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Abstract
We develop a model of strategic network formation of collaborations to analyze the consequences of an
understudied but consequential form of heterogeneity: differences between actors in the form of their
production functions. We also address how this interacts with resource heterogeneity, as a way to mea-
sure the impact actors have as potential partners on a collaborative project. Some actors (e.g., start-up
firms) may exhibit increasing returns to their investment into collaboration projects, while others (e.g.,
established firms) may face decreasing returns. Our model provides insights into how actor hetero-
geneity can help explain well-observed collaboration patterns. We show that if there is a direct relation
between increasing returns and resources, start-ups exclude mature firms and networks become segre-
gated by types of production function, portraying DOMINANT GROUP architectures. On the other hand, if
there is an inverse relation between increasing returns and resources, networks portray CORE-PERIPHERY
architectures, where the mature firms form a core and start-ups with low-resources link to them.

Keywords: collaboration, exchange, inequality, heterogeneity

1. Introduction
Collaboration is a key to realize outcomes that are difficult to achieve individually. Examples of
mutually beneficial collaboration can be found in joint ventures between firms (Goyal & Moraga-
González, 2001) as well as in scientific co-authorships (Jackson & Wolinsky, 1996), among many
other cases. A key question underlying collaboration choices is under which conditions engaging
in a collaborative project with a specific partner becomes mutually beneficial, and how do such
conditions affect choices in a network of collaborations where there are multiple partners and
multiple projects at the same time. In this paper, we focus on how two characteristics of collabora-
tion partners affect the way collaboration networks are shaped. Namely, we focus on the relation
between the endowment of resources actors have and the production functions governing the way
they can make use of such resources.

Resource endowments play a key role in how attractive actors are as potential collaborative
partners (Blau, 1964; Homans, 1958; Cook & Emerson, 1978; Molm, 1994). Wealthier poten-
tial partners are more appealing than poorer ones to form alliances with (Cook et al., 1983
Emerson, 1962). Yet, screening potential partners only for the size of their resource endowment
neglects another key source of productivity: their ability to put those resources to productive use.
This ability is captured by an actor’s production function. An actor’s production function can
yield increasing or decreasing marginal returns to his investment into a collaborative project.
Consequently, the relation of the production function and available resources represents the
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2 M. Muñoz-Herrera et al.

potential impact an actor can make on a collaborative project. That is, actors can potentially have
a high impact on a collaboration either because they have large amounts of resources despite
being less productive (i.e., decreasing marginal returns) or because they are more productive (i.e.,
increasing marginal returns) despite having smaller endowments.

Differences in production functions can arise from differences between actors in terms of skills,
talents, or available technology (Collins, 1990; Sellinger & Crease, 2006). For example, a start-up
with an innovative technology that is in its early stages of development represents an actor whose
production function generates increasing marginal returns, because further investments into it
yield increasingly fast progress. An example of an actor whose production function generates
decrease marginal returns would be a firm operating with a mature technology, for which invest-
ments into new technology do not yield significant productivity gains. For example, in the realm
of inter-firm collaboration, consider Campbell Soup Co., which invested $125 million in January
2016 to finance food start-ups, hoping that this would allow them to keep up with small companies
increasingly dominating the food trends in the United States.1 A mature firm like Campbell has
ample resources, and yet aimed for alliances with smaller partners, whose “start-up” production
functions, promised higher returns on investment than collaboration with another equally large
firm, or scaling up its own business. Notably, in a case such as this, having large available resources
can compensate for having a decelerating production function, allowing large firms to occupy a
central position in the collaboration network.

We propose a model of network formation to study the way individual heterogeneity in avail-
able resources and actors’ production functions impact collaboration choices. Thus, the first aim
of the paper is to formalize how the distribution of heterogeneous individuals in the popula-
tion shapes the strategic formation of collaborations and the network architectures that emerge.
Specifically, we model collaboration networks as weighted graphs were actors simultaneously
choose with whom to collaborate and howmuch of their resources to allocate into each collabora-
tive project. Actors can also keep resources to allocate into in-house production, for which they do
not require any partners. To illustrate the strategies players follow, contingent on their type (pro-
duction function), we provide a progressive characterization of equilibrium outcomes. We start
with the simplest case of collaborations in a 2-person game, which allows us to look at all possi-
ble combinations of types of players and endowments of resources. We then move to the more
general case of n-person games, where we focus on Nash as well as pairwise stable Nash equilibria
(PNE).

The intuition of our main results is as follows: In terms of strategies, there are mixed effects
of joint collaboration strategies with substantial differences between types of actors. Actors with
production functions that yield decreasing marginal returns (DMR), e.g., mature firms, are better
off diversifying their resources into multiple collaborations, while actors with increasing marginal
returns (IMR), e.g., start-ups, are better off following an all-or-nothing strategy. This is so because
IMR actors are only attracted to partners that can make a high impact on the collaborative project,
otherwise they are better off investing all their resources into in-house production, while DMR
actors benefit by establishing collaborative projects of different sizes.

Consequently, the way resource endowments are distributed between types of actors will
impact the emerging patterns of collaborations. For instance, when resources are such that IMR
actors can make a high impact into a collaborative project while DMR actors can only make a low
impact, networks become segregated between types of players. These resulting networks resem-
bling DOMINANT GROUP architectures, where IMR types only collaborate between them or stay
isolated, while DMR actors end up excluded and forming multiple collaborations between them
(see Figure 1(a)). On the other hand, when resources are distributed in such a way that DMR actors
can make a high impact on the collaborative projects they form, while IMR actors can only make
a low impact, networks resemble CORE-PERIPHERY architectures. Specifically, the well-endowed
DMR actors form a core between them and also establish collaborations with IMR actors, who are
unattractive to each other (see Figure 1(b)). Both of these classes of networks are prominent in the
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Network Science 3

Figure 1. Examples of prominent collaboration networks. The color inside a node represents its type: DMR (light blue) or IMR
(dark red). The letter inside the node represents the impact a node can have in the collaborative projects with his partners:
Low, Medium, or High impact. Nodeswith a thick black border allocate resources to in-house production. A link between two
nodes represents a collaborative project. (a) Dominant group (b) Core-periphery.

literature and provide evidence that our focus on variations of resources and production functions
has valuable insights into real-world networks for different domains. This is further discussed in
the following section.

