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Human plasma contains lipoprotein(a) [Lp(a)], a 
macromolecular complex that consists of a low 

density lipoprotein (LDL) particle to which a glyco-
protein, known as apolipoprotein (a) [apo(a)], is linked 
via a disulfide bond to apolipoprotein B100 (apoB100), 
the principal protein that is carried on LDL particles  
(1, 2). Ever since the discovery of this lipoprotein in 
1963 by Kåre Berg (3), Lp(a) has intrigued clinicians 
and researchers because of its complex genetics and its 
enigmatic regulation.

Similar to plasminogen, apo(a) contains loop-like 
structures, called kringles (4). Besides kringle IV-1 (KIV-
1), human apo(a) contains KIV-2 to KIV-10, KV and a 
probably inactive protease domain (4). Apo(a) is highly 
heterogeneous in size. Smaller apo(a) isoforms are associ-
ated with higher plasma levels of Lp(a). Variable numbers 
of tandemly repeated exon sequences in the LPA locus 
(chromosome 6q2.6-q2.7) encoding KIV-2 of apo(a), a 
form of copy number variation (CNV), give rise to con-
siderable size polymorphism of the apo(a) protein (4). 
The circulating level of Lp(a) is strongly and inversely de-
termined by the KIV-2 copy number in apo(a), explaining 
to a considerable extent the marked variation in plasma 
Lp(a) levels between individuals (1, 4). Lp(a) also varies 
between individuals of different ethnicities with people of 
black ethnicity generally having higher levels than people 
of white and Asian ethnicity (1, 4). In humans, Lp(a) is 
predominantly, if not exclusively produced, by the liver 

(4). The process of Lp(a) assembly and release in the cir-
culation is not precisely known, but involves covalent 
binding of apo(a) to apoB100 via the formation of a disul-
fide bridge between these protein moieties (4). However, 
it is unclear whether Lp(a) assembly is primarily an intra-
cellular event or takes places at the surface of hepatocytes 
or even in the extracellular space. Nonetheless, while 
very low density lipoproteins (VLDLs) are considered 
precursors of LDLs, there is virtually no correlation of 
VLDL-apoB100 nor of LDL-apoB100 production with 
apo(a) production (5), suggesting that apoB100 and 
apo(a) influx in the extracellular compartment are to a 
considerable extent unrelated processes. Furthermore, the 
molecular mechanisms responsible for Lp(a) catabolism 
still remain elusive, although the catabolism apo(a) and 
apoB100 in Lp(a) particles are tightly coupled. Several re-
ceptor systems that include lipoprotein receptors, toll-like 
and scavenger receptors, lectins, and plasminogen recep-
tors have been proposed to be implicated in Lp(a) ca-
tabolism (6). Of interest, the toll-like receptor-2 was the 
only receptor that was associated with Lp(a) in a genome 
wide association study (6). The importance of the LDL 
receptor for Lp(a) catabolism has not yet been fully eluci-
dated (1, 4). Plasma Lp(a) is clearly elevated in some pa-
tients with heterozygous familial hypercholesterolemia in 
the context of certain dysfunctional variants in the LDLR 
gene encoding the LDL receptor, in the APOB gene that 
alter apoB-100 receptor binding, and in gain-of-function 

Abbreviations: apo(a), apolipoprotein(a); apoB100, apolipoprotein B100; CNV, copy 
number variation; CVD, cardiovascular disease; GH, growth hormone; HDL, high dens-
ity lipoprotein; KIV, kringle IV; LDL, low density lipoprotein; Lp(a), lipoprotein(a); PCSK9, 
proprotein convertase subtilisin/kexin type 9; VLDL, very low density lipoprotein.
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mutations in PCSK9 encoding proprotein convertase 
subtilisin/kexin type 9 (7, 8). By contrast, statins, which 
act by increasing LDL receptor availability on the surface 
of hepatocytes, do not lower but—on the contrary—may 
even increase plasma Lp(a) (9).

A large body of evidence has now been accumu-
lated to indicate that high plasma Lp(a) is associated 
with increased risk of newly developed and recurrent 
atherosclerotic cardiovascular disease (CVD) events 
[reviewed in (1, 2)]. Of further note, Mendelian ran-
domization studies have evaluated several forms of 
genomic variation in LPA, including single nucleotide 
polymorphisms (SNPs) and CNV in the KIV-2 coding 
sequence, and have shown that both types of variation 
on LPA are causally related to atherosclerotic CVD in 
individuals of various ethnicities tested (10–12). In fact, 
variation in LPA is considered to represent the single 
strongest lipid genetic risk factor for CVD (1).

