotron
sources, but also the tunability while maintaining a high intensity,
and hence the lack of brilliance of in-house sources, is a relevant
factor. The lack of photons is also the main reason why photon–
hungry experiments such as HERFD-XAS and RIXS/RXES experi-
ments have still to be performed as large scale synchrotron
facilities.
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2. Recent advancement in laboratory spectrometers setups

Since the last quarter of the 20th century, several attempts have
been made to bring wavelength dispersive X-ray spectroscopy via
advanced techniques back into the lab. Some reports from Stern
et al. in 1980 [196], Williams in 1982 [124] and an interesting
scanning-free approach is reported by Lecante et al. in 1994
[121], all discussing laboratory XAFS spectrometer using the Row-
land approach.

In this section we summarise and comment on the recent
experimental developments using in-house laboratory setups.
We separate the discussion into two parts: One for the von Hamos
geometry and one for the Johann/Johansson geometry. Though
some of the cited publications originate from the same research
group, we present them in each part in a chronological order. An
overview is given in Table 3.

2.1. Laboratory based von Hamos type spectrometers

Recent publications about laboratory von Hamos spectrometers
are from Legall et al. in 2009 [197], Anklamm et al. in 2014 [113]
and Schlesiger et al. in 2015 [198]. Those three all discuss setups
using thin mosaic crystals as dispersive element developed in the
same group. Nemeth et al. in 2016 [199] and Malzer et al. in
2018 [5] are reporting on a scanning-free von Hamos spectrometer
to perform XAFS and XES measurements in the laboratory, where
Malzer specifically emphasises the application of XES in catalysis
research. More details on the last references are given in the
following.

Legall et al. [197] investigate the performance of thin mosaic
crystals for different spectroscopic methods and three different
sources. As X-ray sources they used i) a low-power micro-focus
X-ray tube with an Ag anode (iMOXS MFR; IfG GmbH), ii) the
Table 3
Summary of the setups and experiments discussed in this section.

Authors Experiment Source Spectrometer

Legall et al.[197] XAS & XES X-ray tube,
LPS

HAPG
vHamos

Anklamm et al.[113] XES X-ray tube HAPG
vHamos

Schlesiger et al.[198] XAS X-ray tube HOPG
vHamos

Nemeth et al.[199] XAS & XES X-ray tube vHamos
Malzer et al.[5] XES Ga Jet HAPG

vHamos

Taguchi et al.[200] XAS X-ray tube Johann
Seidler et al.[123] XAS & XES X-ray tube Johann
Mortensen et al.[125] XAS & XES X-ray tube Johann
Mundy et al.[201] XAS X-ray tube Johann
Holden et al.[192] XES X-ray tube Johann
Bes et al.[64] XAS X-ray tube Johann
Hokanen et al.[191] XAS, FY-XAS,

imaging
X-ray tube Johann

Jahrman et al.[202] XAS & XES X-ray tube Johann
Bi et al.[203] XAS & XES X-ray tube Johann

Joe et al.[76] TR-XES LPS calorimeter
Mantouvalou et al.

[204]
TR-XAS LPS eliptical

grating
Sato et al.[205] XES X-ray tube flat crystal
Limandri et al.[206] XES X-ray tube Johann
Anwar et al.[207] TR-XAS LPS HAPG

vHamos
Moya-Cancino et al.

[208]
In situ XAS X-ray tube Johann

Moya-Cancino et al.
[209]

In-situ XAS X-ray tube Johann

Blachucki et al.[92] Simultaneous XAS &
XES

X-ray tube vHamos
mySpot beamline at BESSY II and iii) an ultrafast laser plasma
source (LPS) emitting femtosecond X-ray pulses at the Max-Born-
Institut. For the detection they use 100 lm thick HAPG (Highly
Annealed Pyrolytic Graphite) mosaic crystal films in the von
Hamos geometry to achieve a large solid angle of acceptance. For
thicker crystals they report an increase of the mosaic spread lead-
ing to an increase of the acceptance angle of the spectrometer,
which is favourable in polychromatic single shot spectroscopy.
They compare the EXAFS of a Ti foil measured with their lab setup
to synchrotron measurements emphasising that the flux in the lab
is about two orders of magnitude lower when compared to the
synchrotron measurement. However, this can be an advantage
when beam damage is an issue. Furthermore they compare mea-
surements from other authors with their own and show the Kb
XES spectra for a Ti foil and a TiO2 pellet, both fitted with the
underlying peak structure formed by the various contributions
(e.g. Kb5;Kb1;3;Kb

0;Kb00).
In a dedicated section for Plasma Emission Spectroscopy they

discuss the feasibility of ps and fs timeresolved experiments as
lab sources yield a notably lower flux when compared to syn-
chrotron measurement. Additionally they compare the achieved
intensities of their LPS with that of a 24 W (40 kV/0:6 mA) X-ray
tube. For EXAFS measurements they report an acquisition time of
about 10 h, when using a fs LPS utilising a Ti:Sa laser
(k ¼ 815 nm) having pulse length of t ¼ 40 fs, a pulse energy of
E > 1 Joule after compression and a repetition rate of f ¼ 10 Hz.

Anklamm et al. [113] describe their novel full-cylinder von
Hamos approach with a low power X-ray tube as source. The
reported parameters are: Rsag ¼ 150 mm, HAPG (Highly Annealed
Pyrolytic Graphite) thickness d ¼ 40 lm with a mosaic spread of
0:1� FWHM and a crystal length of l ¼ 30 mm. The image shown
in Fig. 12 illustrates their variation of the typical von Hamos geom-
etry where a full circle of a cylindrically bend crystal is used as dis-
persive element. Subsequently the orientation of the detector is
perpendicular with respect to the rotation axis and thus the spec-
tra appear as circles which can be integrated to obtain the usual
I Eð Þ spectrum.

Using a full-cylinder instead of just a segment increases the
solid angle and makes it a highly efficient spectrometer. It covers
the energy range from 2:5 keV to 15 keV and thus allows for chem-
ical speciation including all Kb emission lines for the 3d transition
Fig. 12. Full cyclinder von Hamos setup: The conventional (top) and the novel
full-cylinder von Hamos geometry (bottom) as described by Anklamm et al. [113]
(Reprinted from Anklamm [113], with the permission of AIP Publishing.).
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metal series. At an energy of 8 keV they report a resolving power of
E=DE ¼ 2000, corresponding to a DE ¼ 4eV at 8 keV. For the mea-
surement of the Kb multiplet spectrum they report typical acquisi-
tion times of about 10 min for bulk materials, and hours for thin
samples with a thickness of less than 1 lm. This shows that the
increased solid angle enables for an excellent performance and rel-
atively short acquisition times when compared to standard Row-
land circle setups.

They have measured several iron Kb spectra of samples with
varying thicknesses (bulk to 0:3 lm) and different acquisition
times (10 min to 180 min). And they demonstrate the spectrome-
ters ability for chemical speciation by measuring the Kb XES for
several titan compounds such as Ti, TiO, Ti2O3 and TiO2. For all
measured samples the Kb1;3 mainline appears virtually noise free,
and also the Kb2;5 can be clearly distinguished. For the TiO2 the
Kb00 line can be observed as a high energy shoulder of the Kb1;3

mainline. The differences between the TiO and the Ti2O3 appear
to be very small in the Kb2;5 region.

Note, the article from Malzer et al. [5] summarised below is
basically the next generation of the Anklamm spectrometer, which
provides a higher resolution by using a larger cylinder.

Schlesiger et al. [198] reports XAFS measurements also using
the von Hamos approach and a novel type of HOPG (Highly Ori-
ented Pyrolitic Graphite) as mosaic crystal. They use HAPG, Highly
Annealed Pyrolitic Graphite, which is a recently developed type of
pyrolitic graphite, but with lower mosaicity needed for high spec-
tral resolving power. This configuration is compared to the results
from other authors [94,123,210–214] and they find the HAPG spec-
trometer to have a higher efficiency and better resolving power.
They report a resolving power of E=DE � 2000, being significantly
lower that what can be achieved with synchrotron based tech-
niques. However, the standard low power X-ray tube as a source
and a standard Peltier cooled X-ray CCD as detector give this labo-
ratory setup the capability to perform XANES and EXAFS measure-
ments in the lab. (More details on HOPG crystals can be found in
the Handbook of Practical X-ray Fluorescence Analysis [19, p. 143ff].).

