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Abstract
Main conclusion  Stomatal aperture in maize is not affected by exposure to a subtoxic concentration of atmospheric 
H2S. At least in maize, H2S, thus, is not a gaseous signal molecule that controls stomatal aperture.

Abstract  Sulfur is an indispensable element for the physiological functioning of plants with hydrogen sulfide (H2S) poten-
tially acting as gasotransmitter in the regulation of stomatal aperture. It is often assumed that H2S is metabolized into cysteine 
to stimulate stomatal closure. To study the significance of H2S for the regulation of stomatal closure, maize was exposed to 
a subtoxic atmospheric H2S level in the presence or absence of a sulfate supply to the root. Similar to other plants, maize 
could use H2S as a sulfur source for growth. Whereas sulfate-deprived plants had a lower biomass than sulfate-sufficient 
plants, exposure to H2S alleviated this growth reduction. Shoot sulfate, glutathione, and cysteine levels were significantly 
higher in H2S-fumigated plants compared to non-fumigated plants. Nevertheless, this was not associated with changes in the 
leaf area, stomatal density, stomatal resistance, and transpiration rate of plants, meaning that H2S exposure did not affect the 
transpiration rate per stoma. Hence, it did not affect stomatal aperture, indicating that, at least in maize, H2S is not a gaseous 
signal molecule controlling this aperture.

Keywords  Stomata · Transpiration · Signal molecule · Gasotransmitter · Sulfur metabolism · Air pollution

Introduction

Sulfur is an essential macronutrient for plants, which plants 
usually acquire as sulfate via the root (Hawkesford and De 
Kok 2006). After its uptake, sulfate is reduced via several 
intermediates to sulfide, which is subsequently incorporated 
in cysteine via the reaction of sulfide with O-acetylserine 
(OAS), catalyzed by the enzyme O-acetylserine(thiol)lyase 
(OAS-TL; Hawkesford and De Kok 2006). Cysteine func-
tions as the precursor and reduced sulfur donor for the syn-
thesis of other organic compounds.

It is often assumed that sulfur-containing metabolites 
might modulate physiological processes in plants. Hydro-
gen sulfide (H2S) might act as endogenous gasotransmitter 
that affects plant development and stress tolerance (Sirko 
and Gotor 2007; Calderwood and Kopriva 2014; Maniou 
et al. 2014; Hancock 2018). Moreover, H2S might control 
the aperture of stomata (Lisjak et al. 2010, 2011; Scuffi et al. 
2014; Honda et al. 2015; Li et al. 2016; Aroca et al. 2018; 
Zhang et al. 2019). It is assumed that H2S is metabolized 
into cysteine to stimulate the synthesis of abscisic acid 
(ABA), which is the canonical trigger for stomatal closure 
(Batool et al. 2018; Rajab et al. 2019).

The physiological significance of H2S for stomatal closure 
should, however, be questioned. Research with thale cress 
(Arabidopsis thaliana), maize (Zea mays), cabbage (Bras-
sica olerecea), pumpkin (Curcubita pepo), spruce (Picea 
abies), and spinach (Spinacea oleracea) showed that expo-
sure to atmospheric H2S did not affect transpiration rates, 
measured at the whole plant level, at various concentrations 
and under all exposure periods applied (which ranged from 
minutes to days; De Kok et al. 1989; Van der Kooij and De 
Kok 1998; Stuiver and De Kok 2001; Tausz et al. 1998).
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Accordingly, there are at least two caveats pertaining stud-
ies that reported impacts of H2S on stomatal dynamics. First, 
uncontrolled, potentially very high, levels of H2S have been 
used (e.g., Scuffi et al. 2014; Zhang et al. 2019). Sodium 
hydrosulfide (NaHS) has been used as H2S donor and it was 
added to nutrient or tissue incubation solutions at pH < 7.0. 
However, if NaHS is used at this pH range, HS− is rapidly 
converted to gaseous H2S (HS− + H+  ⇄ H2S; pKa = 7.0; Lee 
et al. 2011). Since H2S is rather poorly soluble in water (the 
Henry’s law solubility constant for H2S is 0.086 M atm−1 at 
25 °C), it is quickly released into the atmosphere, where it 
may transiently reach phytotoxic (growth-inhibiting) levels 
(Lee et al. 2011; Riahi and Rowley 2014). H2S may bind to 
metallo-groups in enzymes and other proteins (Beauchamp 
et al. 1984; Maas and De Kok 1988). Reported impacts of 
H2S on stomatal aperture could possibly be the consequence 
of such toxicity, instead of being specifically related to H2S 
functioning as gasotransmitter. One should further bear in 
mind that especially thale cress, which functioned as model 
plant, is rather susceptible to atmospheric H2S (Van der 
Kooij and De Kok 1998; Birke et al. 2015).