In the remainder, we first highlight our contribution to the existing literature and then outline
the model. Subsequently, we characterize equilibrium outcomes as a result of the interactions of
actors with different resources and production functions. We then close the analysis by focusing
on networks that are PNE. We conclude with a discussion of the implications and limitations of
the study.

2. Relation to the literature
Our study draws on and contributes to the research on collaboration as well as on the literature
on endogenous network formation.

First, its theoretical point of departure is the formation of collaboration projects, also referred
to as strategic alliances (Belderbos et al., 2006) or productive exchanges (Molm, 1994, 1997).
Collaborations refer to interactions in which actors join their resources, aiming at outcomes
greater than the aggregation of what each could have gotten separately (for a survey see Cook
& Cheshire, 2013). Notably, research on collaborations has singled out resource heterogeneity as a
major antecedent of collaboration network structures: the larger an actor’s resource endowment,
the more attractive this actor becomes as a collaboration partner (Goyal & Joshi, 2003; Galeotti
et al., 2006).

Our work is closely related to Flache & Hegselmann (1999) and Hegselmann (1998) who study
how heterogeneity in resources shapes social support network. Their main findings indicate that
resource heterogeneity can result in exclusion and segregated networks. Specifically, they observe
that resource rich actors need little help but can give a lot of help to those in need, while resource
poor actors need a lot of help but have little to give. Resource rich actors seeking to optimize
their collaborative relations prefer to form partnerships with other resource rich actors, thereby
indirectly excluding resource poor actors from their collaboration choices. For the latter, only
other resource poor actors remain as potential partners, leaving resource poor actors with less
favorable collaboration opportunities (see also Flache, 2001). An implicit assumption behind these
resource heterogeneity approaches is that everyone has the same production function. Whereas
in such cases resource rich actors may indeed be the most attractive collaborative partners. Our
work extends this analysis by modeling heterogeneity of collaboration partners’ production func-
tions. The interaction between resources and production functions shows conditions under which
resource rich actors do not acquire a central position.
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4 M. Muñoz-Herrera et al.

A second indication from the empirical work on collaboration is that there seems to be a
positive impact of the establishment of various collaborations, e.g., R&D ventures, on firm perfor-
mance (see, e.g., Goyal &Moraga-González, 2001). In this sense, a key contribution of our work is
to provide a framework that allows for differences in the production functions firms have. In this
framework, we find that there are mixed effects of joint collaboration strategies with substantial
differences between types of firms, due to their production functions. Namely, large firms benefit
from diversification while smaller firms face diseconomies when pursuing multiple collaborations
at the same time.2 In this sense, our work is closely related to Belderbos et al. (2006), who observe
empirical evidence showing that in many sectors and industries some firms diversify while others
do not, and the main driver of these differences is the size, i.e., productive capacity, of the firms. It
also relates to Baker et al. (2008) who found these patterns of “unstructured collaborations” in the
pharmaceutical industry.

We model the collaboration strategies as resulting from actors strategically optimizing their
investments across several collaborative projects. In this sense, we build on the literature on
endogenous network formation (Jackson &Wolinsky, 1996; Snijders & Doreian, 2010), investigat-
ing which structures (i.e., patterns of relations) emerge from rational actors’ attempts to optimize
their exchange relations (Jackson & Wolinsky, 1996; Jackson & Watts, 2001; Buskens & van de
Rijt, 2008; Braun & Gautschi, 2006; Dogan & van Assen, 2009; Dogan et al., 2011; Doreian, 2006;
Hummon, 2000; Raub et al., 2014). We specifically combine in a single choice network formation
and endogenous effort and in this sense our work closely relates to some relevant work in eco-
nomics (see, e.g., Galeotti & Goyal, 2010; Goyal & Joshi, 2003; Jackson & Watts, 2002). Most of
these models, however, treat actors as homogenous and disregard differences in attributes, which
is a main contribution of our work.

Our main findings are closely related to the results in Konig et al. (2014) and Belhaj et al.
(2016), both of which identify that in settings of strategic complementarities, such as collabo-
ration networks, the emerging pattern of strategic alliances resembles nested-split graphs. Two
structures that are prominently observed: DOMINANT-GROUP and CORE-PERIPHERY architec-
tures. Our model indicates how the relation between actors production functions and available
resources may lead to either of these patterns of collaborations. The DOMINANT-GROUP archi-
tecture is observed when big firms have limited resources, which makes them unattractive for
innovative firms, such as start-ups. The consequence of the dominant-group network is that
the network segregates by types of firms. Another way to interpret these segregated structures
is that if firms do not manage to accumulate enough resources when they reach maturity, they
are likely to be precluded from collaborating with innovative partners. On the other hand, the
CORE-PERIPHERY architecture is observed when big firms have accumulated enough resources to
become central, while start-ups that have the potential to be innovative and productive do not
have the capital to make it happen, and depend on the collaboration with mature firms.