For a qualitative comparison they measured the XANES of a
6 lm thick Ni foil comparing it to synchrotron measurements.
All features are distinguishable but the synchrotron data show bet-
ter statistics and some spectral features are more pronounced. Fur-
thermore they measured different concentrations of iron (pure Fe,
50% Fe, pure Fe2O3) showing that the spectra can be well distin-
guished, and thus they demonstrate that their spectrometer is well
suited for the determination of mass fractions of chemical species
in mixtures.

Nemeth et al. [199] propose a laboratory von Hamos type X-ray
spectrometer as alternative to synchrotron based measurements. It
allows for rapid transmission XAS experiments, but it is also cap-
able to measure X-ray emission spectra. They use a cylindrically
bent analyser crystal to build a flexible low-cost alternative with
synchrotron grade S/N ratio at reasonable measurements times.
The source is a water cooled X-ray tube with a copper anode oper-
ating at 10 kV and 40 mA, or 40 Watt respectively for XAS and
60 mA or 60 Watt for XES measurements. The data acquisition is
realised with a position sensitive MYTHEN detector (1280 lines
with 50 lm pitch), alternatively an Amptek SDD is used which
shows a significantly lower resolution. The difference is clearly
demonstrated with the XANES of a NiO sample for an approximate
acquisition time of 2h. To test the chemical sensitivity they mea-
sured the K-edge XANES of several Ni compounds: metallic Ni foil,
divalent NiO and NiCl2, trivalent YNiO3, tetravalent K2NiF6. The
spectra are clearly distinguishable allowing to distinguish the oxi-
dation states of nickel similar to synchrotron based measurements.
A similar procedure is applied to a series of cobalt compounds:
metallic Co foil, divalent CoO, mixed valent Co3O4 and trivalent
PrCoO3. The cobalt K-edge XANES, measured in the order of min-
utes to hours, allows to clearly distinguish the oxidation states of
the different compounds. For both cases the differences in the oxi-
dation state are nicely illustrated via the first derivative of the
spectrum allowing a sufficient determination of the edge position.
Furthermore, the Ka XES is measured for a Ni foil, and the Ka and
Kb XES is recorded for a CoO sample taking 70 min for the Ka and
19h for the Kb.

Malzer et al. [5] did high resolution Ka and Kb measurements
using a Gallium-jet X-ray source and a von Hamos full cylinder
optic with Highly Annealed Pyrolytic Graphite (HAPG) as a dispersive
element allowing for the analysis of dilute samples. This can be
considered as the next generation of the Anklamm spectrometer
[113] cited above, providing a higher resolution by the employ-
ment of a larger cylinder. They cover the energy range of
E � 2:3 . . .10 keV and report a resolving power of E=DE ¼ 4000,
corresponding to a resolution of DE ¼ 2 eV at an energy of
E ¼ 8 keV. Their setup is specifically employed for catalysis
research. They illustrate and discuss the power of this configura-
tion by measurements of the sulphur Ka emission in FeS. The spec-
trum, ranging from 2295 eV to 2340 eV, took 1h for the main lines
and 5 h for the satellite lines above 2317 eV. Furthermore they
illustrate the very notable improvements between the current
setup and the prototype setup they have used earlier, by compar-
ing spectra of the copper Ka and iron Kb multiplet including the
satellites in FeS for both setups. Emphasising the relevance of the
sample characteristics on XES resolution, they compare the Ka1;2

lines for thick and thin iron samples, Fe2O3 and Fe(TPP), which is
of particular interest for dilute and low weight-percent (wt%) sam-
ples as they appear in catalysis. A notable difference between thick
and thin samples is that with thin samples one can achieve the
highest possible resolution, while this of course reduces the count
rates. A pure Fe2O3 sample reaches 2 � 106 counts per second at the
Ka1, compared to the dilute iron oxide the count rates are one
order of magnitude below that. In other words, going from thick
to thin samples reduces the intensity by one order of magnitude.
And going from the Ka1 to the Kb main emission line they predict
a reduction of three orders of magnitude. Overall their approach
looks very promising, as the high sensitivity allows for measure-
ments on dilute samples with typical acquisition times of 5 to
10 hours.

2.2. Laboratory based Johann/Johansson type spectrometers

Recent developments using the Rowland configuration SBCA’s
are from Taguchi et al. in 2005 [200], Seidler et al. in 2014 [123]
and Mortensen et al. in 2016 [125]. Where Seidler and Mortensen
are promising ‘‘Turn-key XAFS and non-resonant XES” to be commer-
cially available via their spectrometers sold under the EasyXAFS
brand. Holden et al. in 2017 [215] describe a very compact emis-
sion spectrometer. Bes et al. in 2018 [64] describe a setup very sim-
ilar to the one from Seidler et al. And Honkanen et al. in 2018 [191]
describe a versatile setup which can be used in transmission, fluo-
rescence and imaging mode. More details on these most recent
developments are given in the following.

Taguchi et al. [200] describe the improvements of a Rowland
circle lab spectrometer to measure the K-edge of low Z elements
(Z� 20), such as calcium (Ca), potassium (K), aluminium (Al) and
sulphur (S). They achieve this by replacing the path in air, by vac-
uum or helium which significantly increases the number of pho-
tons reaching the detector. Helium makes Ca K-edge (4038 eV)
measurements fairly easy they report, but K K-edge (3607 eV)
remains difficult. Hence, they set the limit for laboratory measure-
ments to Ti under air, and to Ca when the beam path is under
helium. They find, to be able to measure the K-edges of Al
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(1559 eV) or Si (1838 eV), the entire beam path, including the sam-
ple and detector must be put in vacuum.

Seidler et al. [123] discuss the configuration of the now com-
mercially available laboratory XAS/XES instrument sold under
their EasyXAFS brand. The used source is a gold (Au) target (more
precisely: a gold-coated copper anode) with 50 kV and 0:2 mA,
respectively 10W, and a SBCA with a radius of 1 m. The publication
is mostly discussing and illustrating some of the details of their
commercially available spectrometer. As example application they
show the Co K-edge XANES of a cobalt metal foil and the Kb XES of
a CoO powder sample. In spite of the relatively low-power X-ray
source with 10 W, they report a respectable total flux of the order
of 103 to 104 photons/s and a resolution of about DE ¼ 1 eV.

Mortensen et al. [125], also from EasyXAFS, report on non-
resonant XES measurements with white light excitation realised
with a laboratory setup which they compare with synchrotron data
being additionally broadened by 0:8 eV. The setup uses a Ge(444)
SBCA with a 1 m radius of curvature and an X-ray tube with a gold
(Au) anode operated at 40 kV=200 lA, or 8 W respectively.

They claim to do a critical evaluation of the setup via Co Kb XES
measurements of Co3O4 and LiCoO2 reporting peak count rates of
approximately 5000cts/s for concentrated samples for the Kb1;3

emission with a reproducibility of the measurements within
25 meV or better. They are advertising the instrument for the
determination of the spin and oxidation state using Kb1;3 XES,
though energy shifts due to different sample positions can hinder
an exact analysis. Also the VtC-XES (Kb00 and Kb2;5) appears in good
agreement for these systems with a high Co concentration. Perhaps
one of the most surprising claims is that the low distance to the X-
ray tube source would allow excitation with count rates between
those possible for a monochromatised bending magnet and an
insertion device. Instead of placing source and sample exactly on
the Rowland circle a slit is placed on the Rowland circle, and the
source and sample are moved around 10 mm behind the slit.
Two reasons are given for that, one being that the slit enables to
tune the energy resolution by adjusting the slit’s aperture, and
the other is that a slit is easier to position exactly compared to
placing the source and sample at the exact position on the Rowland
circle. In spite of this reasoning EasyXAFS delivers their spectrom-
eters without adjustable slits. Instead, in XAS mode just the tube’s
and detector’s aperture (d � 10 mm) are used as ’slits’. For XES
measurements three slits for the source end with fixed apertures
of 0:5 mm; 1 mm and 2 mm are supplied.