Secondly, in some studies (e.g., Zhang et  al. 2019), 
mutants with a modified H2S homeostasis were used. 
Genetic manipulation of H2S homeostasis may not only alter 
tissue H2S content, but also the contents of other metabo-
lites. These associated changes in metabolite contents may 
impact stomatal aperture. Hence, perceived impacts on 
stomatal aperture in mutants cannot directly be ascribed to 
the modification in H2S homeostasis (viz., genotypic vari-
ation cannot directly be translated to phenotypic variation; 
Piersma and Van Gils 2011; Noble 2013; Noble et al. 2014).

The application of controlled, subtoxic (non-growth-
inhibiting) levels of atmospheric H2S to non-mutant plants 
can provide a physiologically realistic view of the role of 
H2S in stomatal regulation. Plants absorb atmospheric H2S 
via stomata, since the leaf’s cuticle is hardly permeable for 
gases (Ausma and De Kok 2019). At the pH of leaf cells 
(i.e., ~ 5–6.4) absorbed H2S remains largely undissociated, 
causing it to easily pass cellular and subcellular membranes 
(Lee et al. 2011; Riahi and Rowley 2014). Foliar H2S levels 
increase significantly upon H2S fumigation (Ausma and De 
Kok 2019). For instance, exposure of thale cress to 0.5 and 
1.0 µl l−1 H2S enhanced leaf H2S levels by approximately 
twofold and threefold, respectively (Birke et al. 2015). Since 
H2S is rapidly and with high affinity metabolized in cysteine, 
H2S fumigation also strongly enhanced foliar cysteine con-
tent and that of the tripeptide glutathione (De Kok et al. 
1997; Birke et al. 2015; Ausma et al. 2017; Ausma and 
De Kok 2019). Thus, fumigation with low H2S levels may 
profoundly alter tissue sulfur status, without affecting plant 
growth (Ausma and De Kok 2019).

Plants may switch from using sulfate to using H2S as 
sulfur source: H2S absorbance by the foliage may partially 

downregulate the uptake and subsequent metabolism of 
sulfate (Buchner et al. 2004; De Kok et al. 1997). Plants 
may even grow with atmospheric H2S as the only sulfur 
source (viz., in the absence of a root sulfate supply; De Kok 
et al. 1997; Koralewska et al. 2007, 2008). Whereas sulfate 
deprivation may reduce plant growth rate as well as endog-
enous cysteine and glutathione levels, fumigation with a suf-
ficiently high H2S level may fully alleviate these reductions.

Here, we study the importance of H2S as gaseous signal 
molecule for the regulation of stomatal aperture in maize 
(Zea mays). Initially, we determined the H2S level that is 
subtoxic for maize, though sufficiently high to fully cover the 
plant’s sulfur demand for growth (viz., the H2S concentra-
tion at which H2S-fumigated plants have a similar biomass 
as non-fumigated sulfate-sufficient plants). We then exposed 
plants for several days to this atmospheric H2S level in the 
presence or absence of a root sulfate supply. We measured 
plant growth, sulfur status, stomatal density, stomatal resist-
ance, and transpiration rates. We conclude that, at least in 
maize, H2S is not a gaseous signal molecule that controls 
stomatal opening.