In summary, our model contributes to the research on collaboration networks in two main
ways: First, we study actor heterogeneity in terms of both resource endowments and production
functions (e.g., expertise, skills, creativity, talent, or technology). This allows us to extend the anal-
ysis that has been widely focused only on differences in wealth, and to evaluate the effect of how
actors’ ability to use such wealth in collaborative projects makes them more or less attractive as
potential partners. Second, we advance strategic network formation models by conceptualizing
actors’ investments as a continuous rather than a dichotomous variable. This allows us to study
the problem of collaboration in weighted networks where the intensity of the interaction, and
not just its existence, is evaluated. By means of this, we can show that the particular choice of a
Cobb–Douglas payoff function for our model provides results in line with more general forms.
But additionally, its specificity allows us to tackle a problem that is of utmost interest in the litera-
ture on networks, and specifically in the literature on collaborations: the relation of link existence
and link intensity. That is, our specificity in the payoff function provides useful insights into the
unexplored framework of weighted networks. As a result, we are able to show how some network
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Figure 2. Production functions. The horizontal axis represents units of resources allocated by an actor to a collaborative
project and the vertical axis represents levels of outputs (i.e., impact) achievedwith these resources, given a fixed and strictly
positive allocation by a collaborative partner.

structures that have been persistently observed in theoretical and empirical work, namely DOMI-
NANT GROUP and CORE-PERIPHERY networks, arise as weighted networks, and how they depend
on the relation between productive functions and available resources in the network.

3. The model
The model rests on two general assumptions. First, players differ in their resource endowments
and in their production functions, which can yield increasing or decreasing marginal returns to
investments. Second, players can form collaborations with others, in pairs, by pooling resources
with their partners. They can establish multiple collaborative projects at a time, distributing their
resources across partners. We elaborate on both the assumptions below, proceeding to the game
theoretic analysis thereafter.

3.1 Heterogeneity in resources and in production functions
Whether a collaborative project is mutually attractive to a pair of players depends on their resource
endowments, their production functions, and the production functions and endowments of alter-
native collaborative partners. We distinguish production functions with decreasing or increasing
marginal returns to their allocation of resources, which represents a player’s type in the game. This
is summarized in the definitions below.

Definition 1. Decreasing marginal returns to own investments (DMR): A player has type DMR if his
production function is such that for each extra unit of resources allocated to a collaborative project,
the resulting output will be less valuable than that of the previous unit, keeping the allocation of the
partner fixed.

Definition 1 indicates that for a DMR player the first units of resources invested in a project
have the greatest impact and subsequent units invested in the same project are less valuable, as
illustrated in Figure 2(b).

Definition 2. Increasing marginal returns to own investments (IMR): A player has type IMR if his
production function is such that for an extra unit of resources allocated to a collaborative project, the
resulting output will be more valuable than that of the previous unit, keeping the allocation of the
partner fixed.

Definition 2 indicates that the first units of resources invested by an IMR player into a collab-
orative project have negligible impact, and only after a certain amount of resources have been
invested, the additional investments make a big difference, as illustrated in Figure 2(c).
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6 M. Muñoz-Herrera et al.

The shapes of the production functions in the model can be understood as giving a snapshot of
“short run” situations in which technology is fixed. Thus, firmsmay be in different stages of amore
general production processes such that the usual s-shaped curve (see Figure 2(a)) for marginal
returns does not apply. Instead, firms production functions can be in the accelerating (IMR) or
decelerating (DMR) part of the curve.3

3.2 Strategic link formation
Our model portrays collaboration networks as weighted graphs. A link in this graph represents
a dyadic collaborative project. The weight of a link represents the output of the collaboration.
The size of this output is determined by the joint impact of the parties involved. The impact is
expressed as the partners’ allocations to the relation and the combined effect of their production
functions. That is, we integrate two choices actors make: with whom they connect and how much
of their resources they allocate to each of their connections. These choices are decided simultane-
ously by the pair of allocation decisions made by two (potential) collaboration partners. If at least
one of them allocates no resource to the collaborative project, the project does not take place. If
both allocate resources to the project, the output of these allocations determines the link weights
and the outcome of the collaboration for each partner. The total amount of resources an actor
possesses puts a constraint on how much can be invested in a single project.

Decision making about link formation and resource allocations is modeled in terms of a
one-shot non-cooperative game. The set N = {1, . . . , n}, where |N| ≥ 2, represents the players
in the collaboration network game, denoted by �. Every player i ∈N is ex-ante and exogenously
endowed with a fixed individual amount of resources�i > 0, which can vary across players i. Also,
players are assigned a type expressed by his individual production function δi > 0. A player has
type DMR when his production function yields decreasing marginal returns to an additional unit
of resources invested in a collaborative project, δi < 1, and type IMR when the marginal returns
are increasing, δi > 1.4

Prior to the start of the game, players are informed about the size of the set of players, which
is fixed throughout the analysis, and the endowments and types (i.e., production functions) of all
players. We represent the network by the set of undirected links, g, denoting collaborative projects
between connected players. A collaborative project between two players i and j is denoted by ij ∈
g, whereas ij /∈ g indicates that there is no collaboration. Resources not invested in collaborative
projects are used by players for in-house production, denoted by the self-link ii ∈ g. The set of
partners a player i has is Ni(g)= {j : ij ∈ g}, for all j ∈N. The cardinality of Ni(g) is ni (the degree
of node i in the network) and is endogenously determined through the simultaneous choices of
all players.

Each player can form more than one collaboration simultaneously and at most n− 1. In
addition, a player can establish a connection to himself (i.e., his in-house project). A player i simul-
taneously chooses whom to collaborate with and the amount of resources to allocate into each of
his collaborative projects, expressed by the vector of allocations xi = {xi1, . . . , xii, . . . , xin}, where
�i constrains the size of total investments player i can make. The allocation of resources by i can
be made to two types of projects: in-house, xii, and collaboration with a partner j, xij. We denote
x(Ni(g)) as the vector of allocations made to i by i’s partners. When a player j does not wish to
collaborate with i he simply allocates no resources to i.

