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Introduction

For centuries, it has been known that health disparities exist across socioeconomic 

groups1. Higher rates of disease and shorter lifespans are observed among those 

with lower socioeconomic status. Despite attempts to systematically reduce these 

disparities, they persist to this day2,3. These disparities are also observed for kidney 

disease. Those with lower education, lower income, lower occupational level, and 

from deprived communities, are observed to be at higher risk of chronic kidney 

disease (CKD)4-6. The mechanisms that link low socioeconomic status to CKD are 

not fully understood. This thesis is an effort to increase our understanding of 

socioeconomic disparities in kidney disease. In particular, I seek to apply modern 

concepts from genetic epidemiology to answer social epidemiological questions 

in the context of CKD. In this first chapter, I discuss background and core concepts, 

identify knowledge gaps, and describe aims and hypotheses. Finally, I provide an 

outline of this thesis.

Epidemiology of chronic kidney disease

CKD is a heterogeneous group of disorders marked by progressive loss of kidney 

function and/or signs of kidney damage. Currently, the international guideline 

group Kidney Disease: Improving Global Outcomes defines CKD as the presence of 

abnormalities of kidney structure or kidney function of any cause, that exist for at 

least 3 months7,8. It is associated with cardiovascular and all-cause mortality9,10, 

and it may eventually progress to end-stage renal disease which requires renal 

replacement therapy (i.e. dialysis and kidney transplantation). CKD staging 

is based on risk classification of cardiovascular events and end-stage renal 

disease, and is currently determined by a combination of level of kidney function 

(assessed by estimated glomerular filtration rate, eGFR) and kidney damage 

(assessed by albuminuria) (Table 1). It is estimated that CKD affects 11-13% of 

the global population11. The incidence of CKD is increasing. Extrapolating from 

current trends, it has been projected that 50% of the US population will eventually 

develop some stage of CKD during their lifetime12. As such, CKD poses a major 

burden on patients and global health resources. 

Traditional cardiovascular risk factors such as older age, overweight, and smoking 

predispose to CKD13,14 but only explain a relatively small percentage of CKD cases. 

The most important risk factors for CKD are diabetes and hypertension, which 

together explain 50-70% of cases. However, it has been observed that CKD can 
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also occur in the absence of diabetes and hypertension15. Thus, a large proportion 

of CKD cases remains unexplained, warranting the identification of additional, 

non-traditional risk factors. 

Table 1. Prognosis of CKD by categories of GFR and albuminuria. CKD is defined as 
abnormalities of kidney structure or function present >3 months, decreased GFR <60mL/
min/1.73m2 (G3) and/or at least moderately increased albuminuria (A2). Darker coloring 
indicates higher risk of cardiovascular events and end-stage renal disease. Adapted from 
KDIGO 2012.

Socioeconomic disparities in risk of CKD

Socioeconomic status, also referred to as socioeconomic position or social class, 

represents one’s access to social and economic assets and resources16.

CKD is unequally distributed across socioeconomic groups. Higher prevalence and 

incidence rates of CKD and end-stage renal disease have consistently been observed 

among those with low socioeconomic status, and socioeconomic gradients have 

been observed for the CKD markers eGFR and albuminuria4,6. It is not fully understood 

what drives the association between socioeconomic status and CKD, and little has 

therefore been achieved in reducing socioeconomic disparities in CKD. The limited 

understanding of the association may in part be due to differences within and between 

populations, reflected by the substantial between-study heterogeneity that has 

been observed in meta-analysis of the association. This may be explained by 

differences in CKD prevalence, ethnic composition, health behavior, prevalence 

of risk factors, and healthcare systems17 between populations. Therefore, country 

and/or population-specific estimates of the relation should be made.

Persistent Albuminuria Categories

Description and range

A1 A2 A3

Normal to mildy 
increased

Moderately 
increased

Severely 
increased

<30 mg/g 30-300 mg/g >300 mg/g

≤3 mg/mmol 3-30 mg/mmol >30 mg/mmol

G
F

R
 C

at
e

g
o

rie
s 

(m
L

/
m

in
/

1.
73

m
2 ) 

D
e

sc
rip

tio
n

 a
n

d
 R

an
g

e

G1 Normal or high ≥90      

G2 Mildly decreased 60-89      

G3a Mildly to moderately decreased 45-59      

G3b Moderately to severely decreased 30-44      

G4 Severely decreased 15-29      

G5 Kidney failure <15      
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Some of the observed heterogeneity may also be explained by the socioeconomic 

indicator that is used. In health research, socioeconomic status is commonly 

measured by education, income, occupational level, area/neighborhood deprivation 

or any combination of these16,18-21. The indicators are not interchangeable18 and the 

choice of indicator may itself be a source of heterogeneity between studies. For 

example, some evidence exists that education, not income, is associated with 

CKD in the Netherlands, whereas in the United States, income is more strongly 

associated with CKD than education22. Educational level is sometimes the 

preferred indicator of socioeconomic status as it is easy to measure and yields a 

high response rate. It theoretically captures one’s knowledge related assets and 

cognitive abilities. Formal education is usually completed in young adulthood and 

therefore reflects early life socioeconomic status19,21. One advantage of education 

as an indicator of socioeconomic status in CKD research is that, in contrast to 

income, it is not affected by reverse causality (i.e. disease causing low education) 

given that CKD usually presents at older age.

Low socioeconomic status is not likely to increase risk of CKD in a direct manner. 

Rather, it is proposed to affect CKD risk through a wide range of intermediate 

pathways, including social (neighborhood deprivation, health care affordability, 

health care access), psychological (e.g. depression, stress), behavioral (smoking, 

poor diet), and biological factors (inflammation, obesity, hypertension)23-26. 

However, these propositions are not supported by data as only one cross-

sectional study formally examined the contribution of potential mediators to the 

socioeconomic status -CKD association in the US27. More study on the pathways 

underlying socioeconomic disparities in CKD is therefore needed. Understanding 

the mechanisms through which socioeconomically disadvantaged groups 

(e.g. those with a low educational level) show higher vulnerability to CKD may 

prove helpful in designing interventions to reduce socioeconomic disparities in 

CKD. Given the challenges of intervening on education itself, managing and/or 

modifying downstream effects of low education to prevent CKD in disadvantaged 

groups, may be a more promising approach.

Genetic underpinnings of CKD

There is strong evidence for a genetic component to CKD. It tends to aggregate in 

families28-31. Furthermore, heritability of kidney function markers, estimated from 

family and twin studies, range between 36 and 75%, i.e. 36-75% of variance in 
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kidney markers can be attributed to genetic factors32,33, although there is paucity 

of data from community-based samples. With advances in high-throughput 

measurement platforms, it became feasible to scan the entire human genome 

for possible leads towards causal genes. Such scans, called genome-wide 

association studies (GWAS), have identified a number of common variants, or 

single nucleotide polymorphisms (SNPs) (See Box 1), associated with kidney-

related traits such as glomerular filtration rate, kidney function decline, urinary 

albumin, serum creatinine, and serum urea, in populations of European and 

Asian ancestry34-42. GWAS thus far identified >50 SNPs associated with creatinine-

estimated glomerular filtration rate (eGFRcrea) in populations of European 

ancestry34-37,43,44. The phenotypic variance explained by the combined SNPs is 

modest (~4%); much of the genetic factors therefore remain to be found. Through 

advances in methodology and ever-increasing sample sizes, as well as the 

analysis of alternative markers of kidney function such as serum urea, it can be 

expected that new variants will be discovered. These new variants will explain 

larger amounts of phenotypic variance in the population, which may eventually 

lead to improved risk stratification and a deeper understanding of the mechanisms 

underlying CKD.

Genetics applied to social and clinical epidemiology

Although individual effects of known genetic variants associated with kidney 

outcomes are small, it may be possible to use the information hidden within these 

Box 1. Genome-wide association studies and single nucleotide polymorphisms

Traditional linkage studies were highly successful in identifying genetic mutations 

underlying Mendelian diseases and traits (i.e. those with a single underlying gene). 

However, linkage analysis has proven ineffective for complex, polygenic traits that do not 

follow Mendelian inheritance patterns, such as height and blood pressure, and diseases 

such as diabetes. The development of high-throughput microarrays enabled researchers 

to scan the human genome for genetic markers associated with complex phenotypes. 

Such scans, known as genome-wide association studies (GWAS), typically involve the 

examination of millions of genetic markers called single nucleotide polymorphisms 

(SNPs). SNPs are variations in a single base pair, at a single location in the DNA sequence. 

SNPs located in the coding region of a gene may be synonymous (not affecting protein 

sequence) or non-synonymous (altering the amino acid sequence of protein). SNPs not in 

coding regions may tag causal genetic loci by association, or contribute to the disease or 

trait by affecting expression of genes.
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variants to improve risk prediction of CKD in individuals as well as the population. 

For example, the effects of the 63 genetic variants associated with eGFRcrea may be 

aggregated into a genetic risk score, which holds promise as a reliable and accurate 

proxy for a genetic component to kidney function. For example, such a genetic 

risk score may be used to examine gene-environment interaction; recently it has 

been observed that higher socioeconomic status offsets genetic risk of obesity and 

diabetes45,46, and it is possible that this also applies to genetic risk of CKD.

Furthermore, SNPs can be used as instrumental variables in a quasi-experimental 

design named Mendelian randomization47,48. This method exploits the random 

assortment and independent assignment of alleles to individuals. Analogous 

to a randomized clinical trial, individuals are randomly assigned to increased or 

decreased exposure to a risk factor based on their genotype. Due to the random 

assignment, confounding is minimized. Furthermore, given that the outcomes 

cannot influence one’s genotype, reverse causation is unlikely. Therefore, under 

a number of assumptions, estimates of association derived from such Mendelian 

randomization analyses are considered causal estimates. This method is increasingly 

being applied to social and clinical epidemiology. For example, in recent Mendelian 

randomization studies, educational attainment has been implicated as a causal 

factor in smoking49,50, obesity51, and coronary heart disease52. These studies lend 

further support for a causal role of socioeconomic factors in disease risk. Given 

the large body of observational evidence on the socioeconomic status - CKD 

association, and that many of the underlying risk factors of coronary heart disease 

are similar to those of CKD, it is likely there is a causal role of socioeconomic factors 

in CKD risk as well. 

Thesis outline

Aims

In this thesis, I aim to elucidate pathways leading to CKD in the general population. 

More specifically, in applying concepts from genetic epidemiology to social 

epidemiology, I hope to increase our understanding of socioeconomic disparities 

in CKD risk. 

Research question 1

Is educational level associated with long-term risk of CKD in the general 

population? If so, what are mediators of this association? (Chapter 2)
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Research question 2

Is low heart rate variability, an indicator of poor autonomic function, associated 

with increased risk of CKD in the general population? (Chapter 3)

Research question 3

CKD is observed to aggregate in families. What are the odds of developing CKD 

when a family member has CKD? What is the contribution of genetic factors to the 

CKD defining traits, eGFR and albuminuria, in the general population? (Chapter 4)

Research question 4

GWAS identified 53 SNPs associated with eGFRcrea. Is a genetic risk score based 

on these SNPs an accurate genetic proxy of kidney function? If so, can such a 

genetic risk score be used for CKD risk prediction? (Chapter 5)

Research question 5 

Serum urea is an alternative marker of kidney function. Which are the genes that 

influence serum urea? What function do these genes have? Can we, through 

these genes, gain insights into the physiology of serum urea and kidney function, 

and into the pathways leading to kidney disease? (Chapter 6)

Research question 6

Does lower education amplify the negative consequences of a higher genetic 

predisposition to CKD? (Chapter 7)

Research question 7

Can we obtain causal estimates of the inverse association between education and 

CKD using genetic proxies of educational attainment? (Chapter 8)

To address the research questions in this thesis, we leverage data from large 

samples of the general population. The two most important are the Prevention 

of REnal and Vascular ENd-stage Disease (PREVEND) Study and the Lifelines 

cohort study and Biobank. Furthermore, we apply summary data from large GWAS 

consortia such as the Chronic Kidney Disease Genetics (CKDGen) Consortium, and 

the Social Science and Genetics Association Consortium (SSGAC). Information on 

data sources and study design, by thesis chapter, is provided in Table 2. Details 

on these sources are described in the referred chapter.
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Thesis structure

A general introduction of this thesis is provided in Chapter 1. Here, concepts, 

constructs, and hypotheses underlying this thesis are discussed, and an 

overview of the available literature is provided. In Chapter 2, socioeconomic 

disparities, assessed by educational level, in long-term risk of CKD are examined. 

Furthermore, I explore potential underlying mechanisms of this association. In 

Chapter 3, I investigate the association of heart rate variability (HRV), a marker of 

poor autonomic function, with CKD. In Chapter 4, I construct a genetic risk score 

comprised of genetic variants associated with creatinine-estimated glomerular 

filtration rate. I then examine its cross-sectional and longitudinal associations 

with a number of complementary kidney outcomes to ascertain whether it is 

an accurate and clinically applicable representation of the genetics underlying 

kidney function. In Chapter 5, I describe a meta-analysis of GWAS to identify 

genetic variants associated with urea, an alternative marker of kidney function, 

in populations of European ancestry. In follow-up analyses, we attempt to 

characterize these variants and their relevance to urea physiology and kidney 

function and disease. In Chapter 6, I examine the familial aggregation of CKD, 

and estimate the relative contribution of genetic factors in CKD related traits. 

In Chapter 7, I address the question whether high socioeconomic status offsets 

genetic predisposition to reduced kidney function by examining the statistical 

interactions between education and a genetic risk score. In Chapter 8, I perform 

a Mendelian Randomization study to obtain causal estimates of the relation 

between education and kidney outcomes. Finally, in Chapter 9, I discuss the most 

important findings and their implications for clinical practice, research practice, 

and public health.
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ABSTRACT
Introduction. The longitudinal association between low education and chronic 

kidney disease (CKD) and its underlying mechanisms are poorly characterized. 

We therefore examined the association of low education with incident CKD and 

change in kidney function, and explored potential mediators of this association.

Methods. We analyzed data on 6078 participants from the community-based 

PREVEND Study. Educational level was categorized into low, medium, and high 

(<secondary, secondary/equivalent, >secondary schooling). Kidney function was 

assessed by estimating glomerular filtration rate (eGFR) by serum creatinine and 

cystatin C at five examinations during ~11 years of follow-up. Incident CKD was 

defined as new-onset eGFR<60mL/min/1.73m2 and/or urinary albumin≥30mg/24h 

in those free of CKD at baseline. We estimated main effects with Cox regression 

and linear mixed models. In exploratory causal mediation analyses, we examined 

mediation by several potential risk factors.

Results. Incident CKD was observed in 861 (17%) participants. Lower education was 

associated with higher rates of incident CKD (low vs high education; HR[95%CI]=1.25 

[1.05 to 1.48], ptrend=0.009) and accelerated eGFR decline (B[95%CI]=-0.15 [-0.21 to 

-0.09] mL/min/1.73m2 per year, ptrend<0.001). The association between education 

and incident CKD was mediated by smoking, potassium excretion, BMI, WHR, and 

hypertension. Analysis on annual eGFR change in addition suggested mediation 

by magnesium excretion, protein intake, and diabetes.

Conclusions. In the general population, we observed an inverse association of 

educational level with CKD. Diabetes, and the modifiable risk factors smoking, 

poor diet, BMI, WHR, and hypertension are suggested to underlie this association. 

These findings provide support for targeted preventive policies to reduce 

socioeconomic disparities in kidney disease.

Keywords: chronic kidney disease, educational level, socioeconomic status, 

health disparities
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ABBREVIATIONS

Supplementary material available at www.doi.org/10.1093/ndt/gfy361

BMI = body-mass index

CKD = chronic kidney disease

eGFR = estimated glomerular filtration rate

PREVEND = Study Prevention of renal and vascular end-stage disease study

SES = socioeconomic status

UAE = urinary albumin excretion

WHR = waist-to-hip ratio
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BACKGROUND
Chronic kidney disease (CKD) is a heterogeneous group of disorders characterized 

by sustained diminished kidney function and/or kidney damage. CKD affects ~10-

15% of the global population, and its incidence is increasing1-4. CKD can progress 

to end-stage renal disease (ESRD), and is associated with an increased incidence 

of cardiovascular disease and all-cause mortality5,6. As such, CKD poses a major 

burden on patients and global health resources.

CKD is unequally distributed across socioeconomic groups: higher prevalence 

and incidence rates of CKD and ESRD have consistently been observed among 

those with lower socioeconomic status (SES). Socioeconomic gradients have also 

been observed for eGFR and urinary albumin. However, large heterogeneity exists 

between studies of the SES-CKD association7,8. One possible explanation for this 

heterogeneity is that factors underlying the SES-CKD association vary between 

populations due to differences in e.g. ethnicity, lifestyle, prevalence of comorbid 

conditions, or healthcare9,10. Currently, the available literature is limited: 1) most 

observations were made in US-based cross-sectional data7,8 and 2) European 

studies established cross-sectional associations of SES measures with CKD11-13; 

however no European study explicitly examined the association of SES with CKD, 

or mediators of this association, in a longitudinal setting. Hence, it is uncertain to 

what extent SES conveys risk of CKD in the European general population, and which 

factors underlie this association. Characterization of underlying mechanisms may 

help identify targets for disease prevention and management, thus help alleviate 

the burden of CKD and its consequences among disadvantaged populations.

Our aim was therefore to examine the strength of the association of SES with the 

longitudinal outcomes, CKD incidence and annual change in eGFR, in a sample of 

the Dutch general population. Furthermore, we explored health-related behaviors 

and comorbid conditions that potentially mediate this association. 

MATERIALS AND METHODS
Study design and population

We used data from the Prevention of REnal and Vascular ENdstage Disease 

(PREVEND) cohort study. PREVEND was initiated to investigate the natural 

course of increased urinary albumin levels and its association to renal and 

vascular outcomes. Details of this study have been described elsewhere14. 

Briefly, 8592 individuals, sampled from the general population of Groningen, 
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the Netherlands, underwent extensive examination between 1997-1998. Four 

follow-up examinations were completed in 2003, 2006, 2008, and 2012. All 

subjects gave written informed consent. PREVEND was approved by the medical 

ethics committee of the University Medical Center Groningen and conducted 

in accordance with the Helsinki Declaration guidelines. In the present study, 

we excluded participants with incomplete data on educational level, kidney 

outcomes, or important covariates.

Measures

We defined CKD according to Kidney Disease: Improving Global Outcomes 

guidelines (eGFR<60mL/min/1.73m2 or UAE≥30mg/24h)15. Incident cases were 

those participants free of CKD at baseline who developed CKD during follow-

up. We calculated eGFR from serum creatinine and serum cystatin C, using the 

corresponding CKD-EPI equation16.

Collection procedures of blood and two consecutive 24h-urine specimens at each 

examination has been described previously17. Measurement of serum creatinine 

was performed by an enzymatic method on a Roche Modular analyzer using 

reagents and calibrators from Roche (Roche Diagnostics, Mannheim, Germany), 

with intra- and interassay coefficients of variation of 0.9% and 2.9%, respectively. 

Serum cystatin C concentration was measured by a Gentian cystatin C Immunoassay 

(Gentian AS Moss, Norway) on a Modular analyzer (Roche Diagnostics). Cystatin 

C was calibrated directly using the standard supplied by the manufacturer 

(traceable to the International Federation of Clinical Chemistry Working Group 

for Standardization of Serum Cystatin C)18. Intra- and interassay coefficients of 

variation were <4.1% and <3.3%, respectively. Urinary albumin concentration (UAC) 

was measured by nephelometry with a lower threshold of detection of 2.3mg/L, 

and intra- and interassay coefficient of variation of 2.2% and 2.6%, respectively 

(Dade Behring Diagnostic, Marburg, Germany). UAC was multiplied by urine 

volume to obtain a value of UAE in mg/24h. The two 24h-urinary albumin values 

of each subject per examination were averaged. 

SES was measured by educational level, categorized into low (no, primary, basic 

vocational, and secondary education), medium (senior secondary vocational and 

general senior secondary education), and high (higher professional and higher 

academic education) according to the International Standard Classification of 
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Education19. Furthermore, we examined associations of income as alternative 

measure of SES. For this, we categorized income into low, medium, and high 

according to tertiles of the ratio between reported income and the 1998 poverty 

line (1658 guilders per month). 

Age, sex, and baseline eGFR were included as potential confounders. Included 

as potential mediators were: current smoking (self-reported yes/no), alcohol 

consumption (labelled as none, occasional {<10g/wk), light (10-69.9g/wk), 

moderate (70-210g/wk), heavier (>210g/wk)}, 24h urinary excretions of sodium 

(Na+), potassium (K+), and magnesium (Mg2+) (as surrogates for dietary intake 

of sodium, potassium, and magnesium), 24h protein intake (estimated from 

24h urea excretion by the Maroni formula20,21), body-mass index (BMI, weight/

height2), waist-to-hip ratio (WHR, waist/hip circumference), diabetes (fasting 

glucose>7.0mmol/L, non-fasting glucose>11.0mmol/L, anti-diabetic treatment, 

or self-reported), hypertension (systolic blood pressure>140mmHg, diastolic 

blood pressure>90mmHg, blood pressure lowering treatment, or self-reported), 

hypercholesterolemia (total cholesterol≥6.21mmol/L, lipid lowering treatment, 

or self-reported). Covariates were collected at baseline by questionnaires, 

anthropometry, urine collections, or pharmacy records. Urinary concentrations of 

Na+, K+, and Mg2+ were determined as previously described17,22.

Statistical analyses

Statistical analyses were performed using R v3.4.123 and SPSS v23 software (IBM 

corp, Amonk, NY, USA) during years 2017 and 2018. Two-sided significance level 

was set at α=0.05 unless otherwise stated. Baseline characteristics were examined 

for the total population and compared across categories of education using one-

way ANOVA, Jonckheere-Terpstra, or χ2-tests for linear trend. We used the survival 

R-package24 for Cox proportional hazards modelling of time to CKD. Time of CKD 

was estimated using a midpoint imputation method. Crude effects were examined 

in an unadjusted model. Next, we adjusted for age, sex, and baseline eGFR. In a 

final model, we introduced potential mediators. We calculated p for linear trend 

by analyzing education as a continuous rather than an ordinal variable. Using the 

lme4 R-package25, we estimated eGFR change by modelling eGFR as a function 

of time in a random intercept, random coefficient linear mixed model. To examine 

the crude effect of SES on annual eGFR change, an interaction term between 

time and SES was introduced. Next, we adjusted for age and sex, as well as their 
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interaction with time. Finally, we introduced all potential mediators, and the 

interaction of each with time. 

Next, we performed exploratory mediation analyses. Figure 1 shows a graph of 

hypothesized pathways tested in the present study. Main effects of potential 

mediators on kidney outcomes were examined with Cox proportional hazards and 

linear mixed models adjusting for age, sex, and baseline eGFR. Next, we used the 

mediation R-package26 to estimate mediation within the counterfactual framework 

described by Imai et al27. Here, we simplified our statistical models by using one 

contrast for education (low vs high education). Furthermore, we used individual 

eGFR slopes (extracted from a linear mixed-effects model) as outcome variable in 

mediation analysis of eGFR change. Finally, we used parametric survival models 

implemented in the survival R-package. Due to these alternative methods, effects 

may deviate slightly from those of our main effects analyses. Each potential 

mediator was analyzed separately, adjusting for age, sex, and baseline eGFR. 

Any significant SES x mediator interaction was controlled for in the mediation 

 
Figure 1. Graph of tested pathways through which low education could potentially lead to chronic 
kidney disease. BMI, body-mass index; WHR, waist-to-hip ratio. Poorer diet: high in sodium, low 
in potassium, low in magnesium, high in protein. Black arrows indicate a posited causal pathway; 
grey arrows indicate potential confounding pathways	  
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model. Non-parametric bootstrap CIs and p-values were estimated from 1000 

simulations. One-sided hypotheses were tested to assess potential mediators (i.e. 

current smoking28, higher alcohol consumption, higher Na+ excretion29, lower K+ 

excretion17, lower Mg2+ excretion30, higher estimated protein intake31, higher BMI32, 

higher WHR33, diabetes, hypertension, and hypercholesterolemia).

In secondary analyses, we examined associations of education with incident 

CKDeGFR (eGFR<60 mL/min/1.73m2), incident CKDUAE (UAE≥30mg/24h) and annual 

change in UAE (natural-log transformed to approximate normality, lnUAE). 

RESULTS
Baseline characteristics by educational level for 6078 participants with complete 

baseline data are presented in Table 1. Traditional risk factors (i.e. diabetes, 

hypertension, high cholesterol, smoking, higher BMI) were more prevalent 

in participants with low education. At baseline, low education participants 

were more likely to have CKD, lower eGFR, and higher UAE compared to high 

education participants. A higher attrition rate was observed for participants with 

low education: follow-up time was shorter for these participants. Low education 

was univariably associated with lower dietary quality as indicated by higher Na+ 

excretion, lower K+ excretion, lower Mg2+ excretion, and higher protein intake. Low 

education participants reported less alcohol consumption.

After excluding N=883 participants with baseline CKD, N=5195 remained for time-

to-CKD analysis. Among these, 861 (17%) experienced new-onset CKD, with a 

significant socioeconomic gradient (low; med; high education: 22%; 14%; 12%, χ2[df] 

=62.8[1], ptrend<0.001). In the crude model, we observed an inverse association of 

education with CKD, again with a significant gradient (low vs high education: HR 

[95%CI] =1.97 [1.67 to 2.32], ptrend<0.001; Table 2). After adjusting for age, sex, and 

baseline eGFR, the association was attenuated, but significance remained (low vs 

high education: HR [95%CI] =1.25 [1.05 to 1.48], ptrend=0.009). After introducing all 

potential mediators to the model, the education-CKD association was no longer 

significant, suggesting mediation within our hypothesized framework (Figure 1). 

 

Average estimated annual eGFR change for the total N=6078 population was -0.93 

(95%CI: -0.95 to -0.91) mL/min/1.73m2 per year. Low education was associated with 

accelerated eGFR change, with a significant gradient (low vs high education: B 
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[95%CI] =-0.15 [-0.21 to -0.09], ptrend<0.001, adjusted for age and sex; Table 2). Addition 

of potential mediators to the model attenuated the association, although significance 

remained (low vs high education: B [95%CI] =-0.11 [-0.16 to -0.04], ptrend<0.001). 

All potential mediators were associated with either CKD or annual eGFR change 

(Supplementary Table S4). We tested interactions of education with each potential 

mediator separately (age, sex, and baseline eGFR adjusted); none were significant 

Table 1. Baseline characteristics by categories of educational level.

Total

Educational level

ptrendLow  
(< secondary)

Medium  
(secondary or equivalent)

High 
(> secondary)

N 6078 2637 1565 1876

Males 3071 (51%) 1223 (46%) 855 (55%) 993 (53%) 0.005

Age, years 48 [39-59] 54 [45-63] 44 [36-54] 43 [37-51] <0.001

BMI, kg/m2 26 (4.1) 27 (4.3) 26 (4.0) 25 (3.3) <0.001

WHR 0.88 (0.09) 0.90 (0.09) 0.87 (0.09) 0.86 (0.09) <0.001

Current smoking 1956 (32%) 951 (36%) 529 (34%) 476 (25%) <0.001

Alcohol

None 1438 (24%) 881 (33%) 346 (22%) 211 (11%)

<0.001

Occasional (<10 g/wk) 956 (16%) 436 (17%) 263 (17%) 257 (14%)

Light (10-69.9 g/wk) 2120 (35%) 782 (30%) 573 (37%) 765 (41%)

Moderate (70-210 g/wk) 1252 (21%) 404 (15%) 303 (19%) 545 (29%)

Heavier (>210 g/wk) 312 (5%) 134 (5%) 80 (5%) 98 (5%)

Na+ excretion (mmol/24h) 143 (51) 143 (52) 145 (51) 140 (48) 0.021

K+ excretion (mmol/24h) 72 (21) 69 (20) 73 (22) 76 (21) <0.001

Mg2+ excretion (mmol/24h) 3.9 (1.5) 3.8 (1.5) 4.0 (1.6) 4.1 (1.5) <0.001

Estimated protein intake (g/
kg/24h)

1.16 (0.26) 1.18 (0.28) 1.15 (0.26) 1.16 (0.24) 0.005

Diabetes 202 (3%) 130 (5%) 43 (3%) 29 (2%) <0.001

Hypertension 1912 (31%) 1112 (42%) 418 (27%) 382 (20%) <0.001

High cholesterol 1879 (31%) 1062 (40%) 423 (27%) 4394 (21%) <0.001

Creatinine (μmol/L) 72 (16) 72 (17) 72 (15) 73 (14) 0.015

Cystatin C (mg/L) 0.89 (0.17) 0.91 (0.19) 0.88 (0.16) 0.86 (0.14) <0.001

eGFR, ml/min/1.73m2 95 (17) 91 (17) 98 (16) 99 (15) <0.001

UAE, mg/24h 9.1 [6.3-16] 10 [6.3-20] 8.9 [6.2-15] 8.4 [6.2-13] <0.001

CKD at baseline 883 (15%) 510 (19%) 199 (13%) 174 (9%) <0.001

CKDeGFR at baseline 167 (3%) 109 (4%) 37 (2%) 21 (1%) <0.001

CKDUAE at baseline 805 (13%) 457 (17%) 181 (12%) 167 (9%) <0.001

Follow-up time, yrs 11.2 [8.5-12.1] 11.1 [7.0-11.8] 11.3 [9.3-12.2] 11.4 [10.6-12.4] <0.001

Baseline characteristics by categories of educational level. Data is presented as mean (standard deviation), median (interquartile 
range), and number (%) where appropriate. P-values reflect significance of a linear trend across categories of educational level, using 
one-way ANOVAχ, χ2, or Jonckheere-Terpstra tests where appropriate.

Abbreviations: BMI, body-mass index; WHR, waist-to-hip ratio; eGFR, estimated glomerular filtration rate; UAE, urinary albumin 
excretion; CKD, chronic kidney disease
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(p>0.05). The association of low education and CKD was mediated by higher 

likelihood of smoking (proportion mediated [95%CI] =0.14 [0.02 to 0.51), p=0.009; 

Table 3), lower 24h K+-excretion (0.12 [0.02 to 0.45], p=0.008), higher BMI (0.29 [0.13 

to 0.96], p=0.004), higher WHR (0.31 [0.14 to 1.16], p=0.002), and higher prevalence 

of hypertension (0.14 [0.05 to 0.47], p=0.006) in this subpopulation. We observed 

no significant mediation by 24h Na+ excretion, Mg2+ excretion, protein intake, 

diabetes, or hypercholesterolemia.

There were no education x mediator interactions with eGFR change as outcome 

except for smoking (low education [vs high education] x smoking: B [95%CI] =-0.07 

[-0.10 to -0.05], p=0.01). The association of low education and accelerated eGFR 

decline was mediated by lower 24h K+ excretion (Table 3, proportion mediated 

[95%CI] =0.08 [0.03 to 0.16], one-sided p<0.001), higher BMI (0.22 [0.12 to 0.42], 

p<0.001), higher WHR (0.09 [0.01 to 0.18], p=0.008), and higher prevalence of 

Table 2. Association of education with incident CKD (Panel A) and annual change in eGFR (Panel B).

A) Incident CKD

Educational level

Low 
(<secondary)

Medium 
(secondary/equivalent)

High 
(>secondary)

N=5195 N=2127 N=1366 N=1702 ptrend

Events N=861 460 (22%) 193 (14%) 208 (12%) <0.001

HR (95%CI)

Model 1 1.97 (1.67 to 2.32) 1.17 (0.96 to 1.42) (ref.) <0.001

Model 2a 1.25 (1.05 to 1.48) 1.07 (0.88 to 1.30) (ref.) 0.009

Model 3 1.02 (0.85 to 1.22) 0.97 (0.80 to 1.19) (ref.) 0.789

B) Annual eGFR change 

Educational level

Low 
(<secondary)

Medium 
(secondary/equivalent)

High 
(>secondary)

N=6078 N=2637 N=1565 N=1876 ptrend

B (95%CI)

Model 1b -0.30 (-0.36 to -0.24) -0.10 (-0.17 to -0.04) (ref.) <0.001

Model 2b -0.15 (-0.21 to -0.09) -0.08 (-0.14 to -0.02) (ref.) <0.001

Model 3b -0.11 (-0.16 to -0.04) -0.06 (-0.12 to 0.00) (ref.) <0.001

Data are presented as hazard ratio (95%CI) or unstandardized regression coefficient (95%CI, in mL/min/1.73m2 per year). 
Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate. 
Model 1: Crude Educational level (high educational level is reference category) 
Model 2: Model 1 + age, sex, a(and in addition baseline eGFR), b(and in addition their interaction with time) 
Model 3: Model 2 + potential mediators (body-mass index, waist-to-hip ratio, smoking, alcohol use, Na+ excretion, K+ excretion, Mg2+ 

excretion, estimated protein intake, diabetes, hypertension, high cholesterol) b(and in addition their interaction with time)
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hypertension (0.13 [0.08 to 0.24], p<0.001). Additionally, lower Mg2+ excretion (0.03 

[-0.003 to 0.07], p=0.030), higher protein intake (0.01 [-0.001 to 0.04], p=0.032) 

and higher prevalence of diabetes (0.04 [0.01 to 0.10], p=0.009) mediated the 

association of low education with accelerated eGFR decline. A protective effect 

of smoking on eGFR change was observed; higher prevalence of smoking in 

those with low education appeared to offset risk of accelerated eGFR decline 

(proportion mediated [95%CI] =-0.12 [-0.22 to -0.06], p=1.000). Higher alcohol 

consumption was not a mediating risk factor, rather, alcohol seemed protective 

of CKD and accelerated eGFR decline (Supplementary Table S4). Estimates of 

average causal mediation effects and direct effects are listed in Supplementary 

Tables S5-6. 

No significant associations between education with CKDeGFR or CKDUAE were found, 

although directions of effect for these outcomes were consistent with our main 

analysis (Supplementary Table S1-S2). Average estimated increase in UAE for 

Table 3. Mediators of the association between Educational level and kidney outcomes

Incident CKD Annual change in eGFR

Mediators Proportion mediated (95%CI) p Proportion mediated (95%CI) p

Health-related behaviors

Smoking 0.14 (0.02 to 0.51) 0.009 -0.12 (-0.23 to -0.05) a 1.000

Alcohol 0.24 (0.05 to 0.99) 0.989 0.26 (0.16 to 0.49) 1.000

24h Na+ excretion -0.01 (-0.09 to 0.09) 0.431 0.01 (-0.02 to 0.06) 0.216

24h K+ excretion 0.12 (0.02 to 0.45) 0.008 0.08 (0.03 to 0.16) <0.001

24h Mg2+ excretion 0.04 (-0.03 to 0.18) 0.098 0.03 (-0.003 to 0.07) 0.030

Estimated 24h protein intake 0.001 (-0.002 to 0.04) 0.447 0.01 (-0.001 to 0.04) 0.032

Comorbid conditions

BMI 0.29 (0.13 to 0.96) 0.004 0.22 (0.12 to 0.42) <0.001

WHR 0.31 (0.14 to 1.16) 0.002 0.09 (0.01 to 0.18) 0.008

Diabetes 0.08 (-0.005 to 0.06) 0.064 0.04 (0.01 to 0.10) 0.009

Hypertension 0.14 (0.05 to 0.47) 0.006 0.13 (0.08 to 0.24) <0.001

Hypercholesterolemia 0.02 (-0.05 to 0.13) 0.223 -0.04 (-0.10 to 0.01) 0.962

Results from causal mediation analysis. N=6078. Effects are reported as proportion mediated of the association between education 
(low vs high) and kidney outcomes. Non-parametric bootstrap confidence intervals and one-sided p-values are estimated from 
1000 simulations. Estimates are conditioned on age, sex, and baseline eGFR.

One-sided hypotheses were that low education leads to steeper eGFR decline through: current smoking, higher alcohol 
consumption, higher Na+ excretion, lower K+ excretion, lower Mg2+ excretion, higher protein intake, higher BMI, higher WHR, diabetes, 
hypertension, and hypercholesterolemia. 

 a In addition adjusted for the interaction term educational level x smoking. 
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the total population was 1.1% (95%CI: 0.9% to 1.3%) per year. Low education was 

associated with accelerated increase in UAE (low vs high education: 0.7% [0.2% to 

0.11%] accelerated increase in UAE per year, ptrend=0.003), but no longer significantly 

after adjusting for age and sex (Supplementary Table S3). There were no significant 

associations of household income, as alternative measure of socioeconomic status, 

with kidney outcomes after confounder adjustment (data not shown). 

DISCUSSION
In a middle-aged community-based cohort, we examined the associations of SES, 

as indicated by educational level, with the longitudinal kidney outcomes, incident 

CKD and eGFR decline. Low education was associated with higher incidence 

rates of CKD, independent of age, sex, and baseline eGFR, but not of potential 

mediators. Furthermore, low education was associated with accelerated eGFR 

decline, independent of age, sex, and potential mediators. Exploratory longitudinal 

mediation analysis suggested that the association between education and CKD can 

partly be explained by diabetes and the modifiable risk factors, BMI, WHR, smoking, 

potassium, and hypertension. No significant associations of household income with 

kidney outcomes were observed.

With this longitudinal study, we corroborate previous cross-sectional observations 

that in the Netherlands, education, not income, is associated with kidney outcomes12. 

Recent longitudinal data from the US-based Atherosclerosis Risk in Communities 

study show effects of education on CKD incidence and eGFR decline comparable 

to the present data34. However, in contrast to the Netherlands, income is associated 

to CKD in the US12,34. Possible explanations for this discrepancy are: 1) in the US, 

healthcare access is income-dependent35, and 2) there is larger income inequality 

compared to the Netherlands36. 

Our results are generally consistent with a previous mediation analysis on the SES-

CKD association. This study assessed SES by household income, and was performed 

in a cross-sectional sample of the general US population37. Similar to that study, we 

observed mediation by smoking, (abdominal) obesity, diabetes, and hypertension. 

However, we could not corroborate a mediation effect of hypercholesterolemia. 

Vart et al37 used questionnaires on availability of fruits and vegetables at home to 

assess dietary quality but did not observe mediation. In contrast, we used urinary 

measures to objectively assess dietary intake of various nutrients. We found strong 
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mediation effects of lower potassium intake on both incident CKD and accelerated 

eGFR decline, as well as suggestions for effects of lower magnesium intake and 

higher protein intake. 

Of all nutrients examined in the present study, lower potassium intake was the 

strongest mediator. A large body of epidemiological data shows that low SES is 

associated with poor diet, especially with a lower consumption of micronutrients such 

as potassium38. Low potassium intake was previously observed to associate with an 

increased risk of incident hypertension39, but also with incident CKD independent of 

hypertension17. A proposed mechanism involves induction of tubulointerstitial injury 

by ammoniagenesis caused by potassium deficiency40,41. Furthermore, potassium 

itself might be renoprotective by upregulating renal kinins42. On the other hand, 

potassium intake might reflect dietary quality more generally. The main dietary 

sources of potassium are fruits/vegetables, legumes, whole grains, and dairy 

products43. These potassium-rich foods contain fibers, polyphenols, antioxidants, 

and vitamins, which have health benefits44 that may be renoprotective.