Materials and methods

Plant material and growth conditions

Seeds of maize (Zea mays; cultivar number 669; Van 
Der Wal; Hoogeveen; The Netherlands) were germinated 
between moistened filter paper in the dark at 23 °C. After 
3 days, the seedlings were put on 15 l boxes containing aer-
ated tap water, which were placed in a climate-controlled 
room. Air temperature was 23 °C (± 1 °C), relative humidity 
was 60–70%, and the photoperiod was 16 h at a photon flu-
ency rate of 300 ± 20 µmol m–2 s–1 (within the 400–700 nm 
range) at plant height, supplied by Philips GreenPower LED 
(deep red/white 120) production modules.

After 7 days, the seedlings were transferred to 13 l stain-
less-steel boxes (10 sets of plants per box, 6 plants per set 
in the first experiment, and 4 plants per set in the second 
experiment) holding aerated 50% Hoagland nutrient solu-
tions, which were placed in 50 l cylindrical stainless-steel 
cabinets (0.6 m diameter) with a polymethyl-methacrylate 
top (Supplementary Fig. S1). Day and night air temperatures 
were 21 and 18 °C (± 1 °C), respectively, relative humidity 
was 30–40%, and the photoperiod was 16 h at a photon flu-
ency rate of 300 ± 20 µmol m–2 s–1 (within the 400–700 nm 
range) at plant height, supplied by Philips GreenPower LED 
(deep red/white 120) production modules. Air exchange 
inside the cabinets was 40 l min−1 and the air inside the 
cabinets was stirred continuously by a ventilator. Nutrient 
solutions either contained 1 mM sulfate (+ S; sulfate-suffi-
cient; solution’s composition being 2.5 mM CaCl2, 2.5 mM 
KCl, 0.5 mM KH2PO4, 1 mM MgSO4, 3.75 mM NH4NO3, 
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23.4 µM H3BO3, 4.8 µM MnCl2, 0.48 µM ZnSO4, 0.16 µM 
CuSO4, 0.26 µM Na2MoO4 and 45 µM Fe3+EDTA), or 0 mM 
sulfate (-S; sulfate-deprived; all sulfate salts replaced by 
chloride salts).

Plants were fumigated either with 0, 0.5, 1.0, or 1.5 µl l−1 
H2S. Pressurized H2S diluted with N2 (1.0 ml  l−1) was 
injected into the incoming air stream and the concentration 
in the cabinet was adjusted to the desired level using elec-
tronic mass flow controllers (ASM; Bilthoven; The Neth-
erlands). H2S levels in the cabinets were monitored by an 
SO2 analyzer (model 9850) equipped with a H2S converter 
(model 8770; Monitor Labs; Measurements Controls Cor-
poration; Englewood; CO; USA). Sealing of the lid of the 
boxes and plant sets prevented absorption of H2S by the 
nutrient solutions.

In the first experiment, plants were harvested after 
10 days of exposure. In the second experiment after 7 days 
of exposure per treatment, sets of 4 plants were weighted 
(viz., total biomass was determined). Subsequently, each 
plant set was transferred to a separate vessel containing 
1.1 l of a similar 50% Hoagland nutrient solution as the 
set was grown on before (Supplementary Fig. S1). Vessels 
with plant sets were placed in the stainless-steel cabinets 
described above (with similar H2S levels) and plants were 
grown for an additional 3 days before harvest.

Growth analyses

Plant harvesting took place 3 h after the onset of the light 
period. To remove ions and other particles attached to the 
root, plants were placed with their roots in ice-cold de-min-
eralized water (3 × 20 s). Thereafter, the root and shoot were 
separated and weighted. In the second experiment, the shoot 
was additionally separated in leaf blades and the whorl of 
leaf sheaths (viz., the seedlings did not yet possess a true 
stem, since all leaves emerged from the shoot base). Moreo-
ver, the total leaf blade area (abaxial plus adaxial) of the 
plants was determined by drawing the outlines of all leaf 
blades on graph paper.