Payoffs in the game are determined by a Cobb–Douglas production function, ui(�), which
depends on the allocation choices made by all players and the shapes of their individual
production functions, i.e., their types, as follows:

ui(δi, δ−i, xi, xNi(g))= ρxδi
ii +

n∑
j�=i

xδi
ij x

δj
ji (1)
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where δ−i is the vector of parameters of the production functions of players other than i, and
ρ > 0 is a premium on individual production, weighting the relation between in-house and collab-
orative outputs.5 Note how this production function captures the essential feature of productive
collaborations, in which players cannot produce any value unless both partners to a collaborative
project contribute.6 We assume that players’ payoffs are identical to the summed productiveness
of their projects, ui(�). Note that, in our setup, one and the same player can be part of multiple
collaborative projects without necessarily distributing his resources equally between them.7

As mentioned above, players can differ in the amount of resources they are endowed with, �i,
and in the shape of their production function, δi. We refer to the relation between resources and
production functions as the potential impact a player can make as a partner in a collaborative
project. Players’ impact can be either high, medium, or low. Specifically, players whose impact
is high, because it is greater than the premium on individual production, are assigned to the set
H = {i :�δi

i > ρ}, while those players whose impact is medium or low are assigned to sets M =
{i :�δi

i = ρ} and L= {i :�δi
i < ρ}, respectively. Given that potential impact is not contingent only

on available resources, players of type DMR need a larger amount of resources than those of type
IMR to have a high impact on a collaborative project.

We call the collection of allocation vectors of all players (one for each player) an allocation
profile and denote it by (x1, . . . , xn). When no player has incentives to unilaterally deviate from a
given allocation profile (x∗

1, . . . , x∗
n), this profile is a Nash equilibrium. Formally:

ui(δi, δ−i, x∗
1, . . . , x

∗
n)≥ ui(δi, δ−i, x∗

1 , . . . , x
′
i, . . . , x

∗
n) ∀ x∗

i �= x′
i, i ∈N.

The Nash equilibrium requirement can be seen as a minimal condition for a collaboration out-
come to be consistent with the rational self-interest of the players involved. If the outcome is not
a Nash equilibrium, then at least some players could gain from reallocating their resources and
would do so.

4. Equilibrium
In this section, we describe the Nash equilibria for the one-shot network game with complete
information, NE(�). We first define the set of strategies players have and discuss the 2-person
game in Section 4.1. The 2-person game serves to explain which partners a player would prefer,
given their potential impact, i.e., available resources and production functions, and illustrates the
best response (BR) logic. This analysis is extended to the n-person case, for which we provide
a characterization of the Nash equilibria in Section 4.2. Finally, in Section 4.3 we focus on the
reduced set of equilibrium networks that are both Nash and PNE.

4.1 Strategies
A player in the network game � chooses an allocation vector xi. He either allocates his entire
endowment into in-house production (xii = �i;

∑n
j�=i xij = 0), into collaborative projects with

others (xii = 0;
∑n

j�=i xij = �i), or into a combination of both in-house and collaborative projects
(xii > 0;

∑n
j�=i xij > 0), where always xii +∑n

j�=i xij = �i. Lemma 1 describes the strategies players
follow given their type, IMR or DMR, and their partner’s impact to the collaborative project in a
2-person game, as follows:

Lemma 1. Optimal allocation in the 2-person game: The optimal choice of a player i of type IMR
(δi > 1) is to allocate all of his resources into in-house production if his partner’s impact to the collab-
orative project is low, or to allocate all his resources in the joint collaboration if his partner’s impact
is medium or high. The optimal choice of a player i of type DMR (δi < 1) is to distribute his resources
between in-house and collaborative projects, adjusted to his partner’s impact.
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8 M. Muñoz-Herrera et al.

Proof. Lemma 1 describes the optimal allocations for the interaction between two players in the
collaboration game �. Formally, in the proof we denote the set of resources a player i has as
�̂, where �̂ ≤ �i. This means that we can generalize the proof for any proportion of resources
considered from the entire endowment �i. This is a useful consideration for the extension of
the results to games of any size n≥ 2. However, we specifically use �i when we want to make
explicit that the entire endowment is allocated. Consider the optimization problem below, where a
player i decides on the optimal way of allocating his resources between in-house and collaborative
production:

maxxii ui = ρxδi
ii + (�̂ − xii)δi x

δj
ji

Note that the maximization is phrased in terms of the resources i keeps for in-house production.
The First Order Condition (FOC) implies:

∂ui
∂xii

= ρδix(δi−1)
ii − δi(�̂ − xii)(δi−1)xδj

ji = 0,

and the Second Order Condition implies:

∂2ui
∂x2ii

= ρδi(δi − 1)x(δi−2)
ii ∓ δi(δi − 1)(�̂ − xii)(δi−2)xδj

ji � 0

so that: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′
i > 0 if δi > 1 : � internal maximum

u′′
i = 0 if δi = 1 : u′

i = ρ − xδj
ji � 0

u′′
i < 0 if δi < 1 : internal maximum is feasible

For the case of player i of type IMR, whose production function yields increasing marginal returns
(δi > 1), no interior point can be a local maximum, thus neither a global one. Therefore, only the
corner solutions (xii = 0; xii = �i) are candidates for a global solution. The payoff functions for
each are ui(xii = 0)= �

δi
i x

δj
ji and ui(xii = �i)= ρ�

δi
i , respectively. Thus, i’s BR is:

BR=
⎧⎨
⎩
x∗
ii = 0 if xδj

ji ≥ ρ

x∗
ii = �i if xδj

ji < ρ

(2)

with indifference between the two possibilities if xδj
ji = ρ.