Interestingly, no mediation through sodium intake was observed. High sodium intake 

reflects poor diet due to its high content in processed foods45,46, and is associated 

with the major renal risk factor, hypertension47; we therefore expected sodium to 

mediate the relation between education and CKD. However, we did not observe a 

strong educational gradient in sodium at baseline (Table 1). Furthermore, sodium 

intake was not found to be associated with CKD in PREVEND17, which likely explains 

the observed lack of mediation in the present study.	

Three counterintuitive findings need to be addressed. Firstly, despite its association 

with an elevated risk of CKD (concordant with literature28), smoking was associated 

with decelerated eGFR decline. We therefore further examined the main effect 

of smoking on eGFR decline in fully adjusted models: compared to non-smokers, 

smokers had lower baseline eGFR, and despite decelerated decline, eGFR on 

average remained lower in these participants (data not shown). Therefore, this 

finding is likely the result of a floor effect. Secondly, alcohol consumption was 

inversely associated with risk of CKD and eGFR decline. Moreover, lower alcohol 

consumption among low education participants partly explained the elevated risk 

of CKD. This may be due to residual confounding, a sick quitter/sick non-starter 

effect48, or a cohort-specific effect; for a detailed discussion we refer to a study 
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by Koning et al. that previously observed this association in PREVEND49. Thirdly, 

mediation effects of diabetes were significant on eGFR decline, but only borderline 

significant (p=0.064) on incident CKD. This is likely the result of reduced statistical 

power of a dichotomous outcome compared to a continuous outcome, and low 

prevalence of diabetes (3% at baseline) in the PREVEND sample.

The mechanisms underlying the education-CKD association are incompletely 

understood. We therefore tested several biologically plausible mediating pathways. 

However, some are overlapping (e.g. BMI, WHR), or on the same causal pathway 

(e.g. low potassium intake leading to CKD possibly through hypertension). Hence, 

we examined each mediator separately, correcting only for age, sex, and baseline 

eGFR to prevent overadjustment. Due to sparse adjustment and the observational 

nature of PREVEND, we cannot exclude residual confounding. However, results were 

broadly concordant with the literature, i.e. effects were generally in the hypothesized 

direction. Therefore, any confounding has likely only biased magnitude, not direction, 

of mediation effects. Future work may involve further characterization of the 

education-CKD association by estimating effects of multiple mediators relative to 

one another using multivariable techniques (e.g. structural equation modelling or the 

counterfactual approach described by Lange et al50,51). 

To the best of our knowledge, the present study is the first in Europe examining the 

longitudinal association between education and CKD in the general population, and 

the first exploring its underlying mechanisms in a longitudinal setting. Strengths of 

this study are its considerable size (N=6078) and follow-up time (~11 years). GFR was 

estimated from serial measurements of serum creatinine and cystatin C, currently 

considered the best proxy of kidney function in population-based studies. Furthermore, 

data on urinary albumin was available for all included participants. Finally, dietary 

variables were objectively measured from 24h urinary collections. Several limitations 

should be addressed. Firstly, PREVEND consists of >95% whites; we therefore could 

not address the influence of ethnicity in the education-CKD association. Secondly, 

we observed a higher attrition rate of participants with low education, which may 

have resulted in a bias towards the null. Thirdly, we lacked baseline information on 

several potential mediators (e.g. physical activity/sedentary time, healthcare access, 

health literacy, psychological factors). Finally, only individual-level socioeconomic 

data were available; we therefore could not examine effects of area-level SES.

In an effort to characterize socioeconomic disparities in CKD, we explored a number 
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of plausible mediating pathways (i.e. health behaviors and clinical risk factors) 

that link education to CKD. Future research may focus on e.g. 1) confirming the 

pathways suggested in the present study; 2) exploring other potential mediating 

factors such as health care access, health literacy, and psychological factors; 3) 

establishing the interrelationship between these factors. Understanding how and 

why socioeconomically disadvantaged groups (e.g. those with a lower educational 

level) show higher vulnerability to CKD may prove helpful in designing interventions 

to reduce socioeconomic disparities in CKD. Given the challenges of intervening on 

education itself, managing and/or modifying downstream effects of low education 

may be a more promising approach. 

To conclude: in the Dutch general population, low SES, as indicated by educational 

level, is associated with elevated risk of CKD. This association is suggested to be 

driven by higher rates of diabetes and the modifiable risk factors, (abdominal) obesity, 

smoking, low potassium intake, and hypertension, in those with lower education. The 

data presented are a first step towards potential targeted public health interventions 

to reduce socioeconomic health disparities. 

ACKNOWLEDGEMENTS
The PREVEND Study in general was funded by the Dutch Kidney Foundation (grant 

E.033). The funding source had no role in study design; in collection, analysis, or 

interpretation of the data; in writing of the report; or in the decision to submit for 

publication. Results have been previously presented as an abstract at the ERA-

EDTA conference in Copenhagen, Denmark, May 2018. CT and PV conceived and 

designed the study. RG contributed to data acquisition. All authors contributed to 

either analysis or interpretation of the data. CT and LK drafted the manuscript. PV, 

LK, HS, RG, UB revised the article. HS, RG, UB supervised the work. All authors 

approved of the final version of the manuscript. 

CONFLICT OF INTEREST STATEMENT
None declared.



40 Chapter 2 

1.	 Grams ME, Chow EKH, Segev DL, Coresh J. 
Lifetime incidence of CKD stages 3-5 in the 
united states. Am J Kidney Dis. 2013;62(2):245-252. 

2.	 Zhang QL, Rothenbacher D. Prevalence of 
chronic kidney disease in population-based 
studies: Systematic review. BMC Public Health. 
2008;8:117-2458-8-117. 

3.	 Jha V, Garcia-Garcia G, Iseki K, et al. Chronic 
kidney disease: Global dimension and 
perspectives. The Lancet. 2013;382(9888):260-272. 

4.	 El Nahas AM, Bello AK. Chronic kidney 
disease: The global challenge. The Lancet. 
2005;365(9456):331-340. 

5.	 Gansevoort RT, Correa-Rotter R, Hemmelgarn 
BR, et al. Chronic kidney disease and 
cardiovascular risk: Epidemiology, mechanisms, 
and prevention. The Lancet. 2013;382(9889):339-
352. 

6.	 Go AS, Chertow GM, Fan D, McCulloch CE, Hsu 
CY. Chronic kidney disease and the risks of death, 
cardiovascular events, and hospitalization. N Engl 
J Med. 2004;351(13):1296-1305. 

7.	 Vart P, Gansevoort RT, Joosten MM, Bultmann 
U, Reijneveld SA. Socioeconomic disparities in 
chronic kidney disease: A systematic review and 
meta-analysis. Am J Prev Med. 2015;48(5):580-592. 

8.	 Zeng X, Liu J, Tao S, Hong HG, Li Y, Fu P. 
Associations between socioeconomic status 
and chronic kidney disease: A meta-analysis. J 
Epidemiol Community Health. 2018;72(4):270-279. 

9.	 Bruck K, Stel VS, Gambaro G, et al. CKD 
prevalence varies across the European general 
population. J Am Soc Nephrol. 2016;27(7):2135-
2147. 

10.	 Patzer RE, McClellan WM. Influence of race, 
ethnicity and socioeconomic status on kidney 
disease. Nature Reviews Nephrology. 2012;8(9):533. 

11.	 Bello AK, Peters J, Rigby J, Rahman AA, El Nahas 
M. Socioeconomic status and chronic kidney 
disease at presentation to a renal service in 
the United Kingdom. Clin J Am Soc Nephrol. 
2008;3(5):1316-1323. 

12.	 Vart P, Gansevoort RT, Coresh J, Reijneveld SA, 
Bultmann U. Socioeconomic measures and CKD 
in the United States and the Netherlands. Clin J 
Am Soc Nephrol. 2013;8(10):1685-1693. 

13.	 Chudek J, Wieczorowska-Tobis K, Zejda J, et 
al. The prevalence of chronic kidney disease 
and its relation to socioeconomic conditions 
in an elderly Polish population: Results from 
the national population-based study PolSenior. 
Nephrol Dial Transplant. 2013;29(5):1073-1082. 

14.	 Pinto-Sietsma SJ, Janssen WM, Hillege HL, Navis 
G, De Zeeuw D, De Jong PE. Urinary albumin 
excretion is associated with renal functional 
abnormalities in a nondiabetic population. J Am 
Soc Nephrol. 2000;11(10):1882-1888. 

15.	 Levey AS, de Jong PE, Coresh J, et al. The 
definition, classification, and prognosis of 
chronic kidney disease: A KDIGO controversies 
conference report. Kidney Int. 2011;80(1):17-28. 

16.	 Inker LA, Schmid CH, Tighiouart H, et al. 
Estimating glomerular filtration rate from 
serum creatinine and cystatin C. N Engl J Med. 
2012;367(1):20-29. 

17.	 Kieneker LM, Bakker SJ, de Boer RA, Navis GJ, 
Gansevoort RT, Joosten MM. Low potassium 
excretion but not high sodium excretion is 
associated with increased risk of developing 
chronic kidney disease. Kidney Int. 2016;90(4):888-
896. 

18.	 Grubb A, Blirup-Jensen S, Lindstrom V, et al. 
First certified reference material for cystatin C in 
human serum ERM-DA471/IFCC. Clin Chem Lab 
Med. 2010;48(11):1619-1621. 

19.	 UNESCO Institute for Statistics. International 
standard classification of education. . 2011.
Maroni BJ, Steinman TI, Mitch WE. A method 
for estimating nitrogen intake of patients with 
chronic renal failure. Kidney Int. 1985;27(1):58-65. 

20.	 Halbesma N, Bakker SJ, Jansen DF, et al. High 
protein intake associates with cardiovascular 
events but not with loss of renal function. J Am 
Soc Nephrol. 2009;20(8):1797-1804. 

21.	 Joosten MM, Gansevoort RT, Mukamal KJ, 
et al. Urinary magnesium excretion and risk 
of hypertension: The prevention of renal and 
vascular end-stage disease study. Hypertension. 
2013;61(6):1161-1167.

REFERENCES



41Educational level and risk of CKD

2

22.	 R Core Team. R: A language and environment for 
statistical computing. R foundation for statistical 
computing, Vienna, Austria. www.R-project.org/. 
2014. 

23.	 Therneau T. A package for survival analysis in S. R 
package version 2.38. Retrieved from  
www.CRAN.R-project.org/package= survival. 2015. 

24.	 Bates D, Mächler M, Bolker B, Walker S. Fitting 
linear mixed-effects models using lme4. arXiv 
preprint arXiv:1406.5823. 2014. 

25.	 Tingley D, Yamamoto T, Hirose K, Keele L, Imai 
K. Mediation: R package for causal mediation 
analysis. 2014. 

26.	 Imai K, Keele L, Tingley D. A general approach 
to causal mediation analysis. Psychol Methods. 
2010;15(4):309. 

27.	 Xia J, Wang L, Ma Z, et al. Cigarette smoking and 
chronic kidney disease in the general population: 
A systematic review and meta-analysis of 
prospective cohort studies. Nephrology Dialysis 
Transplantation. 2017;32(3):475-487. 

28.	 Smyth A, O’donnell MJ, Yusuf S, et al. Sodium 
intake and renal outcomes: A systematic review. 
Am J Hypertension. 2014;27(10):1277-1284. 

29.	 Rebholz CM, Tin A, Liu Y, et al. Dietary 
magnesium and kidney function decline: The 
healthy aging in neighborhoods of diversity 
across the life span study. Am J Nephrol. 
2016;44(5):381-387. 

30.	 Malhotra R, Lipworth L, Cavanaugh KL, et 
al. Protein intake and long-term change in 
glomerular filtration rate in the jackson heart 
study. J Renal Nutrition. 2018. 

31.	 Herrington WG, Smith M, Bankhead C, et al. 
Body-mass index and risk of advanced chronic 
kidney disease: Prospective analyses from 
a primary care cohort of 1.4 million adults in 
England. PloS one. 2017;12(3):e0173515. 

32.	 Elsayed EF, Sarnak MJ, Tighiouart H, et al. Waist-
to-hip ratio, body mass index, and subsequent 
kidney disease and death. Am J Kidney Dis. 
2008;52(1):29-38. 
 
 
 

33.	 Vart P, Grams ME, Ballew SH, Woodward 
M, Coresh J, Matsushita K. Socioeconomic 
status and risk of kidney dysfunction: The 
Atherosclerosis Risk in Communities study. 
Nephrol Dial Transplant. 2018. 

34.	 Agrawal V, Jaar BG, Frisby XY, et al. Access to 
health care among adults evaluated for CKD: 
Findings from the kidney early evaluation 
program (KEEP). Am J Kidney Dis. 2012;59(3):S5-
S15. 

35.	 Zheng H. Do people die from income inequality 
of a decade ago? Soc Sci Med. 2012;75(1):36-45. 

36.	 Vart P, Gansevoort RT, Crews DC, Reijneveld 
SA, Bultmann U. Mediators of the association 
between low socioeconomic status and chronic 
kidney disease in the United States. Am J 
Epidemiol. 2015;181(6):385-396. 

37.	 Darmon N, Drewnowski A. Does social 
class predict diet quality?. Am J Clin Nutr. 
2008;87(5):1107-1117. 

38.	 Kieneker LM, Gansevoort RT, Mukamal KJ, 
et al. Urinary potassium excretion and risk of 
developing hypertension: The prevention of 
renal and vascular end-stage disease study. 
Hypertension. 2014;64(4):769-776. 

39.	 Nath KA, Hostetter MK, Hostetter TH. Increased 
ammoniagenesis as a determinant of progressive 
renal injury. Am J Kidney Dis. 1991;17(6):654-657. 

40.	 Tolins JP, Hostetter MK, Hostetter TH. 
Hypokalemic nephropathy in the rat. role of 
ammonia in chronic tubular injury. J Clin Invest. 
1987;79(5):1447-1458. 

41.	 Ardiles L, Cardenas A, Burgos ME, et al. 
Antihypertensive and renoprotective effect of 
the kinin pathway activated by potassium in 
a model of salt sensitivity following overload 
proteinuria. Am J Physiol-Renal Physiol. 
2013;304(12):F1399-F1410. 

42.	 Hendriksen M, van Rossum C. Kalium inname: 
Risico van hyperkaliëmie?: Overzicht van 
beschikbare gegevens in Nederland. 2015. 

43.	 Slavin JL, Lloyd B. Health benefits of fruits and 
vegetables. Adv Nutr. 2012;3(4):506-516. 
 
 



42 Chapter 2 

44.	 Anderson CA, Appel LJ, Okuda N, et al. Dietary 
sources of sodium in China, Japan, the United 
Kingdom, and the United States, women and 
men aged 40 to 59 years: The INTERMAP study. J 
Am Diet Assoc. 2010;110(5):736-745. 

45.	 Van Rossum C, Fransen H, Verkaik-Kloosterman 
J, Buurma-Rethans E, Ocké M. Dutch national 
food consumption survey 2007-2010: Diet of 
children and adults aged 7 to 69 years. 2011. 

46.	 Aburto NJ, Ziolkovska A, Hooper L, Elliott P, 
Cappuccio FP, Meerpohl JJ. Effect of lower 
sodium intake on health: Systematic review and 
meta-analyses. BMJ. 2013;346:f1326. 

47.	 Marmot M, Brunner E. Alcohol and cardiovascular 
disease: The status of the U shaped curve. BMJ. 
1991;303(6802):565-568.

48.	 Koning SH, Gansevoort RT, Mukamal KJ, et al. 
Alcohol consumption is inversely associated with 
the risk of developing chronic kidney disease. 
Kidney Int. 2015.

49.	 Lange T, Hansen JV. Direct and indirect effects in 
a survival context. Epidemiology. 2011;22(4):575-
581. 

50.	 Lange T, Rasmussen M, Thygesen LC. 
Assessing natural direct and indirect effects 
through multiple pathways. Am J Epidemiol. 
2013;179(4):513-518.



43Educational level and risk of CKD

2





45HRV and CKD

3

H e a r t  r a t e  v a r i a b i l i t y  a n d  i t s  r e l a t i o n  t o 

c h r o n i c  k i d n e y  d i s e a s e :  R e s u l t s  f r o m  t h e 

P R E V E N D  S t u d y

3CHA P T ER

Christian HL Thio, Arie M van Roon, Joop D Lefrandt, Ron T Gansevoort, and Harold Snieder

Psychosom Med. 2018;80(3):307–16.



46 Chapter 3

ABSTRACT
Objective. In the general population, reduced heart rate variability (HRV) has 

been associated with cardiovascular disease. However, its relation to chronic 

kidney disease (CKD) is debated. We therefore investigated the relation between 

low HRV and renal outcomes.

Methods. In the population-based PREVEND Study, renal outcomes (CKD, eGFR, 

urinary albumin) were measured at baseline and three consecutive examinations. 

HRV measures (among which SDNN, standard deviation of normal-to-normal RR-

intervals) were calculated from time-series of beat-to-beat pulse-wave recordings 

at baseline. The lowest (risk) quartile was compared to the upper three quartiles 

combined, in multivariable survival and linear mixed-effects analyses. 

Results. In 4605 participants (49% males, age range 33-80, 0.6% blacks), we 

observed 341 new cases of CKD during a median follow-up duration of 7.4 years. 

Low SDNN was associated with higher incidence of CKD (crude HR: 1.66, 95%CI 

[1.30;2.12], p<0.001), but this association was no longer significant after adjustment 

for age, sex, and cardiovascular risk factors (adjusted HR: 1.13, 95%CI [0.86;1.48], 

p=0.40, similar for other HRV measures). No associations between SDNN and eGFR 

trajectories were found in the total sample. However, in a subgroup of participants 

with baseline CKD (N=939), we found a significant association of low SDNN (but not 

other HRV measures) with lower baseline eGFR, even after multivariable adjustment 

(adjusted β β
level difference=-3.73 ml/min/1.73m2, 95%CI [-6.70;-0.75], p=0.014), but not with 

steeper eGFR decline. 

Conclusions. These results suggest that reduced HRV may be a complication of 

CKD rather than a causal factor.

LIST OF ABBREVIATIONS

CKD = chronic kidney disease

eGFR = estimated glomerular filtration rate

HF = high frequency power

HRV = heart rate variability

LF = low frequency power

PREVEND Study= Prevention of REnal and Vascular ENdstage Disease Study

rMSSD = root mean square of successive differences 

SDNN = standard deviation of normal-to-normal RR-intervals

UAE = urinary albumin excretion
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BACKGROUND
Chronic kidney disease (CKD) is a group of heterogeneous disorders characterized 

by kidney damage and impaired renal function, and is defined by an elevated 

urinary albumin excretion (UAE), a decreased glomerular filtration rate (GFR), or 

a combination of both.1-3 The most important risk factors for CKD are diabetes 

and hypertension. However, it has been observed that CKD can also occur in the 

absence of these risk factors.4,5 This suggests that other mechanisms may be 

involved in the development of CKD. 

A potential causal mechanism involves imbalance of the autonomic nervous 

system, in which parasympathetic function is decreased relative to sympathetic 

function. Hypothetically, autonomic imbalance causes renal damage through 

changes in renal hemodynamics. In animal studies, stimulation of renal 

sympathetic afferents affected renal hemodynamics, while renal (sympathetic) 

denervation in these animals attenuated progression of kidney failure.6-8 In 

humans, a non-invasive way of assessing autonomic function is by calculating 

heart rate variability (HRV), a measure of autonomic control over heart rate. It 

is the variation in duration between normal-to-normal (NN) RR-intervals.9-12 

Moderate-to-high HRV indicates healthy autonomic function, while low HRV 

reflects poor autonomic function, and has been associated with cardiovascular 

risk factors and adverse cardiovascular outcomes.10,11,13-16 The relation between 

HRV and CKD has been explored in several small-scale studies. Participants with 

CKD were found to have lower HRV compared to those without CKD. Also, low 

HRV was associated with adverse outcomes during follow-up (i.e. progression 

to end-stage renal disease and mortality) in CKD patients, although results are 

inconsistent between studies.17-23 The mechanisms underlying this association are 

still under investigation, but it is commonly believed that autonomic imbalance is 

a complication of renal damage24.

However, in the Atherosclerosis Risk in Communities (ARIC)-cohort, a 20-108% 

higher incidence of CKD-related hospitalization and/or end-stage renal disease 

(ESRD) was observed in those with low HRV (first quartile) compared to those with 

normal-to-high HRV (upper three quartiles combined), even in participants with 

normal kidney function at baseline.25 This suggests that autonomic imbalance 

may also play a role in the pathophysiology of CKD. To our knowledge, this 

finding has not yet been verified in other population-based longitudinal studies. If 
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autonomic imbalance is identified as a mechanism of renal damage, this may lead 

to improved risk prediction and novel therapeutic options. 

In this study, our primary aim was therefore to investigate the association between 

HRV and new-onset CKD in a sample of the general population. Furthermore, we 

assessed whether low HRV was associated with baseline levels of eGFR and UAE 

and change in these parameters during follow-up.

METHODS
Study sample and design

We used data from the Prevention of REnal and Vascular ENdstage Disease 

(PREVEND) cohort study. Details of this study have been described elsewhere.26 

In brief, 8592 individuals, sampled from the general population of Groningen, 

the Netherlands, completed an extensive examination between 1997- 1998. The 

second, third, fourth and fifth examination were completed in 2003, 2006, 2008 

and 2012, respectively. For the present study, we refer to the second examination 

as ‘baseline’, as this was the first examination that included additional beat-to-

beat blood pressure recordings that were used for calculation of HRV parameters. 

This examination was attended by 6894 participants, of which 2289 had missing 

HRV measures (due to either technical failure (N=397) or due to poor quality 

signal or excessive amount of artifacts in the recording (N=1892)), leaving 4605 

participants for the present analyses. All participants gave written informed 

consent. The PREVEND Study was approved by the medical ethics committee of 

the University Medical Center Groningen, and conducted in accordance with the 

Helsinki Declaration guidelines.

Measurement

HRV measures

Details of the HRV measurement procedure in the PREVEND study have been 

described previously 27. In brief, participants were measured in a supine position, in 

a quiet room kept at a constant temperature of 22oC. Participants were not allowed 

to talk or move during the procedure. Beat-to-beat heart rate was assessed by 

non-invasive 15-min pulse wave measurement using a Portapres® device (FMS 

Finapres Medical systems BV, Amsterdam, The Netherlands)28 at baseline. From 

these 15-min measurements, we selected the last 4 to 5 minutes of stationary 

time-series of pulse wave data. Using CARSPAN v2.0 software 29, these time-
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series were visually pre-processed to exclude cardiac arrhythmias, artefacts, 

electrical ‘noise’, or aberrant beats. Normal-to-normal RR-intervals from the beat-

to-beat pulse wave signals were detected with an accuracy of 5ms (sampling 

frequency of 200 Hz). Artifacts were removed and the resulting gaps interpolated 

as described previously30. After pre-processing, HRV measures were calculated 

using the same CARSPAN software. HRV measures included standard deviation 

of normal-to-normal RR-intervals (SDNN) and root mean square of successive 

differences between normal-to-normal RR-intervals (rMSSD). To quantify cyclic 

changes in heart rate, we calculated high frequency (HF) and low frequency (LF) 

power (area under the power spectral density curve) by Fourier spectral analysis, 

and the ratio between LF/HF. LF power was defined as the total area between 

0.04 and 0.15Hz, and HF power was defined as the total area between 0.15 and 

0.40Hz9-12. HRV was categorized into low (lowest quartile, Q1) and moderate-to-

high (upper three quartiles combined, Q2-4) to allow direct comparison to the 

work of Brotman et al25.

Renal outcomes

Details of the assessment of eGFR and UAE have been described elsewhere31. 

In brief, participants collected two consecutive 24h-urine specimens at each 

screening round. The collected urine was stored cold (4oC) for a maximum of 

four days before handing it in. After this, urine specimens were stored at -20oC. 

Furthermore, fasting blood samples were obtained and stored at -80oC.

Measurement of serum creatinine was performed by an enzymatic method on 

a Roche Modular analyzer using reagents and calibrators from Roche (Roche 

Diagnostics, Mannheim, Germany), with intra- and interassay coefficients of 

variation of 0.9% and 2.9%, respectively. Serum cystatin C concentration was 

measured by a Gentian cystatin C Immunoassay (Gentian AS Moss, Norway) on a 

Modular analyzer (Roche Diagnostics). Cystatin C was calibrated directly using the 

standard supplied by the manufacturer (traceable to the International Federation 

of Clinical Chemistry Working Group for Standardization of Serum Cystatin C)32. The 

intra- and interassay coefficients of variation were <4.1% and <3.3%, respectively. 

Urinary albumin concentration (UAC) was measured by nephelometry with a lower 

threshold of detection of 2.3mg/L, and intra- and interassay coefficient of variation 

of 2.2% and 2.6%, respectively (Dade Behring Diagnostic, Marburg, Germany). UAC 

was multiplied by urine volume to obtain a value of UAE in mg/24h. The two 24h 
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UAE values of each subject per examination were averaged. eGFR was calculated 

according to the 2012 CKD-EPI creatinine-cystatin C equation33. CKD was defined 

as an eGFR<60ml/min/1.73m2, a UAE≥30mg/24h, or both, according to the 2011 

revised KDIGO guidelines2.

Covariates

Known cardiovascular risk factors were included as covariates and assessed at 

baseline. Body-mass index (BMI: weight/height2) and waist-hip circumference 

ratio (WHR) were calculated from anthropometrics. Mean inter-beat interval (IBI) 

was calculated from time-series of beat-to-beat heart rate data. Smoking status 

was defined as self-reported never, former, or current smoker (subdivided in <6 

cigarettes, 6-20 cigarettes, and >20 cigarettes daily). History of cardiovascular 

disease (CVD) was assessed using questionnaires, and was defined as a 

history of any cardio- or cerebro-vascular events. Hypertension was defined 

as SBP≥140mmHg, DBP≥90mmHg, or self-reported or pharmacy-reported 

prescribed use of blood pressure-lowering drugs, including ACE-inhibitors, 

Figure 1. Associations of SDNN (Q1 vs Q2-4) with baseline eGFR level (panel A) and annual change in eGFR (panel B).
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Covariates were centered to obtain adjusted estimates. Due to centering, estimates may differ slightly from Table 4.
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angiotensin-II receptor antagonists, beta blocking agents, diuretics (ATC codes 

2, 3, 7, 8, 9). Diabetes was defined as either a fasting glucose level of >7mmol/L, 

or self-reported or pharmacy-reported prescribed use of anti-diabetic drugs. 

Hypercholesterolemia was defined as a total cholesterol ≥6.21mmol/L, or self-

reported use or pharmacy reported prescribed use of lipid-lowering drugs. 

Statistical analysis

Statistical analyses were performed using SPSS version 22.0 (IBM corporation). 

Two-sided significance level was set at α=0.05. 

Baseline characteristics

Baseline characteristics were compared between HRV categories using Student’s 

t-tests, Mann-Whitney U-tests, and χχ2-tests where appropriate. 

Association of HRV with CKD incidence

For this analysis participants with CKD (N=939) or unknown CKD status at baseline 

(N=269) were excluded. Participants were censored at death, loss to follow-up, 

withdrawal, or end of study. We used mid-point imputation to approximate time to 

event.34 Mantel-Cox log-rank tests were performed to test for equality in hazard rates 

between low HRV and moderate-to-high HRV. In Cox-regression models, we adjusted 

for potential confounders by introducing blocks of covariates. Block 1 included age; 

block 2 in addition included sex, BMI, WHR, mean IBI, smoking, baseline eGFR, and 

baseline UAE; block 3 additionally included history of CVD, diabetes, hypertension, 

and hypercholesterolemia. All covariates were retained in the model; no criteria for 

covariate exclusion were applied.

Association of HRV with baseline levels and change in eGFR and UAE

To examine the association of baseline HRV with eGFR and UAE over time, we 

conducted multivariable linear mixed-effects (LME)analyses in the entire sample 

(N=4,605). eGFR and the natural logarithm of UAE were modelled as a function of 

time. Based on model fit criteria and likelihood ratio tests, we specified a base model 

with unstructured covariance structure, random intercept, and random slope for time. 

HRV category (Q1 vs Q2-4) was added to the model to assess its association with 

baseline eGFR and UAE. A two-way interaction between HRV and time was introduced 

to assess the association of HRV with change in eGFR (ml/min/1.73m2 per year) and 
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UAE (mg/24h per year). In multivariable models, we adjusted for incremental blocks of 

covariates as described above. 

Sensitivity analyses

By design, participants with a moderately elevated urinary albumin concentration 

(>10mg/L) are overrepresented in the PREVEND study. To address this imbalance, we 

performed sensitivity analyses using statistical weights that were based on the selection 

probability. Also, we performed 40 imputations using the fully conditional specification 

method35,36, by which we imputed missing HRV and covariate data. Additional analyses 

included definitions of new-onset CKD based on either impaired eGFR only (CKDeGFR: 

eGFR<60ml/min/1.73m2) or elevated UAE only (CKDUAE: UAE≥30mg/24h). Furthermore, 

we applied a stricter definition of the high risk group by assigning to it participants 

that were in Q1 of each of the three main HRV parameters, SDNN, rMSSD, and HF 

(“Composite low HRV”, see Figure S1, Supplemental Digital Content 1). Finally, we 

conducted analyses on continuous measures of HRV. For these analyses all HRV 

parameters were transformed by their natural logarithm, which improved linearity of 

the associations.

 

RESULTS
Baseline characteristics 

Baseline characteristics of the 4605 participants are presented in Table 1, stratified 

according to low vs moderate-to-high HRV (Q1 vs Q2-4), for SDNN, rMSSD, and 

HF (for LF, LF/HF-ratio see Table S1a, SDC 1). The medians (IQR) of the different 

HRV parameters are listed in Table 2. In univariable analyses, participants in Q1 of 

SDNN had lower eGFR, higher UAE at baseline, and were more likely to have CKD 

at baseline. Those with baseline CKD had mildly diminished eGFR (mean(sd)=81(22); 

eGFR<60 in 20%) and elevated UAE (mean[IQR]=43[24-89]; UAE≥30 in 70%; see 

Table S2, SDC 1). In Q1 of SDNN we observed a less favorable cardiovascular 

risk profile compared to Q2-4, i.e. higher prevalence of diabetes, hypertension, 

hypercholesterolemia, current smoking, and history of CVD. Similar results were 

found for other HRV measures. 

In univariable comparisons between the 4605 included participants and the 2289 

excluded participants of whom no valid HRV measurements were available, no 

relevant differences were observed in covariates or outcomes (data not shown).



53HRV and CKD

3

Table 1. Baseline characteristics by heart rate variability categories (Q1 vs Q2-4) for the entire sample.

Total

SDNN

p

rMSSD

p

HF

p

Q1

4.6-23 ms

Q2-4

23-262 ms

Q1

6.4-17 ms

Q2-4

17-377 ms

Q1

3.9-94 ms2

Q2-4

>94ms2

N 4605 1151 3454 n/a 1151 3454 n/a 1151 3454 n/a

Age, years 53 [45-63] 61 [53-70] 50 [43-59] <0.001* 60 [52-69] 51 [43-60] <0.001* 60 [53-69] 51 [43-59] <0.001*

Males, n 2270 (49%) 592 (51)% 1678 (49%) 0.094 527 (46%) 1808 (52%) <0.001* 519 (45%) 1816 (53%) <0.001*

Black race, n 28 (0.6%) 9 (0.8%) 19 (0.6%) 0.38 9 (0.8%) 19 (0.6%) 0.38 8 (0.7%) 20 (0.6%) 0.66

Height, cm 173 (9.5) 171 (9.6) 173 (9.4) <0.001* 172 (9.3) 173 (9.6) <0.001* 172 (9.4) 173 (9.5) <0.001*

BMI, kg/m2 26.8 (4.4) 28 (4.7) 26 (4.2) <0.001* 27 (4.5) 27 (4.3) <0.001* 27 (4.5) 27 (4.3) <0.001*

WHR 0.90 (0.085) 0.92 (0.081) 0.89 (0.085) <0.001* 0.92 (0.082) 0.90 (0.085) <0.001* 0.92 (0.082) 0.89 (0.084) <0.001*

Heart rate, beats/min 68 (10) 74 (11) 66 (8.9) <0.001* 75 (10) 66 (8.8) <0.001* 75 (10) 66 (9.0) <0.001*

Smoking <0.001* 0.28 0.23

Never, n 1315 (29%) 287 (25%) 1028 (30%) 311 (27%) 1004 (29%) 315 (28%) 1000 (29%)

Former, n 1934 (43%) 474 (42%) 1460 (43%) 482 (43%) 1452 (43%) 478 (42%) 1456 (43%)

Current, n 1298 (29%) 374 (33%) 924 (27%) 432 (30%) 956 (28%) 347 (30%) 951 (28%)

SBP, mmHg 127 (19) 133 (19) 124 (18) <0.001* 133 (20) 124 (18) <0.001* 134 (19) 124 (18) <0.001*

DBP, mmHg 74 (9.1) 76 (8.9) 73 (9.0) <0.001* 77 (9.2) 72 (8.8) <0.001* 77 (9.0) 72 (8.8) <0.001*

Antihypertensive Rx , n 1019 (25%) 386 (36%) 633 (21%) <0.001* 335 (31%) 684 (23%) <0.001* 347 (32%) 672 (22%) <0.001*

Hypertension , n 1578 (38%) 582 (53%) 996 (33%) <0.001* 546 (50%) 1032 (34%) <0.001* 563 (52%) 1015 (33%) <0.001*

Fasting glucose, mmol/L 4.8 [4.4-5.3] 5.0 [4.5-5.6] 4.7 [4.4-5.2] <0.001* 5.0 [4.5-5.0] 4.7 [4.4-5.3] <0.001* 5.0 [4.5-5.5] 4.7 [4.4-5.3] <0.001*

Antidiabetic Rx , n 169 (4.2%) 89 (8.3%) 80 (2.7%) <0.001* 84 (7.9%) 85 (2.9%) <0.001* 86 (8.1%) 83 (2.8%) <0.001*

Diabetes Mellitus , n 299 (7.5%) 137 (13%) 162 (5.6%) <0.001* 126 (12%) 173 (5.9%) <0.001* 122 (12%) 177 (6.0%) <0.001*

History of CVD, n 302 (6.8%) 118 (11%) 184 (5.5%) <0.001* 89 (8.0%) 213 (6.4%) 0.059 100 (9.0%) 202 (6.0%) 0.001*

Total cholesterol, 
mmol/L 5.5 (1.0) 5.6 (1.0) 5.4 (1.0) <0.001* 5.7 (1.1) 5.4 (1.0) <0.001* 5.7 (1.0) 5.4 (1.0) <0.001*

Lipid lowering Rx , n 465 (11%) 193 (18%) 272 (9.1%) <0.001* 158 (15%) 307 (10%) <0.001* 175 (17%) 290 (9.7%) <0.001*

Hypercholesterolemia, n 1453 (35%) 497 (45%) 956 (32%) <0.001* 473 (43%) 980 (32%) <0.001* 477 (44%) 976 (32%) <0.001*

Serum creatinine, mg/dL 0.82 (0.23) 0.84 (0.32) 0.82 (0.18) 0.11 0.85 (0.32) 0.81 (0.19) <0.001* 0.85 (0.32) 0.81 (0.19) <0.001*

Serum cystatin C, mg/L 0.91 (0.21) 0.99 (0.29) 0.88 (0.18) <0.001* 0.98 (0.28) 0.89 (0.18) <0.001* 0.98 (0.28) 0.89 (0.37) <0.001*

eGFR , ml/min/1.73m2 92 (17)* 84 (18) 94 (16) <0.001* 85 (18) 94 (16) <0.001* 85 (18) 94 (16) <0.001*

UAE, mg/24h 8.9 [6.2-17] 10 [6.8-22] 8.5 [6.0-15] <0.001* 10 [6.8-24] 8.5 [6.0-15] <0.001* 10 [6.8-24] 8.5 [6.0-15] <0.001*

Baseline CKD, n 939 (22%) 331 (30%) 608 (19%) <0.001* 336 (31%) 603 (19%) <0.001* 340 (31%) 599 (18%( <0.001*

Baseline CKDeGFR<60 , n 202 (4.7%) 97 (9.0%) 105 (3.3%) <0.001* 94 (8.8%) 972 (91%) <0.001* 100 (9.4%) 102 (3.2%) <0.001*

Baseline CKDUAE≥30 , n 846 (18%) 283 (25%) 563 (16%) <0.001* 292 (26%) 554 (16%) <0.001* 294 (26%) 552 (16%) <0.001*

SDNN: standard deviation of all normal-normal RR-intervals; rMSSD: root mean square of successive differences of adjacent normal-to-normal RR-intervals; 
HF: high frequency power spectrum; BMI: body mass index; WHR: waist/hip ratio; SBP: systolic blood pressure; DBP: diastolic blood pressure; CVD: 
cardiovascular disease; Rx: medication use; eGFR: estimated glomerular filtration rate; UAE: urinary albumin excretion; CKD: chronic kidney disease, defined as 
estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 or urinary albumin excretion (UAE)≥30 mg/24 hours. * indicates statistical significance (p<0.05)
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Association of HRV with CKD incidence

We excluded those with CKD or unknown CKD status at baseline, leaving 3397 

participants. Baseline characteristics for these 3397 participants are presented in 

Table S1b-c, SDC 1. Of these participants, 341 developed CKD during a median of 

7.4 [IQR: 7.0–7.8] years of follow-up. At the earliest moment of identification, those 

with new-onset CKD had mildly diminished eGFR (mean[IQR]=79[59-94]; eGFR<60 

in 20%) and elevated UAE (mean[IQR]=35[17-48], UAE≥30 in 72%, see Table S2, SDC 

1). Event rates of CKD per HRV category are shown in Table 3. 

Incidence rate of CKD was significantly higher in those with low HRV (SDNN Q1 vs 

Q2-4: 29.1 v 16.7 cases per 1,000 person-years, Mantel-Cox log-rank test χχ2=23.9, 

df=1, p<0.001, similar for other HRV measures). The results of Cox-regression 

analyses are shown in Table 4 (results for LF, LF/HF-ratio in Table S4a, SDC 1). Low 

HRV was associated with CKD incidence (SDNN Q1 vs Q2-4: unadjusted hazard 

ratio (HR)=1.66, 95%CI [1.30;2.12], similar for other HRV measures). After adjusting 

for confounders, this association was no longer significant (SDNN Q1 vs Q2-4: fully 

adjusted HR=1.13, 95%CI [0.86;1.48], similar for rMSSD, HF, and LF). Only for LF/

HF-ratio a significant association was found, which remained after multivariable 

Table 2. Distribution of HRV parameters.

SDNN (ms) 31 [23-42]

rMSSD (ms) 24 [17-35]

HF (ms2) 211 [94-454]

LF (ms2) 242 [123-494]

LF/HF-ratio 1.2 [0.7-2.0]

HRV measures were non-normally distributed, hence data is presented as median [interquartile range]. SDNN: standard deviation 
of normal-to-normal RR-intervals; rMSSD: root mean square of successive differences; HF: high frequency power spectrum; LF: low 
frequency power spectrum.

Table 3. Chronic kidney disease incidence rates by heart rate variability categories (Q1 vs Q2-4).