Stomatal resistance

On the harvest day, stomatal resistance was analyzed at the 
abaxial and adaxial side of nascent leaf blades using a port-
able leaf porometer (AP4 Leaf Porometer; Delta-T-Devices 
Ltd.; Cambridge; UK). Measurements were performed 2–3 h 
after the onset of the light period.

Plant sulfur status

In whole shoots (leaf blades plus sheaths) and roots, which 
were stored at − 20 °C after harvest, sulfate levels were 
determined via high-performance liquid chromatography 

(HPLC) following Maas et al. (1986). Additionally, water-
soluble non-protein thiols were extracted from freshly har-
vested shoots and roots. The total water-soluble non-protein 
thiol and cysteine content were determined colorimetrically 
according to De Kok et al. (1988).

Stomatal density

For the determination of stomatal density, silicone impres-
sion paste was prepared by 1:1 mixing of catalyst and base 
material (Provil Novo Light; Kulzer GmbH; Hanau; Ger-
many). Subsequently, freshly harvested nascent leaf blades 
were gently pressed in the paste with either their abaxial or 
adaxial side. Once the paste had solidified, the leaf blades 
were removed and the mould was filled with transparent 
nail polish, as described by Kraaij and van der Kooi (2020). 
The positive (nail polish) replica was next examined under 
an Olympus CX-41 microscope and photographed using a 
Euromex CMEX 5000 camera with ImageFocus v3.0 soft-
ware. From the obtained photographs, stomatal density 
(number of stomata per leaf area) was determined. Impor-
tantly, during trial experiments, also leaf sheaths were exam-
ined, but these did not hold stomata.

Transpiration rate

The transpiration rate of plants, expressed on a whole plant 
fresh weight basis, was calculated over the 3-day period that 
plants were grown on the vessels as follows:

where It represents the transpiration rate, Iu the water uptake 
rate, and Ig the amount of water required for plant growth 
(all expressed as g H2O g−1 FW plant day−1). Furthermore, P 
represents the whole plant’s fresh weight, S the shoot’s fresh 
weight, R the root’s fresh weight, and Im the total solution 
weight in the vessels, with the subscripts 1 and 2 denot-
ing the parameters’ value at the start and at the end of the 
3-day exposure period, respectively. Moreover, whereas the 
factor 3 in the formulas refers to the 3-day duration of the 
experiment, the factor 8.95 refers to the average difference 
in solution weight of 4 vessels, which did not hold a plant 
set, between the start and end of the 3-day exposure period, 
respectively (standard deviation of this measurement was 
0.61). Finally, the factors 0.9 and 0.95 represent the fraction 

(1)It = Iu − Ig

(2)Iu =

(

(lnP2 − lnP1)

3

)

⋅

(

(Im2 − Im1 − 8.95)

(P2 − P1)

)

(3)Ig =

(

(ln S2 − ln S1)

3

)

⋅0.9+

(

(lnR2 − lnR1)

3

)

⋅0.95
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of a maize shoot and root consisting of water, respectively 
(Ausma et al. 2017). It deserves mentioning that during the 
3-day exposure period, the proportion of biomass allocated 
to the different plant organs was not affected.

Statistics

Statistical analyses were performed in GraphPad Prism 
(version 8.4.1; GraphPad Software; San Diego; CA; USA). 
Treatment means were compared using a two-way analysis 
of variance (ANOVA) with a Tukey’s HSD test as post hoc 
test at the P ≤ 0.05 level.

Results and discussion

To test the relevance of H2S for the regulation of stomatal 
aperture, maize seedlings were grown with atmospheric H2S 
in the presence or absence of sulfate in the root environment.

We first assessed what H2S level is subtoxic for maize, 
albeit sufficiently high to fully cover the plant’s sulfur 
demand for growth. Sulfur-deficiency symptoms mani-
fested after 10 days of sulfur deprivation (Table 1). The 
biomass of sulfate-deprived seedlings was on average 36% 
lower than that of sulfate-sufficient seedlings, which could 
be ascribed to both a lower root (33%) and shoot (37%) bio-
mass (Table 1).