If a player i has a type that yields constant returns to scale (δi = 1), it follows immediately from
the FOC that:

BR=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x∗
ii = 0 iff x∗δj

ji > ρ

x∗
ii ∈ [0,�i] iff x∗δj

ji = ρ

x∗
ii = �i iff x∗δj

ji < ρ

(3)

If a player has type DMR, we know from the FOC that ρδixδi−1
ii = δi(�̂ − xii)δi−1xδj

ji , where

ρxδi−1
ii = (�̂ − xii)δi−1xδj

ji , so that �̂ = xii[1+ ( 1
ρ
)(

1
1−δi

)x
δj

1−δi
ji ]:

BR=
{
x∗
ii = �̂[1+

(
1
ρ

)( 1
1−δi

)
x

δj
1−δi
ji ]−1 if x∗δj

ji � ρ (4)
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Network Science 9

To ascertain that Equation (4) leads to a global BR, we compare it with the two corner solutions.
Substituting Equation (4) in ui yields:

ui(x∗
ii)= ρ

⎛
⎝�i

[
1+

(
1
ρ

) 1
1−δi

x
δj

1−δi
ji

]−1⎞⎠
δi

+
⎡
⎣�i −

⎛
⎝�i

[
1+

(
1
ρ

) 1
1−δi

x
δj

1−δi
ji

]−1⎞⎠
⎤
⎦

δi

xδj
ji

ui(x∗
ii)=

ρ�
δi
i[

1+
(
1
ρ

) 1
1−δi x

δj
1−δi
ji

]δi
+

⎡
⎢⎢⎣�i − �i

1+
(
1
ρ

) 1
1−δi x

δj
1−δi
ji

⎤
⎥⎥⎦

δi

xδj
ji

ui(x∗
ii)=

ρ�
δi
i + �

δi
i

[(
1
ρ

) 1
1−δi x

δj
1−δi
ji

]δi

xδj
ji

[
1+

(
1
ρ

) 1
1−δi x

δj
1−δi
ji

]δi
=

�
δi
i

(
ρ + ρ

δi
δi−1 x

δjδi
1−δi

+δj
ji

)
[
1+

(
1
ρ

) 1
1−δi x

δj
1−δi
ji

]δi
=

�
δi
i ρ

(
1+ ρ

δi
δi−1 x

δj
1−δi
ji

)
[
1+

(
1
ρ

) 1
1−δi x

δj
1−δi
ji

]δi

ui(x∗
ii)= ρ�

δi
i

[
1+

(
1
ρ

) 1
1−δi

x
δj

1−δi
ji

]1−δi

Now, the question is when is ui(x∗
ii)≥ ui(xii = �i). We say this condition is satisfied when:

ρ�
δi
i

[
1+

(
1
ρ

) 1
1−δi

x
δj

1−δi
ji

]1−δi

≥ �
δi
i x

δj
ji

ρ
1

1−δi

[
1+

(
1
ρ

) 1
1−δi

x
δj

1−δi
ji

]
≥ x

δj
1−δi
ji

ρ
1

1−δi ≥ 0

which is always true.

The proof for Lemma 1 formalizes how IMR and DMR players best respond to their partners in
a dyadic interaction. The intuition of Lemma 1 is depicted in Table 1, where all possible matchings
of 2-player games are summarized. Table 1 shows that IMR players have all-or-nothing BRs, as a
function of their partner’s impact. Thus IMR players have at most one collaborative project with
a partner who has a medium or high impact on the collaboration. Moreover, if they have such a
project, they dedicate all their resources to it (see Table 1b and c). Note that this is possible because
a collaborative project is assumed to be always big enough to absorb all of a player’s resources.
Table 1 also shows how a player with type DMR is better off diversifying the use of his resources,
by allocating positive fractions of his endowment into different projects. This, unlike with IMR
players, is not impeded by his own or his partner’s impact (see Table 1a and c).

The intersections of the BRs presented in Lemma 1 result in the Nash equilibria of the 2-
person game (which are not necessarily unique in terms of link intensity), as illustrated in Table 1.
Specifically, the results of Lemma 1 generalize to n-person networks, given the solution to the
optimization problem can be applied to any part �̂ ≤ �i of i’s resources, i’s utility being additive
across all projects he is engaged in (see Equation (1)). This is of particular importance for DMR
players. Consider, for instance, a player i of type DMR involved in k collaborative projects. Since
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10 M. Muñoz-Herrera et al.

Table 1. Equilibriumoutcomes in the 2-person game. Each cell reports the combination of allocationsmade
by player 1 (rows) and player 2 (columns) in a 2-player gamewhere both players have type IMR (a), both have
type DMR (b), or one has type IMR and the other type DMR (c). Each table reports all combination of cases
where a player can make a high (H), medium (M), or low (L) impact to a collaborative project. Allocations
are reported as 1 if a player uses 100% of his endowment, 0 if he uses none, or + when he allocates some
resources to the joint project and keep some for in-house production. The cells in bold are the combination
of players between whom a collaboration will take place

IMG - IMG DMG - DMG IMG - DMG

H M L H M L H M L

H (1,1) (1,1) (0,1) H (+,+) (+,+) (+,+) H (1,+) (1,+) (0,+)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M (1,1) (1,1) (0,1) M (+,+) (+,+) (+,+) M (1,+) (1,+) (0,+)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L (1,0) (1,0) (0,0) L (+,+) (+,+) (+,+) L (1,+) (1,+) (0,+)

the utility function of player i is additive in the k projects, we can consider any of the k projects as
an independent 2-person game, conditional on the k− 1 other projects. By Lemma 1, player i will
best respond in any of the k projects according to Equation (4). In particular, player i will have a
nonzero self-allocation in any of the k projects, including in-house production. This is formally
presented in the following section.

4.2 Nash equilibria
To describe the set of Nash equilibria, NE(�), in terms of the resources players allocate, we
consider the general problem of optimizing the payoff function ui(�), subject to the constraint
xii +∑n

j�=i xij = �i.