Total
SDNN

p
rMSSD

p
HF

p

Q1 Q2-4 Q1 Q2-4 Q1 Q2-4

N 3397 849 2548 n/a 849 2548 n/a 849 2548 n/a

Person-years, [IQR] 6.1 [4.6-7.3] 5.4 [2.1-7.3] 6.8 [3.1-7.4] <0.001 5.9 [2.1-7.3] 6.8 [2.7-7.4] <0.001 6.4 [2.3-7.4] 6.8 [3.0-7.4] <0.001

New-onset CKD a /n (%) 341 (10%) 116 (14%) 225 (8.8%) <0.001 107 (13%) 234 (9.2%) 0.004 109 (13%) 232 (9.1%) 0.002

New-onset CKD /1000 py 19.5 29.1 16.7 <0.001 25.9 17.5 <0.001 26.9 17.3 <0.001

Event rates by HRV category (low vs moderate-to-high HRV, Q1 vs Q2-4). SDNN: standard deviation of normal-to-normal RR-in-
tervals; rMSSD: root mean square of successive differences of adjacent normal-normal RR-intervals; HF: high frequency power 
spectrum; IQR: interquartile range; CKD: chronic kidney disease; py: person-years. a Defined as estimated glomerular filtration rate 
(eGFR)<60 mL/min/1.73m2 or urinary albumin excretion (UAE)≥30 mg/24 hours. 
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adjustment (LF/HF-ratio Q1 vs Q2-4: fully adjusted HR=1.32 [1.01;1.71], p<0.043). 

Alternative definitions of new-onset CKD (incidence of either impaired eGFR, or of 

elevated UAE) yielded similar results (see Table 4). 

Sensitivity analyses in imputed datasets (in which we imputed missing values 

of HRV and covariates), and analyses with sampling weights (to account for 

sampling imbalance), did not substantially change results for SDNN, rMSSD, HF, 

and LF (see Supplementary Tables S4b-d). However, the multivariable-adjusted 

HR for LF/HF-ratio was no longer significant in these analyses (LF/HF-ratio Q1 

vs Q2-4: fully adjusted HR=1.19, 95%CI [0.79;1.79], in imputed datasets, similar for 

weighted analysis). Furthermore, a more stringent definition of the high risk group 

(“Composite low HRV”, participants in Q1 of each of the main HRV parameters, 

SDNN, rMSSD, and HF, see Supplementary Table 4a) yielded similar results.

Association of HRV with baseline levels and change in eGFR and UAE

In Table 5, the results of LME analyses are shown for all 4605 participants (for 

LF and LF/HF-ratio, see Table S5a, SDC 1). Those with low HRV had significantly 

Table 4. Association of heart rate variability measures (Q1 vs Q2-4) with incident chronic kidney disease.

CKD SDNN Q1 p rMSSD Q1 p HF Q1 p

Unadjusted HR [95%CI] 1.66 [1.30 ; 2.12] <0.001* 1.51 [1.18 ; 1.93] 0.001* 1.54 [1.20 ; 1.97] <0.001*

Adjusted HR [95%CI] 1 1.02 [0.79 ; 1.32] 0.88 1.01 [0.78 ; 1.30] 0.97 0.99 [0.77 ; 1.28] 0.93

Adjusted HR [95%CI] 2 1.10 [0.83 ; 1.45] 0.50 1.09 [0.82 ; 1.45] 0.57 1.04 [0.78 ; 1.37] 0.80

Fully adjusted HR [95%CI] 3 1.13 [0.86 ; 1.48] 0.40 1.09 [0.82 ; 1.45] 0.55 1.02 [0.77 ; 1.35] 0.87

CKDeGFR<60

Unadjusted HR [95%CI] 2.44 [1.64 ; 3.63] <0.001* 1.92 [1.28 ; 2.88] 0.002* 2.05 [1.37 ; 3.07] <0.001*

Adjusted HR [95%CI] 1 1.05 [0.70 ; 1.59] 0.80 0.97 [0.64 ; 1.46] 0.88 0.97 [0.64 ; 1.46] 0.88

Adjusted HR [95%CI] 2 0.90 [0.57 ; 1.42] 0.66 1.09 [0.68 ; 1.75] 0.71 0.83 [0.52 ; 1.32] 0.83

Fully adjusted HR [95%CI] 3 0.93 [0.59 ; 1.46] 0.76 1.16 [0.72 ; 1.85] 0.54 0.89 [0.56 ; 1.41] 0.61

CKDUAE≥30

Unadjusted HR [95%CI] 1.46 [1.09 ; 1.96] 0.011* 1.43 [1.07 ; 1.92] 0.016* 1.39 [1.04 ; 1.87] 0.028*

Adjusted HR [95%CI] 1 1.04 [0.76 ; 1.41] 0.82 1.07 [0.79 ; 1.45] 0.64 1.01 [0.75 ; 1.38] 0.93

Adjusted HR [95%CI] 2 1.15 [0.83 ; 1.60] 0.40 1.23 [0.87 ; 1.73] 0.24 1.12 [0.80 ; 1.57] 0.51

Fully adjusted HR [95%CI] 3 1.17 [0.84 ; 1.62] 0.35 1.22 [0.87 ; 1.71] 0.25 1.10 [0.79 ; 1.54] 0.56

Estimates of hazard ratios after multivariable Cox regression analysis. Reference group is moderate-to-high HRV (Q2-4). HR: hazard 
ratio; SDNN: standard deviation of normal-to-normal RR-intervals; rMSSD: root mean square of successive differences of adjacent 
normal-normal RR-intervals; HF: high frequency power spectrum; CI: confidence interval. * indicates statistical significance (p<0.05)

1 Adjusted for age  
2 Adjusted for sex, BMI, WHR, mean IBI, smoking status, baseline eGFR, baseline UAE, in addition to above  
3 Adjusted for history of cardiovascular disease, diabetes, hypertension, and hypercholesterolemia, in addition to above.
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lower baseline levels of eGFR in the total sample (SDNN Q1 vs. Q2-4, unadjusted 

β level difference=-9.36 ml/min/1.73m2, 95%CI [-10.6;-8.08], p<0.001, similar for other 

HRV measures). However, after multivariable adjustment, the association of 

Table 5. Differences between low (Q1) and moderate-to-high heart rate variability (Q2-4) measures for baseline levels and rate of decline of eGFR.

SDNN Q1

Total (N=4605) p No CKD (N=3397) p CKD (N=939) p

Baseline eGFR-level difference a (ml/min/1.73m2)

Unadjusted ββ [95%CI] -9.36 [-10.6 ; -8.08] <0.001* -7.36 [-8.56 ; -6.17] <0.001* -12.3 [-15.8 ; -8.74] <0.001*

Adjusted β ββ [95%CI] 1 -0.94 [-1.97 ; 0.092] 0.074 -0.60 [-1.59 ; 0.40] 0.24 -3.52 [-6.39 ; -0.66] 0.016*

Adjusted β ββ [95%CI] 2 -0.81 [-1.90 ; 0.29] 0.15 -0.43 [-1.48 ; 0.63] 0.43 -4.02 [-7.05 ; -0.98] 0.010*

Fully adjusted β ββ [95%CI] 3 -0.59 [-1.66 ; 0.48] 0.28 -0.42 [-1.48 ; 0.63] 0.43 -3.73 [-6.70 ; -0.75] 0.014*

eGFR-slope difference b (ml/min/1.73m2 per year)

Unadjusted β ββslope [95%CI] -0.068 [-0.18 ; 0.039] 0.21 -0.048 [-0.16 ; 0.063] 0.40 0.080 [-0.22 ; 0.38] 0.60

Adjusted ββslope [95%CI] 1 -0.076 [-0.18 ; 0.031] 0.16 -0.061 [-0.17 ; 0.050] 0.28 0.075 [-0.22 ; 0.37] 0.62

Adjusted ββslope [95%CI] 2 -0.072 [-0.18 ; 0.034] 0.18 -0.058 [-0.17 ; 0.053] 0.30 0.078 [-0.22 ; 0.37] 0.60

Fully adjusted ββslope [95%CI] 3 -0.077 [-0.18 ; 0.029] 0.16 -0.059 [-0.17 ; 0.052] 0.30 0.086 [-0.21 ; 0.38] 0.57

rMSSD Q1

Total (N=4605) p No CKD (N=3397) p CKD (N=939) p

Baseline eGFR-level difference a (ml/min/1.73m2)

Unadjusted ββ [95%CI] -8.11 [-9.40 ; -6.82] <0.001* -6.26 [-7.46 ; -5.05] <0.001* -7.64 [-11.3 ; -3.98] <0.001*

Adjusted β [95%CI] 1 -0.70 [-1.72 ; 0.32] 0.18 -0.51 [-1.48 ; 0.47] 0.31 -0.98 [-3.83 ; 1.87] 0.50

Adjusted ββ [95%CI] 2 -0.90 [-2.02 ; 0.22] 0.11 -0.79 [-1.87 ; 0.29] 0.15 -1.42 [-4.56 ; 1.71] 0.37

Fully adjusted ββ [95%CI] 3 -0.68 [-1.77 ; 0.42] 0.23 -0.83 [-1.91 ; 0.25] 0.13 -1.37 [-4.43 ; 1.69] 0.38

eGFR-slope difference b (ml/min/1.73m2 per year)

Unadjusted ββslope [95%CI] -0.064 [-0.17 ; 0.043] 0.24 -0.055 [-0.17 ; 0.056] 0.33 0.22 [-0.080 ; 0.51] 0.15

Adjusted βββslope [95%CI] 1 -0.068 [-0.17 ; 0.038] 0.21 -0.062 [-0.17 ; 0.048] 0.27 0.22 [-0.075 ; 0.51] 0.14

Adjusted βββslope [95%CI] 2 -0.062 [-0.17 ; 0.044] 0.25 -0.059 [-0.17 ; 0.051] 0.29 0.22 [-0.075 ; 0.51] 0.15

Fully adjusted βββslope [95%CI] 3 -0.064 [-0.17 ; 0.042] 0.24 -0.059 [-0.17 ; 0.051] 0.29 0.22 [-0.071 ; 0.51] 0.14

HF Q1

Total (N=4605) p No CKD (N=3397) p CKD (N=939) p

Baseline eGFR-level difference a (ml/min/1.73m2)

Unadjusted βββ [95%CI] -8.89 [-10.2 ; -7.60] <0.001* -6.97 [-8.17 ; -5.77] <0.001* -8.94 [-12.6 ; -5.29] <0.001*

Adjusted βββ [95%CI] 1 -0.94 [-1.97 ; 0.085] 0.072 -0.66 [-1.64 ; 0.32] 0.19 -1.52 [-4.38 ; 1.35] 0.30

Adjusted ββ [95%CI] 2 -1.11 [-2.22 ; 0.0022] 0.050 -0.82 [-1.88 ; 0.24] 0.13 -1.88 [-4.96 ; 1.20] 0.23

Fully adjusted ββ [95%CI] 3 -0.76 [-1.84 ; 0.32] 0.17 -0.79 [-1.85 ; 0.27] 0.14 1.62 [-4.62 ; 1.39] 0.17

eGFR-slope difference b (ml/min/1.73m2 per year)

Unadjusted ββslope [95%CI] -0.087 [-0.20 ; 0.021] 0.12 -0.065 [-0.18 ; 0.046] 0.25 0.21 [-0.093 ; 0.50] 0.18

Adjusted ββslope [95%CI] 1 -0.090 [-0.20 ; 0.017] 0.10 -0.077 [-0.19 ; 0.034] 0.17 0.21 [-0.087 ; 0.50] 0.17

Adjusted ββslope [95%CI] 2 -0.082 [-0.19 ; 0.025] 0.13 -0.075 [-0.19 ; 0.036] 0.18 0.21 [-0.089 ; 0.50] 0.17

Fully adjusted ββslope [95%CI] 3 -0.087 [-0.19 ; 0.020] 0.11 -0.076 [-0.19 ; 0.035] 0.18 0.21 [-0.087 ; 0.50] 0.17

Estimates of the association between low HRV and eGFR in the total PREVEND population, and stratified for CKD at baseline, from multivariable linear mixed 
effects analysis. Reference group is moderate-to-high HRV (Q2-4), a eGFR-level: difference in baseline levels of eGFR, expressed in ml/min/1.73m2, compared 
to reference, b eGFR-slope: difference in change in eGFR over time, in ml/min/1.73m2 per year, compared to reference. HRV: heart rate variability; eGFR: esti-
mated glomerular filtration rate; SDNN: standard deviation of normal-to-normal RR-intervals; rMSSD: root mean square of successive differences of adjacent 
normal-normal RR-intervals; HF: high frequency power spectrum; CI: confidence interval. 

1 Adjusted for age  
2 Adjusted for sex, BMI, WHR, mean IBI, smoking status, baseline UAE, in addition to above 
3 Adjusted for history of cardiovascular disease, diabetes, hypertension, hypercholesterolemia, (and baseline chronic kidney disease status in the total cohort)  
in addition to above. 
* indicates statistical significance (p<0.05)
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low HRV with baseline eGFR was no longer significant (SDNN Q1 vs. Q2-4, fully 

adjusted β β level difference=-0.59 ml/min/1.73m2, 95%CI [-1.66;0.48], p=0.28, similar for 

other HRV measures). During follow-up there was no significant difference in rate 

of decline of eGFR between HRV categories (SDNN Q1 vs Q2-4, fully adjusted β βslope 

difference=-0.077 ml/min/1.73m2 per year, 95%CI [-0.18;0.029], p=0.16, similar for other 

HRV measures). Similarly, we found no significant association of HRV measures 

with UAE levels or increase (see Table S6a-b, SDC 1).

Next, we tested for a modifying effect of baseline CKD status on both level and slope 

by introducing their interaction terms (CKD*HRV*time; CKD*HRV; and CKD*time, 

in addition to their main effects) to the model. Addition of the interaction term 

resulted in a significant increase in log-likelihood (χ2=64.5, Δdf=3, p interaction<0.001 for 

SDNN, similar for other HRV measures), suggesting a modifying effect of baseline 

CKD status on the association between HRV and eGFR. Therefore, we stratified 

for baseline CKD status. For participants with CKD at baseline, low SDNN was 

associated with lower baseline eGFR. This cross-sectional association between 

SDNN and baseline eGFR remained after multivariable adjustment (SDNN Q1 vs 

Q2-4, fully adjusted β β level difference=-3.73 ml/min/1.73m2, 95%CI [-6.70;-0.75], p=0.014). 

Other HRV measures did not show an association with lower baseline eGFR in this 

subgroup. There were no significant associations between low HRV measures and 

rate of renal function decline during follow-up (SDNN Q1 vs Q2-4, fully adjusted 

ββslope difference=0.086 ml/min/1.73m2 per year, 95%CI [-0.21;0.38], p=0.57, similar 

for other HRV measures). In Figure 1, we show crude and adjusted estimates 

of baseline eGFR level (panel A) and annual eGFR change (panel B), by SDNN 

category and strata according to baseline CKD status. 

Sensitivity analyses in imputed datasets (see Supplementary Tables S5b-c, S6c-d) 

yielded similar results. Application of a stricter definition of low HRV confirmed 

the significant result for SDNN (see Supplementary Tables S5a, S5c). Correlations 

(crude and age-adjusted) of HRV measures with kidney function outcomes 

reflected the results of our main analyses: 1) higher HRV correlated with higher 

baseline eGFR, but no longer after adjustment for age and 2) HRV showed no 

relevant correlations with eGFR slope (see Table 6). Results of Cox regression of 

continuous HRV measures supported our conclusions for the main outcome, CKD 

incidence. However, the association of continuous HRV with baseline levels of eGFR in 

CKD patients was not significant in these sensitivity analyses (see Table S7-8, SDC 1).
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All Supplementary material can be accessed using the following link  

www.links.lww.com/PSYMED/A436.

DISCUSSION
In this population-based, longitudinal cohort study, we examined the relation 

between HRVand renal outcomes. We observed an association between low HRV 

and higher incidence of CKD, which did not remain significant after adjustment 

for known CKD risk factors such as age, diabetes mellitus, and hypertension. The 

association between HRV and CKD risk could for a substantial part be explained 

by older age of those with lower HRV. An analysis of renal function over time in 

the total sample revealed no evidence for steeper decline in eGFR or increase in 

UAE in those with low HRV. In a subgroup of participants with CKD at baseline, for 

SDNN and a stricter definition of low HRV, we found a significant association with 

lower levels of baseline eGFR, which remained after adjustment for confounders, 

but no association with change in eGFR. For the other HRV measures (rMSSD, HF, 

LF, and LF/HF-ratio), we did not find significant associations with either baseline 

levels of eGFR or decline in eGFR during follow-up in this subgroup. These results 

suggest that low HRV does not contribute to CKD or to renal function decline. 

However, we observed that low HRV was associated with lower renal function in 

those that already have CKD. This implies another relation, i.e. CKD resulting in (or 

at least coinciding with) reduced HRV. 

To our knowledge, the only comparable population-based study of HRV and its 

association with renal outcomes to date was conducted by Brotman et al25. In a 

sample of 13,241 adults of the ARIC cohort they observed that low HRV preceded 

Table 6. Correlations between HRV parameters and kidney function outcomes 

eGFR eGFR slope ^

Crude Age-adjusted Crude Age-adjusted

lnSDNN 0.276*** 0.020 0.002 0.002

lnrMSSD 0.223*** -0.002 0.001 0.001

lnHF 0.254*** 0.002 0.002 0.002

lnLF 0.310*** 0.040** 0.003* 0.003*

lnLF/HF-ratio 0.044** 0.042** 0.001 0.000

Pearson’s r and partial (age-adjusted) correlations between kidney function (eGFR and eGFR decline) and continuous, natural 
log-transformed HRV parameters in the total sample. * p<0.05, ** p<0.01, *** p<0.001

^ correlations for eGFR slope are standardized ββ’s from linear mixed effects models. 
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CKD-related hospitalization and ESRD. In our study, we could not corroborate 

these findings. Several differences may explain the inconsistent results. First, the 

endpoints and available measurements used are different: our endpoint was new-

onset CKD (based on repeated measurements of serum creatinine, serum cystatin 

C, and UAE at each subsequent examination), whereas in ARIC, the endpoints were 

CKD hospitalization and ESRD. The endpoints used in ARIC imply more advanced 

renal disease, and are therefore a less suitable measure of de novo, likely mild, 

disease. Furthermore, due to the lack of baseline albumin measurements in 

their study, Brotman et al. could not exclude reverse causality, i.e. renal damage 

leading to low HRV. Second, there is a marked difference in study sample. The 

ARIC sample consisted of ~25% blacks, which accounted for ~50% of incident 

cases. This may have limited the comparability of their results to the PREVEND 

study, which consisted of only 0.6% blacks. A recent meta-analysis established 

that blacks, compared to whites, have on average higher resting values of 

HRV.37 This is counter-intuitive, as black race has been associated with a higher 

cardiovascular risk profile38 and risk of ESRD39. The ethnic differences suggest as 

yet unknown race-specific disease mechanisms, and stratified analyses may be 

warranted. Unfortunately, Brotman et al. did not explicitly adjust for race, or report 

race-stratified analyses. Therefore, it is unclear whether their findings also pertain 

to whites separately within ARIC.

Hypertension, diabetes, and cardiovascular disorders are possibly related to HRV 

in a bidirectional manner13,40. Therefore, the inclusion of these covariates in the 

statistical models may have led to underestimation of the effect of HRV. However, 

this is unlikely to have affected conclusions with regards to our main outcome, as 

inclusion of age almost completely explained the association between low HRV 

and incident CKD.

In CKD patients, we found low SDNN, and a stricter definition of low HRV, to be 

independently associated with lower baseline levels of eGFR, but not with steeper 

decline in eGFR in this subgroup. To our knowledge, the largest prospective study 

of HRV and disease outcomes in participants with CKD was performed by Drawz 

et al.21 In 3,245 renal patients in the Chronic Renal Insufficiency Cohort (CRIC), HRV 

(calculated from 10s ECGs) was not independently associated with either ESRD or 

50% decline in eGFR. Although we could not assess incidence of ESRD due to low 

numbers in our cohort, our finding that low HRV was not associated with steeper 
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eGFR decline is consistent with these results. In contrast, Chandra et al. did find 

a significant association of 24h LF/HF-ratio with incident ESRD in CKD patients.20 

However, this study was relatively small (N=305) and was a prognostic study on 

incidence of ESRD, rather than an etiological one, thus did not formally correct for 

potential confounders.41 

In our sample of the general population, reduced HRV did not precede CKD. In 

contrast, we did observe an association of low SDNN, and of a stricter definition of 

low HRV, with low eGFR in participants that already had CKD, implying that reduced 

HRV is preceded by CKD. If there is any causal relationship between the two, it is 

more likely to be in a reversed direction (i.e. CKD causing reduced HRV). Salman 

recently reviewed several proposed mechanisms through which CKD could lead 

to increased sympathetic tone and/or decreased parasympathetic tone. Among 

others, these include: impaired reflex control of autonomic activity, activation of 

the renin-angiotensin-aldosterone system, activation of renal afferents, and mental 

stress in CKD24. Of noted interest is the potential role of social and psychological 

factors in the relation between CKD and HRV: e.g. mental stressors are proposed to 

contribute to the CKD risk factors, hypertension and diabetes, through alterations in 

autonomic nervous system activity and the neuro-endocrine system42. However, the 

pathophysiology underlying this relation is incompletely understood. Future work 

may include further characterization of these proposed mechanisms, in studies 

with repeated measures of autonomic and renal function as well as psychological 

and behavioral measures in race-stratified high-risk populations.

Major strengths of this study include the availability of serially measured creatinine 

and cystatin C based eGFR and 24h UAE values, which are considered to be the best 

parameters to define CKD, during considerable duration of follow-up. We examined 

multiple measures of HRV, calculated from time-series of highly standardized beat-

to-beat recordings. To our knowledge, this is only the second study in the general 

population to examine the association of HRV with incidence of CKD, and the first 

to assess its effect on change in eGFR and UAE. This study is therefore an important 

contribution to the literature.

There were several limitations. First, HRV was calculated from time-series of 

pulse wave recordings. In individuals at rest, pulse rate variability is considered 

an accurate estimate of heart rate variability.43 However, due to the lack of ECG 
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data we could not definitively exclude cardiac arrhythmias. Second, because 

follow-up HRV measurements were not available, we were unable to examine the 

association of HRV changes over time with renal disease, or vice versa. Third, HRV 

was missing in ~33% of participants. In an effort to minimize any bias introduced by 

the missingness, we conducted sensitivity analyses in multiple imputed datasets, 

the results of which did not change our conclusions. Although the missingness 

is likely random and non-problematic (e.g. due to technical failure, subject 

movement leading to artefacts in the recording) we cannot definitively rule out 

that in some cases, missing or invalid recordings may have been caused by non-

random, unobserved mechanisms (e.g. cardiac arrhythmias). Fourth, estimates of 

GFR are less accurate in the higher range (>60 mL/min/1.73m2). We therefore 

used the CKD-EPI equation for both creatinine and cystatin C, currently the best 

option for population-based studies.33 Fifth, we lacked specific information on 

β-blocking agents. This class of antihypertensive medication potentially affects 

both HRV and kidney function, and may therefore have caused unobserved 

confounding. However, we estimate β-blocker user baseline prevalence to be low 

in this relatively healthy sample of the general population, and do not expect our 

conclusions to be substantially affected. 

These results challenge the notion that reduced HRV represents a causal factor 

in CKD. Rather, they suggest that reduced HRV may be a complication of CKD. 
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ABSTRACT
Introduction. Chronic kidney disease (CKD) is a major burden on patients and 

health resources, with a heritable component. We aimed to quantify familial 

aggregation of CKD in the general population, and assess the extent to which 

kidney traits can be explained by genetic or environmental factors. 

Methods. This cross-sectional family study used baseline data from the Lifelines 

Cohort study, a sample of the general population of the Northern Netherlands 

with a unique three-generation design. CKD was defined by estimated glomerular 

filtration rate (eGFR) <60mL/min/1.73m2 (1862 cases) and/or urinary albumin 

excretion (UAE) ≥30 mg/24hr (4127 cases). eGFR was calculated by CKD-EPI 

equation for serum creatinine (N=155,911). UAE was determined in 24h urine 

collections in a subsample (N=59,943). To quantify familial aggregation of CKD we 

calculated the recurrence risk ratio (RRR) with Cox proportional hazards models. 

Heritability of continuous kidney-related traits was estimated using linear mixed 

models. All models were adjusted for age, sex, and known renal risk factors.

Results. RRR of CKD in case of an affected first-degree relative was 3.05 (95%CI: 

2.27-4.11), i.e. risk of CKD was 3.05 times higher compared to risk in the general 

population. In case of a spouse with CKD, the RRR was 1.61 (95% CI: 1.29-2.11), 

indicative of shared environmental factors and/or assortative mating. We report 

heritability estimates of eGFR (44% ), UAE (20%), serum urea (31%), creatinine (37%) 

and uric acid (48%), and serum electrolytes (range 22%-28%). 

Conclusions. In this large population-based family study, a positive family history 

was strongly associated with increased risk of CKD. We observed moderate to 

high heritability of renal traits and related biomarkers. These results indicate an 

important role of genetic factors in CKD risk and may inform preventive policies.

Keywords. familial aggregation; heritability; chronic kidney disease (CKD); kidney 

function; albuminuria
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INTRODUCTION
Chronic kidney disease (CKD) is recognized as a global public health problem1, 

with prevalence ranging between 3.3% and 17.3% in adult European populations2. 

Chronic kidney disease is defined by reduced estimated glomerular filtration rate 

(eGFR) and/or increased albuminuria, and is associated with an increased risk of 

cardiovascular disease and progression to end stage kidney disease (ESKD)3-6.

Established risk factors for CKD, such as hypertension and diabetes, explain 50-

70% of cases, and are the main targets of current risk prediction models for CKD7. 

Familial clustering of CKD and kidney related markers suggests that genetic 

factors or shared environmental factors are also important in the pathogenesis 

of this disease8-12. Support for a genetic component to CKD comes from recent 

genome-wide association studies (GWASs) on eGFR13 and albuminuria14, in which 

a large number of genetic loci have been reported. Despite the evidence for this 

genetic influence, the magnitude of the familial contribution to CKD susceptibility 

in the general population is poorly known. 

One option of assessing the magnitude of the familial contribution to CKD is to 

examine its aggregation in families. Most familial aggregation studies on CKD 

focused on its later stages, i.e. end-stage kidney disease (ESKD) using medical 

records and registry data8,9,12,15. Focusing on early-stage CKD rather than ESKD 

may lead to more accurate estimates of familial recurrence risk of CKD, and may 

have added value for primary and secondary prevention strategies.

In addition to assessing familial recurrence risk, one can estimate the heritability 

of disease traits. Heritability quantifies the relative importance of genetic and 

environmental factors inexplaining the distribution of a trait or disease within a 

population16. Both kidney function and related blood biomarkers have been shown 

to be heritable11,17,18. Heritability estimates of eGFR range from 33% to 67.3%11,18-23. 

For the kidney related biomarkers, serum urea and uric acid, the heritability 

estimates range from 22% to 54%18,21,24,25, and from 29% to 35%21,25, respectively. 

Among subjects with type 2 diabetes, urinary albumin-creatinine ratio (UACR) 

shows evident familial clustering with a heritability estimate of 46%26,27, which is 

higher than other population-based family studies (23% to 25%)18,21. The heritability 

of related biomarkers, such as serum electrolytes has been estimated to be 

moderate to high, varying from 33% to 61% for calcium17,18,28, and 12% to 56% for 
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sodium and potassium17,18,24,25,28. To date, the heritability estimates for kidney traits 

have originated from twin studies17,20,23,24,28, from family studies with relatively small 

sample size 11,18, or from studies in isolated founder or disease populations21,25. Due 

to sampling error, the results of these studies may have limited generalizability16. 

Therefore, heritability estimates from a large, representative sample of the 

general population are needed. 

In this study, our aim was therefore to quantify the familial aggregation of CKD 

and to obtain heritability estimates of kidney traits and related biomarkers in the 

general population.

METHODS
Study design and population

In this cross-sectional family study, we used baseline data from the Lifelines 

Cohort Study and Biobank, a multidisciplinary prospective population-based 

cohort study of the Northern Netherlands with a unique three-generation design, 

and that included 167,548 subjects. It employs a broad range of investigative 

procedures in assessing the socio-demographic, biomedical, physical, behavioral 

and psychological factors which contribute to the health and disease of the 

general population, with a special focus on multi-morbidity and complex 

genetics. The overall design and rationale of this study have been described in 

detail elsewhere29,30. The recruitment of the Lifelines study was family-based by 

design. Eligible subjects between 20 and 50 years old were invited to participate 

through their general practitioner. Individuals were not invited when the 

participating general practitioner considered the patient not eligible, i.e. if they 

had severe psychiatric or physical illness, limited life expectancy or insufficient 

knowledge of the Dutch language. After the inclusion of these individuals their 

partner, children, parents and partner’s parents were also invited to participate in 

the study. In addition, single individuals could register for participation online. In 

this way a three-generation family study was realized. We used the information 

on family members as well as information on (anonymized) names and birth 

dates of parents provided by all participants in questionnaires to define family 

relationships in Lifelines. After signing informed consent, participants received 

a baseline questionnaire and an invitation to a health assessment at one of the 

Lifelines research sites. 
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The Lifelines Cohort Study is conducted according to the Principles of the 

Declaration of Helsinki and in accordance with the research code of University 

Medical Center Groningen, and was approved by its medical ethical committee. 

All participants gave written informed consent.

Measurements

Kidney outcomes

Participants aged 8 years and older were invited to one of 12 local research sites in 

the north of The Netherlands for the physical examination. The baseline assessment 

consisted of two visits. During the first visit (duration 60 min) physical examinations 

were performed by a trained research nurse and containers for collection of a 24-h 

urine sample (age≥18 years) were handed out accompanied by oral and written 

instruction on how to collect this sample. Approximately 2 weeks after the first visit, 

a second visit (duration 10 min) was arranged to collect a fasting blood sample 

(age≥8 years) and hand in the collected 24-h urine. 

Measurement of serum creatinine was performed by an IDMS-traceable enzymatic 

method on a Roche Modular analyzer using reagents and calibrators from Roche 

(Roche Diagnostics, Mannheim, Germany), with intra- and inter-assay coefficients 

of variation of 0.9% and 2.9%, respectively. Urinary albumin (UA) concentration was 

measured by nephelometry with a lower threshold of detection of 2.3 mg/l and 

intra- and inter-assay coefficient of variation of 2.2% and 2.6%, respectively (Dade 

Behring Diagnostic, Marburg, Germany). UA concentration was multiplied by urine 

volume to obtain a value of UA excretion (UAE) in milligram per 24 hours. Urinary 

albumin-creatinine ratio (UACR) was estimated by urinary albumin divided by urinary 

creatinine as measured in spot urine (age≥8 years). After addition of a constant of 1 

to handle zero-values, UAE and UACR were transformed by their natural logarithm 

to approximate a normal distribution prior to statistical analyses.

CKD was defined as eGFR <60mL/min/1.73m2 (CKDScr) in the complete sample. 

In a subsample where urinary albumin was available, we applied an additional 

definition of CKD according to Kidney Disease: Improving Global Outcomes (KDIGO) 

guidelines31,32 (CKDKDIGO, eGFR <60mL/min/1.73m2 or UAE ≥30mg/24h, or UACR 

≥30mg/g). 
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We calculated eGFR according to the 2012 Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) creatinine equation33 for adults, and the Bedside Schwartz 

equation34 for children (aged<18 years). 

Kidney related biomarkers

The kidney related biomarkers (serum uric acid, urea and electrolytes) were 

measured using standard methods, i.e. for uric acid an enzymatic colorimetric 

assay, for urea an ultraviolet kinetic assay on a Roche Modular and for serum 

electrolytes (calcium, potassium, and sodium) using a Roche Modular P chemistry 

analyzer (Roche, Basel, Switzerland).

Covariates

Known CKD risk factors (body mass index [BMI], hypertension, type 2 diabetes, 

hypercholesterolemia, smoking status) were included as covariates and assessed at 

baseline. Blood pressure was measured ten times during 10 min with a Dinamap, PRO 

100V2. The blood pressure registered was calculated by averaging the final three 

readings. Hypertension was defined as systolic blood pressure (SBP) ≥140 mmHg, 

and/or diastolic blood pressure (DBP) ≥90 mmHg, and/or self-reported prescribed 

use of antihypertensive drugs. Participants were categorized as having Type 2 

diabetes mellitus (T2DM) if they had a measured fasting plasma glucose (FPG) ≥7.0 

mmol/L, and/or a measured glycated hemoglobin (HbA1c) ≥6.5% (48 mmol/mol),32 

and/or self-reported T2DM in combination with self-reported medication use (i.e. ATC 

codes A10A and A10B). Hypercholesterolemia was defined as a total cholesterol of ) 

≥6.21 mmol/L or self-reported use of lipid-lowering drugs (ATC codes C10A, C10B). 

Smoking status was assessed by questionnaire and coded as smoker vs non-smoker.

Statistical analysis

Baseline characteristics

Baseline characteristics were examined for the total population. Multivariable 

linear regression, and multivariable logistic regression were used to examine 

age-adjusted differences between males and females (separately in children).

 

Recurrence risk ratio

The mean eGFR and prevalence of CKD were calculated for the general population 

and for individuals with affected first-degree relatives. Recurrence risk ratios (RRR) 

of CKD were calculated as the adjusted prevalence ratios between first-degree 
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relatives of an individual with CKD and the general population. The RRR estimated 

in this study is the recurrence risk ratio according to the Risch definition35, which is 

the prevalence ratio between individuals with a specific type of affected relative 

and the general population. We used a Cox proportional hazards models, adapted 

according to Breslow36, to estimate prevalence ratios in a cross-sectional study by 

applying an equal follow-up time for all subjects. This method has been proven 

to produce consistent estimates for prevalence ratios close to true limits.37,38 A 

marginal proportional hazards model was used in this study to handle correlation 

between observations due to familial clustering. This model estimates the mean 

population hazard function and uses a robust sandwich method to estimate the 

confidence interval (CI)39,40. This approach has been applied and validated in 

previous studies on other diseases.41-43 We calculated RRR for individuals with an 

affected first-degree relative of any kinship and also for individual kinship (parent, 

offspring, and sibling). To explore whether familial risk depends on type of kinship 

and sex of the affected relative, we created separate models based on type of 

kinship and sex of affected relatives (i.e. father, mother, son, daughter, brother, 

and sister). Additionally, we estimated RRR for individuals with an affected spouse 

(husband or wife) to quantify the effect of shared environment and/or assortative 

mating. In each model, we compared the risk for CKD in individuals with affected 

first-degree relatives or spouse with the risk in the general population. The RRR 

was adjusted for age, sex, BMI, hypertension, T2DM, hypercholesterolemia, and 

smoking. To examine the consistency of our estimates of familial recurrence risk 

for CKDSCr, we compared results in the full sample with those in the subsample of 

approximately 60,000 individuals for this CKD definition.

Heritability estimates

For all continuous traits we estimated the heritability. Heritability in the narrow 

sense is defined as the ratio of the additive genetic variance, which reflects 

transmissible resemblance between relatives, to the total phenotypic variance. To 

estimate heritability, we used the Residual Maximum Likelihood-based variance 

decomposition method implemented in ASReml software44, in which the overall 

phenotypic variance is decomposed into genetic and environmental components. 

We also included household or spousal effects in the model to estimate the 

influence of shared environment by using family id or spouse id as a proxy. 

This allowed us to distinguish between shared genes and shared environment 

as potential sources of familial resemblance. In addition we calculated spouse 
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correlations for all continuous traits. The significance of heritability was determined 

by using the likelihood ratio test. This test compares the likelihood of a model in 

which heritability is estimated, to that of a model in which heritability is constrained 

to zero. Age, age2, sex, BMI, hypertension, T2DM, hypercholesterolemia, and 

smoking status were included as covariates in the model, irrespective of their 

statistical significance; we report the percentage of variance explained by these 

covariates (PVC). To assess the consistency of heritability estimates for eGFR, 

serum creatinine, and serum potassium, we compared results in the full sample 

with those in the subsample of approximately 60,000 participants for these traits. 

All analyses were performed using ASReml (Release 4.1)44 and R3.3.145. Two-sided 

significance level for analyses were set at αα=0.05.

RESULTS
Baseline characteristics

We included 155,911 participants with serum creatinine and eGFR data during the 

baseline visit (Figure 1). In this full sample CKD was defined as an eGFR <60 mL/

min/1.73 m2 (CKDSCr). In a subsample of approximately 60,000 participants, UAE or 

UACR were measured of whom 59,938 (including 743 children) had both eGFR and 

UACR, while 59,145 (only adults) had both eGFR and UAE data (Supplementary 

Figure S1-S2). In this subsample, CKD was defined as an eGFR <60 mL/

min/1.73m2, a UAE ≥30 mg/24h (or UACR≥ 30mg/g) or both, according to the 2011 

revised Kidney Disease: Improving Global Outcomes guidelines (CKDKDIGO). In the 

full sample there were 29,703 families (of size >=2) with an average family size of 

3.92, and 39,836 singletons (i.e., individuals without any relative in the sample). 

The largest family consisted of 172 participants. Spouses without children were 

considered as a family of size 2. For the subsample, 11,477 families remained with 

an average family size of 3.39 and 18,537 singletons. The largest family in the 

subsample connected 75 participants.

Included were up to 155,911 participants (58.1% female; mean age ± SD: 43.1 ± 14.7 

years) with a mean (SD) eGFR of 97.2 (15.7) mL/min/1.73 m2 in the full sample. 

In the subsample of up to 59,943 subjects in which albuminuria was measured 

a median (interquartile range [IQR]) UAE of 3.86 (2.33-6.92) mg/24h, and a 

median (IQR) UACR of 2.72 (1.58-7.33) mg/g (Table 1) was observed. Sex stratified 

characteristics for adults and children revealed a slightly less favorable renal 
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risk profile for males compared to females (i.e. higher prevalence of smoking, 

hypertension, diabetes, and high cholesterol) but similar distributions in CKD risk 

and kidney markers (i.e. eGFR and UAE) (Supplementary Table S1). Distributions of 

age, sex and covariates in the subsample were similar to those in the full sample 

(Supplementary Table S2). 

We identified 1862 CKDSCr cases, which resulted in a crude prevalence of 1.19% 

(Table 1). A total of 2211 individuals had at least one first-degree relative with 

CKDSCr: 1680 with at least one affected parent, 56 with at least one affected 

offspring, 499 with at least one affected sibling.

There was a steep increase in CKDSCr prevalence after age 60. Mean eGFR was 

lower at higher age, and age-specific mean values of eGFR were lower among 

Figure 1. Flowchart of eGFR analysis. Please note that 21 subjects with extremely low eGFR 
values (< 5SD from the mean) were considered CKD patients and retained in analyses of 
CKD. Abbreviations: estimated glomerular filtration rate, eGFR; standard deviation, SD.
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individuals with affected first-degree relatives compared to the general population 

(Figure 2A). Accordingly, the age-specific prevalence rates were also significantly 

higher in those with an affected first degree relative with CKDSCr (Figure 2B). In the 

subsample, the crude prevalence of CKDKDIGO was 5.5%-6.8% (depending on use of 

UACR or UAE, respectively, Table 1).