H2S fumigation can alleviate sulfur-deficiency symptoms. 
If maize was H2S fumigated in the absence of a sulfate sup-
ply, the plants did not develop any sulfur-deficiency symp-
toms (Table 1). The biomass of sulfate-deprived plants that 
were fumigated with 0.5 or 1.0 µl l−1 H2S was comparable 
to that of sulfate-sufficient, non-fumigated plants (Table 1), 
meaning that, analogous to the many plant species tested 
previously (Ausma et al. 2017; Ausma and De Kok 2019), 
maize can use H2S as a sulfur source. The results further 
demonstrate that maize is rather insusceptible for the poten-
tial phytotoxicity of H2S. Only exposure to 1.5 µl l−1 H2S 
negatively affected plant growth (Table 1). Generally, mono-
cots are highly H2S tolerant (Stulen et al. 1990, 2000). In 

monocots, the shoot’s meristem is sheltered by the whorl of 
leaves. Therefore, H2S can hardly penetrate the meristem, 
which may explain why grasses are relatively H2S insuscep-
tible (Stulen et al. 1990, 2000).

Tissue H2S, cysteine, and glutathione levels may be 
more profoundly affected at higher H2S levels (Birke et al. 
2012; Ausma and De Kok 2019). Thus, in a second experi-
ment, plants were fumigated with 1.0 µl l−1 H2S instead 
of 0.5 µl  l−1 H2S. Similar to our previous observations 
(Table 1), sulfate-deprived plants had a lower biomass than 
sulfate-sufficient plants, owing to a lower root (34%) and 
leaf sheath biomass (22%; Table 2). Leaf blade biomass was 
comparable between sulfate-sufficient and sulfate-deprived 
plants (Table 2).

Sulfate deprivation lowered tissue sulfate and (water-
soluble non-protein) thiol levels. Whereas a 10-day sulfate 
deprivation of maize reduced shoot and root sulfate levels 
by 92% and 75%, respectively, it reduced shoot and root 
thiol levels by 73% and 60%, respectively (Fig. 1). In plants, 
the thiol pool is mainly comprised of glutathione, though 
cysteine is a minor thiol (Buwalda et al. 1993). In maize, 
cysteine accounted for only 12% and 16% of the shoot and 
root thiol pool, respectively (Fig. 1). Sulfate deprivation 
decreased tissue cysteine contents: it lowered root and shoot 

Table 1   Biomass of maize as affected by various levels of atmos-
pheric H2S and sulfate deprivation. 10-day old maize was grown on a 
50% Hoagland nutrient solution, containing 0 (-S) or 1.0 mM sulfate 
(+ S) and simultaneously fumigated with 0, 0.5, 1.0, and 1.5  µl  l−1 

H2S for 10 days. Data (g FW) represent the mean (± SD) of 5 meas-
urements with 6 plants in each and different letters indicate signifi-
cant differences between treatments (P ≤ 0.05; two-way ANOVA; 
Tukey’s HSD test as a post hoc test)

0 µl l−1 H2S 0.5 µl l−1 H2S 1.0 µl l−1 H2S 1.5 µl l−1 H2S

 + S − S  + S − S  + S -S  + S -S

Plant 3.60 ± 0.12a 2.31 ± 0.17b 3.78 ± 0.15a 3.66 ± 0.06a 3.71 ± 0.07a 3.63 ± 0.11a 1.74 ± 0.15c 1.77 ± 0.08c
Roots 1.30 ± 0.12a 0.87 ± 0.06b 1.39 ± 0.08a 1.33 ± 0.05a 1.36 ± 0.06a 1.33 ± 0.05a 0.96 ± 0.09b 0.96 ± 0.05b
Shoots 2.30 ± 0.08a 1.45 ± 0.17b 2.39 ± 0.11a 2.33 ± 0.04a 2.35 ± 0.11a 2.30 ± 0.08a 0.78 ± 0.08c 0.81 ± 0.04c