The first EasyXAFS spectrometers have been delivered through-
out 2018/2019 and first publications can be expected soon to show
if they can in real use-cases successfully complement or even
replace synchrotron measurements.

Mundy et al. [201] used the setup from Seidler [123] to mea-
sure the cobalt (Co) K-edge XANES of some synthesized CoP and
Co2P, CoCl2 and Co metal commercial standards. The measure-
ments are then used to determine the oxidation state of the cobalt,
confirming sufficient resolution for such fingerprint analysis,
which is nowadays a routine task.

Holden et al. [192] report on sulphur Ka XES measurements
using a benchtop high resolution WDX spectrometer. They find
good agreement with synchrotron based measurements, with
low sulphur concentrations of 150 ppm, leading to the conclusion
that their setup is well suitable for characterizations in sulphur
chemistry.

Bes et al. [64] describe a setup similar to the one from Seidler
et al. It is also using the Johann geometry and a comparable
mechanical arrangement, but they use a different source and a dif-
ferent Rowland radius: The setup uses a source with a silver (Ag)
anode operating with 30 kV and 10 mA, translating to a peak
power of 300 W, using a Ge(111) SBCA from XRStech in Johann
geometry with radius of R ¼ 0:5 m.

They report on laboratory-scale uranium (U) L-edge XANES
measurements of UO2, KUO3 and b-UO3, which they consider to
be an efficient and affordable alternative to synchrotron measure-
ments due to the excellent agreement with studies using syn-
chrotron radiation. They discuss three different geometries and
some of the improvements made to the setups and the cylindri-
cally and spherically bent crystal analysers (CBCA, SBCA), stating
that SBCA’s have a larger solid angle and a better resolution in
the hard X-ray energy range. Apart from the satisfying agreement
with synchrotron experiments, they in particular highlight that
the possibility to do such measurement in the laboratory is a huge
advantage for studies on actinides due to the additional challenges
arising from safety concerns of active materials as well as the low
number of synchrotrons/beamline which are prepared for mea-
surements on active samples.

Honkanen et al.[191] describe their Johann-type X-ray absorp-
tion spectrometer using an X-ray tube with a peak power of 1:5 kW
as source. It covers an energy range of 4–20 keV allowing to mea-
sure the K-edges of all 3d transition metals and the L-edges of all
5d transition metals and actinides. The SBCA Johann crystal, which
they obtained from the ESRF, has a bending radius of R ¼ 0:5 m and
a surface diameter of d ¼ 100 mm. The device can be configured in
three different modes: Transmission, fluorescence and imaging.
Respectively, the detector is either a scintillator or an Amptek
FastSDD, and for imaging a Advacam Modupix detector with
256� 256 pixel (each 55� 55 lm). They report an energy resolu-
tions typically in the range of 1–5 eV at 10 keV.

As example they show a K-edge XANES of a cobalt metal foil
measured in transmission being almost identical to a spectrum
obtained at a synchrotron. Furthermore an Ni K-edge EXAFS spec-
trum is shown being also very similar to a synchrotron spectrum. A
Ka fluorescence spectrum of a cobalt (Co) foil was measured and
corrected for self-absorption effects, both showing more noise in
comparison to the transmission spectrum. In addition to the Co
foil, also the K-edges of 100 nm thick CoO and Co3O4 films were
measured in fluorescence which are more noisy in comparison to
the powder reference spectra measured in transmission mode.
Each measured at 20 kV and 40 mA, or 800Watt respectively. To
illustrate the imaging capabilities they depose powders of NiO,
NiO2 and Co3O4 on a potato starch and take pictures at photon
energies below and above the edge, yielding a contrast-rich image
for the corresponding powder.

This setup is particularly interesting, because it uses a high
power X-ray tube as source, which enables for fluorescence yield
detected XAS (FY-XAS) experiments.

Jahrman et al. [202] are reporting on improvements made to
the above mentioned XAS/XES setup from Seidler [123]. Though
the general conceptual design is essentially the same, they report
some design and performance improvements. They specifically
mention reduced degrees of freedom, an increased flux and an
wider Bragg angle to enable measurements of the EXAFS region.
In a dedicated table they compare the acquisitions times of XANES,
EXAFS and XESmeasurements using different X-ray tubes, with pal-
ladium (Pd) and tungsten (W) anodes, and different powers of 50
and 100Watts, combined with various cuts of silicon (Si) and ger-
manium (Ge) based SBCAs. The results are illustrated with various
measurements, such as for example XANES and XES measurements
of battery electrode materials (Li-Mn spinel, Vanadyl phosphate (�-
VOPO4), nickel-manganese-cobalt (NMC) laminates) and ceria (Ce)
based samples, and EXAFS measurements of a Nickel foil which are
partially compared to synchrotron data. Furthermore some
valance-to-core XES for Vanadium (V) and Zinc (Zn), as well as some
XANES and XES spectra of different uranium oxides are presented.



Fig. 13. (Left) Polychromatic Simultaneous Wavelength-Dispersive X-ray Fluorescence (PS-WDXRF) and (right) conventional scanning Wavelength-Dispersive X-ray
Fluorescence (WDXRF). It uses a flat crystal with a slit for a non-scanning configuration. (Image reprinted from Sato [205] with permission from Wiley.).
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Bi et al. [203] are presenting vanadium (V) K-edge XANES spec-
tra which they apparently measured with the setup from Jahrman
[202]. The paper does not give any details on the experimental
setup, however, for the analysis they have combined the results
from surface sensitive XPS measurements with bulk sensitive
vanadium K-edge XANES to study oxygen vacancies in vanadium
pentoxide (V2O5).
2.3. Notable in-house XAS and XES experiments

In this section we discuss some notable XAS and XES experi-
ments, and the combination of the two, in various contexts. Com-
plementing the previous section in here we discuss for example
in situ experiments in chemistry as well as time resolved experi-
ments to illustrate the status quo and what is already possible with
in-house experimental setups.

Joe et al.[76] discuss ‘‘photon-starved XES” experiments using a
tabletop picosecond laser-driven plasma as X-ray source for in-
laboratory XES. They are illustrating the performance via example
measurements detecting the spin-state of 3d electrons in iron
(Fe2O3, FeS2). The presented results do not include any time-
resolved dynamics, but their results demonstrate the potential to
perform time-resolved in-laboratory XES.

The setup they use is very interesting due to their unusual
Laser-Plasma Source (LPS), consisting of a commercial Ti:Sapphire
laser with a repetition rate of f ¼ 1 kHz producing pulses with a
wavelength k ¼ 800 nm and temporal length t ¼ 40 fs (spatial
length l � 40 fs

c0
� 12 lm). The laser in then focussed onto a cylindri-

cal water jet creating a plasma which in turn results in a broad-
band Bremsstrahlung X-ray spectrum covering approximately the
energy range from 1 keV up to 14 keV, with its peak at 7 keV.
The flux on the sample in this configuration is given with approx-
imately 4 � 106 photons/s. Furthermore they use a poly-capillary
lense to refocus the X-rays onto a 75 lm diameter circular spot.
The X-ray source is designed for optical pump/X-ray probe exper-
iments, for which the Laser beam is split prior to the interaction
with the water-jet. While the presented experiment does not make
use of the time-structure, it illustrates general feasibility of such
measurements. Moreover, it shows the combination of such pulses
from a LPS and a micro-calorimeter (superconducting TES) for the
detection which can be used to measure X-ray spectra with suffi-
cient resolution and statistics to reveal low-spin (LS) high-spin
(HS) transitions.