Recurrence risk ratio for CKDSCr and CKDKDIGO in individuals with affected 

first-degree relatives or spouses

Stratified analyses of the recurrence risk ratios (RRR) for CKDSCr among individuals 

Table 1. Baseline characteristics of adult and child participants

. Adults (aged ≥18) Children (aged <18) Total

Total population, n 147715 8196 155911

Age (years) 44.83 (13.12) 12.21 (2.76) 43.11 (14.71)

Males (%) 61512 (41.64) 3891 (47.47) 65.403 (41.95)

BMI (kg/m2) 26.07 (4.33) 18.91 (3.18) 25.69 (4.56)

Current smoker (%) 31156 (21.38) NAa NAa

Hypertension (%) 38605 (26.13) NAa NAa

Diabetes (%) 5673 (3.84) NAa NAa

Hypercholesterolemia (%) 29888 (20.23) NAa NAa

Serum potassium (mEq/L) 3.86 (0.30) 3.84 (0.28) 3.86 (0.3)

Serum creatinine (mg/dL) 0.83 (0.14) 0.61 (0.13) 0.82 (0.15)

eGFR (mL/min/1.73 m2) 96.41 (15.29) 111.46 (16.81) 97.2 (15.74)

CKDSCr: eGFR<60 (%)b 1858 (1.26) 4 (0.05) 1862 (1.19)

Subsample, n 59195 748 59943

Serum calcium (mg/dL) 9.14 (0.32) 9.50 (0.28) 9.14 (0.32)

Serum sodium (mmol/L) 141.74 (1.84) 141.63 (1.68) 141.73 (1.84)

Uric acid (mg/dL) 4.88 (1.18) 4.37 (1.01) 4.88 (1.18)

Serum urea (mg/dL) 14.48 (3.56) 12.41 (2.75) 14.45 (3.56)

UACR (mg/g) 2.72 (1.57-5.05) 2.93 (1.84-4.84) 2.72 (1.58-7.33)

UAE (mg/24h) 3.86 (2.33-6.92) NAa NAa

UACR ≥30 1622 (2.73) 20 (2.68) 1642 (2.73)

UAE ≥30 2431 (4.10) NAa NAa

CKDKDIGO: eGFR<60 or UACR 
≥30

3338 (5.52) 24 (3.20) 3362 (5.49)

CKDKDIGO: eGFR<60 or UAE ≥30 4127 (6.83) NAa NAa

Data are presented as mean (SD), median (interquartile range) or number (%), where appropriate. Abbreviations and definitions: BMI, 
body mass index; SCr, serum creatinine; UACR, urinary albumin-creatinine ratio; UAE, urinary albumin excretion; eGFR, estimated 
glomerular filtration rate; CKD, chronic kidney disease. Conversion factors for calcium in mg/dL to mmol/L, ×0.2495; creatinine in 
mg/dL to μmol/L, ×88.4; uric acid in mg/dL to μmol/L, ×59.48; serum urea in mg/dL to mmol/L, ×0.357. a: data was not available 
for children. b: these include 21 subjects with extremely low eGFR values (< 5SD from the mean) were considered CKD patients and 
retained in analyses of CKD recurrence but excluded from heritability analyses
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with different affected first-degree relatives are shown in Figure 3. In general, 

having an affected first-degree relative with CKDSCr was associated with an RRR 

of 3.05 (95% confidence interval CI: 2.27-4.11). The RRRs for CKDSCr were 3.13 (95% 

CI: 2.15-4.56) for parents with disease, 3.16 (95% CI: 1.98-5.05) for offspring, and 

3.61 (95% CI, 2.27-5.74) for siblings, respectively. Spouses of an affected individual 

were also at an increased risk compared to the general population (RRR = 1.61, 

Figure 2. Comparisons of (A) age-specific mean values of eGFR and (B) age-specific 
prevalence of chronic kidney disease (CKDSCr: eGFR<60 mL/min/1.73 m2) between individuals 
with affected first-degree relatives and the general population. Error bars indicate 95% 
confidence interval (CI).
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95% CI: 1.26-2.06). Familial recurrence showed no clear dependence on sex of the 

affected family member (Figure 3). 

RRRs for CKDSCr in the subsample of ~60,000 participants in which albuminuria was 

measured showed a highly similar pattern, but values were slightly lower. The overall 

RRR for first degree relatives of patients with CKDSCr reduced from 3.05 to 2.40.

In this subsample, prevalence of CKDKDIGO was higher than that of CKDSCr 

(Supplementary Figure S3). A trend was found of higher risk of CKDKDIGO in first-

degree relatives compared to risk in the general population, although this was 

less pronounced compared to the trend observed for CKDSCr (Supplementary 

Figure S4A and 4B). In the subsample the RRR for first degree relatives for CKDKDIGO 

was 1.38 (95% CI, 1.17-1.62), whereas for CKDSCr this was 2.40 (95%CI, 1.78-3.23) as 

mentioned above (Supplementary Figure S5). Use of UACR instead of UAE as 

measure of albuminuria yielded highly similar results (Supplementary Figures 

S3-S5). 

Heritability estimates

In Table 2, we report heritability estimates of the CKD defining traits, eGFR 

(44%), UAE (20%), and UACR (19%), for the kidney biomarkers serum urea (31%), 

Figure 3. Recurrence risk ratios (adjusted for age, age2, sex, BMI, hypertension, diabetes, 
high cholesterol, and smoking status) for chronic kidney disease (CKDSCr: eGFR<60 mL/
min/1.73 m2) in individuals with affected first degree relatives or spouse. Error bars indicate 
95% confidence interval (CI).
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serum creatinine (37%) and uric acid (48%), and finally for the serum electrolytes 

sodium (22%), potassium (28%), and calcium (27%). In the subsample of ~60,000 

participants with available urinary albumin measurements, heritability estimates 

of eGFR, serum creatinine, and serum potassium were consistent with the 

estimates in the full sample but were less precise (Supplementary Table S3). 

Heritability estimates did not change when taking household or spousal effects 

into account as they explained less than 0.1% of the variance in all variables and 

confirmed by the small spousal correlations (Supplementary Table S4). Inclusion 

of additional covariates in model 2 did not substantially change the estimates of 

heritability. Around 42% of the phenotypic variance of eGFR could be explained by 

sex and age, whereas sex and age only explained 2.6% for UAE and 8.3% for UACR. 

Inclusion of additional covariates in model 2 only slightly increased the proportion 

of total phenotypic variance attributable to covariates (PVC) for most traits with 

the exception of uric acid which showed a substantial increase in PVC of 10.3%. 

The PVC for model 2 ranged from 4.6% for potassium to 44.1% for uric acid. 

A number of traits (i.e. UAE, UACR, uric acid, serum urea, serum calcium, and serum 

sodium) were only available for the subsample, whereas eGFR, serum creatinine, 

and serum potassium were available for nearly all participants. To assess potential 

bias due to missingness, we repeated the heritability analysis for eGFR, serum 

creatinine, and serum potassium, in the subsample. Estimates were highly 

Table 2. Heritability of renal traits and related biomarkers

Traits N
Model 1 Model 2

h2 ± SE PVC h2 ± SE PVC

eGFR 155,911 0.435 ± 0.007 0.420 0.436 ± 0.007 0.423

ln(UAE) a 59,145 0.199 ± 0.014 0.026 0.193 ± 0.014 0.048

ln(UACR) a 59,938 0.185 ± 0.014 0.083 0.178 ± 0.014 0.103

Uric acid a 58,519 0.481 ± 0.013 0.338 0.497 ± 0.013 0.442

Serum creatinine 155,911 0.373 ± 0.007 0.374 0.379 ± 0.007 0.377

Serum urea a 58,481 0.307 ± 0.013 0.218 0.307 ± 0.013 0.219

Serum potassium 155,842 0.279 ± 0.007 0.041 0.278 ± 0.007 0.050

Serum calcium a 58,488 0.268 ± 0.013 0.059 0.266 ± 0.013 0.079

Serum sodium a 58,444 0.217 ± 0.013 0.066 0.221 ± 0.013 0.074

Model 1: adjusted for age, sex, age2. 
Model 2: adjusted for age, sex, age2, body mass index, diabetes, hypertension, high cholesterol and smoking status. 
Abbreviations and definitions: eGFR, estimated glomerular filtration rate; UAE, urinary albumin excretion; UACR, urinary albumin-
creatinine ratio; h2, heritability; SE, standard error; PVC, proportion of variance due to covariates.

a data was only available for a subsample of adult participants
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comparable to those in the full sample, although the heritability estimate for serum 

creatinine was slightly higher in the subsample (Supplementary Table S3).

DISCUSSION
In this large population-based family study, we investigated the familial 

aggregation of CKD by comparing the risk of CKD in individuals with an affected 

first-degree relatives to that in the general population. Participants with an 

affected first-degree relative were observed to have a threefold higher risk of 

CKD when compared to the risk in the general population, independent of BMI, 

hypertension, type 2 diabetes, hypercholesterolemia, and smoking status. This 

may in part be explained by shared environmental factors and/or assortative 

mating, given that we observed a 1.6 fold higher risk in those with an affected 

spouse. Furthermore, we estimated the heritability of eGFR and albuminuria, as 

well as that of related biomarkers and electrolytes. The heritability estimate for 

eGFR was considerable (44%), whereas heritability of UAE was moderate (20%). 

Heritability of kidney related markers and serum electrolytes ranged between 

20 and 50%. These results indicate an important role for genetic factors in 

modulating susceptibility to kidney disease in the general population.

In this study, a threefold higher risk of CKD was observed for participants 

with an affected first-degree relative. Previous studies that examined familial 

aggregation of CKD focused on its end-stage, i .e. ESKD. In African-Americans, 

the presence of a first-degree relative with ESKD conveyed a nine-fold increase 

in risk of ESKD46, while in Taiwanese Han-Chinese, there was a 2.5-fold increase 

in risk12. In the US, a multi ancestry (African and European) population-based 

case-control study conducted by Lei et al. demonstrated familial aggregation 

of ESKD, with estimates for recurrence risk ranging from a 1.3-fold to over 

a tenfold increase, depending on number of family members affected8. In a 

large registry-based study among Norwegians, individuals with an affected 

first-degree were at a 7.2-fold higher relative risk of ESKD15. Among incident 

dialysis patients in the ESKD Network 6, 23% of subjects have close relatives 

with ESKD47, and individuals with family history of ESKD are at increased risk 

for CKD48. These studies focused on ESKD as determined through registry data. 

Early stages of CKD remain unrecognized in such data, leading to potential 

misestimation of familial clustering of CKD. The present study is unique in 

that it included a large population and that it is based on objective laboratory 
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measurements of eGFR and UAE in three-generational data. Our study is 

therefore more sensitive to non-symptomatic, early-stage CKD in multiple 

family members. 

The RRR of CKDKDIGO in those with an affected relative was statistically significant, 

but considerably lower than that of CKDScr. This may be explained by our 

observation that measures of albuminuria were only moderately heritable, i.e. 

genetic factors contribute relatively little to between-individual variation in 

urinary albumin excretion. 

Spouses of those affected by CKD were at a 1.6 times higher risk of CKD, and in 

addition, kidney traits showed weak but significant positive correlations between 

spouses. As spouses are unrelated, the increased risk of CKD in spouses and weak 

spousal correlations of kidney traits may reflect effects of shared environmental 

factors or assortative mating. To further assess the effects of shared environment 

on the continuous kidney traits, we examined family and spouse effects as 

variance components in our heritability models. As these effects were negligible, 

the elevated risk in spouses seems therefore more related to assortative mating, 

i.e. partner selection based on phenotypes that convey higher risk of CKD. In 

literature, strong evidence of assortment exists for factors such as substance 

use (e.g. smoking, alcohol use)49, anthropometrics (e.g. height, BMI, waist-to-hip 

ratio), and educational attainment50, each a potential determinant of CKD risk and 

progression. In the present study however, spousal correlations of eGFR and UAE 

did not diminish after adjustment for renal risk factors (including BMI and smoking 

status). Thus, assortment likely occurs on factors other than those that select 

for currently known CKD determinants. Future study in spousal pairs may further 

investigate the mechanisms and the impact of assortative mating in CKD risk.

Between-study comparison of heritability estimates is not straightforward, as 

phenotypic variance and contribution of genetic factors depend on population, 

ethnicity, environment, measurement methods, and sampling error. Some 

inconsistency in estimates can therefore be expected. To date, the heritability 

of eGFR has been described in several twin studies and a few community-based 

studies. In the present large-scale study, we observed a heritability of 44% for eGFR 

(estimated by CKD-EPI equation for serum creatinine), corroborating estimates 

from previous, relatively small-scale, population-based studies, such as from 
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Switzerland (N=1128, 46%)18 and from South-Tyrol (N=4373, 39%)13. Inconsistencies 

in heritability estimates for eGFR can be observed with studies in specific 

populations or that applied different methods. A previous analysis, in pedigree 

data (N=1224) from the population-based Framingham Heart Study, reported a 

lower heritability estimate for eGFR (33%)51. MacCluer et al. also found a lower 

heritability estimate of eGFR (33%) among Zuni Indians21. The lower estimates in 

these two studies are possibly due to differences between populations, random 

sampling error, or use of older, less accurate eGFR estimating methods52. As 

generally observed for most traits, also for eGFR, twin studies (50%-67.3%)20,22,23 

yielded somewhat higher heritability estimates than family-based studies (33%-

46%)13,18,19,21.

The heritability estimate of urinary albumin (i.e. UAE and UACR) in the present 

study (20%) was similar to that in a previous Swiss population-based study by 

Moulin et al (23%),18 a study that was also based on 24-hour urine collections. 

The heritability of UACR was 21% in Pima Indians45, and 25% in Zuni Indians21. In a 

twin study, the heritability of UACR was 45.2±7.4%53. Previous studies in diabetic 

patients have reported highly variable heritability estimates of albuminuria 

measured in spot urine samples, ranging from 21% to 46%26,27,54-56. Finally, we 

observed a 22%-28% heritability for the serum electrolytes, potassium, calcium, 

and sodium, which confirms the potential for identifying genetic variants involved 

in electrolyte homeostasis in the general population.

The heritability estimates in the present study provide an upper bound to the 

amount of phenotypic variance that can be attributed to genetic factors. A popular 

method of identifying genetic factors associated with disease and disease traits 

is the genome-wide association study (GWAS). Large-scale GWASs have thus far 

identified 306 common (i.e. with minor allele frequency >1%) single nucleotide 

polymorphisms (SNPs) for eGFRcrea explaining 7.1% of phenotypic variance13, 

whereas the present study estimates the heritability of eGFRcrea to be 44%. 

Similarly, the 59 SNPs thus far identified in GWASs on UACR explained 0.7%, 

which is modest compared to our heritability estimate of 20%14. Thus, much of 

the heritability of kidney traits remains to be discovered. Potentially, future whole 

genome sequencing study that focus on rare variants (i.e. SNPs with a minor allele 

frequency <1%) may unveil a large proportion of this missing heritability57,58. 

The present study is by far the largest family-based study on kidney traits that 
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uses laboratory defined CKD, whereas other similar studies relied on medical 

records or health insurance data on ESKD that are not sensitive to earlier stage 

CKD. Leveraging these laboratory data, the present study is the first to quantify 

the familial clustering of CKD including early (i.e. non-ESKD) stages of CKD. 

Furthermore, Lifelines is representative with regards to its source population (i.e. 

the general population of the northern Netherlands), which facilitated precise 

estimation of heritability. In addition, albuminuria was determined not only 

in spot urine samples, but also in 24h urine collections, that are considered 

the gold standard to assess albuminuria. There are only very few large scale 

epidemiological studies that have 24h urine collections available. . 

Several limitations need to be addressed. First, although gold standard 24h 

albuminuria measurements were available, this was only true for a subsample of 

approximately 60,000 participants. However, this substantial sample size still offers 

ample statistical power and reliable results. Furthermore, missingness was likely 

random as age, sex and covariate distributions were highly similar between sub- 

and full sample, and therefore unlikely to have seriously biased our results. This is 

supported by the consistency of the heritability estimates of eGFR, serum creatinine, 

and serum potassium between the total sample and the subsample. Second, GFR 

was not measured directly but estimated from serum creatinine. Therefore, some 

bias is possible due to creatinine metabolism. In addition, eGFR estimating equations 

are known to be less precise in the higher ranges (>60 mL/min/1.73m2)59-61. These 

measurement errors may have caused downward bias in our heritability estimates. 

Third, no kidney biopsy data was available, nor could we exclude Mendelian 

forms of inherited kidney disease; we therefore could not distinguish between the 

different etiologies of CKD. Fourth, potential preferential missingness of data from 

non-participating affected family members may have led to underestimation of 

recurrence risk ratios. Finally, 98% of Lifelines participants are of European ancestry62; 

we therefore cannot generalize our results to other ancestries.

The results of this study may have several implications in addition to those 

previously mentioned. First, the data on familial recurrence of CKD may guide 

clinical decision-making with regards to CKD diagnosis and prevention. Further 

study is warranted to assess the added value of family history in risk stratification 

of CKD, and to investigate the potential impact of specifically targeting family 

members of CKD patients for screening and prevention strategies. Second, the 



84 Chapter 4

heritability estimates provide an upper bound to how much variance of a trait 

can be explained by genetic factors. Future studies, e.g. GWAS, may focus on 

identifying these genetic factors.

In summary, we demonstrate that CKD clusters in families in the general population, 

given that risk of CKD was strongly elevated in those with an affected relative. 

Considerable heritability (20-50%) of kidney traits was observed. Therefore, much of 

the familial clustering may be attributed to genetic factors. The data presented in this 

study inform future work on risk stratification based on family history, and provide a 

step forward in disentangling genetic and environmental risk factors in CKD.
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Figure S1. Flowchart of eGFR and UACR analysis. Abbreviations: estimated glomerular 
filtration rate, eGFR; standard deviation, SD; urinary albumin-creatinine ratio, UACR.

Figure S2. Flowchart of eGFR and UAE analysis. Abbreviations: estimated glomerular 
filtration rate, eGFR; standard deviation, SD; urinary albumin excretion, UAE.
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Figure S3. Age-specific prevalence of chronic kidney disease (CKDSCr: eGFR<60 mL/
min/1.73 m2; CKDKDIGO: eGFR < 60 mL/min/1.73 m2 and/or UAE (UACR) ≥ 30 mg/24 hours 
(mg/g)) in the general population diagnosed by different criteria. Error bars indicate 95% 
confidence interval (CI). Abbreviations: estimated glomerular filtration rate, eGFR; urinary 
albumin excretion, UAE; urinary albumin-creatinine ratio, UACR.
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Figure S4. Comparisons of age-specific prevalence of chronic kidney disease (CKDKDIGO: eGFR 
< 60 mL/min/1.73 m2 and/or UAE (UACR) ≥ 30 mg/24 hours (mg/g)) between individuals 
with affected first-degree relatives and the general population. Error bars indicate 95% 
confidence interval (CI). Abbreviations: estimated glomerular filtration rate, eGFR; urinary 
albumin excretion, UAE; urinary albumin-creatinine ratio, UACR.
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Table S4. Spousal correlations

Renal traits N (Pairs) model1 model2

  Pearson correlation P value Pearson correlation P value

eGFR 29356 0.069 <0.001 0.067 <0.001

serum creatinine 29356 0.074 <0.001 0.073 <0.001

ln(UAE) 9935 0.035 <0.001 0.034 <0.001

ln(UACR) 9951 0.032 <0.001 0.034 <0.001

serum urea 9933 0.116 <0.001 0.115 <0.001

uric acid 9948 0.082 <0.001 0.050 <0.001

serum potassium 29325 0.167 <0.001 0.166 <0.001

serum calcium 9934 0.034 <0.001 0.035 <0.001

serum sodium 9913 0.077 <0.001 0.069 <0.001

Chronic Kidney Disease (CKD) N (Pairs) Phi coefficient P value

CKDSCr: eGFRSCr<60 (%) 29356 0.12 <0.001

CKDKDIGO: eGFRSCr<60 or UACR ≥30 9951 0.15 <0.001

CKDKDIGO: eGFRSCr<60 or UAE ≥30 9935 0.12 <0.001

Model 1: adjusted for age, age2, and sex  
Model 2: adjusted for age, age2, sex, BMI, hypertension, diabetes, high cholesterol, and smoking status 

Abbreviations and definitions: eGFR, estimated glomerular filtration rate; UAE, urinary albumin excretion; UACR, urinary albu-
min-creatinine ratio

Table S3. Heritability of eGFR, serum creatinine and potassium in subsample participants only

Traits N
Model 1 Model 2

h2 ± SE PVC h2 ± SE PVC

eGFR 59,943 0.456 ± 0.013 0.387 0.458 ± 0.013 0.388

Serum creatinine 59,943 0.433 ± 0.012 0.361 0.436 ± 0.012 0.363

Serum potassium 59,943 0.262 ± 0.013 0.034 0.263 ± 0.013 0.041

Model 1: adjusted for age, sex, age2. 
Model 2: adjusted for age, sex, age2, body mass index, diabetes, hypertension, high cholesterol, and smoking status.

Abbreviations and definitions: eGFR, estimated glomerular filtration rate; UAE, urinary albumin excretion; UACR, urinary albumin-
creatinine ratio; h2, heritability; SE, standard error; PVC, proportion of variance due to covariates.
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ABSTRACT
Introduction. Cross-sectional GWAS on creatinine-estimated GFR (eGFRcrea) 

identified 53 SNPs. These SNP effects can be aggregated into a Genetic Risk 

Score (GRS) for chronic kidney disease (CKD). To assess its clinical utility, we 

examined associations with creatinine-estimated kidney outcomes, both cross-

sectionally and longitudinally. Additionally, we examined associations with 

cystatin C-estimated kidney outcomes to verify that a GRS based on eGFRcrea 

SNPs represents the genetics underlying kidney function. 

Methods. In the community-based PREVEND Study, we assessed eGFRcrea and 

eGFRcysc at baseline and four follow-up examinations. The GRS comprised 53 

SNPs for eGFRcrea weighted for reported effect-sizes. We adjusted for baseline 

demographics and renal risk factors.

Results. We included 3649 subjects (median age 49 years, 52% male, median 

follow-up 11 years, N=85 baseline CKD, N=154 incident CKD). At baseline, a 

higher GRS associated with lower eGFRcrea (adjusted B (95%CI) = -2.05 (-2.45;-

1.65) mL/min/1.73m2, p<0.001) and higher CKD prevalence (adjusted OR (95%CI)= 

1.41 (1.12;1.77), p=0.002). During follow-up, a higher GRS associated with higher 

CKD incidence (adjusted HR (95%CI)= 1.28 (1.09;1.50), p=0.004), but no longer 

significantly after adjustment for baseline eGFR. No significant association with 

eGFRcrea decline was found. Associations with cystatin C-estimated outcomes 

were similar. 

Conclusions. The GRS robustly associated with baseline CKD and eGFR, 

independent of known risk factors. Associations with incident CKD were likely due 

to low baseline eGFR, not accelerated eGFR decline. The GRS for eGFRcrea likely 

represents the genetics underlying kidney function, not creatinine metabolism or 

underlying etiologies. To improve clinical utility of GWAS results for CKD, these 

need to specifically address eGFR decline and CKD incidence. 
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INTRODUCTION
Chronic kidney disease (CKD) is a heterogeneous group of diseases defined by the 

presence of sustained reduced kidney function or kidney damage. Strong evidence 

exists for a genetic component to CKD risk: CKD has been observed to aggregate 

in families1-3 and heritability estimates are reported to range between 30 and 

75%4-9. Furthermore, genome-wide association studies (GWAS) in populations of 

European ancestry have identified common genetic variants associated with CKD 

and kidney function markers10-14 . The largest and most comprehensive genetic 

study is a cross-sectional meta-analysis of GWASs, in which single nucleotide 

polymorphisms (SNPs) at 53 loci were found to be associated with creatinine-

estimated eGFR (eGFRcrea)
15. 

The individual SNPs identified in this meta-analysis can be combined into a 

genetic risk score (GRS)16-18, which summarizes individual genetic predisposition 

to CKD. Such a GRS is a potentially useful tool in etiological and predictive studies 

of CKD. However, because the SNPs were identified in a cross-sectional GWAS 

design, it is uncertain whether a GRS is associated with longitudinal outcomes. 

Furthermore, there is overlap between the 53 loci from the aforementioned meta-

analysis and loci identified in a large GWAS on serum creatinine11,12. Therefore, it is 

difficult to discern whether a GRS corresponds to kidney function per se or partly 

reflects creatinine production/secretion. 

The main study aim was to evaluate the applicability of a GRS, comprising 53 

SNPs identified in cross-sectional GWAS on eGFRcrea, in longitudinal outcomes. 

To this end, we tested three hypotheses. First, we tested the hypothesis that the 

GRS would be associated with kidney outcomes, not only cross-sectionally (i.e. 

with baseline CKD, baseline eGFR), but also longitudinally (i.e. with incident CKD, 

eGFR decline). Second, to assess whether the GRS is a true representation of a 

genetic component to kidney function, we hypothesized that the GRS would also 

be associated with GFR estimates not based on serum creatinine. We therefore 

compared the associations of the GRS with eGFRcrea to those of the GRS with 

an serum cystatin C-estimated GFR (eGFRcysc)
19. Third, to rule out that the GRS 

represents a component to kidney damage rather than kidney function, we 

hypothesized that the GRS would not be associated with albuminuria (i.e. urinary 

albumin excretion, UAE).
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METHODS
Study population and design

We used data from the Prevention of REnal and Vascular ENdstage Disease 

(PREVEND) cohort study20. PREVEND was initiated to investigate the natural 

course of increased urinary albumin levels and its association to renal and vascular 

outcomes. Details of this study have been described elsewhere. In brief, 8592 

individuals, sampled from the general population of Groningen, the Netherlands, 

underwent extensive examination between 1997-1998. The four follow-up 

examinations were completed in 2003, 2006, 2008, and 2012. Included were 3649 

subjects of whom GWAS data were available. All subjects gave written informed 

consent. The PREVEND Study was approved by the medical ethics committee of 

the University Medical Center Groningen and conducted in accordance with the 

Helsinki Declaration guidelines.

Genetic risk scores

Genotyping details for PREVEND were described previously21. In brief, genotyping 

was performed on the Illumina CytoSNP12 v2 chip. Variants were imputed to 

1000G22, phase 1 version 3, using Minimac software23. Population stratification 

was assessed by principal component analysis; samples with Z-score>3 for any 

of the first five principal components were excluded, i.e. outlying individuals 

were removed because of likely divergent ancestry24. Samples with a call 

rate<95%, duplicates, and sex discrepancies were excluded. Markers with call 

rate>95%, Hardy-Weinberg equilibrium p-value≥1x10-5, and minor allele 

frequency (MAF)≥1% were included. From the resulting GWAS data, we extracted 

the genotypes of the 53 SNPs that were identified in a recent meta-analysis of 

GWAS on eGFRcrea in European populations15. Designated risk alleles were those 

associated with lower eGFR. Genotypes were represented as continuous allelic 

dosages from 0 to 2, reflecting an additive model 25. A weighted GRS was defined 

as the sum of the risk alleles weighted for their published regression coefficient. 

Therefore, a higher GRS corresponds to higher susceptibility to impaired kidney 

function. For ease of interpretation, effects are reported per standard deviation 

(sd) higher GRS. 

Outcome measurements and definition

At each examination, participants collected two consecutive 24h-urine specimens 

after thorough instruction. Participants were asked to avoid heavy exercise as 
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much as possible before urine collection, and instructed to postpone urine 

collection in case of urinary tract infection, menstruation, or fever. The collected 

urine was stored cold (4oC) for a maximum of four days before handing it in. After 

this, urine specimens were stored at -20oC. Fasting blood samples were obtained 

and stored at -80oC.

Measurement of serum creatinine was performed by an enzymatic method on 

a Roche Modular analyzer using reagents and calibrators from Roche (Roche 

Diagnostics, Mannheim, Germany), with intra- and interassay coefficients of 

variation of 0.9% and 2.9%, respectively. Serum cystatin C concentration was 

measured by a Gentian cystatin C Immunoassay (Gentian AS Moss, Norway) on a 

Modular analyzer (Roche Diagnostics). Cystatin C was calibrated directly using the 

standard supplied by the manufacturer (traceable to the International Federation 

of Clinical Chemistry Working Group for Standardization of Serum Cystatin C)26 The 

intra- and interassay coefficients of variation were <4.1% and <3.3%, respectively. 

Urinary albumin concentration (UAC) was measured by nephelometry with a lower 

threshold of detection of 2.3mg/L, and intra- and interassay coefficient of variation 

of 2.2% and 2.6%, respectively (Dade Behring Diagnostic, Marburg, Germany). UAC 

was multiplied by urine volume to obtain a value of UAE in mg/24h. The two 

24h-urinary albumin values of each subject per examination were averaged. 

We calculated eGFRcrea from serum creatinine and eGFRcysc from serum cystatin C, 

using the corresponding CKD-EPI equations 19. We defined CKDcrea as eGFRcrea<60ml/

min/1.73m2, CKDcysc as eGFRcysc<60ml/min/1.73m2, and CKDUAE as UAE≥30mg/24h. 

Incident cases were those free of CKD at baseline who developed CKD during follow-

up. In secondary analyses, we used the CKD-EPI equation for both serum creatinine 

and cystatin C to calculate eGFRcrea-cysc
27. Furthermore, a definition of CKD based on 

KDIGO guidelines (CKDKDIGO, eGFRcrea-cysc<60ml/min/1.73m2 and/or UAE≥30mg/24h) 

was used28.

Covariates

We selected the following renal risk factors as covariates: age, sex, body-mass index 

(BMI, weight/height2 [kg/m2]), current smoking (self-reported yes/no), diabetes 

(fasting glucose>7.0mmol/L, non-fasting glucose>11.0mmol/L, anti-diabetic 

treatment, or self-reported), hypertension (systolic blood pressure>140mmHg, 

diastolic blood pressure>90mmHg, blood pressure lowering treatment, or self-
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reported), hypercholesterolemia (total cholesterol≥6.21mmol/L, lipid lowering 

treatment, or self-reported), and history of cardiovascular disease (CVD, any 

past cardio/cerebrovascular event or intervention). Covariates were collected at 

baseline by means of questionnaires, anthropometry, and pharmacy records. 

Statistical analyses

Analyses were performed using R3.3.1 and SPSS23.0 (IBM Corporation). Two-sided 

significance level for analyses was set at α=0.05 unless stated otherwise. 

Baseline characteristics

Baseline characteristics were examined for the total population. One-way 

ANOVA, Jonckheere-Terpstra, and χ2-tests were used to examine linear trends of 

characteristics across tertiles of GRS. In subsequent analyses, GRS was treated as 

a continuous variable. We examined age and sex-adjusted associations of all 53 

individual SNPs with baseline eGFRcrea and eGFRcysc using ordinary least squares 

(OLS) regression. 

Cross-sectional associations of the GRS with CKD prevalence and baseline eGFR

Logistic regression was used to examine the association of the continuous GRS 

with baseline CKDcrea. We adjusted for covariates by adding incremental groups 

of covariates in order to distinguish confounding effects of demographics and 

risk factors. Group 1 consisted of age and sex; group 2 additionally included BMI, 

smoking, diabetes, hypertension, hypercholesterolemia, and history of CVD. 

We examined the association of the GRS with continuous eGFRcrea using OLS 

regression. We adjusted for covariates as described above. Analyses were 

repeated for baseline eGFRcysc and prevalent CKDcysc. 

Longitudinal associations of the GRS with CKD incidence and eGFR decline

Cox regression models were used to examine the association of continuous GRS 

with incident CKDcrea. To estimate time to incident CKDcrea, we used a midpoint 

imputation technique. In this analysis, we corrected for baseline eGFRcrea in 

addition to the previously listed renal risk factors. Subjects were censored at 

death or date of last visit.

Linear mixed-effects (LME) analysis was performed to examine the association 

of the GRS with eGFR decline. We modelled eGFRcrea as a function of time since 
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baseline (per year). We specified a model with random intercept, random coefficient 

for time, and unstructured covariance matrix. The GRS, time, and covariates were 

included as fixed effects. A two-way interaction term between GRS and time was 

introduced to assess whether eGFRcrea decline differed by values of the GRS. 

Analyses were repeated with the outcomes eGFRcysc decline and incident CKDcysc. 

Associations with UAE

We repeated the cross-sectional and longitudinal analyses described above 

to examine associations of a GRS with renal outcomes based on elevated UAE. 

Continuous UAE was transformed by its natural logarithm to approach normality 

(ln(UAE)), in OLS regression and LME analyses. 

Secondary analyses

We repeated all analyses using eGFRcrea-cysc and CKDKDIGO as outcome. Furthermore, 

we constructed two alternative GRS. The first alternative GRS comprised 49 

SNPs that were significant in the meta-analysis by Gorski et al.14, with the second 

alternative comprising all 63 SNPs identified in either the Pattaro (53 SNPs) and 

the Gorski study (10 additional SNPs). 

RESULTS
Baseline characteristics

Baseline characteristics of the 3649 subjects are presented in Table 1. In univariable 

analyses, a higher tertile for the GRS was associated with higher serum creatinine 

and cystatin C levels (ptrend<0.001); higher prevalence of CKDcrea (ptrend =0.002) and 

CKDcysc (ptrend =0.01); lower eGFRcrea (ptrend end<0.001) and lower eGFRcysc (ptrend 

<0.001); lower UAE (ptrend <0.001). No associations with CKDUAE were found. We 

found no associations with age, sex, BMI, smoking status, diabetes, hypertension, 

hypercholesterolemia, or history of CVD.

Details of the 53 SNPs used in the calculation of the GRS and age- and 

sex- adjusted estimates of their association to baseline eGFRcrea, baseline 

eGFRcysc, and ln(UAE) are listed in Supplementary Table S1A. Out of 53 

SNPs, 22 reached nominal significance (one-sided p<0.05), while three were 

significant when a Bonferroni correction for 53 tests (p<9.4x10-4) was applied.  
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Table 1. Baseline characteristics of the cohort stratified by tertiles of the Genetic Risk Score

Total
GRS

Ptrend

low medium high

N 3649 1216 1217 1216 n/a

Age, years 49 [39-60] 49 [40-60] 49 [39-59] 49 [39-60] 0.954

Males, % 52% 51% 51% 52% 0.598

BMI, kg/m2 26 (4.3) 26 (4.2) 26 (4.4) 26 (4.2) 0.816

BMI ≥30, % 16% 16% 16% 16% 0.868

Current smoker, % 35% 35% 35% 36% 0.420

Hypertension, % 34% 32% 36% 34% 0.521

SBP, mmHg 129 (20) 129 (20) 129 (20) 129 (20) 0.612

DBP, mmHg 74 (9.9) 74 (9.9) 74 (10) 74 (9.9) 0.887

BP lowering medication, % 12% 13% 14% 11% 0.658

Diabetes, % 3.9% 3.7% 3.4% 4.7% 0.210

Glucose, mmol/L 4.7 [4.3-5.1] 4.7 [4.4-5.1] 4.7 [4.3-5.2] 4.7 [4.4-5.1] 0.926

Anti-diabetic medication, % 1.3% 1.2% 1.0% 1.8% 0.843

Hypercholesterolemia, % 31% 31% 32% 31% 1.000

Total cholesterol, mmol/L 5.7 (1.1) 5.7 (1.1) 5.6 (1.1) 5.7 (1.1) 0.744

Lipid lowering medication, % 3.6% 4.8% 3.7% 2.7% 0.499

History of CVD, % 4.2% 3.9% 5.1% 3.8% 0.920

Serum creatinine, mg/dL 0.82 (0.18) 0.79 (0.16) 0.82 (0.18) 0.85 (0.19) <0.001

eGFRcrea , mL/min/1.73m2 96 (16) 98 (15) 96 (16) 94 (16) <0.001

CKDcrea: eGFRcrea <60, % 2.5% 1.4% 2.7% 3.4% 0.002

Serum cystatin C, mg/L 0.90 (0.18) 0.88 (0.17) 0.90 (0.19) 0.92 (0.18) <0.001

eGFRcysc , mL/min/1.73m2 92 (19) 94 (19) 92 (19) 90 (19) <0.001

CKDcysc: eGFRcysc <60, % 5.9% 4.9% 5.3% 7.4% 0.010

eGFRcrea-cysc 94 (17) 97 (17) 95 (17) 92 (17) <0.001

CKDKDIGO :eGFRcrea-cysc<60 or UAE≥30 , % 20% 21% 20% 19% 0.297

UAE, mg/24h 10.6 [6.6-21] 11.5 [7.0-23] 10.3 [6.6-20] 10.2 [6.4-20] <0.001

UAE ≥30 , % 17% 19% 17% 17% 0.172

No of risk alleles 57 (4.5) 52 (2.7) 57 (1.7) 62 (2.5) <0.001

Baseline characteristics of the cohort. Data is presented as mean (standard deviation), median [interquartile range], and percentage 
where appropriate. P-values for linear trend were calculated using one-way ANOVA, Jonckheere-Terpstra-tests, and χχ2-tests where 
appropriate. 

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, 
estimated glomerular filtration rate; GRS, genetic risk score; SBP, systolic blood pressure; UAE, urinary albumin excretion
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Supplementary Figure S2 presents a plot of age- and sex-adjusted regression 

coefficients. These coefficients were obtained by OLS regression of individual 

SNPs on either eGFRcrea and eGFRcysc. Correlation between the regression 

coefficients on eGFRcrea and eGFRcysc was moderate (Pearson r=0.51, p<0.001). The 

total least squares regression line showed fair agreement with the line of identity. 

Cross-sectional associations of the GRS with baseline eGFR and CKD 

prevalence

We present cross-sectional results in Table 2. Per sd higher GRS, the odds of having 

CKDcrea at baseline increased by 41% (fully adjusted odds ratio (OR) (95%CI)=1.41 

(1.12;1.77), p=0.002. A higher GRS was associated with lower eGFRcrea (fully adjusted 

unstandardized coefficient B (95%CI)= -2.05 (-2.45;-1.65) mL/min/1.73m2, p<0.001), 

independent of known risk factors. Effect sizes of the associations with CKDcysc 

(adjusted OR (95%CI)= 1.27 (1.08;1.50), p=0.004) and with eGFRcysc (adjusted B 

(95%CI)= -1.63 (-2.11;-1.14) mL/min/1.73m2, p<0.001) were smaller but showed a 

similar trend compared to those for creatinine-estimated outcomes. Estimates of 

the effect sizes of the GRS on both eGFRcrea and eGFRcysc remained stable during 

incremental covariate adjustment. 

Longitudinal associations of the GRS with eGFR decline and CKD incidence

We present longitudinal results in Table 3. A higher GRS was associated with 

higher incidence of CKDcrea after adjustment for known renal risk factors (adjusted 

hazard ratio (HR) (95%CI)=1.28 (1.09;1.50), p=0.003), but significance disappeared 

after additional adjustment for baseline eGFRcrea (fully adjusted HR (95%CI)=1.05 

(0.89;1.24), p=0.537). A higher GRS was not associated with steeper decline of 

eGFRcrea (fully adjusted B (95%CI)= -0.01 (-0.04;0.03) mL/min/1.73m2 per year, 

p=0.655). Inclusion of interaction terms between baseline renal risk factors and 

time did not change estimates of the effects between the GRS and eGFR decline 

(data not shown).