Proposition 1. BRs in �: For a collaboration network game, the proportion of resources player i
allocates to a project is equal to the proportional productivity of the given project compared to his
total productive output in equilibrium. Therefore, the BR of player i to the given allocations xji in
terms of his allocation to in-house production, x∗

ii, must satisfy the condition:

x∗
ii =

ρx∗δi
ii

ρx∗δi
ii +∑n

j�=i x
∗δi
ij x∗δj

ji

�i (5)

The BR of player i in terms of his allocation to a collaborative project with j, x∗
ij, must satisfy the

condition:

x∗
ij =

x∗δi
ij xδj

ji

ρx∗δi
ii +∑n

j�=i x
∗δi
ij xδj

ji

�i (6)

Proof. Proposition 1 presents the BR functions in the general n-person productive exchange game.
The proof is the solution to the optimization problem of the payoff function in Equation (1):

maxxii ui(δi, δj, xi, xNi(g))= ρxδi
ii +

n∑
j�=i

xδi
ij x

δj
ji (7)

s.t. xii +
n∑
j�=i

xij ≤ �i
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Network Science 11

The FOCs (Equations (8) and (9)) and the complementary slackness condition (Equation (10))
imply:

∂L
∂xii

= ρδix(δi−1)
ii − λ = 0,

ρδixδi
ii = λxii (8)

∂L
∂xij

= δix(δi−1)
ij xδj

ji − λ = 0,

δixδi
ij x

δj
ji = λxij (9)

λ

⎛
⎝xii +

n∑
j�=i

xij − �i

⎞
⎠= 0 (10)

where L is the Lagrange function and λ ≥ 0 is the Lagrange multiplier. From Equations (8) and (9)
it follows that λ = 0 implies xii = 0 and xijxji = 0 for all pairs i and j, yielding a total utility equal
to zero. Since any player i can produce a strictly positive utility by working alone, this is never a
best reply. So, we must have λ > 0 and according to Equation (10) the constraint must be binding:
xii +∑ni

j=1 xij = �i. Summing Equation (9) in j:

δi

n∑
j=1

xδi
ij x

δj
ji = (� − xii)λ (11)

Adding Equations (8) and (11):

δi

⎛
⎝ρxδi

ii +
n∑
j=1

xδi
ij x

δj
ji

⎞
⎠= λ�i (12)

Dividing Equation (8) by Equation (12), we obtain the BR of player i to the allocations of the other
players, in terms of his allocation to an individual project, x∗

ii:

x∗
ii =

ρxδi
ii

ρxδi
ii +∑n

j�=i x
δi
ij x

δj
ji

�i (13)

Dividing Equation (9) by Equation (12), we obtain the BR of player i on his allocation to a
combined project with j, x∗

ij:

x∗
ij =

xδi
ij x

δj
ji

ρxδi
ii +∑n

j�=i x
δi
ij x

δj
ji

�i (14)

The BR functions in Proposition 1 show that in the optimum the proportion of resources a
player i invests in a collaborative project (or to in-house production) equals the proportional pro-
ductivity of the given project compared to his total productive output. In other words, the greater
the output of a productive project, themore resources i allocates to such project. This is a specifica-
tion of the intensity of the links formed in the weighted networks, through the shares of resources
players devote to each collaborative project.

The main takeaway from the equilibrium outcomes is that there are mixed effects of joint col-
laboration strategies with substantial differences between types of players. Players with DMR types
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12 M. Muñoz-Herrera et al.

perceive a positive impact by following diversification strategies, while players with IMR types are
better off by specialization and focus on limited (i.e., a single) collaborative projects. The bottom
line is that DMR players create multiple collaborations, in addition to in-house production, while
IMR players create a single project, either in-house or joint collaboration. As discussed before, our
model provides consistent results to what has been observed in the literature on industrial organi-
zations, where strategies to establishmultiple collaborations can be either detrimental or beneficial
depending on a firm’s size (e.g., its production function). Large firms benefit from diversification
while smaller firms face diseconomies when pursuing multiple collaborations at the same time
(see e.g., Belderbos et al., 2006). Our work further these results by looking at how collaboration
networks emerge given these strategies and different distributions of resources across types of
players.

Since a Nash equilibrium is any combination of BRs, it is clear there will be very many different
equilibria in any given network. An illustrative example is the empty network where each player
allocates his entire endowment into in-house production. Such a network is a Nash equilibrium,
given that unilateral deviations are not enough to establish collaborative projects. Moreover, we
know, from Lemma 1, that it would be better for DMR players to use part of their endowment
and form collaborative projects with others. Similarly, depending on their available resources, IMR
players would also benefit by changing from in-house production to joint collaboration. Naturally,
the almost empty network where a pair of players are involved in a collaborative project can be
a Nash equilibrium, as well. But, as mentioned before, many of the unconnected players may be
better off establishing different collaborations. Because of cases like these, in the following section
we narrow down the set of network configurations that emerge in equilibrium by imposing a
condition of stability to bilateral deviations; that is, by allowing those players who would be better
off not staying isolated, for example, to jointly change their resources. This will conclude our
analysis.

4.3 Pairwise stable Nash equilibria
Up until now, we have used Nash equilibrium as the solution concept. However, in social and
economic settings such as the collaboration networks studied here, players can be expected to
bilaterally form relationships that are mutually beneficial. To realign models of strategic network
formation with this bilateral considerations, Jackson &Wolinsky (1996) proposed pairwise stabil-
ity as an alternative capturing mutual consent (see also, Jackson & Watts, 2001, 2002; Emerson,
1972), where a network is said to be a pairwise stable Nash equilibrium if it is Nash and pairwise
stable.