Mantouvalou et al. [204] report on another good example pro-
moting time-resolved XAFS measurements in the lab. They have
successfully employed a laser plasma source (LPS) to measure
the C and N K-edge XAFS structure with a single shot approach
in the soft X-ray energy range using a t ¼ 1:2 ns long X-ray pulse.
With a reported resolving power of E=DE � 950 at the respective
K-edges, they confirm the feasibility of time-resolved measure-
ments independent of large scale research facilities such as a
synchrotron.

Sato et al. [205] describe a very notable flat-crystal setup with-
out the need for mechanical scanning as shown in Fig. 13 (left).
Sato calls it Polychromatic Simultaneous Wavelength-Dispersive
X-ray Fluorescence (PS-WDXRF), emphasising that several wave-
lengths are measured at once.

The PS-WDXRF spectrometer uses an X-ray tube as source and a
flat crystal dispersing the emission onto a Silicon Strip Detector
(SSD). The notable difference is, that a measurement is performed
without any moving parts and a spectrum can be acquired in ’a sin-
gle shot’. The SSD is a MYTHEN 1 K from DECTRIS with 1,280 strips
of dimensions 8 mm� 50 lm. The slit width G was set to 0:1mm.
It is noteworthy, that a point source (e.g. very local excitation of
the sample) would reduce the solid angle of the dispersed beam.
In other words, a sufficiently large footprint of the excitation on
the sample is important and this requires a homogeneous sample.

To illustrate the quality of the spectra they performed several
Kb measurements of reference compounds (e.g. Mn(II) vs Mn(IV),
Cr vs Cr(III) vs Cr(VI)) and a simple analysis comparing the peak
intensity ratios and shifts as indicators.

Limandri et al. [206] did a chemical study and quantitative
analysis based on high-resolution Mn Kb XES measurements using
a Johann type lab spectrometer with a Si(110) crystal (in 440
reflection) with a Rowland circle r ¼ 41 cm and an X-ray tube with
a cobalt (Co) anode running at U ¼ 37 kV and I ¼ 40 mA
(P ¼ 1480Watt). The reported energy resolution near backscatter-
ing at hB � 84� is given as DE ¼ 2 eV at the Mn Kb1;3 main line
(E � 6490 eV), translating to a resolving power of E=DE ¼ 3245.
They measured the Mn Kb main line and the satellites (Kb00;Kb2;5)
where the satellites shape in nicely resolved and used for a subse-
quent analysis. The complete setup (sample, analyzer and detector
is enclosed in an evacuated chamber, confirming that under these
conditions even the weak satellites can be studied without the
need for a synchrotron light source. Especially the combination
of a high powered source and enclosing the setup in an evacuated
environment appears to be the key for such an experimental suc-
cess using an in-house setup.

Anwar et al. [207] used a laboratory femtosecond Laser Plasma
X-ray Source (fs-LPXS) to perform ultrafast IR pump/X-ray probe
experiments in the laboratory. The measurement was performed
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in transmission mode using a Ti:Sapphire laser with a wavelength
of k ¼ 800 nm, a repetition rate of f ¼ 1 kHz, and a pulse length of
t ¼ 50 fs with each pulse having 5–8 mJ hitting a copper (Cu) target
to create Bremstrahlung which is then acting as the X-ray source.
The transmitted beam is dispersed using a highly annealed pyroly-
tic graphite (HAPG) being then sent to either an energy-dispersive
X-ray PIN detector (AMPTEK, XR100CR or an X-ray CCD camera).
The setup is described in more detail in a publication by Iqbal
et al. [216]. They measured the Fe K-edge XANES of a magnetite
(Fe3O4) film observing a 12 eV shift upon IR excitation attributing
the shift to charge transfer effects between the Fe ions. The spectral
shapes are noisy but the shift can be clearly observed. Especially
for fs time-resolved XANES measurements laboratory setups are
very appealing because the experiments are often difficult to per-
form at the synchrotron (synchrotron slicing [217–222]) and the
limited time to execute the measurements is often a crucial factor
in femtosecond synchrotron measurements.

Moya-Cancino et al. [208] reported in January 2019 the first
laboratory-based in situ XANES of a solid Fischer–Tropsch syn-
thesis catalyst (Co/TiO2). This very exciting experiment is using
the setup described above by Honkanen et al. [191]. The measure-
ments are performed in transmission using a capillary cell with
controlled temperature and pressure (T ¼ 523 K, p ¼ 5 bar). Their
setup uses an X-ray tube with a silver (Ag) anode as source, oper-
ated at P ¼ 800 W; U ¼ 20 kV and I ¼ 40 mA respectively, and a Si
(533) SBCA with a radius of R ¼ 0:5 m. A comparison of the Co K-
edge XANES with synchrotron experiments shows an excellent
agreement for the ex-situ and a very good agreement for the
in situ measurements of several Co-based compounds.

This is an important step forward towards lab-based in situ and
operando studies, which is not only relevant for chemistry, but
many applications in research often require studies under in situ
or operando conditions to understand the dynamics of the process.

Yet another article from Moya-Cancino et al. [209] is Elucidat-
ing the K-Edge X-ray Absorption Near-Edge Structure of Cobalt Car-
bide under in situ conditions. The laboratory setup uses an X-ray
tube with a silver (Ag) anode operating at U ¼ 20 kV and
I ¼ 40 mA (P ¼ 800Watt) as source, while the spectrometer
employs a Si(533) SBCA with a bending radius of R ¼ 50 cm in
Johann geometry and a Nal scintillator detector (Details described
by Honkanen et al. [191]). They measured different steps of the
carburization at elevated temperatures. Activation (reduction of
Co3O4 to metal Co) was done at T ¼ 623 K and 1bar in pure H2 flow
and the carburization reaction at T ¼ 523 K, with 1 and 5 bar in
pure CO flow. They combined short term (1–5 hours) synchrotron
based measurements, with longer (up to 75 h) experiments from
Fig. 14. (A) Schematic view of the double von Hamos spectrometer. (B) View of the deve
Published by The Royal Society of Chemistry under CC3.0.).
the laboratory with satisfying resolution, where subsequently the
difference with the reduced (metallic) state Co K-edge XANES
was derived. The difference spectra show a notably higher noise
level for the lab-based measurements but the shapes are over all
sufficient for a subsequent analysis. The main features of the
XANES enable to elucidate the activation and deactivation process
of the Fischer–Tropsch synthesis catalyst.

Błachucki et al. [92] are reporting on a very interesting setup
for simultaneous XAS and XES measurements using a double von
Hamos spectrometer. The X-ray source is an XOS X-beam Superflux
PF X-ray tube with a Molybdenum (Mo) anode and integrated
focussing optics. It can be operated at a maximum voltage of
U ¼ 50 kV and maximum current of I ¼ 1 mA (max power
P ¼ 50 Watt) with a divergence of h � 3�.

Two identical crystals are used, one crystal is dispersing the
transmitted beam to acquire a XAS, and another crystal is dispers-
ing the emission from the sample acquiring a XES. Both crystals
used are cylindrically bent Si(440) with a curvature radius of
R ¼ 25 cm and the 2D detectors are two Andor Newton DO920P
cameras with 1024� 256 pixels (size: 26 lm) equipped with a
d ¼ 250 lm thick Beryllium (Be) window to decrease the pressure
in the sensors’ proximity to p ¼ 10�7 bar at a temperature of
T ¼ �10 �C. The setup itself is enclosed in a box with ambient con-
ditions. The noteworthy aspect of this geometry is that it does not
require any moving components, hence it can be operated without
any motors (see Fig. 14).

The setup can perform measurements on solids, powders and
liquids, and it is due to the ability to tightly focus the beam (mi-
crometer size) compatible with very small amounts of samples
(micro- to milligrams) as well as liquid jets and flow-through cells.

To demonstrate the performance of the setup they have simul-
taneously measured the K-edge XAS and Kb XES of Iron (Fe), Nickel
(Ni) and Copper (Cu) metal foils with a thickness of d ¼ 5 lm each.
For I0 normalisation they measure the incident flux without a sam-
ple for 10 h, while the actual measurements of the samples yield
good spectra after about 2 h, however, increasing the measurement
time to 20 h improved the spectra by a factor of 3 allowing also to
extract detailed information of the valence-to-core region (Kb
satellites).