Apo(a) immunoreactivity is detectable in atheroscler-
otic plaques. Several pro-atherogenic mechanisms of 
Lp(a) have been proposed (1, 4). However, the extent to 
which Lp(a) may interfere with clotting and fibrinolytic 
actions in vivo is not well known. Importantly, Lp(a) is 
the preferred lipoprotein carrier of oxidized phospho-
lipids, suggesting a mechanism whereby Lp(a) may pro-
mote pro-inflammatory pathways in the arterial wall 
(13). Interestingly, oxidized phospholipids on apoB100 
associate with LPA variants, underscoring the idea that 
oxidized phospholipids form part of the process whereby 
Lp(a) exerts its pro-atherogenic properties (11).

Besides the paramount contribution of genetic 
variation in LPA, Lp(a) is also subject to hormonal 
regulation (1). Lp(a) levels are increased in overt 
hypothyroidism (1) and are rapidly lowered after tri-
iodothyronine supplementation in individuals with 
profound hypothyroidism (14). An Lp(a)-decreasing ef-
fect has also been found in response to thyromimetics 
(15). There are no major sex differences in Lp(a), but 
its level is higher in postmenopausal vs premenopausal 
women. Estrogens and androgens may both decrease 
Lp(a) (1). Levels of Lp(a) are increased in the context 
of acromegaly (1, 16). Likewise, Lp(a) may increase in 
response to growth hormone growth hormone (GH) ad-
ministration in GH-deficient adults, an effect which is 
opposite of the decrease in LDL cholesterol and non-
high density lipoprotein (non-HDL) cholesterol (1, 17). 
Intriguingly, lower Lp(a) levels may confer increased 
risk of developing type 2 diabetes (18). Plasma Lp(a) is 
also elevated in chronic kidney disease, as well as in the 
nephrotic syndrome (1)

In order to improve the rationale for Lp(a) targeted ther-
apies it is important to discern mechanisms responsible for 

its regulation. One valuable approach is to apply stable 
isotope kinetic modelling to interrogate Lp(a) metabolism 
(19). Such techniques are methodologically difficult and 
are critically dependent on the isolation of Lp(a), required 
to be devoid of other lipoproteins that contain apoB (19). 
Moreover among other uncertainties, the mathematics of 
the kinetic model applied are dependent on the assumption 
as to whether apo(a) is recycled in the circulation (19). In a 
recent issue of JCEM, Ma et al report on apo(a) kinetics in 
patients at high CVD risk who are receiving statin therapy 
(20). Using labor intensive stable isotope methodology 
and isolation of apo(a) by immunoprecipitation followed 
by sodium dodecyl sulfate gel electrophoresis and Western 
blotting, they showed that the production rate of apo(a) is 
increased in subjects with elevated plasma Lp(a) compared 
with individuals who have normal levels of Lp(a). Notably, 
no difference in apo(a) fractional catabolic rate between the 
high and low Lp(a) groups was found (20). In another re-
cent study among statin-treated subjects, the same research 
group reported that the apo(a) fractional catabolic rate was 
similar compared with that of apoB, irrespective of whether 
plasma Lp(a) was elevated (21). In comparison, an early re-
port by Rader et al in which Lp(a) was labelled with radio-
active iodine revealed a strong correlation of plasma Lp(a) 
with its production rate but not with its fractional catabolic 
rate among healthy young adults (22).

Thus for many reasons, Lp(a) has regained interest as 
CVD risk biomarker. Lp(a) measurement may be useful 
to improve CVD risk classification in selected patients, 
including those who have suffered a recurrent event (2). 
Notwithstanding the modest decrease of Lp(a) in re-
sponse to PCSK9 inhibitor treatment (23), there remains 
an unmet need to reduce Lp(a) in high-risk patients in 
whom it is elevated. Evidence is accumulating in support 
of the possibility that increased plasma Lp(a) concentra-
tions, which coincide with smaller-sized apo(a) isoforms, 
are primarily due to increased hepatic production. These 
findings provide a rationale to develop Lp(a)-targeted 
therapies directed toward inhibition of its synthesis. 
Treatment based on antisense technology is currently 
being tested, but its efficacy and safety still have to be 
proven in CVD outcome studies. It is hoped that such 
treatment will reach the clinic in the near future.
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