Similar associations were found with eGFRcysc decline (fully adjusted B (95%CI)= 

-0.03 (-0.07;0.01) mL/min/1.73m2 per year, p=0.167) and incident CKDcysc (adjusted 

HR (95%CI)=1.17 (1.03;1.32), p=0.014. The association with incident CKDcysc lost 

significance after additional adjustment for baseline eGFRcysc (fully adjusted HR 

(95%CI)=1.06 (0.94;1.20), p=0.336). 
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Association of the GRS with UAE

Results of analyses on UAE are presented in Table 2-3. A higher GRS was associated 

with lower ln(UAE) (fully adjusted B (95%CI)= -0.04 (-0.07;-0.01) ln(mg/24h), p=0.004) 

but not with higher prevalence of CKDUAE (fully adjusted OR (95%CI)=0.92 (0.84;1.01), 

p=0.074). No longitudinal associations of GRS with kidney damage were observed: a 

higher GRS was neither associated with steeper increase of ln(UAE) (fully adjusted B 

(95%CI)=0.001 (-0.001;0.004) ln(mg/24h) per year, p=0.297) nor with higher incidence 

of CKDUAE (fully adjusted HR (95%CI)=1.03 (0.93;1.14), p=0.360). 

Analyses with 24h-urinary albumin-to-creatinine ratio as outcome yielded similar 

results (data not shown).

Secondary analyses

Associations of the GRS with eGFRcrea-cysc were consistent with those of the GRS 

with eGFRcrea and eGFRcysc. We found no cross-sectional or longitudinal association 

of the GRS with CKDKDIGO (Table 2-3). Two alternative GRS, based on 49 SNPs 

(GRS1000G-49) and 63 SNPs (GRS1000G-63), were evaluated. Individual SNP-effects of 

these GRS are listed in Supplementary Table S1B. The GRSs showed similar but 

slightly weaker associations compared to our main GRS (Supplementary Table S3-7). 

DISCUSSION
In this population based, longitudinal cohort study, we evaluated the effects of 

a GRS comprising 53 eGFRcrea-SNPs on kidney outcomes. To this end, we tested 

cross-sectional and longitudinal associations of this GRS with CKDcrea and eGFRcrea 

and compared these associations to those with CKDcysc and eGFRcysc. Cross-

sectional associations of the GRS with the kidney outcomes, CKDcrea and eGFRcrea, 

were modest but robust, corroborating the literature. In longitudinal analyses, we 

observed no associations with kidney function decline. The GRS was associated 

with incidence of CKDcrea, but this was likely due to lower baseline eGFR rather than 

accelerated kidney function decline. In comparison to associations with eGFRcrea, 

associations with eGFRcysc were smaller but showed a similar trend. Higher GRS 

was not associated with kidney damage markers. Furthermore, all associations 

of the GRS with kidney outcomes were independent of renal risk factors. These 

data suggest that the GRS is a true representation of the genetics underlying 

kidney function, as opposed to creatinine metabolism, kidney damage, or related 

etiologies such as hypertension/diabetes. 
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In secondary analyses, we confirmed associations with eGFRcrea-cysc, currently 

the best estimate for kidney function for large population-based studies 19,29. We 

found no association of the GRS with CKDKDIGO as outcome. This is likely due to the 

fact that this GRS was optimized for eGFR as outcome and not urinary albumin; 

in our sample, CKDKDIGO was predominantly characterized by elevated urinary 

albumin rather than diminished kidney function. Two alternative GRS (GRS1000G-49 

and GRS1000G-63), yielded similar results but proved to be slightly less powerful 

predictors of kidney function and CKD in this sample.

Previously, two similar GRSs based on eGFRcrea SNPs were investigated in ~2500 

participants with ~11 years of follow-up from the Framingham Heart Study. 

O’Seaghdha et al. calculated a 16-SNP GRS for eGFRcrea
17. This sample of the 

Framingham cohort was revisited by Ma et al.18, who updated the GRS with 37 

additional SNPs, that is the same 53 as the present study. Both of these GRS 

were independently associated with incident CKD (eGFRcrea<60mL/min/1.73m2), 

although neither of these GRSs improved prediction and/or discrimination beyond 

clinical risk factors (age, sex, BMI, eGFR, hypertension, diabetes, proteinuria). 

Interestingly, they reported associations of a higher GRS with a higher incidence 

of CKD to be independent of baseline eGFR, hence an accelerated deterioration 

of kidney function in those with a higher GRS. Such an effect was also suggested 

by Böger et al.30 in a study of eGFR related loci identified by GWAS. In 26,308 

individuals of European ancestry, the associations of 16 separate SNPs known 

at the time with incident CKD were examined. Of these 16 SNPs, six (mapping 

to UMOD, PRKAG2, LASS2, DAB2, DACH1, and STC1) were significantly (p<0.05) 

associated with incident CKD (eGFR<60mL/min/1.73m2), even after correction for 

baseline eGFR. Similar to the findings of O’Seaghdha and Ma et al, this implies 

that several SNPs associate with eGFR decline. In contrast, in the present study 

we could not corroborate such an effect on CKD incidence or eGFR decline: the 

association of GRS with incident CKD was not significant after adjustment for 

baseline eGFR, and there was no significant association between the GRS and 

eGFR decline. 

A possible explanation for this discrepancy is the potential overestimation of 

the effect of the GRS by O’Seaghdha and Ma et al. due to the participation of 

the Framingham Cohort Study in the discovery phase of the meta-analysis12,15. 

Similarly, overestimation of individual SNP effects may have occurred in the 
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study by Böger et al, given that seven of the eight cohorts participating in that 

study were part of the discovery GWAS12. Such overlap in discovery and validation 

cohorts might result in inflated effect sizes31. The PREVEND study was not part 

of the original discovery GWAS, ensuring its independence and suitability as a 

validation cohort for evaluation of a GRS based on eGFRcrea SNPs. This potential 

overestimation possibly also explains that in our study, the GRS explained only 

1.66% of variance of baseline eGFRcrea, whereas in the original GWAS, the explained 

variance of eGFRcrea by the combined loci was 3.22%15. 

Notwithstanding these discrepancies, the combined data suggest that the genetics 

underlying kidney function are, at least partly, distinct from that underlying kidney 

function decline and/or kidney disease susceptibility. Our results indicate that a 

GRS based on cross-sectional GWAS results on kidney function is not clinically 

applicable (e.g. in the prediction of CKD risk). A GRS would be more applicable 

if SNPs associated with kidney function decline and/or CKD incidence were 

used, as these would likely better represent disease susceptibility. Unfortunately, 

there is paucity of data on genetic loci associated with kidney function decline 

or CKD incidence. To the best of our knowledge, only one study by Gorski et 

al. performed a GWAS for kidney function decline phenotypes32. In this study, 

only one SNP mapping to UMOD (which was also implicated in prior GWAS on 

cross-sectional eGFRcrea) was significantly associated with eGFR change in the 

general population, while two novel loci, CDH23 and GALNT15/GALNT11 were only 

suggestively associated with eGFR change in CKD patients, and rapid decline in 

the general population, respectively. To benefit clinical applicability, we argue 

that future GWAS should focus on disease susceptibility genes, i.e. loci associated 

with eGFR decline and/or CKD incidence. We found a higher GRS to be associated 

with lower UAE, i.e. lower risk of kidney damage, which is surprising for two 

reasons. First, a prior family study, using bivariate variance component linkage 

analysis techniques, found a low genetic correlation between eGFR and UACR 

(rg=0.002 in African Americans, not reported for European Americans)5. Second, 

there is no overlap in genome-wide significant markers for eGFR and albuminuria 

in the general population33, 34. Due to this apparent lack of genetic overlap, it is 

believed that eGFR and albuminuria have distinct genetic underpinnings. To our 

knowledge, we are the first to observe this counterintuitive association with the 

updated 53 SNP GRS. Although the correlation between the GRS and ln(UAE) was 

weak (r=-0.043), it is unlikely to be a chance finding: in an earlier study by Ellis et al. 



112 Chapter 5

a weighted GRS (comprising 16 SNPs associated with eGFRcrea) was associated 

with both lower eGFR and with lower UACR35. The authors attributed this effect 

to the A-allele of rs17319721, a SNP mapping to SHROOM3, because exclusion 

of this SNP from their GRS attenuated the effect on UACR. In previous GWAS, 

the SHROOM3 SNP was found to be associated with eGFRcrea
12, and suggestively 

with UACR (p=7.0x10-7)15,33,34. In the present study, exclusion of this SNP from the 

updated GRS did not attenuate the effect (data not shown). Therefore, it is possible 

that, in addition to SHROOM3, other loci discovered in the recent meta-analysis 

on eGFRcrea might have pleiotropic effects on both eGFR and albuminuria. We 

therefore performed a query in LDHub v1.3.1, a platform for LD-score regression 

which uses original GWAS summary statistics36, 37. LD Hub showed a modest genetic 

correlation between eGFRcrea and UACR (rg=0.388, p<0.001), and a suggestive 

genetic correlation between eGFRcysc and UACR (rg=0.195, p=0.087), in the same 

direction as our findings (i.e. higher eGFR~higher UACR). These correlations 

suggest that there is at least partial overlap in the genetics underlying eGFR and 

albuminuria. Addressing the question of pleiotropy is beyond the scope of the 

present study and requires dedicated analysis in larger samples.

A number of SNPs identified in the GWAS on eGFRcrea may be linked to loci related 

to creatinine production or secretion, hence not with kidney function per se38. We 

therefore examined two SNPs mapping to loci known to be related to creatinine 

metabolism: rs2467853 which maps to the creatinine production locus GATM39 and 

rs316009 which maps to the creatinine secretion locus SLC22A240. For both SNPs, 

we observed an inconsistency in the direction of effect for baseline eGFRcrea and 

eGFRcysc (see Supplementary Table 1A), suggesting that these loci are indeed not 

related to kidney function. Exclusion of these SNPs led to a slightly improved GRS: 

effects of this GRS on eGFRcrea and eGFRcysc more closely resembled each other 

than those of the main GRS, although this improvement was only slight (data not 

shown). Our conclusions therefore remain unchanged. Future, functional studies 

may investigate other presumptive creatinine-related loci. The exclusion of such 

loci may result in a GRS that more accurately reflects genetic predisposition to 

kidney function.

To our knowledge, we are the first study that examined the association between 

a GRS comprising 53 SNPs and eGFR decline. Strengths of this study include the 

availability of serially measured creatinine and cystatin C, as well as two 24h-urinary 
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albumin at each examination, during a considerable follow-up duration of 11 years. 

A major strength of PREVEND is its independence from the discovery GWAS that 

identified the 53 SNPs used in the GRS, resulting in unbiased effect estimates of 

the GRS. Given that participants of the PREVEND GWAS sample are of European 

ancestry, we cannot generalize to other ethnicities. Finally, we could not calculate 

genetic correlations between eGFR levels and eGFR decline as GWAS summary 

results for eGFR decline were currently not available.

In conclusion, a GRS comprising 53 SNPs showed modest but robust associations 

with cross-sectional CKD outcomes based on eGFRcrea. These associations were 

confirmed with eGFRcysc, which highlights the potential usefulness of a GRS 

as a representation of the genetics underlying kidney function. However, no 

longitudinal associations with incident CKD or eGFR decline were found. Given 

these results, we question the clinical utility of cross-sectional GWAS results 

on kidney function. We suggest that future GWAS specifically examine genetic 

associations with eGFR decline and/or CKD incidence. These GWAS may identify 

loci that, when incorporated into a GRS, will improve the clinical utility of this 

score, e.g. in predicting onset of CKD. 
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ABSTRACT
Introduction. Serum urea level is a heritable trait commonly used as a diagnostic 

marker for kidney function. GWAS in East-Asian populations identified a number 

of genetic loci related to serum urea but there is a paucity of data for European 

populations. 

Methods. We performed a two-stage meta-analysis of GWASs on serum urea in 

13,312 participants, with independent replication in 7379 participants of European 

ancestry. 

Results. We identified six genome-wide significant SNPs in or near six loci, of 

which two were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian 

and Scottish data provided evidence for an additional eight loci. SNPs tag regions 

previously associated with anthropometric traits, serum magnesium, and urinary 

albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes 

preferentially expressed in kidney and gastro-intestinal tissues. 

Conclusions. Our findings provide insights in the genetic underpinnings of urea 

metabolism, with potential relevance to kidney function.
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INTRODUCTION
Serum urea is a diagnostic marker of renal function widely used in clinical practice. 

Urea is eliminated by the kidneys into urine as waste product of protein metabolism. 

The net serum urea concentration therefore reflects the excretory capacity of the 

kidney and elevated values are interpreted as reduced kidney function. Serum urea 

(or blood urea nitrogen, BUN, when only the nitrogen part is assayed), along with 

creatinine, is the most frequently requested measurement of kidney function in the 

assessment of patients with kidney disease. These two markers are not equivalent 

in estimation of kidney function, and in some conditions (peritoneal dialysis, heart 

failure) serum urea is considered to be superior to creatinine1-3. Alternatively to 

single-marker use, urea-to-creatinine (or BUN-to-creatinine, respectively) ratio can 

be used for differential diagnosis of acute kidney injury (prerenal, postrenal, or renal) 

when one marker is disproportionally elevated or lowered relative to the other4-6.

Serum urea concentration is highly variable (reference range 1.8-7.1 mmol/L), 

and besides kidney function, it also depends on hydration status, metabolic 

rate, dietary protein intake, medication use, liver and cardiac function5, 6. Genetic 

factors may also play a role: one twin study estimated heritability for serum urea 

concentration to be 44%7, indicating a contribution of genetic factors to the inter-

individual variability of this measure. Furthermore, genome-wide association 

studies (GWAS) on BUN in East-Asians reported SNP associations at 13 loci8-11. For 

Europeans, there is paucity of data. A recent single-cohort study in the UK did 

not find any significant associations with urea levels12, while in a Scottish single-

cohort study (N=19,293), five genetic variants were associated with urea13. These 

findings are yet to be replicated in other European cohorts. Concurrently, multiple 

GWASs in individuals of European descent identified a number of loci associated 

with serum creatinine and creatinine-based indices of kidney function14-18. The 

genetics underlying urea and creatinine are expected to overlap, because, to a 

large extent, the serum concentration of both are influenced by kidney function. 

The studies in East-Asians confirm this notion as they reported MPPED2-DCDC5 to 

be associated with both urea and creatinine10, thus suggesting involvement of this 

gene with regulation of kidney function. Furthermore, family data from the UK show 

a positive genetic correlation between urea and creatinine (rg=0.56)12. The existence 

of exclusively urea-associated loci is also plausible, given that serum levels are 

not only dependent on kidney function. Identifying these loci will help explain a 

proportion of kidney function-independent inter-individual variability in urea levels 
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in the general population and ultimately will provide insight into pathways and 

regulating mechanisms involved in this metabolic compound. 

We therefore aimed to identify genetic loci influencing serum urea concentrations in 

populations of European ancestry. In addition, we compared our results with previous 

findings from East-Asian and Scottish studies to identify shared loci for serum urea.

METHODS
Study design

An overview of the study design is provided in Figure 1. Our strategy consisted 

of a number of steps. First, we performed a two-stage meta-analysis of GWAS to 

identify SNPs associated with serum urea. Second, we performed a replication 

study of loci identified in previous GWAS in East-Asian and Scottish populations. 

Third, we examined whether known eGFRcrea loci were also associated with 

serum urea. Furthermore, we conducted bioinformatics follow-up analyses on 

identified SNPs to identify candidate loci. Each step is detailed below.

Figure 1. Design and results of the present study. Genetic loci in GREY typefont indicate that 
these loci overlap between GWAS studies on serum urea/BUN. 
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Study population 

Stage I discovery analyses were performed in 13,312 subjects from the Lifelines 

Cohort Study. Stage II replication testing was performed in 7379 subjects from 

the PREVEND (N=3387), NESDA (N=2523), EGCUT1 (N=712), and EGCUT2 (N=757) 

cohorts (Supplementary Note 1).

The Lifelines Cohort Study is a multidisciplinary prospective population-based 

cohort study with a unique three-generation design that examines health and 

health-related behavior of 165,729 participants living in the north-eastern region 

of the Netherlands (www.lifelines.nl/researcher). Participants were recruited 

from November 2006 to December 2013. Eligible individuals were invited 

through their general practitioner or through participating family members. 

Additionally, there was the option to self-register. The recruitment and data 

collection, as well as the representativeness of the data have been described in 

detail elsewhere19,20. Of the 165,729 participants, 15,368 presumably unrelated, 

oldest members of their respective families, were genotyped (details below). 

The Lifelines Cohort Study was conducted according to the guidelines in the 

Declaration of Helsinki and all procedures involving human subjects were 

approved by the Medical Ethical Committee of the University Medical Center 

Groningen. Written informed consent was obtained from all participants during 

their visit at one of the research centers. 

Genotyping, quality control, and imputation

A total of 15,368 individuals of the Lifelines Cohort Study were genotyped using 

the Illumina HumanCytoSNP-12 array and called using GenomeStudio (San Diego, 

CA, USA). Only autosomal single nucleotide polymorphisms (SNPs) were used 

in this study. SNPs were excluded when the call rate was <95%, when the minor 

allele frequency (MAF) was <1%, or when the p-value of the Hardy-Weinberg 

equilibrium (HWE) test was <10-6. Samples were removed when the call rate 

was <95%, when there was a sex mismatch between database and genotypes, 

when the heterozygosity deviated >4 SD from the mean heterozygosity over 

all samples, when it was a first-degree relative to a sample that had a higher 

call rate, or when non-Caucasian ancestry was likely. After quality control, a 

total of 268,407 SNPs and 13,385 samples remained. The resulting dataset was 

phased using MACH21 and imputed using Minimac22 with the HapMap Phase 2 

CEU haplotypes23 as reference set. SNPs with an imputation quality r2<0.3 or a 
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MAF<1% were excluded after imputation. The resulting number of SNPs available 

for analysis was 1.99 x106. The procedure for genotyping, quality control, and 

imputation of the replication cohorts is described in Supplementary Note S1 . 

Phenotype measurement in Lifelines

At the baseline examination, the participants in the study were asked to fill in 

a questionnaire before the visit. During the visit, a number of investigations 

were conducted and blood and 24h-urine samples were taken. A total of 13,385 

genotyped participants were included into the present study. The final number 

of individuals analyzed for serum urea was 13,312 after excluding subjects with 

extreme values of urea deviating >4 standard deviations (SD) from the mean. 

Serum urea measurements were performed with an ultraviolet kinetic assay on 

a Roche Modular. Serum creatinine was measured by an enzymatic method, 

IDMS traceable on a Roche Modular (Roche, Mannheim, Germany). We estimated 

eGFRcrea with the 4-variable Modification of Diet in Renal Disease (MDRD) Study 

equation24. Body-mass index (BMI, kg/m2) was calculated by dividing weight(kg) 

by squared height (m2). 

Statistical analysis

Three GWASs on serum urea were performed. In the first GWAS, a linear regression 

for each SNP was performed using an additive SNP model adjusting for age, age2, 

sex, body mass index (BMI), and the first ten principal components to adjust for 

population stratification using PLINK25. In the second GWAS, log10-transformed 

eGFRcrea, was added to the model. In a third GWAS, we adjusted for serum 

creatinine instead of logeGFRcrea. In addition to these three GWAS, we performed 

sex-stratified analyses. Next, the GWAS results were checked for quality using the 

QCGWAS package in R26. For each GWAS, suggestive SNPs (p-value <10-6 in Stage 

I analyses) were clumped for linkage disequilibrium (LD; r2>0.1) using pairwise LD 

checking in SNAP27 to identify independent index SNPs. These suggestive index 

SNPs were taken forward to Stage II replication.

The same linear regression analyses as described above were applied to the 

suggestive SNPs identified in the discovery sample in each of the four replication 

cohorts separately. The replication results of these SNPs were meta-analyzed 

using an inverse variance fixed-effects meta-analysis as implemented in the 

software package GWAMA28. A SNP was considered replicated with a one-sided 
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p-value <0.05 (i.e. same direction of effect), and with significance at the genome-

wide level in combined Stage I+II samples (p<5 x10-8). 

Finally, we also sought to replicate 20 SNPs at 13 genetic loci previously identified 

in GWASs of East-Asian samples8-11, as well as five SNPs at five loci identified 

in a Scottish sample13. The replication results of these 25 SNPs were meta-

analyzed using an inverse variance fixed-effects meta-analysis as implemented 

in the software package GWAMA28. We used all five cohorts (i.e. Lifelines, NESDA, 

PREVEND, EGCUT1+2) for these analyses. We considered a SNP replicated at a 

one-sided p<0.05. 

Secondary analyses and Bioinformatics

Associations with kidney function

We meta-analyzed associations of 53 known kidney function SNPs17 with serum 

urea in all Stage I+II cohorts. Conversely, to examine associations of our six index 

SNPs with kidney function, we searched publicly available summary data from 

the same meta-analysis of GWAS on eGFRcrea17. At a one-sided p<0.05, we tested 

whether variants genome-wide significantly associated with lower eGFRcrea 

were associated with higher urea, and whether SNPs genome-wide significantly 

associated with higher urea were associated with lower eGFRcrea. 

Proportion of phenotypic variance explained

We estimated the proportion of phenotypic variance explained in the NESDA 

cohort by regressing serum urea level on a weighted genetic risk score (GRS) 

comprising the effects of all six index SNPs, of the six index SNPs +11 independent 

SNPs from the Scottish and East-Asian studies, and of the 53 eGFRcrea SNPs. 

These analyses were performed using PLINK25 and R29 on independent SNPs 

(ldlink.nci.nih.gov) using the effect sizes from the discovery sample (our six index 

SNPs) or from literature as weights.

Bioinformatics characterization of the replicated SNPs 

We examined functionality (i.e. non-synonymous SNPs and expression quantitative 

trait loci, eQTL) of the identified index SNPs. To this end, we first converted the 

positions of all replicated index SNPs to NCBI build 37. We then used the 1000 

Genomes Project phase3 release30 of variant calls to find proxy SNPs in moderate 

(r2>0.5) and high LD (r2>0.8) with our index SNPs. This dataset is based on the 2013-



124 Chapter 6 

05-02 sequence freeze and alignments. We used version v5a (Feb. 20th, 2015), 

including the 503 subjects of European ancestry. We used ANNOVAR (version 16 

July 2017) (annovar.openbioinformatics.org)31 for annotation of the index SNPs. 

We queried PolyPhen-2 (genetics.bwh.harvard.edu/pph2/)32 to assess whether 

effects of non-synonymous SNPs were predicted to be malignant. Furthermore, 

we performed a lookup of the index and proxy SNPs in the GWAS catalog33 to 

ascertain whether these SNPs were previously associated with other phenotypes. 

Genes close to the six index SNPs were followed-up for local expression (ciseQTL) 

in various tissues based on publicly available transcriptomics data: Human Protein 

Atlas (www.proteinatlas.org)34, GTEx Portal (www.gtexportal.org/)35, and blood 

tissue (genenetwork.nl/bloodeqtlbrowser/)36. Furthermore, we examined eQTLs in 

donor kidney tissue in TransplantLines (detailed description of data and methods in 

Supplementary Note 11)37, 38. 

Model 1

Model 2

Figure 2. Manhattan plots of stage I GWAS for serum urea level. The x-axis represents chromosomal 
position. The y-axis represents two-sided significance on the –log10 scale. Dark grey indicates 
genome-wide significant hit (p<5 x10-8), grey indicates suggestive hit (5x10-8≤p<1 x10-6).
Model 1: adjusted for age, age2, sex, BMI, principal components 1-10
Model 2: Model 1 + logeGFRcrea



125GWAS of serum urea

6

RESULTS
Meta-analysis results

Manhattan plots of stage I for models 1 and 2 are shown in Figure 2. Regional 

association plots, showing location and significance of top hits for models 1 and 

2 relative to known loci, are shown in Supplementary Figure S3. Risk of bias 

due to population stratification was assessed and considered acceptable ( λ=1.05) 

(Supplementary Figure S4). 

For models 1 and 2, seven index SNPs were at least suggestive (p<1x10-6) in stage 

I. Of these seven SNPs, rs17586946 on chromosome 6 was only suggestive in the 

combined Stage I+II samples (p=1.4x10-7) and hence not replicated. Table 1 shows 

results of the remaining six SNPs. For model 1, we replicated three SNPs (rs914615, 

rs4686914, rs2003313) at three genomic loci, significantly associated with serum 

urea at the genome-wide level (p<5x10-8) in the combined Stage I+II samples. In 

the second, logeGFRcrea-adjusted model, two SNPs from model 1 (rs4686914 and 

rs2003313) were again identified, while in addition three other SNPs (rs998394, 

rs11954639, rs2503107) were identified and replicated with genome-wide level 

significance. One SNP (rs914615) did not reach suggestive significance of p<1x10-6 

after logeGFRcrea adjustment (p=2.9x10-6) and therefore deemed non-significant 

for this model. A third, serum creatinine adjusted model, yielded essentially the 

same results as the logeGFRcrea-adjusted model (Supplementary Figure 2a, 

Supplementary Table S5). 

Sex-stratified analysis yielded no additional loci: 1) we found no significant 

associations in females-only models, and 2) in males-only models, we identified 

two additional SNPs (rs9860469 and rs9820812) in high linkage disequilibrium 

(LD) (r2=0.70 and r2=1.0, respectively) with a SNP already identified in models 1-2 

(rs4686914) (Supplementary Figure S2B). Effects of rs4686914 and rs11954639 

were stronger in men (Supplementary Table S6).

Replication of previously reported urea loci

We replicated 10 out of 13 East-Asian loci8-11 at a one-sided p<0.05 (Supplementary 

Table S7a). SNPs at three loci (MECOM, C12orf51, GNAS) were not replicated in the 

present study. All five Scottish loci13 were replicated (Supplementary Table S7b). 

In total, 14 loci are now confirmed for Europeans (Figure 3). 



126 Chapter 6 

Ta
b

le
 1

. R
e

p
lic

at
e

d
 S

N
P

 a
ss

o
ci

at
io

n
s 

w
ith

 s
e

ru
m

 u
re

a

S
N

P
 ID

C
h

r
P

o
si

ti
o

n
 

(b
p

)a
Ty

p
e

N
e

ar
e

st
 g

e
n

e
E

ff
e

ct
/

N
o

n
  

e
ff

e
ct

 a
ll

e
le

 
(E

A
F)

b
M

o
d

e
l

S
ta

g
e

 I 
(L

if
e

L
in

e
s)

S
ta

g
e

 II
 

(P
R

E
V

E
N

D
, N

E
S

D
A

, E
G

C
U

T1
+2

)
S

ta
g

e
 I+

II
I2 

%

B
S

E
p

N
B

S
E

p
N

B
S

E
p

N

rs
9

14
6

15
1

15
34

42
51

6
in

tr
o

n
ic

T
H

B
S

3
A

/
G

 (0
.4

76
)

1
0

.0
70

0
.0

14
8

.9
E

-0
7

13
31

2
0

.0
6

5
0

.0
20

1.
3E

-0
3

73
79

0
.0

6
8

0
.0

12
4.

3E
-0

9
20

6
8

9
0

.0

2
0

.0
6

4
0

.0
14

2.
9

E
-0

6
13

31
1

0
.0

6
3

0
.0

20
1.

2E
-0

3
73

35
0

.0
6

4
0

.0
11

1.
3E

-0
8

20
6

46
0

.0

rs
46

8
6

9
14

3
18

9
20

0
23

4
in

te
rg

e
n

ic
LP

P
T/

C
 (0

.3
0

8
)

1
-0

.1
10

0
.0

16
2.

4E
-1

2
13

31
2

-0
.1

0
1

0
.0

21
2.

2E
-0

6
73

78
-0

.1
0

7
0

.0
13

2.
6

E
-1

7
20

6
9

0
0

.0

2
-0

.1
0

6
0

.0
15

2.
3E

-1
2

13
31

1
-0

.0
9

8
0

.0
21

2.
1E

-0
6

73
34

-0
.1

0
3

0
.0

12
2.

3E
-1

7
20

6
45

0
.0

rs
9

9
8

39
4

3
6

47
76

22
7

n
cR

N
A

/
in

tr
o

n
ic

A
D

A
M

T
S

9-
A

S
2

A
/

G
 (0

.4
58

)
1

-0
.0

6
3

0
.0

14
7.

3E
-0

6
13

31
2

-0
.0

49
0

.0
20

1.
4E

-0
2

73
79

-0
.0

58
0

.0
11

3.
7E

-0
7

20
6

9
1

0
.0

2
-0

.0
6

7
0

.0
14

7.
5E

-0
7

13
31

1
-0

.0
58

0
.0

19
2.

2E
-0

3
73

35
-0

.0
6

4
0

.0
11

7.
1E

-0
9

20
6

46
0

.0

rs
11

9
54

6
39

5
40

71
0

73
6

in
te

rg
e

n
ic

P
TG

E
R

4
T/

C
 (0

.0
71

)
1

-0
.1

6
5

0
.0

37
5.

8
E

-0
6

13
31

2
-0

.1
70

0
.0

40
2.

4E
-0

5
73

79
-0

.1
6

8
0

.0
27

6
.1

E
-1

0
20

6
9

1
0

.0

2
-0

.1
8

5
0

.0
35

1.
8

E
-0

7
13

31
1

-0
.1

8
2

0
.0

39
2.

9
E

-0
6

73
35

-0
.1

8
3

0
.0

26
2.

3E
-1

2
20

6
46

0
.0

rs
25

0
31

0
7

6
12

75
0

50
6

9
in

tr
o

n
ic

R
S

P
O

3
C

/A
 (0

.4
49

)
1

-0
.0

75
0

.0
17

8
.6

E
-0

6
13

31
2

-0
.0

51
0

.0
20

1.
2E

-0
2

73
77

-0
.0

6
5

0
.0

13
4.

9
E

-0
7

20
6

8
9

0
.0

2
-0

.0
8

4
0

.0
16

2.
9

E
-0

7
13

31
1

-0
.0

56
0

.0
20

4.
2E

-0
3

73
33

-0
.0

72
0

.0
13

8
.1

E
-0

9
20

6
44

18
.0

rs
20

0
33

13
11

11
0

70
9

20
3

in
te

rg
e

n
ic

P
O

U
2A

F1
T/

A
 (0

.4
48

)
1

-0
.0

8
8

0
.0

15
6

.0
E

-0
9

13
31

2
-0

.0
48

0
.0

20
1.

7E
-0

2
73

77
-0

.0
73

0
.0

12
1.

3E
-0

9
20

6
9

1
6

0
.6

2
-0

.0
8

7
0

.0
15

2.
5E

-0
9

13
31

1
-0

.0
55

0
.0

19
4.

3E
-0

3
73

33
-0

.0
75

0
.0

12
9

.5
E

-1
1

20
6

44
43

.2

M
e

ta
-a

n
al

ys
is

 o
f a

ss
o

ci
at

io
n

s 
o

b
ta

in
e

d
 f

ro
m

 li
n

e
ar

 r
e

g
re

ss
io

n
s 

o
f r

e
p

lic
at

e
d

 S
N

P
s 

w
ith

 s
e

ru
m

 u
re

a 
le

ve
l a

ss
u

m
in

g
 a

d
d

iti
ve

 e
ffe

ct
s 

o
f a

lle
le

s.
 E

st
im

at
e

s 
o

f B
 a

n
d

 s
e

 a
re

 p
re

se
nt

e
d

 in
 m

m
o

l/
L

. 
A

b
b

re
vi

at
io

n
s:

 B
, u

n
st

an
d

ar
d

iz
e

d
 r

e
g

re
ss

io
n

 c
o

e
ffi

ci
e

nt
; C

h
r, 

ch
ro

m
o

so
m

e
; b

p
, b

as
e

p
ai

r; 
E

A
F,

 e
ffe

ct
 a

lle
le

 f
re

q
u

e
n

cy
; I

2 , 
h

e
te

ro
g

e
n

e
ity

 s
ta

tis
tic

; S
E

, s
ta

n
d

ar
d

 e
rr

o
r; 

S
N

P,
 s

in
g

le
 n

u
cl

e
o

tid
e

 p
o

ly
m

o
rp

h
is

m
;

a  p
o

si
tio

n
 b

as
e

d
 o

n
 N

C
B

I b
36

/
h

g
18

 
b
 E

A
F 

in
 t

h
e

 c
o

m
p

le
te

 s
am

p
le

 (S
ta

g
e

 I 
+ 

II)
 

* n
o

t 
su

g
g

e
st

iv
e

 (p
≥1

E
-0

6
) i

n
 S

ta
g

e
 I 

fo
r 

th
is

 m
o

d
e

l

M
o

d
e

l 1
: a

d
ju

st
e

d
 fo

r 
ag

e
,a

g
e

2 , 
se

x,
 b

o
d

y-
m

as
s 

in
d

ex
, p

rin
ci

p
al

 c
o

m
p

o
n

e
nt

s 
1-

10
 

M
o

d
e

l 2
: m

o
d

e
l 1

 +
 lo

g
10

 e
G

F
R

cr
e

a



127GWAS of serum urea

6

Secondary analyses and Bioinformatics

Associations with kidney function

One index SNP (rs2003313) was significantly associated with kidney function, 

though not in the expected direction (Supplementary Figure and Table S8a-b). 

rs914615 and rs2503107 were borderline significantly associated with kidney 

function (p=0.095 and p=0.085) in the expected direction. Conversely, 53 known 

eGFRcrea SNPs17 were examined for potential associations with serum urea levels 

in all Stage I+II cohorts. After meta-analysis, 14 of the 53 SNPs were significantly 

associated with serum urea levels (Supplementary Figure and Tables S9a-c), 

more than could be expected through random chance alone (binomial distribution, 

14/53, α=0.05, p=1.98 x10-7).

Figure 3. Overview of all 17 currently identified genetic loci. Overlap indicates replication in 
present study. The six BOLD loci are genome-wide significant (p<5 x10-8) in the present study; all 
other loci in overlapping areas were replicated in the present study at a one-sided p<0.05. 
* Novel loci for European populations. 
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Proportion of phenotypic variance explained in the NESDA cohort

A GRS comprising all six index SNPs explained a small, but significant proportion 

of 0.43-0.45% of phenotypic variation in NESDA (Supplementary Table S10). This 

increased to 0.45-0.56% when 11 independent SNPs were added from the Scottish 

and East-Asian studies. A weighted GRS comprised of all 17 SNPs showed a 

modest but significant linear trend (p<2.3x10-4) in urea levels (Figure 4). 

Figure 4. Distribution of serum urea levels. Boxplots of serum urea levels (mmol/L) by 
categories of a weighted genetic risk score comprised of all 17 currently identified serum 
urea SNPs in the NESDA cohort (N=2472). The black dots represent the medians; the grey 
boxes represent the observations between the 25th and the 75th percentile; the whiskers 
represent (at maximum) 1.5 times the interquartile range; the notches represent the 95%CI 
of the median. In the rightmost boxplot, the notches extend to outside the box due to its 
wide 95%CI. The underlying light gray histogram represents the population distribution 
of the genetic risk score; its bell shape approximates a normal distribution. The dashed 
horizontal line depicts the median serum urea level in the NESDA cohort (4.8 mmol/L).
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However, we observed no clinically relevant differences in serum urea between 

extremes of this GRS. The 53 SNPs identified to be associated with serum creatinine 

by the CKDGen consortium explained 0.18% of the variance in serum urea (p=0.02), 

but significance of this effect disappeared when correcting for logeGFRcrea or 

serum creatinine.

Bioinformatics characterization of the index SNPs

Our analyses returned 345 SNPs in at least moderate LD (r2>0.50), of which 173 

in at least high LD (r2>0.80) and 49 in perfect LD (r2=1). rs914615 is linked with 

two non-synonymous SNPs: rs760077 (MTX1), and rs4745 (EFNA1), both of which 

are predicted to be benign32. A number of proxy SNPs in high LD (r2>0.8) with 

the index SNPs were reported in the literature as associated with other kidney-

function or metabolically-relevant traits such as serum magnesium level and 

anthropomorphic traits. rs914615 was previously found associated with urinary 

albumin-to-creatinine ratio in diabetic subjects39 (Supplementary Table S13). 

Using eQTL data publicly available from GTEx Portal, we found associations 

of three SNPs with gene expression in various tissues, and predominantly in 

gastro-intestinal tissues (Supplementary Table S14): rs914615 with expression of 

numerous genes, among others EFNA1, MTX1, MUC1, and THBS3; rs2003313 with 

COLCA1 and COLCA2; and rs11954639 with RPL37. In whole blood, SNP rs914615 

was associated with expression of THBS3, ADAM15, KRTCAP2 (Supplementary 

Table S15). In kidney biopsy specimens, we found an association of the A allele of 

rs914615 with decreased mucin gene (MUC1) expression (Supplementary Table S16).

DISCUSSION
In this meta-analysis of GWAS in European populations, we identified six index 

SNPs at six genomic loci (in THBS3, ADAMTS9-AS2, RSPO3, or near LPP, PTGER4, 

and POU2AF1) that were associated with serum urea levels at a genome-wide 

significant level. Of these six index SNPs, two (near POU2AF1 and in ADAMTS9-

AS2) are completely novel associations with urea, i.e. not previously identified 

in either the East-Asian or Scottish studies. Three SNPs tag regions (THBS3, LPP, 

and RSPO3) previously identified in East-Asians. SNP rs11954639 near PTGER4 is in 

high LD with a SNP previously identified in Scottish GWAS. Follow-up analysis of 

the six index SNPs yielded potential roles of a number of loci in urea metabolism.
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In addition to our main meta-analysis, we examined 20 SNPs at 13 genetic loci 

previously associated with BUN in East-Asians8-11. Of these 20 SNPs, we replicated 

15 at a one-sided p<0.05, confirming 10 previously identified loci (MTX1-GBA, PAX8, 

BCL6-LPP, LRIG1-KBTBD8, RSPO3, UNCX, MPPED-DCDC5, WDR72, BCAS3, and 

SLC14A2) but not MECOM, C12orf51, and GNAS. Of note, we replicated SNPs at the 

SLC14A2 locus, a gene that encodes a renal tubular urea transporter (RefSeq release 

89)40. Furthermore, we confirmed SNP associations at MTX1, RP11-115 J16.1, PRKAG2, 

UNCX, and an intergenic region near PTGER4, that were identified in a single-cohort 

GWAS in 19,293 Generation Scotland participants13. After replication, SNPs at 14 

loci now have confirmed associations with serum urea in Europeans. SNPs tagging 

PTGER4, PRKAG2, ADAMTS9-AS2, and POU2AF1 were specific to European studies, 

likely due to considerably lower minor allele frequencies in East-Asians (0%, 0%, 

16%, and 12%, respectively) compared with Europeans (7%, 30%, 46%, 44%) according 

to the 1000G phase 3 East-Asian (EAS) and European (EUR) reference sets30.

GWAS of biomarkers that are excreted through the kidney may be confounded 

by kidney function41. We therefore examined the effect of kidney function on 

SNP associations by running both unadjusted models and logeGFRcrea-adjusted 

models. Associations of two SNPs (rs4686914, rs2003313) were unaffected by 

this adjustment, thus are suggested to affect urea levels not through kidney 

function but through other mechanisms. Associations of three SNPs (rs998394, 

rs11954639, rs2503107) were only significant in the logeGFRcrea-adjusted model, 

indicating positive confounding/suppression, i.e. genetic effects were masked by 

kidney function. Associations of one SNP (rs914615) diminished after logeGFRcrea 

adjustment, suggesting that the effect of this SNP on serum urea is (partly) 

confounded or mediated through kidney function. In the following paragraphs, we 

discuss the two novel loci. 