Table 2   Biomass of maize as affected by H2S fumigation and sulfate 
deprivation. 10-day old maize was grown on a 50% Hoagland nutrient 
solution, containing 0 (− S) or 1.0 mM sulfate (+ S) and simultane-
ously fumigated with 0 or 1.0 µl  l−1 H2S for 10 days. Data (g FW) 
represent the mean (± SD) of 10 measurements with 4 plants in each 
and different letters indicate significant differences between treat-
ments (P ≤ 0.05; two-way ANOVA; Tukey’s HSD test as a post hoc 
test)

0 µl l−1 H2S 1.0 µl l−1 H2S

 + S − S  + S − S

Plant 3.46 ± 0.11a 2.57 ± 0.10b 3.55 ± 0.23a 3.42 ± 0.19a
Roots 1.32 ± 0.11a 0.87 ± 0.08b 1.41 ± 0.14a 1.29 ± 0.14a
Leaf 

sheaths
1.90 ± 0.08a 1.49 ± 0.06b 1.92 ± 0.12a 1.90 ± 0.09a

Leaf 
blades

0.23 ± 0.01a 0.21 ± 0.02b 0.22 ± 0.01a 0.23 ± 0.02a
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cysteine content by 79% and 100%, respectively (Fig. 1). 
Clearly, the lower biomass production upon sulfate depri-
vation was accompanied by lower sulfate, glutathione, and 
cysteine contents (Fig. 1).

The biomass of plants that were fumigated with 1.0 µl l−1 
H2S was comparable to that of sulfate-sufficient non-
fumigated plants (Table 2). Thiol levels were higher in 
H2S-fumigated plants compared to non-fumigated plants 
(Fig. 1). Under sulfate-sufficient conditions, shoot total 
water-soluble non-protein thiol and cysteine levels were 
1.4- and 2.0-fold higher in fumigated plants compared to 
non-fumigated plants, respectively (Fig.  1). Moreover, 

under sulfate-deprived conditions, fumigated plants had a 
5.0-fold higher shoot total water-soluble non-protein thiol 
level, a 1.9-fold higher root water-soluble non-protein thiol 
level, and a 3.0-fold higher root cysteine level compared 
to non-fumigated plants (Fig. 1). Shoot cysteine levels in 
sulfate-deprived fumigated plants were even 1.5-fold higher 
compared to sulfate-sufficient non-fumigated plants (Fig. 1). 
Apparently, absorbed H2S was metabolized with high affin-
ity into cysteine and subsequently into glutathione.

H2S-fumigated plants additionally had a higher shoot 
sulfate content compared to non-fumigated plants (Fig. 1). 
Whereas sulfate-sufficient fumigated plants had a 1.5-fold 

Fig. 1   The content of sulfate, total water-soluble non-protein thiols, 
and cysteine in maize as affected by H2S fumigation and sulfate dep-
rivation. For experimental details, see the legend of Table  2. Data, 
representing 3 measurements with 4 plants in each, are presented 

as boxes with a 5–95 percentile and whiskers. Different letters indi-
cate significant differences between treatments (P ≤ 0.05; two-way 
ANOVA; Tukey’s HSD test as a post hoc test)
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higher shoot sulfate content compared to sulfate-sufficient 
non-fumigated plants, sulfate-deprived fumigated plants had 
a 5.0-fold higher shoot sulfate content compared to sulfate-
deprived non-fumigated plants (Fig. 1). The higher sulfate 
content in fumigated plants might be related to the oxida-
tion of absorbed H2S and/or the degradation of excessively 
accumulated organic compounds (Ausma and De Kok 2019). 
However, it may also be due to H2S absorbance only par-
tially downregulating root sulfate uptake (Ausma and De 
Kok 2019). Further research should elucidate the source of 
the accumulated sulfate.

Exposure of maize to 1.0 µl l−1 H2S did not affect the 
total leaf blade area and stomatal density at the abaxial and 
adaxial side of nascent leaves (Figs. 2 and 3). There were 
approximately 75 stomata mm−2 at the adaxial leaf side and 

50 at the abaxial leaf side (Fig. 3). Similar densities were 
reported previously (e.g., Zheng et al. 2013). Based on these 
observations, it is concluded that H2S fumigation does not 
affect the total number of stomata per plant.