Note that PNE has been widely used as a stability notion when links are either present or not.
However, when studying weighted networks such as the collaboration networks we look at, players
decide how much of their resources to devote to various collaborations, so that it is not only a
matter of whether a connection exists, but also what its intensity (i.e., weight) is. Thus, we adapt
the notion of pairwise stability as presented in Definition 3 below.

Definition 3. PNE in weighted collaboration networks: A network is PNE if no player i would
strictly benefit by any reallocation of his resources in vector xi, and no pair of players i and j would
both strictly benefit by a reallocation in xi and xj.

In Proposition 2 we present the main result of the paper, which summarizes the entire analysis
into specific network structures that conform the PNE set. Before presenting Proposition 2, we
describe some network structures that facilitate its illustration. The networks described below can
be grouped into the more general notion of nested split graphs (see, e.g., Belhaj et al., 2016; Konig
et al., 2014), which we adapt to our model of collaboration networks with heterogeneous players.
Specifically, while in nested-split graphs players are differentiated according to their degree, we
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Network Science 13

differentiate players according to their type (i.e., production functions), which is one of the main
variable of heterogeneity in our model. The first network of interest is the so-called DOMINANT-
GROUP architecture (see, Goyal & Joshi, 2003), presented in the definition below:

Definition 4. Dominant-group architecture: A network is a dominant-group architecture if play-
ers of one type form a main component while players of the other type are isolated from the main
component.

The second network of interest is the CORE-PERIPHERY architecture (see Galeotti & Goyal,
2010). This is a generalization of the star network with various central players in the core.
Specifically:

Definition 5. Core-periphery architecture: A network is a core-periphery architecture if players of
one type form a main core while players of the other type are linked to someone in the core.

Now that the most relevant architectures have been introduced, we present the main result
of our paper: PNE networks. Proposition 2 characterizes the PNE configurations in our model,
taking into account the distribution of types of players in the population and the endowments
assigned to them.

Proposition 2. Pairwise stable Nash equilibria: The set of pairwise stable Nash equilibria(�) is
a subset of NE(�), composed predominantly by two classes of networks: (i) if resources are such
that DMR players can only make a low impact and IMR players can make medium or high impact,
DOMINANT-GROUP architectures emerge where DMR players form the main component and IMR
players stay isolated from the DMR players, or (ii) if resources are such that DMR players can make
medium or high impact and IMR players can only make a low impact, CORE-PERIPHERY architec-
tures emerge where DMR players form the core and IMR players are linked to them as peripherals.

Proof. We present the proof for each class of PNE networks described in Proposition 2. If a net-
work is PNE, it is also a Nash equilibrium. Thus, it is straightforward that the set of PNE(�) is a
subset of NE(�). Now we discuss the specific patterns of collaborative projects that emerge.

1. DOMINANT GROUP architectures: For this networks we show there are no links between
types (point 1.1.), there is a main component formed by DMR players (point 1.2.), and IMR
players stay mostly isolated (point 1.3.).
1.1. No links between types: Consider a player i of type δi > 1 (IMR) and a player j of type

δj < 1 (DMR). Given that�δj
j < ρ, we know from Lemma 1 that the impact each player

can have on a collaborative project leads to no links between IMR and DMR players.
This is PNE because player i strictly prefers staying isolated and investing only into in-
house production than creating a collaboration link with j, since ui(xii = �i)= �

δi
i ρ >

�
δi
i �

δj
j = ui(xii = 0). The same holds for every player iwith type IMR in relation to any

player j with type DMR.
1.2. Links between DMR types: Denote by D= {i ∈N : δi < 1} the subset of DMR players

in the population. From Lemma 1 we know that for players in D the empty net-
work where each player only allocates resources into in-house production is not PNE,
because any two players i and j in D could strictly increase their utility by forming
a collaborative project. Now assume network g is a Nash network where some col-
laborative project between DMR players are formed. From the proof of Proposition 1,
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14 M. Muñoz-Herrera et al.

in particular from Equation (14) we know that player i would increase an allocation
to a new or existing project with a partner j by taking out resources from (at least)

another project with a partner k. Given xij > 0 and xik > 0, we get xij
xik = ρxδi

ij x
δj
ji

xδi
ikx

δk
ki
. Then,

∂xik
∂xji ≤ 0, and ∂xij

∂xji ≥ 0 ∀ i ∈N and j, k ∈Ni(g) : j �= k, j �= i, and i �= k, which indicates
that i would establish new collaborations up to the point where the marginal gains
from it are equal to the marginal losses of reallocating resources from other projects.
Moreover, we know from Equation (4) that these reallocation are always fractions of
the endowment, for it is never a BR for i to use his entire endowment in a single project.
Thus, the more resources DMR players have the more collaborations they can form,
until a complete component is formed.

1.3. Links between IMR types: Denote by I = {i ∈N : δi < 1} the subset of IMR players in the
population, with cardinality k. If the impact each player canmake is low,�δi

i < ρ, play-
ers respond by staying alone as shown in point 1.1. However, if the impact IMR players
can make is medium or high, �δi

i ≥ ρ, rank and label all IMR players from 1 to k, such
that�δ1

1 ≥ �
δ2
2 ≥ �

δ3
3 ≥ . . . ≥ �

δk−1
k−1 ≥ �

δk
k . Let pairs of players {1, 2}, {3, 4}, {5, 6}, etc.,

form collaborative projects in network g, where each invests his entire endowment.
If k is uneven, player k is left without a partner. By Lemma 1 this is a Nash configu-
ration. To see that it is PNE, first observe that Nash equilibrium guarantees that no
player will individually want to reallocate resources. Second, consider non-existing
links between players. Consider players i, j, l,m such that �

δi
i ≥ �

δj
j ≥ �

δl
l ≥ �

δm
m , and

i, j ∈ g and l,m ∈ g. Suppose i proposes a link to player l, by allocating xδi
il > �

δm
m , then

player l is better off reciprocating i and allocating xδl
li = �

δl
l . However, following the

construction of network g, �δj
j ≥ �

δl
l , which does not make i better off allocating any

resources to player l. Notice this is also true if player l is the kth player and is working
alone, because �

δj
j > ρ. Moreover, it is also true when considering a player n such that

�
δn
n ≤ ρ. Thus, network g is PNE.8

Note that the patterns of interactions of IMR and DMR players would be the same, even
if the population was homogenous such that all players were either in set D or set I.