3. Applications of laboratory-scale XAS and XES and their
relevance in materials chemistry and catalysis research

Laboratory based XAS-XES has the potential for application in a
large number of research fields including e.g. energy, catalysis,
photonics, geology, archaeology, biology and environmental
loped experimental setup without shielding. (Image reprinted from Błachucki [92],
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sciences. In this review we summarise the applications of the cur-
rently available instrumentation in the fields of catalysts andmate-
rials chemistry.

3.1. Obtaining a fundamental understanding of the functionality of
materials at the atomic level

Catalysis and materials chemistry are cross-cutting disciplines
that plays a pivotal role in the chemical and energy conversion
industries. Indeed, at least one catalytic step is involved in the pro-
duction of more than 85% of the chemical products [223,224]. Key
global challenges such as increasing the sustainability of the chem-
ical industry and energy sector rely heavily on the development of
innovative processes that produce less toxic (side) products and
utilise, convert or store renewable energy. As a consequence, con-
siderable efforts are currently undertaken to develop novel, more
effective catalytic or electro-catalytic processes, providing a key
step for cleaner and more sustainable economies. Prominent exam-
ples of current developments are the catalytic conversion of CO2

into value-added chemicals or fuels (such as methanol synthesis
or the dry reforming of methane), the production of olefins and
aromatics from a synthesis gas (Fischer–Tropsch), alkane dehydro-
genation, methane oxidation (partial oxidation of methane to syn-
gas or methanol) and the electrochemical production of H2, to
name a few [225]. A key step towards the development of more
effective (electro-) catalysts is an in-depth understanding of the
relationship between a catalysts structure and its activity to avoid
a cumbersome trial and error approach for their improvement.

To formulate such structure–function relationships, the identi-
fication and characterisation of a catalyst’s active sites (and deacti-
vation pathways) is critical, allowing in turn the possibility to
design more effective catalytic materials yielding higher activities
and selectivities towards the desired product(s). However, the role
of the individual features of typically multi-component industrial
catalysts remains elusive, mainly due to their intrinsic complexity
and difficulties in determining in detail their structure and elec-
tronic properties under operating conditions.

Heterogeneous (electro-) catalysts are complex and dynamic
systems, typically composed of different phases and sites that
exhibit different functionalities. A catalyst’s structure can thereby
range from crystalline, nano-crystalline and amorphous phases to
single sites. Yet, all of these structural features are susceptible to
undergo changes during reaction (and activation) [226]. To charac-
terise such complex and dynamic systems, X-ray absorption spec-
troscopy has been shown to be a very valuable tool since it
provides element-specific information of the local structure, geom-
etry and oxidation state of a target element. Specifically, using
EXAFS analysis the atomic structure within the range of approxi-
mately 1–6 Å can be probed allowing inter-atomic distances, coor-
dination number, and identity of neighbour species around the
absorbing atom to be determined. XANES analysis provides infor-
mation on the oxidation state and coordination geometry of the
species probed [2]. Hence, XAS can shed light on both active or
spectator species, as well as the support or promoters that are pre-
sent in a multi-component catalytic material. Moreover, XAS can
provide information on the local structure of a target element in
a crystalline material with intrinsic local disorder.

3.2. Characterisation opportunities in laboratories to allow for a more
efficient synchrotron beam time usage

XAS measurements are mostly carried out at synchrotron
beamlines due to the high photon flux and tunable energy avail-
able. However, the limited access to these facilities restricts the
number of materials and systems that can be studied by XAS and
potentially hinders the more rapid development of new catalyst
formulations and synthesis procedures. The availability of XAS as
a routine characterisation tool for materials holds great potential
for the advancement of (electro-) catalytic materials and the syn-
thesis routes to yield the desired structural features. The availabil-
ity of XAS and XES at laboratories has the potential to increase the
efficiency of the synchrotron experiments, by performing detailed,
yet routine characterisations on lab-based equipment, while
experiments that require high photon flux such as time resolved
in situ experiments or the study of materials with a low content
of the element of interest, will be studied at the large scale
facilities.

Recently, the availability of laboratory scale XAS and XES sys-
tems has accelerated, ameliorating to some extent the limited
access to synchrotron based instruments. In the last decade, sev-
eral reports using commercial or in-house built lab-based XAS
and XES spectrometers have been published. These works have
demonstrated the usefulness of lab-based XAS instrumentation
for studying catalytic systems, in particular when complemented
by other laboratory techniques or in certain cases with XAS data
collected at synchrotron facilities [208,209,227–245].

3.3. XAS analysis to determine the local structure using laboratory-
based equipment

An excellent illustration of lab-based XAS experimentation has
been the characterisation of iron-based zeolites (Fe-TNU-9, Fe-
TNU-10, and Fe-IM-5), containing both Fe and Al in framework
positions and their steam-activated forms as catalysts for N2O
decomposition [238]. For comparison an isomorphously substi-
tuted Fe-ZSM-5 with a similar Fe content was also studied. The
goal of this work was to examine the effect of the structure of
the zeolite on the nature and distribution of extra-framework iron
species and in turn on their N2O decomposition activity. The speci-
fic activity (per mole of iron) was found to follow the following
order: Fe-TNU-10 < Fe-IM-5 < Fe-TNU-9 < Fe-ZSM-5. A combina-
tion of extra-framework Fe and Al species has been proposed to
be the active sites for N2O decomposition. In addition, steam acti-
vation is required to obtain a highly homogeneous distribution of
oxidic iron species upon Fe extraction from the zeolite framework,
giving steam-activated iron zeolites. Lee et al. [238] were able to
perform EXAFS analysis at the Fe K-edge (range of 2.0–12 Å) of
the as synthesised materials and after steam activation at a rela-
tively low iron loading (1.3–1.7 wt% Fe) using a laboratory XAS
instrument (Rigaku, R-XAS Looper) in transmission mode. The
EXAFS data of steam-activated zeolites revealed that the degree
of extraction of framework Fe atoms depends on the structure type
of the zeolites (Fig. 15).

As-synthesised zeolites, made by a hydrothermal synthesis,
exhibit Fe in the framework. After steam activation, the relative
intensity of the Fe-O peak at R ¼ 2:0 Å, due to framework Fe atoms,
in the Fourier transform becomes higher in the order Fe-TNU-9
�Fe-ZSM-5 	 Fe-IM- 5 < Fe-TNU-10. These EXAFS results were
correlated with the poor N2O decomposition activity of Fe-TNU-
10, since Fe atoms in the zeolite framework are not catalytically
active for this reaction. The results were also compared with Fe-
TNU-9 and Fe-ZSM-5 zeolites prepared by a sublimation method,
showing the presence of Fe2O3 particles in the as prepared mate-
rial. For this class of materials, steam treatment resulted in the fur-
ther sintering of Fe2O3 nanoparticles, which correlates well with
the lower activity of the materials prepared by the sublimation
method. In line with these observations, TEM showed that the
materials prepared by sublimation were characterised by larger
particles that are inactive for N2O decomposition. Combining the
result of EXAFS modelling with TEM, UV–vis spectroscopy and
electron paramagnetic resonance, which provided further evidence
of the Fe species and their dispersion, allowed the authors to con-