Based on these observations, it is also concluded that it is 
unlikely that H2S regulates the formation of aerenchyma in 
maize leaves. Aerenchyma can be formed via programmed 
cell death (PCD) events and H2S is hypothesized to be a 
signal molecule stimulating PCD (Maniou et al. 2014). 
However, H2S fumigation did neither alter leaf biomass nor 
leaf area (Figs. 2 and 3). It did thus not affect the specific 
leaf weight, which implies H2S did not induce aerenchyma 
formation in the foliage. In accordance with this result, 
previously, it was shown that exposure of maize to atmos-
pheric H2S did not trigger the aerenchyma formation in roots 
(Ausma et al. 2017).

Fig. 2   Total leaf blade area of maize as affected by H2S fumigation 
and sulfate deprivation. For experimental details, see the legend of 
Table  2. Data, representing 4 measurements with 4 plants in each, 
are presented as boxes with a 5–95 percentile and whiskers. Different 
letters indicate significant differences between treatments (P ≤ 0.05; 
two-way ANOVA; Tukey’s HSD test as a post hoc test)

Fig. 3   Stomatal density at the abaxial and adaxial side of leaf blades 
of maize as affected by H2S fumigation and sulfate deprivation. For 
experimental details, see the legend of Table  2. Data, representing 
4 measurements with 2 plants in each, are presented as boxes with 

a 5–95 percentile and whiskers. Different letters indicate significant 
differences between treatments (P ≤ 0.05; two-way ANOVA; Tukey’s 
HSD test as a post hoc test)

Fig. 4   Transpiration rate of maize as affected by H2S fumigation 
and sulfate deprivation. For experimental details, see the legend of 
Table  2. Data, representing 4 measurements with 4 plants in each, 
are presented as boxes with a 5–95 percentile and whiskers. Different 
letters indicate significant differences between treatments (P ≤ 0.05; 
two-way ANOVA; Tukey’s HSD test as a post hoc test)
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Apart from having no effect on the total number of sto-
mata per plant, exposure to 1.0 µl l−1 H2S did not affect 
the plants’ transpiration rate (Fig. 4). Transpiration rates 
were approximately 3.6 g H2O g−1 FW plant day−1 (Fig. 4). 
Accordingly, H2S exposure did not affect stomatal resistance 
at the abaxial and adaxial side of nascent leaves (Fig. 5). 
Since H2S fumigation did neither affect the total number of 
stomata per plant nor the plant’s transpiration rate and sto-
matal resistance, we conclude that fumigation did not affect 
the transpiration rate per stoma.

In maize and other plants, stomatal transpiration and 
conductance are strongly positively correlated with stoma-
tal aperture (Shimshi 1963; Shimshi and Ephrat 1975; Law-
son et al. 1998; Kaiser 2009). For instance, Shimshi (1963) 
reported for maize that stomatal conductance (y) depends 
on aperture (x) according to the formula y = 0.073 + 0.147x 
(R2 = 0.88). It thus is safe to say that fumigation with 
1.0 µl l−1 H2S of maize did not modify stomatal aperture. 
The absence of an effect is not caused by H2S levels that are 
too low, because shoot cysteine levels were two-to-three-
fold higher in H2S-fumigated plants compared to non-fumi-
gated plants (Fig. 1), which is highly similar to the twofold 
increase of foliar cysteine levels that Batool et al. (2018) 
reported to strongly impact stomatal aperture. Clearly, at 
least in maize, H2S does not interfere with the signal trans-
duction cascade that regulates stomatal aperture.

Conclusion

Maize plants could use atmospheric H2S as a sulfur source 
for growth. Foliar H2S absorbance markedly affected the 
plant’s sulfur status; however, it did not affect the total leaf 
area, stomatal density, stomatal resistance, and transpiration 

rate of plants. We thus conclude that, at least in maize, H2S 
does not function as signal molecule in the regulation of 
stomatal aperture.
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