We report a novel association of urea with rs2003313, a SNP on chromosome 11 

in an intergenic region near POU2AF1. We queried the GWAS catalog to find other 

phenotypes associated with this SNP, and SNPs in LD, r2>0.50); however, we found 

none. eQTL analysis in GTEx35 yielded significant associations of rs2003313 with 

expression of COLCA2 and COLCA1 (aliases C11orf93 and C11orf92, respectively) 

in colon, esophagus, spleen, tibial artery and nerve, and adipose tissue. Protein 

function of COLCA2 is currently unknown. COLCA1 encodes a transmembrane 

protein of granular structures, such as crystalloid eosinophilic granules and other 
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granular organelles40, with preferential expression in stomach, urinary bladder, and 

prostate. Both COLCA2 and COLCA1 have previously been associated to colorectal 

cancer42. Relevance of this locus to serum urea is unclear, and may be explored in 

future study. Against expectations, the T allele of rs2003313 was associated with 

lower serum urea in the present study, and with lower eGFRcrea in CKDGen data17. 

Whether this is due to unmeasured confounding or some unknown biological factor 

may be explored in future study. Potential biological mechanisms may be explored 

in future study. Of note, moderate heterogeneity was observed (I2: 43-61%) with 

diminution of effect size in the replication phase, possibly indicative of Winner’s 

curse43, i.e. the effect of this SNP may be overestimated. Nonetheless, the strong 

significance of the combined meta-analysis of this locus indicates it is a non-

spurious signal.

A second novel SNP is rs998394 on chromosome 3. Although in relative proximity 

(distance ~2Mb) to SNPs (near LRIG1-KBTBD8) previously identified in East-Asian 

GWAS on BUN, these are not in linkage disequilibrium (r2=0.0); we thus consider 

this SNP independent and therefore a novel finding. rs998394 is located in 

ADAMTS9-AS2, a long non-coding RNA that is an antisense transcript of ADAMTS9. 

The protein encoded by ADAMTS9 is a member of the ADAMTS (a disintegrin and 

metalloproteinase with thrombospondin motifs) protein family. Members of this 

family have been implicated in the cleavage of proteoglycans, the control of organ 

shape during development, and the inhibition of proteoglycans40. ADAMTS9 is 

localized to chromosome region 3p14.3-p14.2, an area known to be lost in hereditary 

renal tumors44. ADAMTS9 has previously been associated with anthropomorphic 

traits45, 46 and type 2 diabetes mellitus47. 

Loci tagged by the other four index SNPs are discussed in Supplementary Note 

S12. Briefly, we found potential roles of MUC1 and PTGER4 in urea metabolism 

and/or kidney function. 

Sex-stratified analysis yielded no additional loci, although a marked difference in 

effect size was observed between men and women for rs4686914 and rs11954639. 

This is suggestive of gender-specific mechanisms of urea metabolism which may 

be investigated in future study.
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Fourteen out of 53 (26%) known eGFRcrea loci were associated (one-sided p<0.05) 

with serum urea levels in our discovery cohort, more than could be expected 

through random chance alone. Furthermore, a GRS based on these loci was 

modestly but significantly associated with serum urea, supporting the notion 

of genetic overlap between the two traits. Previously, Okada et al observed 

associations of MPPED-DCDC5, BCAS3, WDR72, and UNCX, with both creatinine 

and BUN at the genome-wide level in East-Asians10, indicating possible pleiotropy. 

In addition, the present study suggests pleiotropy for PRKAG2, UNCX, and WDR72, 

given that these known eGFRcrea loci also associated with serum urea in the 

present study. 

To the best of our knowledge, the present study is the first meta-analysis of GWAS 

of serum urea in European populations. We were able to report new associations 

for European populations and confirm known associations from East-Asian 

studies. However, a genetic risk score combining all currently identified SNPs was 

only modestly associated with serum urea. Future study may involve imputation 

to the Haplotype Reference Consortium reference set48, which due to its higher 

resolution may yield more precise results. Given the estimated explained variance 

of the identified SNPs (0.56%), and the estimated heritability of serum urea levels 

(44%), many of the genetic factors influencing serum urea are still to be found; 

larger samples are needed to detect these factors. Consequently, the immediate 

clinical relevance of our findings is limited.

In conclusion, we report the first meta-analysis of GWAS of serum urea levels 

in European populations. We identified six genomic loci reproducibly associated 

with serum urea. We are the first to report two SNP associations with urea near 

POU2AF1 and in ADAMTS9-AS2. The identified regions have possible relevance to 

urea metabolism, as well as kidney function.

All Supplementary material can be accessed via the following link:

www.karger.com/Article/FullText/496930 
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ABSTRACT
Introduction. Both genetic predisposition and low educational attainment (EA) are 

associated with higher risk of chronic kidney disease (CKD). We aimed to examine 

the joint effects of EA and genetic predisposition, and their interaction on kidney 

function outcomes.

Methods. We used data from the longitudinal community-based PREVEND Study. 

Glomerular filtration rate was estimated (eGFR) from serum creatinine and cystatin 

C using the CKD-EPI equation. For each individual, a linear eGFR trajectory was 

estimated using linear mixed models. Genotype data on 63 single nucleotide 

polymorphisms (SNPs), with known associations to eGFR, were used to calculate 

an allele-weighted genetic score (WGS). Educational attainment was categorized 

into high, medium, and low EA. Ordinary least squares regression was performed 

to assess main and interaction effects in cross-sectional and longitudinal analysis, 

adjusting for age, sex, and renal risk factors (body-mass index, blood pressure, 

glucose, cholesterol, and smoking).

Results. We included 3597 participants with ~11 years of follow-up. At baseline, a 

higher WGS and lower EA were independently associated with reduced eGFR and 

showed additive effects, as an interaction term between the WGS and EA was not 

significant. In longitudinal analysis, the interaction term was significant (p=0.036), 

and its direction suggested an amplifying effect of low EA on the WGS: those with 

high genetic risk and low EA had a disproportionately faster rate of eGFR decline 

relative to those with higher EA. Inclusion of renal risk factors in our models did 

not change our results.

Conclusion. This is the first study to present evidence of gene-environment 

interaction between EA and a WGS on eGFR decline, that is not explained by 

traditional risk factors. These results provide population level insights into the 

mechanisms underlying socioeconomic disparities in CKD.
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INTRODUCTION
Chronic kidney disease (CKD) is a heterogeneous group of disorders characterized 

by sustained kidney dysfunction and/or signs of kidney damage1. CKD is associated 

with cardiovascular morbidity and all-cause mortality2. It may eventually also 

progress to end-stage kidney disease, necessitating the start of renal replacement 

therapy. The incidence of CKD is increasing, which poses a major global health 

challenge3-5.

Over the last two decades, it has become clear that there is a socioeconomic 

gradient in CKD risk: low educational attainment (EA), as an indicator of low 

socioeconomic status (SES), is associated with reduced kidney function (estimated 

glomerular filtration rate, eGFR) and with higher rates of kidney damage (urinary 

albumin excretion, UAE)6,7. Recent data suggest that indicators of SES including EA 

are linked with CKD through poor health behaviors (e.g. smoking, diet, sedentary 

time), higher prevalence of known clinical risk factors (hypertension, diabetes, 

hypercholesterolemia, obesity), and poor health care access8,9, each contributing 

to an environment that is deleterious for kidney health.

In addition to environmental factors, there is strong evidence for a genetic 

influence on CKD. Familial clustering is observed in CKD10-13, and heritability of 

CKD defining traits has been estimated to be 36-75%. Further evidence is provided 

by genome-wide association studies (GWAS) that identified >60 single nucleotide 

polymorphisms (SNPs) associated with creatinine-based eGFR (eGFRcrea)14. 

Genetic scores constructed from these SNPs represent a genetic component to 

kidney function, and thus can be interpreted as a proxy of genetic liability to 

CKD15-17.

Some evidence exists, albeit conflicting, that higher education counteracts the 

genetic risk of diabetes18,19 and obesity18,20,21, both important determinants of 

CKD. Therefore, it is possible that higher education also counteracts genetic 

risk of CKD, or conversely, that low education amplifies the genetic risk of CKD. 

Uncovering modifying effects of education on genetic risk may facilitate improved 

risk stratification based on education and genetics. Furthermore, knowledge of 

modifying effects of education provides support for public health policies, e.g. in 

managing downstream effects of low education to improve kidney outcomes. The 

joint effects of education and genetic factors have not previously been examined 



142 Chapter 7

in the context of kidney disease. Thus, our aim was to investigate the interaction 

between education and genetic predisposition for CKD in the general population. 

Specifically, we aimed to test the hypothesis that lower EA amplifies genetic risk 

of reduced kidney function.

METHODS
Study sample and design

We used data from the Prevention of REnal and Vascular ENd stage Disease 

(PREVEND) Cohort study. PREVEND was initiated to investigate the natural course 

of increased urinary albumin levels and its association with renal and vascular 

outcomes. Details of this study have been described elsewhere22. Briefly, 8592 

individuals, sampled from the general population of Groningen, the Netherlands, 

underwent an extensive baseline examination between 1997-1998. Four follow-

up examinations were completed in 2003, 2006, 2008, and 2012. All subjects 

gave written informed consent. PREVEND was approved by the medical ethics 

committee of the University Medical Center Groningen and conducted in 

accordance with the Helsinki Declaration guidelines. For this study, we included 

a subset of participants that was genotyped (n=3649). Participants aged <30 years 

were excluded N=52).

Measurements

Kidney function

Measurement of serum creatinine was performed by an enzymatic method 

on a Roche Modular analyzer using reagents and calibrators from Roche 

(Roche Diagnostics, Mannheim, Germany), traceable to isotope dilution mass 

spectrometry, with intra- and interassay coefficients of variation of 0.9% and 

2.9%, respectively. Serum cystatin C concentration was measured by a Gentian 

cystatin C Immunoassay (Gentian AS Moss, Norway) on a Modular analyzer (Roche 

Diagnostics). Cystatin C was calibrated directly using the standard supplied by 

the manufacturer (traceable to the International Federation of Clinical Chemistry 

Working Group for Standardization of Serum Cystatin C)23. The intra- and interassay 

coefficients of variation were <4.1% and <3.3%, respectively. Serum creatinine and 

serum cystatin C were determined in a single run to avoid laboratory day-to-day 

variation. We calculated eGFR from both serum creatinine and serum cystatin C, 

using the corresponding Chronic Kidney Disease – Epidemiology collaboration 

(CKD-EPI) equation24.
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Genotyping and genetic risk score calculation

Genotyping details for PREVEND were described previously17. Briefly, genotyping 

was performed on the Illumina CytoSNP12 v2 chip. Variants were imputed to 1000G 

Phase 1 version 3, using Minimac software. Genetic effects may be confounded by 

population stratification. Therefore, principal component analysis was performed 

to reduce dimensionality of the genetic data25; the resulting principal components 

(PCs) represent possible population substructures in PREVEND. In order to 

remove ethnic outliers, samples with z-score>3 for any of the first five principal 

components with the highest eigen values were excluded. Samples with call rate 

<95%, duplicates, and sex discrepancies were also excluded. Markers with call 

rate >95%, Hardy-Weinberg equilibrium p≥10-5 and minor allele frequency ≥1% 

were included. From the resulting GWAS data, we extracted genotypes of 63 SNPs 

identified in a meta-analysis of GWAS on eGFRcrea in European populations. We 

constructed a weighted genetic score (WGS) comprising effects of 63 known eGFR 

SNPs14. Per individual, effect alleles were weighted for their published effect sizes 

and summed. We then standardized the scores by subtracting the population 

mean score and dividing the score by the population standard deviation. Effect 

alleles were those reported to associate with lower eGFR, thus a higher WGS 

reflects genetic predisposition towards lower eGFR. 

Educational attainment

Educational attainment (EA) was assessed with self-report questionnaires. EA 

levels specific to the Netherlands were mapped to the International Standard 

Classification of Education (ISCED)26. We then categorized EA into low (no, primary, 

basic vocational, and secondary education, corresponding to ISCED levels 0-2), 

medium (senior secondary vocational and general senior secondary education, 

ISCED levels 3-4), and high (higher professional and higher academic education, 

ISCED levels 5-6). ISCED levels were imputed to US years of schooling. High EA 

was the reference category in all analyses. 

Covariates

We adjusted for age, age2, and sex. To minimize potential confounding by 

population stratification, we additionally adjusted for the first ten genetic PCs. In 

longitudinal analyses, we additionally adjusted for baseline eGFR. Furthermore, 

we explored models that include the renal risk factors, body-mass-index (BMI, 

weight/height2), systolic blood pressure (SBP), glucose, total cholesterol, and 
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smoking status (never smoker, former smoker, current smoker), each measured at 

baseline. Outliers exceeding four standard deviations (sds) from the mean were 

excluded.

Statistical analyses

All analyses were performed using R software version 3.5.127. To assess the 

explained variance of eGFR by the WGS, conditional on age, age2, sex, and 

the first ten PCs, ΔR2
adjusted was computed from nested ordinary least squares 

regression models using the lm( ) function from the stats R package. We tested 

associations between the WGS and EA using one-way ANOVA implemented in the 

aov( ) function from the stats R package. 

Cross-sectional analyses, with baseline eGFR as outcome, were performed 

using ordinary least squares linear regression analysis implemented in the stats 

R package. For longitudinal analyses, we performed a two-step procedure. 

First, we modelled linear trajectories of eGFR using linear mixed models (LMM) 

implemented in the lme4 R package28, with a random intercept and a random slope 

for time. Individual trajectories of eGFR change were then extracted and used 

as outcome variable (i.e., annual eGFR change) in ordinary least squares linear 

(OLS) regression analysis. For both cross-sectional analyses and longitudinal 

analyses, six models were constructed with the main effects of the WGS and EA, 

in addition their interaction term, and varying degrees of covariate adjustment 

(see Table 2 for model details). Contribution of the WGS x EA interaction term was 

assessed using model coefficients for separate EA levels (low EA, medium EA, 

and the interaction of each with the WGS, with high EA as reference category), 

and computing the difference in adjusted explained variance (ΔR2
adjusted) between 

two nested models (with and without interaction term). To assess significance of 

the overall interaction term, we used an F-test using the anova( ) function from 

the stats R-package, through which we compared model fit between two nested 

models. We used linear regression models, hence interaction was assessed on 

the additive scale, and a significant p-value for the interaction term indicates 

departure from additivity. For all models, we performed a complete-case analysis. 

We applied a two-sided significance threshold of α=0.05 unless otherwise specified.



145Interaction of genetic factors and educational attainment in kidney outcomes

7

RESULTS
Baseline characteristics

Baseline characteristics of participants, by categories of EA, are presented in 

Table 1. Lower EA was generally associated with a less favorable renal risk profile 

(lower eGFR, higher BMI, higher SBP, higher glucose, higher cholesterol, and 

higher prevalence of smoking). 

We regressed baseline eGFR on the WGS to obtain a crude association. The effect 

of the WGS on baseline eGFR, was modest but highly significant (B ± se = -1.68 ± 

0.29, R2
adjusted = 0.010, p=8.6 x10-9).

No difference in the WGS or risk allele number between categories of EA 

was observed. We examined the association between EA and the WGS. In 

Supplementary Figure 1, we plot the WGS by categories of EA. The WGS was 

normally and equally distributed in each EA category. As expected, the mean 

WGS did not significantly differ between EA categories (F (2, 3594)=0.455, p=0.635). 

Table 1. Baseline characteristics overall and by educational attainment.

Educational attainment

Total Low Medium High

N 3597 1673 889 1035

Age (years) 50 [40-60] 55 [46-65] 46 [37-56] 44 [37-51]

Males 52% 49% 56% 53%

eGFR (mL/min/1.73m2) 94.7 ± 17.0 90.5 ± 17.3 97.1 ± 17.0 99.3 ± 14.8

US years of schooling 12.9 ± 5.0 8.5 ± 1.5 13 ± 0 20 ± 0

WGS 0 ± 1 0.02 ± 1.0 -0.02 ± 1.0 -0.01 ± 1.0

Number of effect alleles 62.3 ± 4.9 62.3 ± 4.9 62.3 ± 5.1 62.3 ± 4.8

SBP (mmHg) 129 ± 19.7 133 ± 20 128 ± 20 124 ± 18

Glucose (mmol/L) 4.8 ± 0.8 5.0 ± 0.8 4.7 ± 0.7 4.6 ± 0.6

BMI (kg/m2) 26 ± 4.1 27 ± 4.2 26 ± 4.0 25 ± 3.5

Total cholesterol (mmol/L) 5.7 ± 1.1 5.9 ± 1.1 5.6 ± 1.1 5.4 ± 1.0

Never smoker 27% 23% 26% 36%

Former smoker 37% 37% 38% 37%

Current smoker 35% 40% 36% 27%

Follow-up time (years) 11.0 [4.6 – 11.9] 9.9 [4.2-11.6] 11.1 [4.8-12.2] 11.2 [6.2-12.4]

Data are presented as mean ± standard deviation, median [interquartile range] or percentages. Abbreviations are: eGFR, estimated 
glomerular filtration rate; WGS, weighted genetic risk score; SBP, systolic blood pressure; BMI, body-mass-index.
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Interaction analyses

Cross-sectional analysis

A plot of baseline eGFR by the WGS and strata of EA is presented in Figure 1A. 

On visual inspection of this data, the effect of the WGS on eGFR appeared to be 

consistent across strata of EA, hence, we anticipated that the interaction term 

between the WGS and EA in our models would not be significant. In unadjusted 

models (models 1-2), both the WGS and EA were independently associated with 

eGFR (Table 2 Results of interaction analysis). A one-sd increase in the WGS was 

associated with 1.61 mL/min/1.73m2 lower eGFR (model 1, B ± se = -1.61 ± 0.28, 

p=1.5 x10-8), while those with low EA were observed to have the lowest mean eGFR 

(model 1, low vs high EA, B ± se = -8.74 ± 0.67, p=5.9 x10-38, Table 2). Addition of an 

interaction term (WGS x EA) did not contribute to the model (model 2 vs model 

1, ΔR2
adjusted = -0.0001; F (2, 3360) = 0.664, p=0.512). Adjustment for covariates (models 

3-4; age, age2, sex, and the first 10 PCs) did not affect the association of the WGS 

with baseline eGFR. However, the association between EA and baseline eGFR 

disappeared due to strong confounding by age.

Longitudinal analysis

Median follow-up duration was 11 years (interquartile range: 4.6 – 11.9 years). In 

the total population, the average change in eGFR was -0.927 mL/min/1.73m2 per 

year (sd = 0.385). A plot of eGFR change by the WGS and strata of EA is presented 

in Figure 1B. In this figure, the WGS is shown to have its strongest effect on eGFR 

change in those with low EA. In those with medium or high EA, the WGS had 

no apparent added effect on eGFR change. A trend in mean eGFR change was 

observed across EA levels, with those with lower EA having increasingly faster 

rates of decline on average.

In unadjusted models (models 1-2), a one-sd increase in the WGS was associated 

with 0.016 ml/min/m2 per year faster eGFR decline (model 1, B ± se = -0.016 ± 

0.007, p = 0.014, Table 2) and EA (model 1, low vs high EA, B ± se = -0.125 ± 0.016, 

p = 3.3 x10-15) was also independently associated with rate of kidney function 

decline. Adjustment for covariates (models 3-4; age, age2, sex, and the first 10 PCs) 

increased the effect of the WGS on eGFR change (model 3, B ± se = -0.027 ± 0.006, 

p=2.3 x10-5), while attenuating the effect of EA on eGFR change (model 3, low vs 

high EA, B ± se = -0.054 ± 0.016, p = 7.9 x10-4). A WGS x EA interaction term was in 
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the expected direction (model 4, low vs high EA, B ± se = -0.036 ± 0.015, p=0.017), 

suggesting that the joint effect of the WGS and EA is greater than the sum of their 

main effects. The contribution of the overall interaction term between the WGS 

and EA was modest (model 4 vs model 3, ΔR2
adjusted = 0.0012) but significant (F (2, 3327) 

=3.32, p=0.036). 

Figure 1. Plots of eGFR versus weighted genetic score for reduced eGFR, by educational 

attainment. Upper panels (A) show cross-sectional eGFR (mL/min/1.73m2), and lower 

panels (B) show annual change in eGFR (mL/min/1.73m2 per year), stratified by 

educational attainment (high, medium, low). Regression lines with 95% confidence interval 

are derived from unadjusted ordinary linear regression.
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The effects of potential mediators (i.e. BMI, SBP, glucose, total cholesterol, and 

smoking status) of the interaction were assessed in our final models (model 5-6). 

Addition of these risk factors did not affect the association between the WGS and 

eGFR change (model 5, B ± se = -0.027 ± 0.006, p =2.32 x10-5) whereas the effect of 

EA was slightly attenuated (model 5, low vs high EA, B ± se = -0.047 ± 0.016, p=4.33 

x10-3), suggesting potential mediation by these risk factors. Potential mediation 

was further supported by the finding that the overall interaction effect was only 

borderline significant after addition of these risk factors (model 6 vs model 5, 

ΔR2
adjusted = 0.0010; F (2, 3213) = 2.78, p=0.062), although the interaction effect of the 

WGS with low vs high EA was not attenuated and remained nominally significant 

(model 6, B ± se = -0.034 ± 0.015, p=0.027).

Sensitivity analysis

The WGS did not show significantly different distributions between categories 

of EA. However, Figure 1 and Supplementary Figure S1 are suggestive of slight 

overrepresentation of a higher WGS in those with lower EA and a lower WGS in 

those with higher EA. To minimize bias due to potentially influential observations, 

we excluded eight observations that exceeded a more stringent cut-off of three 

sds from the mean. These sensitivity analyses yielded essentially the same results 

as our main analyses, although significance decreased slightly due to reduced 

statistical power (data not shown).

Furthermore, we repeated all analyses for eGFR estimated from serum creatinine 

only (eGFRcrea), and eGFR estimated from serum cystatin C only (eGFRcysc). 

Results were generally consistent with our main analysis, with EA being more 

strongly associated with eGFRcysc than with eGFRcrea. Similarly, interaction 

effects between the WGS and EA were more pronounced for eGFRcysc than for 

eGFRcrea (data not shown).

Finally, we repeated the interaction analyses using LMM only. Here, despite some 

minor discrepancy with longitudinal estimates from OLS, effect estimates were 

generally and directionally consistent with the OLS analysis (Supplementary 

Table S1), and a three-way interaction term to assess the modifying effect of EA 

on WGS on eGFR change (WGS x EA x time) was again significant (Supplementary 

Table S2). 
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DISCUSSION
In the present study, we investigated the effects of genetic factors (summarized 

by a weighted genetic score, WGS) and educational attainment (EA), as well as the 

interaction between the WGS and EA, on kidney function outcomes. We observed 

additive effects of the WGS and EA for baseline eGFR in cross-sectional analyses, 

although these were not robust to covariate adjustment. In longitudinal analyses, 

low EA interacted with high WGS, resulting in faster eGFR decline. This amplifying 

effect of low EA on genetic risk could not entirely be explained by a less favorable 

renal risk factor profile in those with low EA (i.e. higher BMI, higher SBP, higher 

glucose, higher cholesterol, and higher prevalence of smoking).

In the present study, participants with low EA had similar genetic risk of CKD 

compared to those with higher EA, since the WGS was equally distributed to each 

stratum of EA. However, the impact of genetic risk on annual eGFR decline was 

observed to be larger in those with low EA, resulting in a disproportionally high 

risk of CKD for the most vulnerable in terms of EA and genetic predisposition. 

Low EA is unlikely to directly amplify genetic risk of CKD. Rather, it may act 

through a range of interrelated downstream effects of low EA such as lower 

income, poor health behavior, poor health care access, and higher prevalence 

of traditional renal risk factors8,9. In our analyses, the interaction effect was only 

partly explained by traditional renal risk factors. Therefore, other factors likely 

exist that explain the interaction between EA and CKD. These may include factors 

with socioeconomic gradients such as health literacy29, occupational exposures 

and infections30, whose influence may not be captured by traditional risk factors.

Individually, the 63 SNPs that were identified in previous GWAS on eGFRcrea14 

have small effects. The WGS aggregates these effects, thereby greatly increasing 

statistical power compared to using single SNP effects. Therefore, the WGS is a 

practical summary score of genetic risk for reduced kidney function. However, 

some limitations with regards to the WGS must be addressed. The WGS only 

explained a small fraction of between-individual variation in eGFR in PREVEND. 

In addition, participants with an equal WGS may have different underlying risk 

variants. With ever-increasing sample sizes for GWAS, it is expected that larger 

numbers of SNPs can be detected with greater precision, thereby resulting in a 

WGS that is a more comprehensive summary measure of genetic risk. Furthermore, 

by using a WGS in interaction analysis, it is implicitly assumed that all genetic 
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variants included in the WGS have directionally consistent interaction effects 

with EA. Another implicit assumption is that the same set of genetic variants 

affect eGFR in each category of EA. To check these assumptions, single SNP 

interaction effects would need to be assessed, but this requires infeasibly large 

sample sizes and is therefore beyond the scope of the present study. Future 

research may include genome-wide interaction studies to identify the specific 

genetic variants whose effects are modified by EA. Similar studies have been 

done for blood pressure, BMI and lipids for specific exposures such as smoking, 

alcohol use and physical activity31-34. 

For the longitudinal analyses, we chose to report results from a two-step method 

in which we used individual eGFR trajectories modelled with LMM as outcome 

variable in OLS regression. This allows for straightforward estimation of model 

R2 and intuitive interpretation of the WGS x EA two-way interaction term. The 

two-step approach potentially comes at the cost of introducing false precision 

in eGFR trajectories given that random variation in eGFR measurements during 

follow-up is ignored to an extent. This may explain that in previous study in 

PREVEND, a WGS comprising 63 SNPs showed similar effects on eGFR change 

compared to the present study, but did not reach statistical significance in LMM 

analysis17. Alternatively, the effects of the WGS, EA, and the WGS x EA interaction 

term on eGFR change can also be modelled in a single LMM model, taking into 

account the random variation and correlation between eGFR measurements. 

However, R2 estimation is not straightforward in LMM models, and the effect 

of the interaction on eGFR change requires modelling a three-way interaction 

term (WGS x EA x time), the interpretation of which is less intuitive compared 

to that of a two-way interaction term. We performed sensitivity analyses using 

an LMM model only. Notwithstanding some discrepancies with the OLS analysis 

regarding effect size and statistical significance, the results from LMM were 

directionally consistent with OLS analysis and therefore our conclusions remain 

unchanged.

Given that in the present study, the interaction between the WGS and EA resulted 

in accelerated rates of eGFR decline, we hypothesize that this interaction also 

results in increased rates of CKD. However, given the large sample size needed 

to find significant interaction effects on categorical outcomes, we opted not to 

perform analyses with incident CKD as outcome. Further research in larger samples 
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is needed to assess whether the interaction indeed leads to an increase in CKD 

incidence, with a definition of CKD based on clinically relevant cut-off values. 

Our study adds to the literature on socioeconomic disparities in CKD as it is 

the first to present evidence of gene-environment interaction between a 

WGS, based on SNPs associated with eGFR, and EA. Major strengths of this 

study include the availability of multiple eGFR estimates per individual, that 

are based on both serum creatinine and cystatin C values, that were measured 

in one run allowing precise estimation of glomerular filtration rate, and the 

considerable follow-up duration. Several limitations, other than those already 

discussed, need to be addressed. First, the present study population consists 

of participants of European ancestry exclusively, sampled from a relatively 

high-income population (i.e. the population of Groningen, the Netherlands). 

Therefore, the generalizability of these findings to non-European, lower-income 

populations may be limited. Second, the interaction effects of genetic risk and 

EA on rate of kidney function decline that we found are modest and therefore 

require replication in independent samples. Third, the observational nature 

of this study precludes causal conclusions. Finally, a higher attrition rate was 

observed in those with low education. This may have resulted in bias towards 

the null, or underestimation of effects, due to reduced power and precision of 

kidney decline outcomes in this group.

Knowledge of the interaction that we found in our longitudinal analyses is unlikely 

to be useful for risk stratification for preventive medicine, due to the rather 

modest effects. However, our results may inform public health policy as they 

provide insights into the mechanisms that underlie socioeconomic disparities in 

CKD. For example, it is possible that downstream effects of low EA contribute to 

an environment that activates genetic pathways that are detrimental for kidney 

health. Conversely, deleterious genetic effects are suggested to be completely 

mitigated by high EA and its downstream effects, at least with regards to kidney 

function decline. Future study is needed to identify which factors are responsible 

for this modifying effect, as these factors are potential targets for intervention to 

reduce socioeconomic disparities in CKD.
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In conclusion, our findings provide population level insights on the mechanisms 

underlying socioeconomic disparities in CKD. We observed that a WGS, as a 

summary measure of genetic risk, and EA have independent effects on the rate 

of kidney function decline. Furthermore, our results suggest a subtle amplifying 

effect of low EA on genetic risk of eGFR. Traditional kidney risk factors that are 

known downstream effects of low EA (i.e. higher BMI, higher SBP, higher glucose, 

higher cholesterol, and higher prevalence of smoking) did not explain the 

amplifying effect on the WGS, which warrants further investigation. 
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Table S2. LMM model comparisons

Model df AIC BIC logLik deviance χχ2 Δdf p

Model 1 12 87311 87400 -43644 87287

Model 2 16 87311 87430 -43640 87279 8.1169 4 0.087

Model 3 25 85221 85406 -42585 85171

Model 4 29 85218 85433 -42580 85160 10.306 4 0.036

Model 5 31 82072 82301 -41005 82010

Model 6 35 82070 82328 -41000 82000 10.698 4 0.030

Comparison of nested models with and without an interaction term for WGS x EA. Models were refitted from restricted maximum 
likelihood to maximum likelihood.

Model 1: (WGS + EA) x time + random(intercept + time) 
Model 2: model 1 + (WGS x EA) x time 
Model 3: (WGS + EA) x time + age + age2 + sex + PCs 1-10 + random(intercept + time) 
Model 4: model 3 + (WGS x EA) x time  
Model 5: (WGS + EA) x time + BMI + SBP + glucose + cholesterol + smoking + age + age2 + sex + PCs 1-10 + random(intercept + time)
Model 6: model 5 + (WGS x EA) x time

Df, degrees of freedom; AIC, Akaike information criterion; BIC, Bayesian information criterion; logLik, log likelihood.
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Supplementary Figure 1
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ABSTRACT
Introduction. Educational attainment (EA) is associated with reduced risk of chronic 

kidney disease (CKD), higher kidney function (estimated glomerular filtration rate, 

eGFR) and less kidney damage (urinary albumin-to-creatinine ratio, UACR). We 

aimed to ascertain whether these associations constitute causal relations. 

Methods. Using a two-sample Mendelian randomization (MR) design, we used 

1271 single nucleotide polymorphisms associated with years of schooling to 

genetically predict EA (gEA), thereby minimizing confounding. We used genome-

wide association study summary data for a number of kidney traits from up to 

567,460 participants of European descent. 

Results. Effects of gEA are per one SD (4.2 years). Higher gEA was associated 

with higher cystatin C-estimated GFR (B=3.2%, 95%CI 1.9% to 4.6%, p=2.4x10-6), 

but not with creatinine-estimated GFR. Contrary to expectations, higher gEA was 

associated with higher inverse normally transformed UACR (B=0.06, 95%CI: 0.043 

to 0.076, p=2.5x10-12). Higher gEA was associated with lower urinary creatinine 

concentration (p=1.2x10-60), leading us to hypothesize confounding by creatinine 

metabolism (e.g. muscle mass) explains the positive association with UACR. 

However, in 24-hour urinary data from the Lifelines Cohort (N=12,675), we found 

no effect on 24h creatinine excretion (p=0.861), dismissing muscle mass as a 

confounding factor. Instead, higher gEA was associated with higher 24-h urinary 

albumin excretion (p=0.019), suggesting higher EA indeed increases kidney 

damage.

Conclusion. In this MR study, we found inconsistent effects of gEA on eGFR and 

even a deleterious effect of gEA on albuminuria. The results of this study warrant 

further investigation, and plead against a causal protective effect of EA on CKD. 

Keywords: Chronic kidney disease, Educational attainment, Mendelian 

randomization
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INTRODUCTION
Chronic kidney disease (CKD) is a heterogeneous group of disorders defined by 

sustained reduced kidney function and signs of kidney damage1,2. It is a risk factor 

for cardiovascular morbidity and mortality3,4 and it may progress to end-stage 

renal disease. The global prevalence of CKD is 10-15%, and the management of 

CKD and its consequences poses a heavy burden on patients and health care 

resources.

Socioeconomic gradients in CKD rates are observed: indicators of socioeconomic 

status such as higher educational attainment (EA) are associated with increased 

kidney function and reduced kidney damage in traditional observational studies5-7. 

It has been suggested that EA affects CKD risk through a number of intermediate 

factors observed to be less prevalent in those with higher EA, such as smoking, 

hypertension, and diabetes8,9. However, this proposition is predicated on the 

assumption that there is a protective causal effect of EA on CKD. Whether such a 

causal effect exists remains uncertain due to potential unobserved confounding 

and reverse causation in traditional observational studies.

A Mendelian randomization (MR) study may help in evaluating causality using 

observational data, when experiments are impractical or undesirable. This method 

utilizes genetic variants as proxies for exposures such as EA in instrumental variable 

analysis10-12. Due to the random assignment of genetic variants during meiosis, 

these variants are independent of confounding factors. Furthermore, given that 

genetic variants are fixed throughout life, reverse causation is unlikely. Previous 

MR studies established protective effects of EA on coronary heart disease13, and 

intermediates for coronary heart disease, such as lipid levels, BMI, blood pressure, 

and smoking behavior13-16. Given the purported overlap in pathophysiology and 

risk factors between cardiovascular and renal disease17, higher EA is expected to 

also be protective of CKD.

Thus, using MR, we aimed to ascertain whether EA has protective causal effects 

on kidney function and kidney damage.
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METHODS
Overall design

We applied a two-sample MR study design11,12,18, which utilizes single nucleotide 

polymorphisms (SNPs) as instrumental variables to minimize confounding, 

requiring only summary level statistics from large-scale genome-wide association 

studies (GWAS). The GWAS from which summary data were leveraged are listed 

in Table 1. In secondary analyses in the Lifelines Cohort study, we applied one-

sample, individual level MR to secondary kidney outcomes to assess the validity 

of our findings. All analyses were performed in populations of European descent.

Outcome definitions

For our main two-sample MR analyses, kidney outcomes were defined as 

described in their original GWAS studies19,20. Briefly, kidney function was 

approximated by glomerular filtration rate, estimated by CKD-EPI equations for 

creatinine21 (eGFRcrea) and cystatin C22 (eGFRcysc), transformed to their natural 

logarithm, and regressed on age and sex. The resulting unstandardized residuals 

of lneGFRcrea and lneGFRcysc were then used as outcome variables. Kidney 

damage was approximated by ln-transformed urinary albumin-to-creatinine ratio 

(lnUACR), residualized to age and sex, and then inverse normally transformed. 

Educational attainment

In the original GWAS on EA23, data were restricted to European-ancestry 

individuals that passed the cohort’s quality control and whose  EA  was 

measured at an age of at least 30 years. EA  was constructed by mapping each 

major educational qualification that can be identified from the cohort’s survey 

measure to an International Standard Classification of Education (ISCED) 199724 

category and imputing a years-of-schooling equivalent for each ISCED category 

(Supplementary Table S1). The EA phenotype was then standardized; each SD 

represents 4.2 years of schooling.

Two-sample Mendelian randomization

We used 1271 independent SNPs (linkage disequilibrium, LD: r2<0.1) associated 

with years of schooling23 in populations of European ancestry as instrumental 

variables to genetically predict EA (gEA). The effects of these 1271 SNPs were 

extracted from European ancestry GWAS on eGFRcrea19, eGFRcysc20, and 

UACR (Teumer et al, Nature Communications, 2019, in press). We harmonized 
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datasets on SNP alleles, and removed palindromic SNPs with intermediate allele 

frequencies (minor allele frequency >0.42). MR analyses were performed using 

the TwoSampleMR R-package25 in R software version 3.4.226. As main analysis, 

we performed an inverse variance weighted (IVW) meta-analysis of SNP effects. 

As sensitivity analyses, we performed weighted median analysis27, MR Egger 

regression28, and mode-based MR29 to test robustness to varying degrees of 

violations of MR assumptions, in particular those due to pleiotropy. Leave-one-

out analyses were performed to detect disproportionately influential SNPs. In an 

additional sensitivity analyses, we pruned the data by clumping SNPs with a more 

stringent LD cut-off of r2<0.001 to ensure independence of SNPs. In this pruned 

dataset, we repeated all MR analyses and, in addition, performed Mendelian 

Randomization Pleiotropy Residual Sum and Outlier (MR-PRESSO) analysis 

to detect heterogeneity and account for outlying, and therefore potentially 

pleiotropic, SNP effects using the MR-PRESSO R package30. The MR Steiger test31 

was performed to infer directionality of effects.

Secondary analyses

Two-sample Mendelian Randomization on urinary creatinine concentration

In our main analyses, we found an unexpected detrimental effect of gEA on 

UACR. In secondary analyses, we aimed to ascertain whether this was due to 

the creatinine component in UACR by examining the effect of gEA on urinary 

creatinine concentrations (UcreaC) in the UK Biobank (UKBB, www.nealelab.is/

uk-biobank/) using the two-sample MR methods described above. 

2-Stage least squares analysis in Lifelines on creatinine and albumin excretion

In individual participant data from the Lifelines Cohort Study, we examined 

the gEA-UACR relation. We used data of unrelated, genotyped participants. 

The Lifelines Cohort Study is a multidisciplinary prospective population-based 

cohort study with a unique 3-generation design that examines health and health-

related behavior of 165,729 participants living in the north-eastern region of the 

Netherlands (www.lifelines.nl/researcher). Participants were recruited through 

their general practitioner or through participating family members. Additionally, 

there was the option to self-register. Details on study design, participant selection 

and genotyping in Lifelines have been described previously32-35. Genotyped 

participants aged ≥30 years with completed questionnaire data on educational 

attainment were included for this analysis (N=12,675). The Lifelines Cohort Study 
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was conducted according to the guidelines in the Declaration of Helsinki, and 

all procedures involving human subjects were approved by the Medical Ethics 

Committee of the University Medical Center Groningen. Written informed consent 

was obtained from all participants during the visit to one of the research centers.

We performed analyses on UACR, and additionally, urinary concentrations and 

24h excretions of creatinine (UcreaC and UcreaE) and albumin (UAC and UAE) 

separately, as well as urinary volume obtained from 24h urine collections. For all 

secondary analyses, 24h urinary albumin concentration values were left-truncated 

at the limit of detection (LOD, 2.3 mg/L). In case variables were right-skewed, we 

applied a ln-transformation. After transformation, we removed outliers deviating >4 

standard deviations from the mean. The normalized variables were then regressed 

on age, age2, age3, sex and the first ten genetically derived principal components 

(to account for population structure) to obtain unstandardized residuals. These 

residuals were subsequently used as dependent variables as described below. 

For UACR, we in addition inverse normally transformed the residuals (int lnUACR).