Fig. 15. EXAFS Fourier transform data of as-synthesised (left), and steam-activated
(right): (a) Fe-TNU-9(HS), (b) Fe-TNU-10(HS), (c) Fe-IM-5(HS), (d) Fe-ZSM-5(HS), (e)
Fe-TNU-9(S), and (f) Fe-ZSM-5(S). HS stands for hydrothermal synthesis and (S) for
sublimation method. (Figure adapted from Lee [238] with permission from
Elsevier.).
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clude that the zeolite structure determines the nature and distribu-
tion of extra-framework iron species formed during the calcination
and steaming steps, controlling in turn the N2O decomposition
activity of the material.
Fig. 16. (Left): Tungsten (W) L3-edge EXAFS spectra and their Fourier transforms of WO
ZrO2 determined by EXAFS as a function of Y doping. (Right bottom): Product yields of t
ZrO2: (a) benzyl anisole and (b) dibenzyl ether. (Adapted from Yamamoto [233] with pe
Another study that highlights the usefulness of lab-based XAS
was reported by Yamamoto and co-workers. The study focused
on elucidating the structure of tungsten oxide, supported on zirco-
nium oxide doped with yttrium- or ytterbium (WOx/Y(Yb)-ZrO2),
to investigate the mechanism responsible for the strong solid acid-
ity in these materials [233]. To probe the effect of the quantity of
dopant added, on the crystalline phases, acidity and the type of
tungsten species, WOx/Y(Yb)-ZrO2 materials with varying concen-
trations of Y or Yb (xY(Yb)-ZrO2; x ¼ 0� 40) while maintaining
the tungsten loading (15 wt% WO3) were prepared. The materials
were probed for catalytic reactions that require strong acidic cata-
lysts, namely n-butane skeletal isomerisation, alkylation of anisole
with benzyl alcohol and 2-butanol decomposition. Structural
insight into the catalysts was obtained using XANES (W L1-edge)
and EXAFS (W L3-edge and Yb L3-edge) complemented by XRD
and UV–vis. XRD showed an increasing fraction of the tetragonal
zirconia phase with increasing Y (Yb) doping. Assessment of the
local environment around Yb by EXAFS confirmed the incorpora-
tion of Yb into the tetragonal ZrO2 lattice forming a substitutional
solid solution. W L1-edge XANES and pre-edge analysis indicated
that the tungsten species in the samples were in a distorted WO6

octahedral geometry and a quantitative component analysis of
the (W L3-edge) EXAFS spectra by a least-squares method allowed
to determine the relative amounts of tree different tungsten spe-
cies depending on the Y (or Yb) loading: WO3-like species,
Y2(WO4)3 and Y2WO6.The EXAFS results (Fig. 16) showed that the
fraction of WO3-like species was 	 70% in WOx/4Y-ZrO2, which
was the most active catalyst.

The combination of EXAFS, XRD and UV–vis allowed for the
following conclusions to be drawn: i) monoclinic ZrO2 with Y
(Yb)-doping of less than 2 mol% led to large WO3 particles. ii) Y
(Yb) stabilised tetragonal zirconia effectively stabilised small clus-
ters of WO3 and provided strong acidity which is critical to effec-
tively catalyse reactions that require strong acidic catalysts, such
as alkane skeletal isomerisation and the Friedel–Crafts alkylation
and iii) inactive mixed oxides ((WO4)3 and Y2WO6) were formed
when the Y (Yb) doping level exceeded 10 mol%.
3.4. Recent advances in the in situ characterisation using laboratory
instruments for long time-scale dynamics

More recently, lab-based XAS has been extended to in situ stud-
ies [208,209,246]. As alreadymentioned above, Moya-Cancino et al.
x/xY-ZrO2 catalysts (k range: 2.5–11.0 Å�1). (Right top): Tungsten species in WOx/Y-
he alkylation of anisole with benzyl alcohol as a function of the amount of WOx/Y-
rmission from American Chemical Society.).



Fig. 17. In situ XANES spectra during FTS over a Co/TiO2 catalyst (523 K 1 bar and a H2/CO ratio = 0.5) measured I) with a laboratory-based set-up: a) 8.75 h, b) 17.5 h, c)
26.25 h and d) 35 h, and II) at BM26, ESRF at a) 6 h, b) 10 h, c) 12 h and d) 15 h. (Figure adapted from MoyaCancino [208] with permission from Wiley).

Fig. 18. Ka XES spectra obtained from four different biochar samples and linear
combination fits to determine the sulphur speciation of the biochar samples. The
lower energy doublet component represents S with a lower oxidation state (both
organic and sulphidic species) and the higher energy doublet represents sulphur in
a higher oxidation state (sulphate). (Reprinted from Holden [192] with permission
from American Chemical Society.).
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described the development of an in situ setup based on a laboratory
based X-ray spectrometer, and demonstrated its application for the
study of an industrial Co/TiO2 based catalysts for Fischer–Tropsch
(FTS) at 523 K and 5 bar for 200 h time on stream using a quartz
capillary plug-flow reactor [208]. Analysis of the acquired in situ
Co K-edge XANES data by linear combination fitting (using refer-
ence spectra) indicated that cobalt is maintained in its metallic
form under reactive conditions. Only a very small fraction of inac-
tive CoTiO3 phase was detected under FTS conditions. This observa-
tion allowed to rule out the oxidation of cobalt as the main
deactivation pathway. The XANES spectra collected in the labora-
tory set-up were validated by comparison with results obtained
using synchrotron radiation XANES (BM26 beamline, ESRF). How-
ever, the lower signal-to-noise ratio obtain in the laboratory exper-
iment (when compared to the synchrotron data) limited the time-
resolution to 7:8 h per averaged spectra (Fig. 17). The poorer signal
to noise ratio that is achieved using lab-based XAS instruments
means that dynamic features of catalyst restructuring may be bet-
ter assessed by performing experiments at synchrotron based facil-
ities. However, long-term stability tests of catalysts may readily be
explored using laboratory-based equipment, providing the concen-
tration of the photo-absorber is sufficiently high.

A follow-up work by Moya-Cancino et al., based on the same
setup as described above, studied the Co K-edge spectrum of cobalt
carbide (Co2C) during the in situ carburisation of pure metallic
cobalt and by applying a non-negative matrix factorisation (NNMF)
method [209]. The spectrum of pure Co2C was further corroborated
by theoretical calculations. The applied methodology allowed to
provide the reference spectrum of the elusive cobalt carbide phase
formed under in situ FTS conditions. Overall, this work contributes
to the further understanding of the role of cobalt carbides in FTS
that remains highly debated. Moreover, these studies demonstrate
the usefulness of the laboratory based XAS experiments to study
catalysts at relevant conditions.
3.5. XES studies providing information about speciation and
coordination chemistry

XES studies, which can be carried out as well in laboratory-
based instruments, can provide information about speciation and
coordination chemistry that is complementary to XAS
[202,192,5,247,159,2]. An example of such application, published
by Holden et al.[192], is the determination of the sulphur specia-
tion in biochars. The distribution of the oxidation states of sulphur
(S) in different biochar samples was performed by fitting XES spec-
tra using two Ka1;2 doublet components (each doublet is composed
of Ka1 and Ka2 with a fixed intensity ratio) representing two oxida-
tion states (Fig. 18).

One of the fitted components of the XES spectra has a Ka1 at
2309:15 eV and represents sulphate species; the second sulphur
component has a Ka1 at 2307:97 eV and represents sulphur (S)
with a lower oxidation state (attributed to both organic and sul-
phidic species). Using this approach the distribution of the oxida-
tion states of sulphur in the different biochar samples was
quantified. The results were validated by comparison with sulphur
(S) K-edge XANES data (previously acquired at beamline 4–3 of the
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Stanford Synchrotron Radiation Lightsource [248]) and good agree-
ment between the XES and XANES results were reported. Although
XES was not able to resolve between organic and sulphidic species
it proved to be very useful to distinguish sulphur species of lower
and a higher oxidation states and to quantify their distribution.
3.6. Scientific opportunities of laboratory scale XAS-XES and further
developments needed

The studies described in this section showcase the potential of
laboratory-based XAS and XES instrumentation for characterisa-
tion in material chemistry, catalysts and environmental science.
The potential applications are much broader than the examples
covered in this review. Presumably due to the limited number of
laboratory-based equipment, the number of studies are limited,
but they are expected to growth with the increasing number of
available instrumentation and a continuous improvements of their
capabilities. A general limitation of laboratory-based equipment is
the relatively low signal to noise ratio which has to be compen-
sated by long acquisition times. This limits to some extent the
study of very low concentration samples. Nonetheless it is impor-
tant to remark that the use of low X-ray doses can also be an
advantage for samples that are very prone to radiation damage.
Moreover, recent developments have shown the usefulness of
these instruments for in situ studies of processes that occur over
a longer timescale (for instance the structural evolution of cata-
lysts that occurs over days or weeks). Importantly, laboratory-
based spectrometers will not replace synchrotron studies, but they
can complement them, allowing for better sample screening and,
thus, leading to an optimisation of the relatively scarce beamtime
at synchrotrons. This is a key aspect since in many cases there are
no other available techniques to characterise certain materials
aspect (for instance doping) and an efficient use of synchrotron
time will profit enormously by a thorough preliminary assessment
of the samples under study in readily available laboratory-based
instrumentation. Further advances in the field of laboratory based
XAS and XES may include the integration of more powerful X-ray
sources and the implementation of highly efficient detectors,
which can lead to a reduction of the acquisition times.
4. Conclusion and outlook

We have summarized the details of several laboratory setups
and presented examples showing that X-ray spectroscopy in the
laboratory is, for certain applications, becoming a realistic alterna-
tive to the large scale synchrotron facilities.