2. CORE-PERIPHERY architectures: For this networks we show that a main core is formed by
DMR players (point 2.1.), there are no links between IMR players (point 2.2.), and IMR players
only connect to DMR players (point 2.3.).
2.1. Links between DMR types: Given DMR players have endowments that allow them to

make a high impact into the projects they are involved in, players with DMR types
collaborate with both IMR and DMR partners. Thus, forming a core where DMR players
are connected between them. The proof follows the arguments from point 1.2.

2.2. Links between IMR types: There are no links between IMR players given each can only
make a low impact on their collaborative projects. The proof follows from point 1.1.

2.3. Links between types: Given players with type DMR have enough resources to make a
high impact on the collaborative projects and players type IMR only have resources
enough to make a low impact, IMR players will only form collaborative projects with
DMR partners. The way these links are formed follows the same matching process
presented in point 1.3.

In terms of efficiency in PNE networks, we know that bilateral deviations allow IMR players to
pair in such a way that the most productive partners are matched, resulting in the highest output
possible. This is evident in the ranking and matching of players by their impact, as described in
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Network Science 15

point 1.3. in the proof. However, with respect to DMR players, the PNE outcomes are not always
efficient, given there can be identical networks in terms of link presence but varying with respect
to link intensity.

Finally, the intuition from Proposition 2 can be illustrated going back to our example of how
firms can decide on the R&D collaborations. The first case, DOMINANT GROUP networks, would
mean that if start-up firms have enough resources, they would rather avoid firms with mature
technologies and instead dedicate to in-house production or specific collaborations with other
start-ups. The second case, CORE-PERIPHERY networks, would mean that if firms with mature
technology have high levels of resources, they would be able to attract and maintain relationships
with start-ups. Moreover, the start-up firms would put all their efforts in their collaborations with
the mature firms. However, given mature firms are better off diversifying, they would also invest
in collaborations with other mature firms as well as with other start-ups.

5. Conclusion
We have examined how the problem of establishing collaboration projects in a network is
impacted by the interplay between resource heterogeneity and heterogeneity in production func-
tions. Our main findings indicate that different network structures emerge depending on whether
mature firms (those with decreasing marginal returns to own effort) have abundant or limited
resources. In the latter, they become unattractive partners to firms with the capacity to innovate
(those with increasing marginal returns to own effort), which results in DOMINANT GROUP net-
works where actors are segregated by the type of production functions they have. However, if
mature firms have large amounts of resources, they are able to make a high impact on the col-
laborative projects they establish, and thus are able to attract different innovative firms. This is
portrayed by a CORE-PERIPHERY architecture.

We conclude by pointing out opportunities for further research. Empirical tests of our model
constitute an important next step to advance our insights into the impact of heterogeneity in
production functions on emergent network structures. Laboratory experiments offer powerful
techniques to do so (see Choi et al., 2016; Kosfeld, 2014). Particularly, by studying how experi-
mental subjects interact, we can discover in more depth how certain network structures are more
likely to emerge than others, while controlling the distribution of players with respect to their
production functions and resources.
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Notes
1 “Campbell Invests $125 Million in Project to Fund Food Startups”. The Wall Street Journal. February 17, 2016.
2 There is a stream of literature in sociology looking at collaboration interactions. However, their focus is on exogenously
imposed networks (Cook & Emerson, 1978; Bienenstock & Bonacich, 1992; Molm & Cook, 1995; Dijkstra & van Assen, 2006)
or restricted to the activation of a single collaboration at a time (Willer, 1999), which impedes the analysis of collaboration
strategies.
3 The effects of production functions have been studied before, especially in Marwell and Oliver’s work on critical mass in
collective action (Marwell et al., 1985; Marwell & Oliver, 1993). In their work, however, the shape of a production function is a
property of the collective good, rather than a property of (potential) individual contributors, as in our study. In our approach,
both partners’ production functions jointly affect the output of the collaborative project.
4 Following the functions in Figure 2, players with δi < 1 are decelerating players, players with δi = 1 are linear players, and
players with δi > 1 are accelerating players. We focus our analysis on accelerating and decelerating players. However, proofs
account for linear players as well.
5 Note that players do not bargain or negotiate the exchange of resources but participate in reciprocal (and contingent) acts
of giving resources (see e.g., Lawler, 2001; Molm, 1990; Molm, 1994).
6 For two players i and j, if xij > 0 and xji = 0, no collaboration occurs between them and the resources invested by i in the
failed project are lost. That is, the interaction is valuable if resources from i and j are used together, in coordinated fashion, as in
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Baker et al. (2008). However, the resources invested by a player in in-house production are multiplied by ρ. Coleman (1990),
in his study of social exchange, assumes ρ = 1. In our case, by allowing for multiple values of the premium on individual
production we cover a wider set of productive scenarios.
7 This is a more general assumption than found in some existing models where every time a player forms a new link their
resources are redistributed symmetrically between all partners (e.g., Jackson &Wolinsky, 1996).
8 Note that since some players in I might have identical levels of production functions, g is not a unique network, but a
unique configuration. In other words, if two players have identical production functions they are interchangeable, leading to
two equivalent PNE networks.
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