Highest educational qualification was assessed through self-report questionnaires, 

mapped to the ISCED, and then converted into years of schooling. We constructed 

a 1271-SNP weighted genetic score (WGS) for years of schooling, weighted for 

effects originally reported by Lee et al,23 and used this WGS as instrumental variable 

to genetically predict EA. We performed two-stage least squares (2SLS) analyses 

using R version 3.4.2. In the first stage, we regressed years of schooling on the 

WGS. The model-predicted estimate of years of schooling (gEA), resulting from 

this first stage regression, is an unbiased genetic proxy of EA due to the assumed 

random assortment of the WGS. The gEA was then used as independent variable 

in second stage regression. gEA was divided by 4.2 years to allow comparison 

with two-sample MR results. Dependent variables in this second stage were the 

previously mentioned unstandardized residuals of urinary outcomes.

Genetic correlations

To ascertain whether MR estimates were consistent with genetic correlations 

between EA and the kidney outcomes, eGFRcrea, eGFRcysc, and UACR, we 

performed LD score regression using the ldsc software package (version 1.01)36,37. 

For this analysis, we used GWAS summary data from a subset of participants 

(N= 766,345 , excluding participants from 23andMe) from the GWAS on EA23, and 
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GWAS summary from the European ancestry samples from the GWAS on kidney 

outcomes eGFRcrea, eGFRcysc, and UACR (see Table 1).

Systolic blood pressure

Finally, as a positive control to support our methods and findings, we performed 

MR analysis of the effect of gEA on blood pressure, a phenotype etiologically 

related to kidney function.38 To this end, we leveraged GWAS summary data 

on systolic blood pressure (SBP)39 and performed two-sample MR and 2SLS as 

described above.

RESULTS
Two-sample Mendelian randomization

After harmonization of data and removal of ambiguous palindromic SNPs, 1200 

to 1210 of the 1271 SNPs remained for the MR analyses (Table 2). SNP details 

and their effects on EA and kidney outcomes are presented in Supplementary 

Table S2. MR scatterplots of SNP effects on EA and kidney outcomes are shown 

in Figure 1. 

eGFRcrea and eGFRcysc

We found neither a relevant nor statistically significant effect of years of schooling 

on eGFRcrea; each SD higher gEA was associated with a 0.04% lower eGFRcrea 

(IVW MR estimate: B= -0.0004, 95%CI: -0.0037 to 0.0029, p= 0.805), which was non-

significant. However, each SD higher gEA was associated with a higher eGFRcysc 

(3.2% increase, 95%CI: 1.9% to 4.6%, p=2.4x10-6, Table 2). No heterogeneity in SNP 

effects was observed for eGFRcysc, which suggest low risk of bias due to horizontal 

pleiotropy (i.e. SNP affecting the outcome not only through the exposure, but 

Table 1. Genome-wide association studies used for two-sample MR in the present study

Phenotype Unit N sample Consortium Reference

Years of schooling SD (4.2 yrs) 1,131,881 SSGAC Lee et al. 2018

eGFRcrea ln-transformed 567,460 CKDGen Wuttke et al. 2019

eGFRcysc ln-transformed 24,061 CKDGen Gorski et al. 2017

UACR int 547,361 CKDGen Teumer et al. 2019

UcreaC μmol/L 361,194 UKBB www.nealelab.is/uk-biobank/

SBP mmHg 745,820 UKBB+ICBP Evangelou et al. 2018

CKD, chronic kidney disease (defined as eGFRcrea < 60mL/min/1.73m2); eGFR, estimated glomerular filtration rate; UACR, urinary 
albumin-to-creatinine ratio; UcreaC, urinary creatinine concentration; SBP, systolic blood pressure; SD, standard deviations; int, 
inverse normally transformed; SSGAC, Social Science Genetic Associations Consortium; CKDGen, Chronic Kidney Disease GENetics 
consortium; UKBB, UK Biobank; ICBP, International Consortium of Blood Pressure-genome wide association studies.
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Table 2. Results from two-sample Mendelian randomization analysis

Outcome Method N SNPs B se P-value Cochran’s Q (df) Q P-value

lneGFRcrea IVW 1210 -0.0004 0.0017 0.8047 3042 (1209) 1.71e-158

Weighted median 1210 0.0015 0.0017 0.3649

MR Egger 1210 0.0033 0.0059 0.5749

Simple mode 1210 -0.0012 0.0086 0.8870

Weighted mode 1210 0.0041 0.0068 0.5424

MR Egger intercept - -4.4 x10-5 6.8 x10-5 0.5108

lneGFRcysc IVW 1203 0.0322 0.0068 2.4 x10-6 1217 (1202) 0.3742

Weighted median 1203 0.0233 0.0102 0.0224

MR Egger 1203 0.0399 0.0243 0.1017

Simple mode 1203 0.0379 0.0497 0.4460

Weighted mode 1203 -0.0062 0.0467 0.8947

MR Egger intercept - -9.2 x10-5 0.0003 0.7416

int UACR IVW 1204 0.0596 0.0085 2.47 x10-12 2388 (1203) 1.04e-80

Weighted median 1204 0.0435 0.0099 1.09 x10-5

MR Egger 1204 0.1143 0.0297 1.25 x10-4

Simple mode 1204 0.0091 0.0485 0.8506

Weighted mode 1204 0.0209 0.0401 0.6022

MR Egger intercept - -0.0007 0.0003 0.0547

UcreaC 
(μmol/L)

IVW 1207 -0.1685 0.0103 1.23 x10-60 2673 (1206) 1.09e-112

Weighted median 1207 -0.1432 0.0117 2.38 x10-34

MR Egger 1207 -0.1953 0.0357 5.45 x10-8

Simple mode 1207 -0.0666 0.0609 0.2743

Weighted mode 1207 -0.0727 0.0516 0.1587

MR Egger intercept - 0.0003 0.0004 0.4340

SBP (mmHg) IVW 1184 -1.828 0.212 5.55 x10-18 6267 (1183) 0

Weighted median 1184 -1.735 0.180 3.49 x10-23

MR Egger 1184 -1.528 0.760 0.0445

Simple mode 1184 -1.061 1.045 0.3080

Weighted mode 1184 -0.878 0.963 0.3684

MR Egger intercept - -0.004 0.009 0.6814

Effects of EA on kidney outcomes per one standard deviation increase in years of schooling (~4.2 years). Abbreviations: CKD, chronic 
kidney disease; eGFRcrea, creatinine-estimated glomerular filtration rate; eGFRcysc, cystatin-C estimated GFR;  UACR, urinary 
albumin-to-creatinine ratio; UcreaC, urinary creatinine concentration; SBP, systolic blood pressure; ln, natural log-transformed; INT, 
inverse normally transformed; B, effect estimate; se, standard errors; Q, heterogeneity statistic; df, degrees of freedom.
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also through other traits, thereby violating MR assumptions and biasing the 

estimates). This was corroborated by sensitivity analyses that are robust to 

varying degrees of violations of MR assumptions (i.e. MR Egger, median and mode 

based methods, Table 2), as these yielded similar results. Additional sensitivity 

analysis was performed in a pruned dataset of 387 SNPs (Supplementary Table 

S3), for which we excluded SNPs based on strict criteria regarding inter-SNP 

correlation (linkage disequilibrium) and outlying effects (MR-PRESSO). This was 

done in an effort to minimize bias due to invalid SNPs, at the cost of statistical 

power. These also yielded largely similar effect estimates (Supplementary Table 

S4). SNPs for EA were more highly correlated with eGFRcysc than with EA, which 

resulted in non-significance of the MR Steiger test (r2
EA=0.053, r2

eGFRcysc=0.056, 

p=0.271, Supplementary Table S5). This suggested that EA was downstream of 

eGFRcysc. However, in a pruned dataset, the MR Steiger test was again significant 

(r2
EA=0.020, r2

eGFRcysc=0.016, p=0.027). Outlying SNP effects may indicate pleiotropy, 

and failing to account for these outliers may yield biased estimates. MR-PRESSO 

can be used to detect and account for any outlying SNPs. However, since there 

was no heterogeneity in SNP effects for eGFRcysc, MR-PRESSO did not detect 

any outliers for eGFRcysc (Supplementary Table S4).

UACR

An effect of gEA on UACR was found, but this effect was not in the expected 

direction; each additional standard deviation in years of schooling (4.2 years) 

associated with an 0.06 increase in int lnUACR (IVW MR estimate: B=0.060, 95%CI: 

0.043 to 0.077, p=2.5 x10-12) (Table 2, Figure 1). Significant heterogeneity in SNP 

effect was detected (Cochran’s Q=2388, df=1203, p=1.04 x10-80), which suggests 

SNP pleiotropy. In case of unbalanced pleiotropy, effect estimates may be 

biased upwards or downwards. Egger intercept analysis can detect potential 

unbalanced pleiotropy. A suggestive bias towards a null effect was detected 

(Egger intercept: -6.54 x10-4, 95%CI: -0.001 to 1.24 x10-5, p=0.055). This means that 

unbalanced pleiotropy in SNP effects may have masked a stronger effect of EA 

on UACR. This is corroborated by a slightly larger effect-estimate in MR Egger 

sensitivity analysis that takes into account the imbalance (Table 2). Mode-based 

methods were directionally consistent but did not reach significance, possibly 

due to reduced power because of down-weighting of SNPs away from the mode. 

We observed no disproportionately influential SNPs in leave-one-out analyses 

(data not shown). The MR Steiger test31 was significant (r2
EA=0.052, r2

UACR=0.005, 
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Figure 1. MR scatterplots

A. lneGFRcrea

C. int lnUACR

E. SBP

B. lneGFRcysc

D. UcreaC (μmol/L)

Mendelian randomization scatterplots. 
The X-axes represent SNP effects on 
standard deviations (4.2 years) of years 
of schooling The Y-axes represent SNP 
effects on A. natural log-transformed 
creatinine-estimated glomerular 
filtration rate (lneGFRcrea) B. natural 
log-transformed cystatin C-estimated 
glomerular filtration rate (lneGFRcysc); 
C. inverse normally transformed 
residuals of natural log-transformed 
urinary albumin-to-creatinine ratio 
(int lnUACR); D. urinary creatinine 
concentration (UcreaC) (μmol/L) and 
E. systolic blood pressure (SBP, mmHg)
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p<0.001) supporting that EA is causally upstream of UACR. Results from analyses 

with a more stringent SNP selection and additional MR-PRESSO outlier correction 

(Supplementary Table S4) yielded similar results.

Secondary analyses

Two-sample Mendelian randomization on urinary creatinine concentration

Given the unexpected direction of the effect of gEA on UACR, we decided to explore 

the effect of gEA on the creatinine component of UACR by performing a two-sample 

MR on UcreaC in the UK Biobank. Each 4.2-year higher gEA associated with 0.169 

μmol/L lower UcreaC (95%CI: -0.189 to -0.148, p=1.23 x10-60, Table 2). The significant 

MR Steiger test supported a causal direction from EA to UcreaC, given that SNPs for 

EA showed stronger correlation with EA than with UcreaC (r2
EA=0.053, r2

UcreaC =0.010, 

p<0.001). Given that UcreaC is the denominator in UACR, lower UcreaC results in 

higher UACR. These results suggest that bias due to the creatinine component of 

UACR could play a role. This hypothesis was further investigated in data from the 

Lifelines cohort that include 24hr urine samples that were not available in the UK 

Biobank, and only in few cohorts contributing to the CKDGen Consortium.

Figure 2. Results of 2SLS analysis in Lifelines

Effects of 4.2 years of schooling on kidney traits obtained from 2-stage least squares (2SLS) 
regression in the Lifelines Cohort, adjusted for age, age2, sex, and the first 10 genetic 
principal components. UACR, urinary albumin-to-creatinine ratio; UAC, urinary albumin 
concentration; UAE, urinary albumin excretion; UcreaC, urinary creatinine concentration; 
UcreaE, urinary creatinine excretion.
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2-stage least squares analysis in Lifelines

Participant characteristics of the Lifelines Cohort study are presented in 

Supplementary Table S6-S7. The WGS for years of schooling was significantly 

correlated (r2=0.04, p=4.5x10-108) with EA in Lifelines, comparable to the correlation 

of the 1271 SNPs with years of schooling in two-sample MR (r2 ≈ 0.05). Results of 

2SLS analysis in Lifelines are presented in Figure 2 and Supplementary Table S8. 

Similar to the two sample MR results, each 4.2-year increase in gEA was significantly 

causally associated with 0.109 higher int lnUACR (95%CI: 0.023 to 0.195, p=0.0126) 

and also confirmed by 0.081 higher 24h-lnUAE (95%CI: 0.013 to 0.148, p=0.0192). 

Each 4.2-year increase in gEA was associated with lower concentrations of Ucrea in 

24h urine by 5.5% (2SLS B= -0.055, 95%CI: -0.090 to -0.020, p=2.05 x10-3), consistent 

with the two-sample MR results from the UK Biobank UcreaC data. However, gEA 

did not affect 24hr urinary creatinine excretion (2SLS B= -0.023, 95%CI: -0.285 to 

0.238, p=0.861). The finding that EA reduced UcreaC but not UcreaE points to 

dilution of urinary creatinine resulting from higher fluid intake in those with higher 

EA. This is supported by our observation that a 4.2-year increase in gEA indeed 

resulted in 0.114 L higher 24h urinary volumes (2SLS B= 0.114, 95%CI: 0.057 to 0.172, 

p=9.88 x10-5).

Genetic correlations

To support the findings from our MR analysis, we computed genetic correlations 

between EA and kidney outcomes with LD score regression (see Supplementary 

Table S9). This method utilizes the complete GWAS data for both traits, whereas in 

MR only a genome-wide significant subset of SNPs associated with the exposure 

is used. Furthermore, this method is not sensitive to sample overlap37 between the 

kidney outcomes GWAS data and the EA GWAS data, which may potentially have 

caused amplification of SNP effects and may therefore have resulted in biased 

MR estimates40. Genetic correlations of EA with eGFRcrea (rg= -0.0129, p= 0.415), 

and eGFRcysc (rg= 0.0925, p= 0.0144), and UACR (rg= 0.1131, p= 2.09 x10-10) were 

consistent with the MR estimates both in direction and in significance, further 

supporting our main findings.

SBP

As a positive control to support our methods and findings, we repeated each 

analysis on SBP. After harmonization, 1184 SNPs remained. In two-sample MR, 

an increase in gEA resulted in a decrease in SBP as expected (IVW MR estimate: 
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B= -1.83 mmHg per 4.2-year increase in gEA, 95%CI: -2.25 to -1.41, p= 5.55 x10-18) 

(Table 2). Heterogeneity was detected, but no directional horizontal pleiotropy 

was observed (Egger intercept = -0.004, 95%CI: -0.020 to 0.013, p=0.681). The 

MR Steiger test was significant (r2
EA=0.052, r2

SBP=0.010, p<0.001), supporting an 

upstream role of EA. Sensitivity analyses robust to instrument pleiotropy yielded 

similar results, as did analyses with a more stringent SNP selection and MR-

PRESSO outlier adjustment (Supplementary Table S4). This protective effect 

of gEA on SBP was corroborated in Lifelines, with a slightly larger effect size 

compared to the IVW MR estimate (2SLS B= -2.03 mmHg per 4.2-years increase in 

schooling, 95%CI: -3.28 to -0.775, p=1.51 x10-3). 

DISCUSSION
In this Mendelian randomization study, no convincing genetic support for a 

protective effect of EA on kidney outcomes was found. Although a protective 

effect of gEA was found on eGFRcysc, there were no effects of gEA on eGFRcrea, 

weakening the strength of the evidence for a protective effect of EA on kidney 

function. The effect of gEA on UACR was even in the opposite direction to what 

was expected. Taken together, these results challenge the notion that higher EA 

causally protects against CKD.

The absence of a protective effect of EA on CKD is surprising, given the large 

body of observational epidemiological evidence on this topic5-7, and previous 

MR studies on the relation between EA and cardiovascular disease and CKD risk 

factors13-16. Contrary to expectations, we found that higher gEA resulted in higher 

UACR, a marker of kidney damage. Given that we observed significant effects of 

gEA on eGFRcysc and SBP, but not eGFRcrea, we hypothesized that a spurious 

association between EA and creatinine (e.g. through higher muscle mass in those 

with lower education) may have led to both the absence of effect on eGFRcrea 

and the unexpected detrimental effect on UACR. In a two-sample MR analysis 

we observed a relation between higher gEA and lower UcreaC, which could 

at least in part explain the observed higher UACR in those with higher gEA. To 

further explore this hypothesis, we performed a secondary analysis in individual 

participant data from the Lifelines Cohort, where we investigated effects of EA on 

both the creatinine and the albumin component of UACR in 24hr urine samples. 

We found that higher gEA was again significantly related to both higher UACR 

and lower UcreaC. However, when examining 24h excretions of creatinine as 
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outcome, no effect of gEA was observed, dismissing spurious associations with 

muscle mass as a source of confounding bias. The strong effect of higher gEA 

on higher 24h urinary volumes in Lifelines, points to higher fluid intake in those 

with higher EA. Higher fluid intake, however, is not a possible explanation of the 

counterintuitive effect of EA on UACR, as greater urinary volumes would lead to 

dilution of urinary creatinine as well as of urinary albumin. Consequently no effect 

on UACR is to be expected. Some have suggested that higher fluid intake may 

increase proteinuria41,42 resulting in higher UACR, but this is controversial in light 

of accumulating evidence for a reno-protective effect of fluid intake43,44.

We found genetic correlations of EA with eGFRcrea and eGFRcysc consistent with 

the present MR results. Furthermore, we found a modest, but highly significant, 

positive genetic correlation of EA with UACR, also consistent with our MR results. 

The positive genetic correlation means that genetic factors that correlate with 

higher EA also correlate with higher UACR, which is discrepant with the negative 

phenotypic correlation reported in literature5. As phenotypes depend both on 

additive genetic effects and environmental effects, the discrepancy between 

the genotypic and phenotypic correlation may possibly be explained by a strong 

environmental correlation between EA and UACR in the opposite direction, i.e. 

environmental factors likely exist that correlate both with higher EA and lower 

UACR. Further study is needed to identify responsible environmental and genetic 

factors and explain the counterintuitive deleterious effect of gEA on UACR.

This is the first MR study of the relation between EA and kidney outcomes. 

Strengths include highly precise SNP effect estimates from large GWASs on EA 

(1.1 million participants) and kidney outcomes (up to 567,140 participants), state-

of-the art sensitivity analyses accounting for heterogeneity and pleiotropy in SNP 

effects, and 24h urine collections in Lifelines for our secondary analyses. Several 

limitations need to be addressed. First, MR IVW relies on untestable assumptions 

regarding pleiotropy of SNPs. We therefore applied a range of sensitivity analyses 

(i.e. MR Egger, median and mode-based methods, MR-PRESSO) that are robust 

to varying degrees of violation of these MR assumptions27-30. Essentially similar 

results were obtained. Second, eGFR is an approximation of kidney function 

based on serum creatinine as a marker. It is known that there can be marker 

induced bias, and that there is lower precision of GFR estimating equations in the 

higher ranges (>60 mL/min/1.73m2)45,46. Therefore, effect estimates may be biased 
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towards the null. However, not only did we observe a lack of effect of gEA on 

eGFR, but also an opposite, deleterious effect on albuminuria, which strengthens 

our conclusion that there is no convincing genetic support for a protective effect 

of EA on CKD. Third, in previous meta-analysis of observational studies, the EA-

CKD association was observed to be highly heterogeneous5, possibly due to 

between-country differences in educational and health care systems. If the EA-

CKD association is not consistent between study samples, this may result in bias 

towards the null in MR estimates. Fourth, SNP effect estimates were obtained 

from GWAS performed in populations of European descent from middle-to-high 

income countries. Therefore, generalizability to non-European ancestries and to 

low-income countries may not be possible. Lastly, sample overlap40 (i.e. overlap in 

participants for different GWAS), assortative mating47 (i.e. selective mating based 

on educational level), and genetic nurture effects48 (i.e. indirect effects of non-

transmitted parental alleles on offspring EA through rearing environment), may 

have caused amplification of SNP effects, which in turn would bias MR estimates 

away from the null. However, this is unlikely to have affected our main conclusions 

given that we observed no protective effect of EA on kidney outcomes.

The results of this study may have several implications. Our data suggest that, 

expected positive effects on general cardiovascular health notwithstanding, 

policies to optimize education may not reduce the burden of CKD in middle-

to-high income communities of European descent. Moreover, our data also 

indicate that the consistent inverse association of EA with CKD that is found in 

epidemiological studies is possibly confounded, as we found no genetic support 

for a causal effect of EA on CKD. Further research is needed to ascertain which 

latent factors drive socioeconomic disparities in CKD. In that respect, it should be 

noted that future (genetic) epidemiological studies on kidney outcomes, including 

MR and GWAS, should consider possible marker (e.g. creatinine) induced bias in 

SNP effects.

The results of the present MR study indicate a null effect of EA on eGFR. 

Unexpectedly, genetic support for a counterintuitive, deleterious effect of EA 

on albuminuria was found, a finding that warrants further investigation. Taken 

together, we conclude that there is no convincing genetic support for a protective 

effect of EA on CKD.
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Box 1. List of abbreviations

2SLS two-stage least squares regression

CKD chronic kidney disease

EA educational attainment

eGFR estimated glomerular filtration rate

gEA genetically predicted educational attainment

GWAS genome-wide association study

ISCED international standard classification of education

IVW inverse variance weighted

LD linkage disequilibrium

MR Mendelian randomization

MR-PRESSO Mendelian randomization pleiotropy residual sum and outlier 

SBP systolic blood pressure

SNP single nucleotide polymorphism

UAC urinary albumin concentration

UACR urinary albumin-to-creatinine ratio

UAE urinary albumin excretion

UcreaC urinary creatinine concentration

UcreaE urinary creatinine excretion

WGS weighted genetic score

Table S1. Educational attainment phenotype definition in the original genome-wide association study.

ISCED levels Definition
US years of 
schooling

0 Pre-primary education 1

1 Primary education or first stage of basic education 7

2 Lower secondary or second stage of basic education 10

3 (Upper) secondary education 13

4 Post-secondary non-tertiary education 15

5 First stage of tertiary education (not leading directly to an advanced research qualification 19

6 Second stage of tertiary education (leading to an advanced research qualification, e.g. a Ph.D. 22

International Standard Classification of Education (ISCED) 1997 definitions with equivalent US years of schooling as defined in the 
original genome-wide association study (GWAS) on educational attainment.
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Table S3. SNPs remaining after clumping procedure 

rs10006235 rs1167827 rs1334297 rs2029401 rs34720381 rs57349798 rs72486027 rs7920624

rs10021733 rs11678980 rs13402497 rs2034631 rs34807077 rs57352738 rs7254263 rs7924036

rs10060023 rs11724690 rs13422673 rs2039204 rs35417702 rs575113 rs72622559 rs79265434

rs10080647 rs117398064 rs137079 rs2052285 rs35606437 rs5754753 rs72672052 rs7972246

rs1008078 rs118134876 rs1426619 rs2055940 rs35929923 rs57661533 rs72709560 rs79728014

rs10189857 rs11871429 rs1434630 rs2081652 rs363096 rs580652 rs72828517 rs7974852

rs10193498 rs11894424 rs143743568 rs2131167 rs3751331 rs590013 rs72829857 rs7977614

rs10215082 rs12054166 rs150537577 rs2179152 rs3809634 rs6043521 rs72944064 rs79994730

rs10460095 rs12076635 rs1505676 rs2183271 rs382196 rs6065080 rs72962169 rs8008382

rs10761251 rs12113634 rs1544 rs2199409 rs3859523 rs6065784 rs72993796 rs8024

rs10772644 rs12151248 rs1564347 rs2212430 rs3897821 rs61104616 rs730384 rs80257979

rs10773002 rs12375949 rs1603460 rs2216144 rs3948495 rs6123924 rs73055556 rs8030487

rs10773208 rs1245829 rs162445 rs2256965 rs401526 rs61527214 rs73191311 rs806816

rs10798888 rs12468040 rs1689510 rs2287838 rs401966 rs61798586 rs7321274 rs8097125

rs10799615 rs12477385 rs17048855 rs2290601 rs42210 rs61997667 rs7326331 rs891793

rs10805383 rs12503522 rs17110109 rs2297293 rs42302 rs62155350 rs73344830 rs912883

rs10844179 rs12506221 rs17144467 rs232496 rs4298514 rs62155873 rs73581580 rs9289300

rs10875121 rs12519073 rs17148998 rs2364544 rs4320563 rs62174974 rs736281 rs9359939

rs10931821 rs12524795 rs1717204 rs2365376 rs4328757 rs62179650 rs73648455 rs936496

rs10940921 rs12571549 rs17248751 rs2431023 rs4352658 rs62182994 rs737945 rs9373363

rs10951590 rs12591647 rs173003 rs2434672 rs4358081 rs62379838 rs743316 rs9375188

rs10979613 rs12602286 rs1738050 rs2436760 rs4369924 rs628993 rs74415461 rs9411331

rs10996167 rs12614263 rs17411339 rs2447097 rs4384309 rs6449503 rs7449561 rs9492774

rs11003463 rs12638072 rs17428076 rs2469226 rs4467547 rs6490618 rs7460106 rs9529146

rs11023764 rs12643771 rs1747714 rs2478208 rs4497562 rs6493265 rs746839 rs9556958

rs11030102 rs12646523 rs1747817 rs2496482 rs4673840 rs6557171 rs74747621 rs9616947

rs11076962 rs12670376 rs17489649 rs2517086 rs4675248 rs660001 rs74787922 rs9655780

rs11081529 rs12761761 rs17502934 rs252991 rs4719944 rs66568921 rs75033012 rs969512

rs11082011 rs12765185 rs175325 rs2545795 rs4726070 rs66721975 rs75177132 rs9853928

rs11121177 rs12789313 rs17551064 rs2554835 rs4757957 rs6690195 rs7575637 rs9859556

rs11130380 rs12875339 rs17563464 rs2570497 rs4766424 rs6697584 rs7603132 rs9882532

rs11138947 rs12888615 rs17565975 rs2725370 rs4778058 rs6704768 rs76076331 rs9886703

rs11157931 rs12957463 rs17598675 rs2764684 rs4787457 rs6731373 rs7617204 rs9927137

rs111852224 rs12967010 rs17604349 rs2838006 rs4793090 rs6812533 rs76235882 rs9927842

rs11211123 rs12981405 rs176218 rs28513882 rs4810894 rs68145588 rs76246107 rs9929556

rs11213482 rs13015496 rs17732878 rs2885198 rs4839155 rs6917154 rs7650602 rs9929762

rs112603734 rs13018640 rs178183 rs2923424 rs4846724 rs6924023 rs76577427 rs9933256

rs112806496 rs13050131 rs17882802 rs2929032 rs4848924 rs6969783 rs7672622

rs1128956 rs13085461 rs182902112 rs2958182 rs488476 rs6977237 rs7683416

rs113520408 rs13133213 rs1842713 rs2964199 rs4899012 rs6994287 rs76878669

rs113615161 rs13145650 rs1861786 rs2964255 rs4904523 rs7012546 rs7692359

rs114593137 rs13163845 rs1865955 rs2989476 rs4915735 rs7029718 rs77025239

rs115000530 rs13197257 rs1866823 rs2998299 rs4977885 rs7040995 rs77609760

rs11542663 rs1320139 rs1890132 rs3026996 rs4984541 rs7041702 rs77719387

rs11588857 rs13212041 rs192436652 rs303752 rs55736314 rs7108020 rs7849487

rs11598765 rs13240401 rs1933264 rs3111251 rs56099375 rs7127580 rs78648104

rs11620355 rs13261773 rs1955250 rs34067381 rs56319902 rs7167688 rs7875078

rs11657342 rs13266287 rs1991585 rs34098770 rs56391344 rs7171405 rs7894722

rs11657979 rs1329125 rs2007655 rs34305371 rs56794817 rs717996 rs790647

rs11663602 rs13327482 rs2011603 rs34394051 rs57204268 rs7226824 rs7910403  

List of 387 SNPs remaining after stringent LD clumping based on an r2-value of 0.001 according to the European samples of the 1000 Genomes project.
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Table S4. Two-sample MR results after clumping procedure

exposure outcome method nsnp b se pval Q Q_df Q_pval

years of schooling_clumped lneGFRcrea MR Egger 372 0.0105 0.0099 0.2887

years of schooling_clumped lneGFRcrea Weighted median 372 0.0049 0.0028 0.0837

years of schooling_clumped lneGFRcrea Inverse variance weighted 372 0.0022 0.0027 0.4227 977.1 371 4.46E-56

years of schooling_clumped lneGFRcrea Simple mode 372 0.0086 0.0089 0.3387

years of schooling_clumped lneGFRcrea Weighted mode 372 0.0075 0.0070 0.2814

years of schooling_clumped lneGFRcrea MR egger intercept NA -0.0001 0.0001 0.382

years of schooling_clumped lneGFRcrea MR-PRESSO outlier-corrected 361 0.0032 0.0024 0.1749

years of schooling_clumped lneGFRcysc MR Egger 368 0.0766 0.0397 0.0543      

years of schooling_clumped lneGFRcysc Weighted median 368 0.0215 0.0163 0.1870      

years of schooling_clumped lneGFRcysc Inverse variance weighted 368 0.0395 0.0109 0.0003 347.4 367 0.7612

years of schooling_clumped lneGFRcysc Simple mode 368 -0.036 0.0568 0.5228      

years of schooling_clumped lneGFRcysc Weighted mode 368 -0.030 0.0564 0.5948      

years of schooling_clumped lneGFRcysc MR egger intercept NA -0.0005 0.0005 0.3314      

years of schooling_clumped lneGFRcysc MR-PRESSO outlier-corrected 368 NA NA NA      

years of schooling_clumped int lnUACR MR Egger 370 0.1246 0.0499 0.0129

years of schooling_clumped int lnUACR Weighted median 370 0.0519 0.0165 0.0016

years of schooling_clumped int lnUACR Inverse variance weighted 370 0.0527 0.0139 0.0002 767.4 369 3.89E-30

years of schooling_clumped int lnUACR Simple mode 370 0.0494 0.0590 0.4030

years of schooling_clumped int lnUACR Weighted mode 370 0.0494 0.0451 0.2735

years of schooling_clumped int lnUACR MR egger intercept NA -0.001 0.0006 0.1342

years of schooling_clumped int lnUACR MR-PRESSO outlier-corrected 364 0.0532 0.0131 5.99E-05

years of schooling_clumped UcreaC (μmol/L) MR Egger 371 -0.194 0.0626 0.0021      

years of schooling_clumped UcreaC (μmol/L) Weighted median 371 -0.123 0.0195 2.47E-10      

years of schooling_clumped UcreaC (μmol/L) Inverse variance weighted 371 -0.153 0.0174 1.42E-18 923.4 370 4.03E-49

years of schooling_clumped UcreaC (μmol/L) Simple mode 371 -0.083 0.0722 0.253      

years of schooling_clumped UcreaC (μmol/L) Weighted mode 371 -0.088 0.0616 0.1521      

years of schooling_clumped UcreaC (μmol/L) MR egger intercept NA 0.0005 0.0008 0.4990      

years of schooling_clumped UcreaC (μmol/L) MR-PRESSO outlier-corrected 362 -0.150 0.0161 9.93E-19      

years of schooling_clumped SBP (mmHg) MR Egger 363 -2.446 1.1838 0.0395

years of schooling_clumped SBP (mmHg) Weighted median 363 -2.136 0.2763 1.08E-14

years of schooling_clumped SBP (mmHg) Inverse variance weighted 363 -2.049 0.3219 1.94E-10 1734.3 362 1.16E-177

years of schooling_clumped SBP (mmHg) Simple mode 363 -3.945 1.1196 0.0005

years of schooling_clumped SBP (mmHg) Weighted mode 363 -4.220 1.3493 0.0019

years of schooling_clumped SBP (mmHg) MR egger intercept NA 0.0051 0.0147 0.7279

years of schooling_clumped SBP (mmHg) MR-PRESSO outlier-corrected 334 -2.229 0.255 1.17E-16

Results of two-sample Mendelian randomization (MR) after stringent LD clumping based on a r2-value of 0.001 according to the European samples of the 
1000 Genomes project. lneGFRcrea, natural log-transformed estimated glomerular filtration rate based on creatinine; lneGFRcysc, natural log-transformed 
estimated glomerular filtration rate based on cystatin C; int lnUACR, inverse normally transformed residuals of natural log-transformed urinary albumin-to-
creatinine ratio; UcreaC, urinary creatinine concentration; SBP, systolic blood pressure; MR-PRESSO, Mendelian randomization pleiotropy residual sum and 
outlier. 
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Table S5. MR Steiger test for causal direction

Exposure N SNPs Outcome SNP r2
exposure SNP r2

outcome inferred causal direction Steiger Pvalue

EA 1210 eGFRcrea 0.0527 0.0060 exposure causes outcome 0.0000

EA clumped 372 eGFRcrea 0.0202 0.0019 exposure causes outcome 0.0000

EA 1203 eGFRcysc 0.0528 0.0560 outcome causes exposure 0.2711

EA clumped 368 eGFRcysc 0.0203 0.0164 exposure causes outcome 0.0273

EA 1204 UACR 0.0524 0.0048 exposure causes outcome 0.0000

EA clumped 370 UACR 0.0202 0.0015 exposure causes outcome 0.0000

EA 1207 UcreaC 0.0526 0.0103 exposure causes outcome 0.0000

EA clumped 371 UcreaC 0.0203 0.0035 exposure causes outcome 0.0000

EA 1184 SBP 0.0516 0.0097 exposure causes outcome 0.0000

EA clumped 363 SBP 0.0199 0.0028 exposure causes outcome 0.0000

MR Steiger test for causal direction. The exposure is inferred to be causally upstream of the outcome in case the instrumental SNPs 
are more highly correlated to the exposure than to the outcome. SNP, single nucleotide polymorphism; EA, educational attainment; 
eGFRcrea, estimated glomerular filtration rate based on creatinine; eGFRcysc, estimated glomerular filtration rate based on cystatin 
C; UACR, urinary albumin-to-creatinine ratio; UcreaC, urinary creatinine concentration; SBP, systolic blood pressure.

Table S6. Lifelines Cohort study participant characteristics

  Proportion Mean SD 25th% Median 75th% missings

N 12675

Age (years) 48.95 10.70 41 48 55 0

Females 58% 0

Years of schooling 13.50 4.18 10 13 20 0

WGS years of schooling 16.01 0.27 15.83 16.01 16.19 0

eGFRcrea (mL/min/1.73m2) 92.53 14.39 82.74 93.65 103.50 7

UACR (mg/mmol) 0.94 7.99 0.16 0.30 0.56 58

24h UAC (mg/L) 6.60 49.60 1.1 2 4 58

24h UAE (mg/24h) 11.92 104.33 2.07 3.61 6.84 84

24h UcreaC (mmol/L) 7.83 3.82 5 6.9 9.8 58

24h UcreaE (mmol/24h) 13.10 4.38 10.08 12.42 15.72 83

urinary volume (mL/24h) 1.89 0.67 1.401 1.828 2.322 81

SBP (mmHg)   128.49 15.61 118 127 138 23

WGS, weighted genetic score; eGFRcrea, estimated glomerular filtration rate based on creatinine; eGFRcysc, estimated glomerular 
filtration rate based on cystatin C; UACR, urinary albumin-to-creatinine ratio; UAC, urinary albumin concentration; UAE, urinary 
albumin excretion; UcreaC, urinary creatinine concentration; UcreaE, urinary creatinine excretion; SBP, systolic blood pressure.
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Table S7. Educational attainment phenotype in the Lifelines Cohort study

What is your highest completed education? Level US years of schooling N %

1) No Education (not finished elementary school) ISCED 0 1 77 1

2) Lower education (elementary school) ISCED 1 7 411 3

3) Lower or preparatory applied education (e.g.  lower 
technical school, lower vocational education in business 
and administration , preparatory middle-level applied 
education)

ISCED 2 10 2273 18

4) Middle general continued education(e.g. further 
extended primary education,  (further) extended primary 
education ,middle-level  applied education-short , 
preparatory middle-level applied education theoretical)

ISCED 2 10 2079 16

5) Middle-level  applied education(e.g. middle-level  
applied education-long, middle level applied/technical 
training, upper vocational education in business and 
administration)

ISCED 3 13 3546 28

6)  Higher general  and preparatory education( e.g. higher 
general continued education, preparatory scientific 
education, higher commoner’s school)

ISCED 3 13 1026 8

7) Higher professional education or pre university 
education(e.g. higher professional education, higher level 
applied/technical training, higher vocational education in 
business and administration)

ISCED 5 20* 2683 21

8) Scientific education (university) ISCED 5 20* 580 5

Lifelines educational attainment questionnaire, mapped to the International Standard Classification of Education (ISCED) 1997, with 
equivalent US years of schooling. *20 years imputed instead of 19 given that the questionnaire does not distinguish between ISCED 
level 5 and 6. 

Table S8. 2-stage least squares analysis in the Lifelines Cohort study

Outcome B se 95%CI LL 95%CI UL t Pvalue N

int lnUACR (LOD imputed) 0.109 0.044 0.023 0.195 2.494 1.26E-02 12617

ln UAC (LOD imputed) 0.010 0.033 -0.055 0.074 0.299 7.65E-01 12617

ln UAE (LOD imputed) 0.081 0.034 0.013 0.148 2.343 1.92E-02 12552

ln UcreaC -0.055 0.018 -0.090 -0.020 -3.083 2.05E-03 12617

UcreaE (mmol/24h) -0.023 0.133 -0.285 0.238 -0.176 8.61E-01 12552

Urinary volume (L/24h) 0.114 0.029 0.057 0.172 3.895 9.88E-05 12594

SBP (mmHg) -2.027 0.639 -3.279 -0.775 -3.173 1.51E-03 12652

Results of 2SLS analysis in Lifelines. Estimates are effects of a 4.2 years increase in years of schooling on residuals of outcomes 
adjusted for age, age2, age3, sex, and the first 10 genetic principal components. All urinary markers were determined in 24h urine 
collections. UACR, urinary albumin-to-creatinine ratio; UAC, urinary albumin concentration; UAE, urinary albumin excretion; UcreaC, 
urinary creatinine concentration; UcreaE, urinary creatinine excretion; SBP, systolic blood pressure; LOD, (lower) limit of detection; ln, 
natural log-transformed; int, inverse normally transformed. 
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Table S9. Genetic correlations 

trait 1 trait 2 rg se z P h2_obs h2_obs_se h2_int h2_int_se gcov_int gcov_int_se

Years of schooling eGFRcrea -0.0129 0.0158 -0.8151 0.415 0.0754 0.0055 1.0044 0.0233 0.0072 0.0077

Years of schooling eGFRcysc 0.0925 0.0378 2.4468 0.0144 0.1675 0.0667 0.9523 0.014 0.0175 0.0062

Years of schooling UACR 0.1131 0.0178 6.3547 2.09E-10 0.0434 0.0021 0.9533 0.0098 2.10E-06 0.0069

eGFRcrea eGFRcysc 0.5354 0.157 3.4095 0.0007 0.1665 0.0669 0.9532 0.0139 0.0943 0.0095

eGFRcrea UACR 0.3359 0.0279 12.0265 2.58E-33 0.0434 0.0021 0.9527 0.0088 0.0147 0.0078

eGFRcysc UACR 0.2091 0.0615 3.4009 0.0007 0.0423 0.0023 0.9687 0.0118 -0.0096 0.0059

Genetic correlations (rg) between traits were calculated using linkage disequilibrium (LD)-score regression implemented in the 
ldsc software package (version 1.01). GWAS summary statistics of European ancestry (sub) samples were used. To minimize bias 
due to poor imputation, summary statistics were restricted to HapMap3 SNPs. Single nucleotide polymorphisms (SNPs) were then 
filtered for missing values, minor allele frequency ≤ 0.01, ambiguous SNPs, duplicate SNPs, and SNPs in the major histocompatibility 
(MHC) region on chromosome 6.  Pre-computed LD-scores for Europeans were used (available online at https://data.broadinstitute.
org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). GWAS summary statistics of years of schooling lacked a sample size column; a 
sample size of N=766,345 was therefore assumed for each SNP.
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GENERAL DISCUSSION
In this thesis, I examined mechanisms that influence risk of chronic kidney 

disease (CKD). Of particular interest were socioeconomic disparities in CKD, and 

how knowledge of the genetics underlying CKD can help in understanding these 

disparities. In a range of studies, I applied a variety of traditional epidemiological 

methods as well as genetic epidemiological designs and concepts, such as 

genetic risk scores (GRS), a family design, a genome wide association study 

(GWAS), a gene x environment interaction study, and Mendelian randomization 

(MR). In Figure 1, I provide a graphical overview of the different chapters, the 

research questions (RQs 1-7), and their interrelationship within this thesis.