Various laboratory setups exist already which are employed for
in-house XAS and non-resonant XES experiments. Transmission
XAS experiments are for a broad range of systems feasible in the
lab as long as their optical thickness fulfils the requirements.
Non-resonant XES experiments are possible even on optically thick
samples and they are already widely used for complementary
experimental studies. The relatively low costs of laboratory setups
and the broad range of possible applications makes them an useful
alternative to synchrotron experiments. Either as preliminary
study to strengthen an application for measurement time at a syn-
chrotron, or even for full research quality studies. Also worth to
mention in the fact that laboratory setups are a very nice teaching
instrument, i.e. to explain students the methodology.

Standard XAS and XES measurements on reference compounds
and model systems under ex-situ conditions can routinely be rea-
lised in the laboratory [249]. Though limited to larger time-scales,
the most recent developments prove that also experiments under
in situ and operando conditions can now be realised in the labora-
tory [208]. This will be especially useful in the field of chemistry
and catalysis, but laboratory X-ray spectroscopy can be expected
to soon cover a broad range of fields, similar to the ones mentioned
in the introduction. The applications are often limited to certain
types of samples and sufficiently powerful sources are needed to
deliver the required flux to perform the experiments with reason-
able acquisition times and acceptable SNR. Measurements on sam-
ples with an analyte fraction down to approximately 3 wt% can
now be routinely realised in the laboratory. Highly diluted samples
with a small analyte fraction (� 3 wt%) make in-house experi-
ments still challenging, but with a sufficiently stable source these
difficulties can to some degree be overcome by longer acquisition
times. Low analyte concentrations in a heavy matrix, however, typ-
ically require a fluorescence yield approach, which was until
recently only possible at the synchrotron. But the recent develop-
ments and the employment of high-power X-ray tubes show that
also in-house fluorescence yield experiments are becoming feasi-
ble now [191]. This also illustrates that the limiting factor is in
most cases the source of X-rays, as typical in-house sources cannot
offer the unique capabilities such as the tunability while maintain-
ing high intensities as they are available at a synchrotron.

Considering sources covering the soft and hard X-ray energy
range, the employment of high intensity laser plasma sources, the
new micro-structured anode materials for better heat-dissipation,
and the Line Focus X-ray Tubes appear to be among of the most
promising developments regarding X-ray sources. In particular
the improvements in modern laser plasma sources suggest that
for example spin-state studies using time-resolved XES can soon
be realised routinely in the laboratory [76]. Further, the interesting
development of a compact light source by Lyncean could fill the gap
between X-ray tubes and large scale synchrotrons [67].

However, the very photon–hungry techniques such as high
energy fluorescence detected (HERFD) XAS, resonant XES and res-
onant inelastic X-ray scattering (RIXS) appear to be still beyond the
practical limits of in-house experiments and therefore still have to
be performed at a synchrotron offering the highest brilliances.
Although, to be optimistic, with modern detectors such as a Tran-
sition Edge Sensor (TES) [250,251] some systems with a large
photon-yield and sufficient stability could in principle be mea-
sured in the laboratory if a sufficiently efficient source is available
and long acquisition times can be accepted.

Altogether we conclude that in the next years an increased
number of X-ray experiments will be moving back into the labora-
tory, as in-house X-ray instruments are for certain applications
indeed a valuable alternative to measurements at large scale
synchrotrons.
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Stirnat, Simon Garbe, Axel Klein, Synthesis and structural characterisation of
unprecedented primary n-nitrosamines coordinated to iridium (iv). Dalton
Transactions, 47 (33) (2018) 11445–11454. 10.1039/C8DT02549E. URL
https://doi.org/10.1039/C8DT02549E.

[230] Vera V Butova, Andriy P Budnyk, Alexander A Guda, Kirill A Lomachenko,
Aram L Bugaev, Alexander V Soldatov, Sachin M Chavan, Sigurd Øien-Ø
degaard, Unni Olsbye, Karl Petter Lillerud, et al. Modulator effect in uio-66-
ndc (1, 4-naphthalenedicarboxylic acid) synthesis and comparison with uio-
67-ndc isoreticular metal–organic frameworks. Crystal Growth & Design, 17
(10): 5422–5431, 2017.

[231] Wenhai Wang, Long Kuai, Wei Cao, Marko Huttula, Sami Ollikkala, Taru
Ahopelto, Ari Pekka Honkanen, Simo Huotari, Mengkang Yu, Baoyou Geng,
Mass-Production of Mesoporous MnCo_2)Ø_4) Spinels with Manganese(IV)-
and Cobalt(II)-Rich Surfaces for Superior Bifunctional Oxygen
Electrocatalysis. Angewandte Chemie - International Edition, 56 (47) (2017)
14977–14981. ISSN 15213773. DOI: 10.1002/anie.201708765.

[232] Raghavendra Shavi, Vishwanath Hiremath, Aditya Sharma, Sung Ok Won,
Jeong Gil Seo, Synergistic activating effect of promoter and oxidant in single
step conversion of methane into methanol over a tailored polymer-ag
coordination complex. RSC Advances, 7 (39) (2017) 24168–24176.

[233] Takashi Yamamoto, Aoi Teramachi, Akihiro Orita, Akihito Kurimoto, Takashi
Motoi, Tsunehiro Tanaka, Generation of strong acid sites on yttrium-doped
tetragonal zro2-supported tungsten oxides: Effects of dopant amounts on
acidity, crystalline phase, kinds of tungsten species, and their dispersion, The
Journal of Physical Chemistry C 120 (35) (2016) 19705–19713, https://doi.
org/10.1021/acs.jpcc.6b05388.

[234] Baeck Choi, Woo-Hyun Nam, Dong Young Chung, In-Su Park, Sung Jong Yoo,
Jae Chun Song, Yung-Eun Sung, Enhancedmethanol tolerance of highly pd rich
pd-pt cathode electrocatalysts in direct methanol fuel cells, Electrochimica
Acta 164 (2015) 235–242, https://doi.org/10.1016/j.electacta.2015.02.203.

[235] Tae Hwan Lim, Sung June Cho, Hee Sung Yang, Mark H Engelhard, Do Heui
Kim, Effect of co/ni ratios in cobalt nickel mixed oxide catalysts on methane
combustion, Applied Catalysis A: General 505 (2015) 62–69.

[236] Kazuhide Kamiya, Ryo Kamai, Kazuhito Hashimoto, Shuji Nakanishi,
Platinum-modified covalent triazine frameworks hybridized with carbon
nanoparticles as methanol-tolerant oxygen reduction electrocatalysts,
Nature Communications 5 (2014) 5040.

[237] Iunia Podolean, Victor Kuncser, Nicoleta Gheorghe, Dan Macovei, Vasile I
Parvulescu, Simona M. Coman, Ru-based magnetic nanoparticles (mnp) for
succinic acid synthesis from levulinic acid. Green Chemistry, 15 (11) (2013)
3077–3082.

[238] Jun Kyu Lee, Young Jin Kim, Heung-Ju Lee, Su Hyun Kim, Sung June Cho, In-Sik
Nam, Suk Bong Hong, Iron-substituted tnu-9, tnu-10, and im-5 zeolites and
their steam-activated analogs as catalysts for direct n2o decomposition.
Journal of catalysis, 284 (1) (2011) 23–33. DOI: 10.1016/j.jcat.2011.08.012.

[239] Young Bae Jang, Tak Hee Kim, Min Ho Sun, Jun Lee, Sung June Cho,
Preparation of iridium catalyst and its catalytic activity over hydrazine
hydrate decomposition for hydrogen production and storage. Catalysis
Today, 146 (1–2) (2009) 196–201.

[240] H. Kaneko, Y. Tamaura, Reactivity and xafs study on (1–x) ceo_2)
&s066ndash;xnio (x=0.025–0.3) system in the two-step water-splitting
reaction for solar h2 production. Journal of Physics and Chemistry of Solids,
70 (6) (2009) 1008–1014.

[241] Hiroya Miyauchi, Takashi Yamamoto, Ramesh Chitrakar, Yoji Makita,
Zhengming Wang, Jun Kawai, Takahiro Hirotsu, Phosphate adsorption site
on zirconium ion modified mgal-layered double hydroxides, Topics in
Catalysis 52 (6–7) (2009) 714–723.

[242] Jung-Hyun Park, Bokie Kim, Chae-Ho Shin, Gon Seo, Seok Han Kim, Suk Bong
Hong, Methane combustion over pd catalysts loaded on medium and large
pore zeolites, Topics in Catalysis 52 (1–2) (2009) 27–34.

[243] Takehiko Sakamoto, Hiroyuki Morishima, Akihiro Yoshida, Shuichi Naito,
Marked effect of mo and fe addition upon liquid phase methanol reforming

https://doi.org/10.1002/xrs.2797
https://onlinelibrary.wiley.com/doi/abs/10.1002/xrs.2797
https://onlinelibrary.wiley.com/doi/abs/10.1002/xrs.2797
https://doi.org/10.1364/OE.27.006030
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-5-6030
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-5-6030
https://doi.org/10.1002/cctc.201801822
https://doi.org/10.1002/cctc.201801822
https://doi.org/10.1143/jjap.21.1342
https://doi.org/10.1143/jjap.21.1342
https://doi.org/10.1246/cl.1980.1285
https://doi.org/10.1246/bcsj.55.3911
https://doi.org/10.1246/bcsj.55.3911
https://doi.org/10.1143/jjap.20.l355
https://doi.org/10.1143/jjap.20.l355
https://doi.org/10.1080/08940880701631377
https://doi.org/10.1080/08940880701631377
https://science.sciencemag.org/content/287/5461/2237
https://science.sciencemag.org/content/287/5461/2237
https://doi.org/10.1103/PhysRevLett.76.912
https://doi.org/10.1103/PhysRevLett.76.912
https://doi.org/10.1103/PhysRevLett.97.074801
https://accelconf.web.cern.ch/accelconf/e08/papers/wepc026.pdf
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1120
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1120
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1120
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1125
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1125
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1125
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1125
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1125
https://doi.org/10.1021/acs.jpcc.6b05388
https://doi.org/10.1021/acs.jpcc.6b05388
https://doi.org/10.1016/j.electacta.2015.02.203
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1175
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1175
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1175
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1180
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1180
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1180
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1180
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1205
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1205
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1205
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1205
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1210
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1210
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1210
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215


28 P. Zimmermann et al. / Coordination Chemistry Reviews 423 (2020) 213466
with water over al2o3 supported pt catalysts, Catalysis Letters 131 (3–4)
(2009) 419–424.

[244] Mi-Young Kim, Young San You, Hyun-Sik Han, Gon Seo, Preparation of highly
dispersive platinum catalysts impregnated on titania-incorporated silica
support, Catalysis Letters 120 (1-2) (2008) 40–47.

[245] Sung June Cho, Jun Lee, Yun Sung Lee, Dong Pyo Kim, Characterization of
iridium catalyst for decomposition of hydrazine hydrate for hydrogen
generation, Catalysis Letters 109 (3-4) (2006) 181–186.

[246] Evan P. Jahrman, Lisa A. Pellerin, Alexander S. Ditter, Liam R. Bradshaw,
Timothy T. Fister, Bryant J. Polzin, Steven E. Trask, Alison R. Dunlop, Gerald T.
Seidler, Laboratory-based x-ray absorption spectroscopy on a working pouch
cell battery at industrially-relevant charging rates, Journal of The
Electrochemical Society 166 (12) (2019) A2549–A2555, https://doi.org/
10.1149/2.0721912jes.

[247] Jennifer L. Stein, William M. Holden, Amrit Venkatesh, M. Elizabeth Mundy,
Aaron J. Rossini, Gerald T. Seidler, Brandi M. Cossairt, Probing surface defects
of inp quantum dots using phosphorus kaand kbx-ray emission spectroscopy,
Chemistry of Materials 30 (18) (2018) 6377–6388, DOI: 10.1021/acs.
chemmater.8b02590.

[248] Singfoong Cheah, Shealyn C. Malone, Calvin J. Feik, Speciation of sulfur in
biochar produced from pyrolysis and gasification of oak and corn stover,
Environmental Science & Technology 48 (15) (2014) 8474–8480, https://doi.
org/10.1021/es500073r, PMID:25003702.

[249] G.T. Seidler, D.R. Mortensen, A.S. Ditter, N.A. Ball, A.J. Remesnik. A Modern
Laboratory XAFS Cookbook. Journal of Physics: Conference Series, 712 (1)
(2016). ISSN 17426596. DOI: 10.1088/1742-6596/712/1/012015.

[250] P. Bastia, TES detectors applications for scientific instruments in space and on
the ground, Journal of Instrumentation 14 (10) (Oct 2019), https://doi.org/
10.1088/1748-0221/14/10/c10009, C10009-C10009.

[251] K.D. Irwin, G.C. Hilton, Transition-Edge Sensors, pages 63–150. Springer,
Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-31478-3. DOI:
10.1007/10933596_3.

http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1215
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1220
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1220
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1220
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1225
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1225
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1225
https://doi.org/10.1149/2.0721912jes
https://doi.org/10.1149/2.0721912jes
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1235
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1235
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1235
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1235
http://refhub.elsevier.com/S0010-8545(20)30241-1/h1235
https://doi.org/10.1021/es500073r
https://doi.org/10.1021/es500073r
https://doi.org/10.1088/1748-0221/14/10/c10009
https://doi.org/10.1088/1748-0221/14/10/c10009

	Modern X-ray spectroscopy: XAS and XES in the laboratory
	1 Introduction
	1.1 X-ray sources and X-ray detection
	1.2 X-ray absorption and emission spectroscopy
	1.2.1 XAS background
	1.2.2 XES background

	1.3 High-Resolution WDX Spectroscopies
	1.4 Opportunities with laboratory-based WDX spectrometers

	2 Recent advancement in laboratory spectrometers setups
	2.1 Laboratory based von Hamos type spectrometers
	2.2 Laboratory based Johann/Johansson type spectrometers
	2.3 Notable in-house XAS and XES experiments

	3 Applications of laboratory-scale XAS and XES and their relevance in materials chemistry and catalysis research
	3.1 Obtaining a fundamental understanding of the functionality of materials at the atomic level
	3.2 Characterisation opportunities in laboratories to allow for a more efficient synchrotron beam time usage
	3.3 XAS analysis to determine the local structure using laboratory-based equipment
	3.4 Recent advances in the in&blank;situ characterisation using laboratory instruments for long time-scale dynamics
	3.5 XES studies providing information about speciation and coordination chemistry
	3.6 Scientific opportunities of laboratory scale XAS-XES and further developments needed

	4 Conclusion and outlook
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