This chapter contains the general discussion of my findings. First, I reflect on 

these findings in a broader context, and comment on the methods applied in this 

thesis. Then, I discuss future perspectives and the implications of my findings 

for public health, as well as clinical and research practice.

Kidney	genetics

Physiology

Socioeconomic	status

Chronic
Kidney
Disease

CHAPTER	7
Gene	x	Environment

interaction

CHAPTER	5
Genetics	of	

kidney	function

CHAPTER	2
Educational	level

CHAPTER	6
Genetics	of
serum	urea

CHAPTER	3
Heart	rate	variability

RQ1 RQ4

RQ6

RQ5

RQ2

RQ7

CHAPTER	4
Familial	aggregation
and	heritabilites	of

kidney	traitsRQ3
CHAPTER	8
Genetically
determined

educational	level

Figure 1. Graphic representation of the research questions (RQs) and their interrelationship 
in the context of this thesis. White arrows represent hypothesized direction of effect. Black 
arrows reflect overlap between chapters in use of data, methods, and/or results.
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PART I: EVALUATING THE EFFECT OF SOCIOECONOMIC STATUS 
AND AUTONOMIC DYSFUNCTION ON RISK OF CKD

Chapter 2: Educational attainment is associated with risk of chronic kidney 

disease in the general population1 

The predominance of studies on the relation between socioeconomic status) and 

CKD are based on cross-sectional, US data2,3. In Chapter 2, I present longitudinal 

data from the PREVEND cohort study, a Dutch community-based observational 

study with serial follow-up, where I used educational attainment (EA) as an 

indicator of socioeconomic status. In this sample, participants with low EA were at 

a 25% higher risk of developing CKD, and on average had a 0.15 mL/min/1.73m2 

faster eGFR decline per year compared to those with high EA, taking into account 

age and sex. Further analysis suggested a mediating role for modifiable factors 

such as hypertension, diabetes, and anthropometric indices, corroborating several 

cross-sectional findings from a previous mediation analysis4. 

An important finding from this study is the suggested mediating role of poor diet, 

i.e. low EA is associated with CKD through poor diet, in particular low potassium 

intake (i.e. few fruits or vegetables5). A role of poor diet in exacerbating CKD risk 

has long been proposed6. However, there is a paucity of data as only one previous 

study formally tested mediation by poor diet4, but that study was limited because 

only questionnaire data on fruit intake was available. In contrast, I assessed diet by 

examining 24h urine excretions of nutrients as objective measures of nutrient intake 

(i.e. sodium, potassium, magnesium, and protein).

This study adds to the literature by providing insights into the mechanisms underlying 

the EA-CKD relation. In my models, the addition of potential mediators did not 

completely explain the association between EA and eGFR decline. This suggests the 

existence of non-traditional intermediate factors in the EA-CKD association. 

Box 1. Abbreviations

CKD = chronic kidney disease  

eGFR = estimated glomerular filtration rate  

EA = educational attainment  

GRS = genetic risk score  

GWAS = genome wide association study   

MR = Mendelian randomization  

SNP = single nucleotide polymorphism  
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Future study may focus on identifying these non-traditional factors. In addition, 

further study of the intermediate pathways is necessary. Importantly, establishing 

the interrelationship between the different mediating factors (e.g. the effect 

of poor diet on body-mass index and hypertension, and body-mass index on 

diabetes, etc.) may help in prioritizing targets for public health interventions to 

mitigate socioeconomic disparities in CKD.

Chapter 3: Low heart rate variability does not precede chronic kidney 

disease in the general population7

Given that non-traditional risk factors may play a role in the development of CKD, I 

examined the effect of low heart rate variability, as an index of autonomic dysfunction, 

on CKD incidence (Chapter 3). Low heart rate variability occurs in the presence of an 

imbalance in autonomic function, when parasympathetic function is reduced relative 

to sympathetic function. Potentially, autonomic dysfunction leads to renal damage 

through changes in renal hemodynamics, with some evidence for such a detrimental 

effect in animal models. This effect of low heart rate variability on kidney health may 

exist in humans as well. Previously, a community based study in the US reported 

associations of low heart rate variability with CKD related hospitalization and end-

stage renal disease8. Thus, the expectation was that low heart rate variability precedes 

new-onset CKD. In longitudinal analyses of data of 4605 subjects participating in 

the PREVEND cohort study, I observed a 50-100% higher risk of incident CKD for 

participants in the lowest quartile of heart rate variability measures, relative to those 

in the upper three quartiles. However, this association appeared to be completely 

driven by higher age in those with low heart rate variability and CKD. Thus, I could not 

corroborate a relation between low heart rate variability and CKD incidence. Rather, 

in post-hoc analyses, I found evidence suggesting an effect in the opposite direction 

(i.e. reverse causation), that is, CKD resulting in low heart rate variability, given that 

low heart rate variability was associated with kidney function only in those with CKD.

 

PART II: GENETICS OF KIDNEY FUNCTION AND THE TRANSLA-
TION TO CLINICAL AND RESEARCH PRACTICE

Chapter 4: The heritability of kidney traits is considerable, and family history is 

an important determinant of CKD in the general population

Using the unique multi-generational family design of Lifelines, I estimated the 

heritability, i.e. the contribution of genetic factors to inter-individual variation in 
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a number of kidney traits. I observed considerable heritability of eGFRcrea (44%), 

urinary albumin excretion (20%), and serum urea (31%), among others. Furthermore, 

I computed the relative risk of developing CKD conditional on affected relatives. 

Here, I found that compared to the general population, the risk of having CKD for 

an individual is three times higher in case of a first-degree relative with CKD. 

This study is the largest study of familial aggregation of kidney traits to date. 

An important observation in this study is that a positive family history strongly 

increases risk of CKD, suggesting a genetic component to kidney health. 

Furthermore, the heritability estimates provide an upper bound to the proportion 

of variance in kidney traits that can be explained by genetic factors. Future studies 

may focus on identifying these genetic factors.

Chapter 5: A genetic risk score based on 53 SNPs associated with eGFRcrea is a 

useful genetic proxy of kidney function, but possibly not of CKD susceptibility9

In addition to traditional clinical risk factors and lifestyle factors, genetic factors 

play a role in CKD. Recent genome-wide association studies (GWAS) have identified 

genetic variants associated with the CKD defining traits, eGFR10 and albuminuria11. 

To date, GWAS for eGFR have been the most successful in terms of number of 

discovered variants. In the most comprehensive GWAS at the time, 53 SNPs 

were reported to have associations with eGFR estimated from serum creatinine 

(eGFRcrea)12. Each of these SNP effects were small and therefore unlikely to have 

meaningful clinical impact. However, it is possible to aggregate all SNP effects 

into one composite genetic risk score (GRS). Such a GRS may have utility in 

clinical practice as a risk stratification tool, and in research as a proxy for genetic 

predisposition. In Chapter 5, I evaluated a GRS based on these 53 eGFRcrea SNPs. 

Using data from 3649 subjects from the PREVEND cohort study, I found modest 

but robust associations of the GRS with eGFRcrea outcomes. These results were 

validated using eGFR estimated from cystatin C (eGFRcysc) rather than creatinine; 

similar associations of the GRS with eGFRcysc were found. This is important, given 

that eGFRcrea may in part reflect muscle mass rather than kidney function per se. 

Another important finding is that the GRS was not associated with albuminuria, 

and had an effect on eGFR independent of the renal risk factors, body-mass index, 

smoking, hypertension, diabetes, high cholesterol, and history of cardiovascular 

disease. This indicates that the GRS is a true genetic proxy of kidney function, not 

of kidney damage or kidney risk factors. However, the GRS only explained 1% in 

eGFR variance in PREVEND. Furthermore, longitudinal data were inconclusive: the 
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GRS was not significantly associated with eGFR decline, nor with incidence of CKD 

conditional on baseline eGFR. I therefore conclude that the GRS is unlikely to have a 

meaningful role in risk prediction of CKD. However, as a true genetic proxy of kidney 

function, the GRS may have utility in population level research, and in designs such 

as Mendelian randomization. 

Chapter 6: Genome-wide association study of serum urea in Europeans 

identifies two novel genetic loci13

In Chapter 5, I used two different biomarkers for eGFR, namely serum creatinine 

and serum cystatin C. In Chapter 6, I investigated the genetics of serum urea (also 

known as blood urea nitrogen, BUN, when only the nitrogen component of urea 

is assayed). Serum urea is another commonly used, diagnostic marker for kidney 

function that was shown to be heritable in Chapter 4. Genetic data on this trait has 

been derived predominantly from East-Asian populations, where SNPs at 13 loci 

were known at the time14-17. Only few studies investigated this trait in European 

populations. These studies were either unsuccessful in finding associations18, or 

lacked a replication phase for the five associations that were found. I therefore 

performed the first meta-analysis of GWASs on serum urea in European populations, 

with a gene discovery phase in 13,312 participants from the Lifelines Cohort, and 

built-in replication of the findings in 7379 participants from three community based 

cohorts (PREVEND, NESDA, and EGCUT). I identified replicable associations of 

six SNPs at the genome-wide level (p <5x10-8), of which two were novel findings 

(rs2003313 on chromosome 11 near POU2AF1, and rs998394 on chromosome 3 in 

ADAMTS9-AS2).Furthermore, all SNPs previously identified in either East-Asians 

or Europeans were replicated, except for SNPs at three loci that are potentially 

specific to East-Asians.

I then aimed to identify potential causal genes involved in the pathways underlying 

urea metabolism and explore potential relevance to kidney function. Of the six 

identified SNPs, two were novel. Bioinformatics analysis of these two novel loci 

did not yield a clear relation to urea metabolism or kidney function, and thus, 

additional functional work is needed. An interesting candidate locus with regards 

to kidney function and disease is the MUC1 locus. In kidney biopsy specimens, I 

found one of the identified SNPs, rs914615, to be an expression quantitative trait 

locus (eQTL) for MUC1, i.e. SNP rs914615 is linked to MUC1 gene expression. Other 

SNPs tagging the MUC1 locus have been consistently associated with serum urea in 
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previous studies16. It is a locus with potential clinical relevance for several reasons: 

it is involved in ion channels and electrolyte balance; aberrant activation of MUC1 

has been related to CKD development and; a frameshift mutation in MUC1 causes 

medullar cystic kidney disease type 119,20. Furthermore, a recent GWAS reported 

associations of albuminuria with SNPs that tag the MUC1 locus11. Finally, in a recent 

study, differential expression of MUC1 in the kidney was suggested to affect eGFR21, 

adding evidence for a role of this locus in the development of kidney disease. 

Next, I investigated the overlap of my findings with genetic data on kidney function. 

Overlap can be expected between serum urea and creatinine-based indices of 

kidney function, as serum levels of both urea and creatinine are influenced by 

kidney function. In a previous family analysis, a genetic correlation (rg=0.56) was 

found between urea and creatinine18, suggesting pleiotropy between these two 

traits. The positive direction of the genetic correlation indicates that shared genetic 

factors between urea and creatinine affect serum levels of both in the same 

direction (i.e. higher urea is genetically correlated with higher creatinine). Adding 

to this evidence is my finding that the 53 SNPs associated with eGFRcrea were 

enriched for associations with serum urea; 14 out of 53 eGFRcrea SNPs were also 

associated with serum urea, much more than could be expected based on random 

chance. Furthermore, a GRS based on these 53 eGFRcrea SNPs (the same GRS as 

in Chapter 5) was modestly but significantly associated with serum urea. The effect 

of this GRS was attenuated after adjustment for eGFRcrea, suggesting that the GRS 

indeed affects serum urea levels through kidney function. 

Notwithstanding these statistically significant results, the clinical utility of these 

GWAS data on serum urea is rather limited. Together, the identified genetic 

variants explained no more than 0.56% of serum urea variation. My findings do, 

however, generate hypotheses for two novel loci (POU2AF1 and ADAMTS9-AS2) 

with regards to urea and kidney function biology that may be investigated in 

functional research. Furthermore, the GWAS results on serum urea may be utilized 

in validating proposed kidney function loci: if a genetic variant is truly a marker 

of kidney function, the variant is expected to be related to both higher eGFRcrea 

and lower serum urea (or vice versa). This is exemplified in the most recent GWAS 

on eGFRcrea10, in which the authors used GWAS results on BUN (the nitrogen 

component of urea) as a positive control to validate their findings.

PART III: UTILIZING GENETICS TO EXPLAIN SOCIOECONOMIC 
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DISPARITIES IN CHRONIC KIDNEY DISEASE

Chapter 7: Low educational attainment amplifies genetic risk of CKD in the 

general population

In Chapters 7 and 8, I applied the knowledge gained in previous chapters to 

integrate genetic methods with traditional social epidemiological methods. In 

Chapter 7, using data from the PREVEND cohort study, I present evidence for an 

amplifying effect of low EA on genetic risk of low eGFR. This finding was most 

pronounced in longitudinal analysis, where I observed an interaction between low 

EA and a high GRS. This interaction resulted in a more rapid rate of eGFR decline 

for those with both a high GRS and a low EA with a departure from additivity, 

meaning that the joint effects of a GRS and EA are larger than the sum of their 

main effects. Furthermore, these results suggest that high EA the genetic risk 

of eGFR decline, given that no apparent effect of a GRS was found in this group. 

This interaction could not entirely be explained by traditional risk factors (body-

mass index, smoking, cholesterol, blood pressure, and glucose), suggesting the 

existence of unmeasured mediating factors whose influence is not captured by 

traditional factors. 

These results add to the literature, as these are the first to provide evidence 

of a gene-environment interaction effect on kidney outcomes resulting from a 

modifying effect of EA. Importantly, I found that genetic risk of CKD is equally 

distributed across strata of EA, suggesting that there is no selection on kidney 

risk variants in those with low EA. Hence, the higher risk of CKD in those with low 

EA is attributable to an amplified effect of a GRS due to low EA itself or due to 

downstream effects of low EA. The results plead against genetic determinism 

in CKD, i.e. the risk of developing disease is not predetermined based on one’s 

genes. Given that the interaction effect was rather modest and only accounted for 

~0.1% of explained variance in rate of eGFR decline, its utility in risk stratification 

of individuals is negligible. However, if the effect is proven to be replicable in 

other samples, some benefit is to be expected from population level intervention 

on EA and its modifiable downstream effects in mitigating genetic risk of eGFR 

decline. Furthermore, although this study was sufficient powered to identify 

interaction effects on continuous outcomes, larger numbers are needed to 

assess whether the interaction effect results in increased risk of CKD, based on 

clinical cut-off values. Finally, the results warrant further characterization of the 
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mediating pathways between EA and CKD, and the specific genes involved in 

these pathways.

Chapter 8: The association between educational attainment and CKD may be 

confounded

The results in Chapter 2 suggest a reno-protective effect of higher EA, as higher 

EA was associated with slower eGFR decline and lower CKD incidence, However, 

it is uncertain whether this association represents a true causal relation due to the 

observational nature of the data. In Chapter 8, I applied a Mendelian randomization 

method that uses genetic proxies for EA to minimize bias, thereby strengthening 

causal inference. For the two-sample MR analysis, I obtained data on 1271 SNPs with 

known effects on years of schooling23, and interrogated the effect of these SNPs 

in genetic summary data from the CKDGen Consortium on eGFRcysc, eGFRcrea, 

and albuminuria (urinary albumin-to-creatinine ratio). I found that each one sd (4.2 

years) higher EA was associated with a 3.2% higher eGFRcysc, consistent with my 

prior hypothesis of a protective effect. However, I found a null effect on eGFRcrea. 

A higher EA was even associated with higher urinary albumin-to-creatinine ratio, 

suggesting that higher EA results in kidney damage. To further investigate this 

counterintuitive finding, I performed secondary analyses in individual-level data 

of the Lifelines cohort, in which more detailed albuminuria data are available. I 

computed a genetic score based on the 1271 SNPs for years of schooling, and 

used this score as a genetic proxy for years of schooling. The counterintuitive 

detrimental effect of EA on urinary albumin-to-creatinine ratio found in the two-

sample MR analysis was also observed using data of the Lifelines cohort. Here, I 

corroborated that this was due to higher urinary albumin excretion and not due to 

lower urinary creatinine excretion, thus not an artifact of lower muscle mass. This 

suggests that higher EA indeed leads to increased albuminuria.

Given the existing evidence on the protective effects of EA on cardiovascular 

health24,25, protective effects on renal health were expected. However, I found 

inconsistent effects of EA on eGFRcrea and eGFRcysc, and an unexpected 

detrimental effect on urinary albumin-to-creatinine ratio and urinary albumin 

excretion. Future study may investigate what mechanisms explain this apparent 

detrimental effect on albuminuria. Based on these results, I conclude that there 

is insufficient genetic evidence for a protective causal effect of EA on kidney 

health. Thus, future studies on disparities in CKD may investigate other potentially 
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causative socioeconomic factors such as income, occupation and occupational 

exposures, social deprivation, or area-level indicators of socioeconomic status.

 

METHODOLOGICAL CONSIDERATIONS
General comments

Important strengths of this thesis include its use of multiple datasets, and the 

multidisciplinary approach to analyzing these data. I combined the expertise 

from the fields of nephrology, social epidemiology, and genetic epidemiology. 

This combination resulted in a wide range of analytic approaches: traditional 

epidemiological methods in Chapters 2 and 3, a family study in Chapter 4, 

genetic risk score application in Chapters 5 through 8, a GWAS in Chapter 5, a 

gene-environment interaction study in Chapter 7, and a Mendelian randomization 

study in Chapter 8. In this section, I describe the most important data sources and 

comment on the methods applied in this thesis.

Data sources 

The research questions in this thesis were addressed using data from a number 

of existing sources. Here, I discuss the data sources that contributed most to this 

thesis, namely the Prevention of REnal and Vascular ENdstage Disease (PREVEND) 

cohort study, the Lifelines Cohort study and Biobank (Lifelines), and the Chronic 

Kidney Disease Genetics (CKDGen) consortium.

Data from the PREVEND cohort study26 was used for Chapters 2, 3, 5, 6, and 

7, while it contributed in part to Chapter 8. This prospective, observational 

cohort was sampled from the general population of the city of Groningen, the 

Netherlands. It was originally initiated to study the natural course of albuminuria 

and its association with renal and cardiovascular outcomes. PREVEND is ideally 

suited for investigating kidney outcomes due to its substantial follow-up duration 

(five consecutive examination rounds between 1997 and 2010). Importantly, 

PREVEND allows for precise measurement of kidney function and damage, with 

serum creatinine, serum cystatin C, and urinary albumin excretion being available. 

Furthermore, two 24h urine collections per examination round were available, 

allowing for optimal evaluation of albuminuria. The baseline sample consisted 

of ~8600 participants, of which a random sample of ~3500 was genotyped with a 

genome-wide array.

For Chapters 4, 6 and 8, data from Lifelines27 was used. Lifelines is a large, 
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population-based prospective cohort study sampled from the Netherlands’ three 

northernmost provinces (Groningen, Friesland, and Drenthe). From 2006 to 2013, 

~165,000 participants were included and extensively phenotyped. Currently, 

genotype data is available for ~13,500 participants, which were included for 

analysis in Chapters 6 and 8. For the baseline measurement, 24h urine collections 

were available, which allows for exact evaluation of urinary creatinine and 

urinary albumin excretion. However, only two surveys were currently available; 

follow-up data is therefore limited. Another limitation of Lifelines with regards 

to kidney research are that measurements of serum creatinine are available but 

not of serum cystatin C, and that there are no follow-up data on urinary albumin 

excretion, a determination of urinary albumin was discontinued after the first 

60,000 participants were measured at the baseline assessment. For Chapter 4, I 

exploited the multi-generational design in Lifelines to perform the largest family 

study on kidney outcomes to date, with >29,000 families and up to 4 generations 

per family. 

Another important data source was the Chronic Kidney Disease Genetics consortium 

(CKDGen). CKDGen is an international collaborative effort to investigate the genetics 

of kidney outcomes. For Chapter 5, 6, and 7, I constructed a genetic risk score 

based on the then-known 53 or 63 genome-wide significant SNPs reported by 

CKDGen in 2016 and 2017, respectively12,28. In Chapter 8, I used summary statistics 

derived from a more recent and comprehensive GWAS meta-analysis on eGFRcrea
10 

as well as the latest GWAS meta-analysis on urinary albumin-to-creatinine ratio11. It 

is noteworthy that both PREVEND and Lifelines have contributed data to CKDGen 

GWAS meta-analyses, either as discovery or replication cohort. 

Measurement of kidney outcomes

In clinical and research practice, kidney function is assessed as glomerular 

filtration rate (GFR), which is the rate of pre-urine production that is obtained 

by filtering blood in the glomeruli. The most accurate measurements of GFR are 

derived from the injection of exogenous markers such as inulin, or radioisotopes 

such as 125I-iothalamate. These markers are ideal for assessing kidney function, 

as their rate of excretion is dependent on their filtration through the glomerulus, 

and not on secretion or reabsorption in the renal tubule. However, the use of 

these markers for GFR measurement is costly and time-consuming, and therefore 

currently unavailable for large epidemiological studies. In such studies GFR is 
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therefore usually not measured but estimated from endogenous filtration markers 

that can be measured in serum, of which creatinine is the most widely used. 

However, given that creatinine is a product of muscle metabolism, creatinine-

estimated GFR may in part reflect muscle mass rather than kidney function per se, 

thereby introducing bias in estimates of GFR. An alternative marker is cystatin C. 

This marker is not sensitive to variations in muscle mass, although other extrarenal, 

non-GFR factors partly explain cystatin C serum concentration. It has been shown 

that equations that incorporate both creatinine and cystatin C provide the most 

reliable estimates of GFR29,30. In this thesis, I therefore estimated GFR based on both 

creatinine and cystatin C whenever possible (Chapter 2, 3, 5 and 7). Furthermore, 

I used cystatin C estimated GFR as a positive control to creatinine-estimated GFR 

(Chapter 5 and 8). However, despite many improvements over the past decade, the 

accuracy of estimating equations is a debated topic31-33. Novel filtration markers such 

as beta-2-microglobulin, beta-trace-protein, and metabolite profiles, as well as the 

combination of these markers in novel estimating equations, may eventually result 

in a more accurate approximation of GFR34,35. This will not only lead to improved risk 

stratification, but also in increased power for (genetic) epidemiological studies with 

kidney function as trait of interest.

Albuminuria is a measure of kidney damage and a predictor of cardiovascular 

morbidity and mortality. Measurement of urinary albumin excretion in 24h 

urine collections is considered the gold standard. However, 24h collections 

are cumbersome, and therefore not always available in large epidemiological 

cohorts. A more convenient method to detect albuminuria is to measure albumin 

and creatinine concentrations in spot urine specimens, and then calculating the 

urinary albumin-to-creatinine ratio; adjusting for creatinine is a method to take 

into account variation in albumin concentrations due to concentration/dilution 

dependent on hydration status. Urinary albumin excretion and urinary albumin-

to-creatinine ratio correlate well, although misclassification can occur e.g. due to 

differences in muscle mass36. Due to the poor availability of 24h urine collections 

for large samples, GWAS on albuminuria have thus far used outcomes based 

on urinary albumin-to-creatinine ratio11,37. A major strength of this thesis is the 

availability of 24h urine collections, which facilitates gold standard outcome 

definitions (Chapter 2, 3, 4, 5, and 8), and where necessary, verification of results 

from urinary albumin-to-creatinine ratio based outcomes (Chapter 4 and 8).

Educational attainment as an indicator of socioeconomic status
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Socioeconomic status is defined as the social standing or class of an individual or 

group. In this thesis, I used EA as the main indicator of socioeconomic status. EA 

is sometimes preferred because of its comparatively easy measurement and high 

response rate. Education is usually completed in young adulthood and predicts 

occupation and income, and therefore is expected to show overlap with these 

indicators of socioeconomic status in their association with CKD. Theoretically 

however, indicators of socioeconomic status are not interchangeable and have 

different implications. EA reflects cognitive functioning, material and intellectual 

resources from the family of origin, and health literacy38-40 As EA is usually 

completed in young adulthood, it is unlikely that there is reverse causation by 

chronic diseases, such as CKD, that usually occur at later age. However some 

selection may be present as health at young age affects EA. A more direct measure 

of socioeconomic status is income. Income is a proxy for the material resources 

an individual can convert to health-enhancing commodities and services, and 

arguably the best indicator of actual, material living standards39. However, income 

may be sensitive to reporting bias, and income may not necessarily reflect 

disposable income, which is dependent on household composition, taxations, 

and hypothecated income (e.g. food stamps) that are difficult to measure. 

Furthermore, health may directly affect income, and therefore reverse causation 

may bias the results. 

Recent meta-analyses that synthesize the literature on the relation between 

socioeconomic status and CKD2,3 show clear associations of socioeconomic 

indicators, such as low EA, and low household income, with higher prevalence 

of CKD, lower kidney function measures, and higher levels of kidney damage 

markers. These meta-analyses also showed large heterogeneity between study 

populations, which may possibly be explained by between-country differences in 

lifestyle, ethnicity, educational and healthcare systems, and/or differences in risk 

factor prevalence. Additionally, the strength of each indicator may vary between 

countries. For example, it has been demonstrated that in the US, a nation with 

high income inequality, low income is more strongly associated with CKD than low 

education. In contrast to the US, health care access is less income-dependent in 

the Netherlands, which may explain that low income does not seem to result in 

excess CKD risk in the Netherlands41. Given that most of the data I used for this 

thesis were sampled from the Dutch population, I chose to use EA rather than 

income as the main indicator of socioeconomic status. To allow comparison with 
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other countries, I mapped Dutch educational levels to the International Standard 

Classification of EDucation (ISCED)42.

EA was not associated with eGFR in cross-sectional analyses conditional on age 

(Chapter 7). Strong confounding with age may explain this lack of cross-sectional 

association: in the Netherlands, schooling until age 16 has been compulsory 

by law since 1969 (Dutch: “leerplichtwet”). Since 2007, due to an amendment to 

the 1969 law, those aged between 16-18 years can drop out only if they have a 

qualification (Dutch: “kwalificatieplicht”) equivalent to, or higher than, secondary 

vocational schooling (Dutch: MBO ≥ level 2) or higher secondary schooling (Dutch: 

HAVO/VWO)43 (ISCED level 3). Before 1969, schooling was only compulsory for 

children aged 6-14. This policy may explain that in the Netherlands, low EA (ISCED 

< level 3) is less prevalent among more recent cohorts (e.g. those born after the 

1950s), and that those with low EA have higher age on average. In longitudinal 

analyses however, I observed a convincing educational gradient in eGFR decline 

(Chapter 2 and Chapter 7) and CKD incidence (Chapter 2) independent of age. 

Future work may include a more in-depth examination of cohort effects. In 

particular, the cohort effects that relate to past educational policy changes may 

provide additional insights into the effects of EA on CKD. Potentially, if several 

methodological challenges can be overcome (e.g. identifying a control group, 

or an exogenous source of variation in exposure), these policy changes can be 

analyzed as natural experiments44-46.

Heritability, GWAS, and genetic scores

Heritability is the fraction of interindividual variation of a trait that can be 

attributed to genetic factors, in a given population47. Studies that yield insights 

into the heritability of a disease or a trait provide clues regarding their causes, 

and are a first step towards disentangling genetic and environmental effects. 

Furthermore, heritability estimates indicate an upper bound of the proportion of 

phenotypic variance in traits that can be explained by genetic factors. Traditional 

methods for estimating heritability include the twin study, in which phenotypic 

similarity of identical (monozygotic) twin pairs is compared with non-identical 

(dizygotic) twin pairs48. However, twin studies potentially overestimate heritability 

due to unaccounted gene x gene interaction, gene x environment interaction, 

gene-environment correlation and violations of assumptions49-52. Furthermore, 

obtaining a representative sample of twins is difficult, and may lead to reduced 
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statistical power and generalizability. An alternative is to recruit families rather 

than twins. Through leveraging the multigenerational family design of Lifelines, I 

obtained heritability estimates of a number of kidney traits, including eGFRcrea, 

albuminuria, and serum urea (Chapter 4), and found that the heritability of these 

traits is considerable. A popular method of identifying potential genetic factors for 

any heritable trait is the GWAS, a data-driven, hypothesis-free method of skimming 

the genome for associated genetic variants. Below, I discuss some basic concepts 

of GWAS and discuss the methods applied in the GWAS I performed in Chapter 6. 

The human genome consists of >6 billion nucleotide bases (guanine, cytosine, 

thymine, and adenine; G, C, T, A), arranged in base pairs (G-C or T-A). Most of 

these are fixed: any random pairing of two individuals will show >99.5% overlap 

in genomic sequence. The genetic factors underlying differences in traits are 

believed to reside within the remaining <0.5% of the genome. The most common 

type of variation is the single-nucleotide polymorphism (SNP), a naturally occurring 

variation in a single nucleotide base at specific positions in the genome, with an 

average frequency of ~1 in 1000 nucleotides53. As an example, most individuals 

may have a G nucleotide at a certain position (the reference allele), but in some, 

the position is instead occupied by an A nucleotide (the alternative allele). SNPs 

in coding regions potentially affect the protein product of a gene, whereas SNPs 

in non-coding regions may tag functional SNPs that are in linkage disequilibrium 

(LD, the non-random association of alleles) in coding regions, or may affect gene 

expression. Much of the heritability of traits may potentially be traced back to 

SNPs. Each individual has a paternally and a maternally inherited allele, therefore 

an individual can have 0 1, or 2 reference alleles of each SNP. In GWAS, these 

SNP alleles are tested for their association with a trait, assuming allele effects 

are additive. In a typical GWAS in European samples, ~106 independent SNP tests 

are performed, increasing the risk of false positive findings. To minimize this risk 

the consensus for genome-wide significance has been set to a strict, Bonferroni 

adjusted threshold of p = 0.05/106 = 5 x 10-8. A source of bias in GWAS estimates 

of genetic effects is population stratification: genetic drift or ancestry may lead 

to systematic differences in allele frequencies between subgroups in a sample. 

These systematic differences may lead to confounded effect estimates. Genetic 

principal components (PCs) may capture variation due to possible subgroup 

effects, and I therefore adjusted for these PCs in those studies in which I assessed 

SNP effects (Chapter 5 through 8).
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In Chapter 6, I performed a GWAS on serum urea, a heritable indicator of kidney 

function. With GWAS on EA and eGFRcrea reaching sample sizes of over a million 

participants10,23, the GWAS in Chapter 6 is a relatively small study (N = 20,500). 

This may explain that the SNPs identified in this study only explained ~0.6% of 

variance in serum urea. In Chapter 4, I estimated the heritability of serum urea 

to be 30%, meaning that many of the genetic factors underlying this trait remain 

to be discovered. Nevertheless, the results were highly replicable and consistent 

with previous studies in non-European ancestry samples. The results inform 

studies that explore the biological functions of the identified genetic loci, and 

their relevance to urea metabolism and kidney function.

In addition to providing biological insights, GWAS results may be used for trait 

prediction. Generally, SNPs that are identified in GWAS have small effects. A 

genetic risk score (GRS, in this thesis also referred to as weighted genetic score, 

WGS) aggregates these effects, thereby greatly increasing statistical power 

compared to using single SNP effects. Therefore, the GRS is a practical summary 

score of genetic predisposition for the traits addressed in this thesis: eGFR 

in Chapter 5, 6, 7, and EA in Chapter 8. There are however limitations to the 

GRS. Importantly, the different genetic scores used in this thesis only explain a 

modest fraction of between-individual variation in traits: a 63-SNP GRS for eGFR 

explained only 1% in eGFR variance in PREVEND, while a 1271-SNP GRS for years 

of schooling explained 4% of EA in Lifelines. With ever-increasing sample sizes for 

GWAS, it is expected that more SNPs will eventually be detected, with effects that 

are estimated more precisely. Furthermore, up until now GWAS have mostly been 

limited to study the effects of common SNPs (i.e. SNPs with allele frequencies of 

≥1%), as these could be economically genotyped with the usual GWAS arrays. As 

sequencing techniques become more affordable, whole genome sequencing for 

large samples will become feasible in the near future. With such whole genome 

sequence data becoming available, rarer variants (with allele frequencies well 

below 1%) can be detected that are predicted to have greater effects54,55. It is 

expected that these rare variants will explain a substantial part of the heritability 

that has thus far been hidden52,56. An updated GRS incorporating these rare SNPs 

may be a more comprehensive summary measure of genetic risk.

The GRSs used in this thesis were comprised of genome-wide significant SNPs. 

However, non-significant SNPs may contain additional information and thus can 

contribute to trait and disease prediction. Methods have been developed to 
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include these non-significant SNPs into genome-wide polygenic scores (PGS). 

For coronary artery disease, such a PGS has been reported to identify individuals 

with elevated risk with a predictive power comparable to that of rare monogenic 

mutations that typically convey a several-fold increase in disease risk57. Future 

work could include the evaluation of such PGSs based on the recent eGFR10 and 

urinary albumin-to-creatinine ratio11 GWASs for kidney outcomes.

With regards to Chapter 7, several specific limitations of the GRS need to be 

addressed. First, by using a GRS in interaction analysis, it is implicitly assumed that 

all genetic variants included in the GRS have directionally consistent interaction 

effects with EA. Another implicit assumption is that the same set of genetic 

variants affect eGFR in each category of EA. To check these assumptions, single 

SNP interaction effects need to be assessed, but this requires large sample sizes 

and is therefore beyond the scope of this thesis. Future research may include 

genome-wide interaction studies (GWIS) to identify the genetic variants whose 

effects are modified by EA. Similar GWIS have been performed to investigate a 

range of health behaviors (e.g. smoking, alcohol consumption, physical activity) 

and their modifying role in genetic effects on blood pressure, lipid levels, and 

obesity58-61.

In each study in this thesis, I investigated European ancestry populations, and 

therefore I cannot generalize my findings to other ethnicities. Of note, disparities 

in GWAS exist, as currently, most GWAS are performed in European ancestry 

populations62-64. This is also true for the GWAS I performed in Chapter 6, and 

the GWASs that were used to create the GRSs in this thesis. Given that there 

may be subtle ethnic differences in the genetic architecture of disease and social 

traits, such as eGFR and EA, a GRS based on data from white populations may not 

perform similarly in populations with other ethnicities65. This is problematic, given 

that socioeconomic status is closely related to ethnicity66-68, and that it is likely 

that ethnic background influences the effect of socioeconomic status on CKD69,70. 

Furthermore, if the ethnicity-gap in genetic knowledge is not bridged, this may 

in itself contribute to socioeconomic disparities71. Future work should therefore 

include GWAS in a multiethnic context, and expansion of GWAS into non-white 

populations. This allows for the creation of more inclusive and/or ethnicity-

specific GRSs, and thereby allow for a more comprehensive examination of the 

effects of socioeconomic status on CKD.
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Causal inference

In this thesis, I examined several factors for their association with kidney outcomes. 

Ideally, to establish causality, one would design a controlled experiment. In such 

a setting confounding bias would be minimized, and differences in outcomes 

could be attributed to intervention/exposure effects. However, experimentally 

establishing a causal effect of education on kidney outcomes would be unfeasible 

due to ethical and practical reasons: participants would have to be randomly 

assigned to different educational levels at a young age, and undergo follow-up for 

several decades until CKD occurs in mid-to-late life. Instead, the research in this 

thesis was based on observational data and thus, conclusions regarding causality 

should be interpreted with caution. Below, I describe a number of strategies 

employed in this thesis to strengthen causal claims in observational studies.

In Chapters 2, 3, 5, and 6, I applied a longitudinal study design. To a certain 

extent, a longitudinal design helps in causal inference as it provides evidence 

of temporality, that is, whether the hypothesized explanatory variable precedes 

the outcome variable, or whether there is in fact reverse causation. In Chapter 3, 

I performed a replication study of a previous observational study to assess the 

consistency of the heart rate variability-CKD association, that is, whether I would 

reach similar conclusions regarding this association in a different, independent 

sample to the original discovery sample. In Chapter 6, replication analyses were 

built into the GWAS study design to assess consistency of SNP effects, thereby 

strengthening the conclusions in this chapter.

To minimize confounding bias, I performed multivariable analyses and adjusted 

my estimates for a number of known risk factors presumably influencing both 

exposure and outcome. However, estimates will only truly be unbiased if all 

confounding factors are accounted for and measured precisely, both of which are 

unverifiable conditions. Because of this, confounding is a threat to observational 

studies in general and, therefore, also a limitation of the observational studies 

reported in this thesis. 

To examine mechanisms through which EA could affect CKD, I performed 

mediation analysis. Mediation refers to the mechanism in which the exposure 

affects the outcome (fully or partly) through a mediator variable, in which 



209General discussion

9

exposure and mediator are on the same causal pathway. In Chapter 2, I examined 

several risk factors presumed to be mediators of the EA-CKD association. To 

estimate their mediation effects, I applied causal mediation analysis, a method 

within the counterfactual framework72. A counterfactual outcome is the potential 

outcome that would have occurred if the exposure were different, i.e. counter 

to fact; with everything else held constant, differences in the outcome can be 

attributed to differences in the exposure. In the mediation analysis applied in 

Chapter 2, counterfactuals of exposure and mediator variables were simulated 

from the original data using a bootstrap procedure. Then, from the bootstrap 

simulations of exposures, mediators, and outcomes, I estimated average direct 

effects and mediation effects. I examined mediation effects of clinical risk factors 

(hypertension, diabetes, high cholesterol, overweight) and health behaviors 

(smoking, alcohol, diet) separately, but not in conjunction with each other. This 

exploratory approach was chosen given that the theoretical framework regarding 

the interplay of these different variables is incomplete. Furthermore, time-varying 

effects of mediators were not considered, as the methodology to incorporate 

these effects has only recently been developed73. Future work may expand the 

models to include effects of multiple potential mediators, and to include time-

varying effects using methods such as structural equation modelling74. 

As previously mentioned, confounding and reverse causation limit causal inference 

in observational studies. To strengthen causal inference in observational research, 

methods such as Mendelian randomization (MR) may be considered. In Chapter 

8, I performed an MR study to assess causal effects of EA on kidney outcomes. 

MR is a form of instrumental variable analysis, a method applied to minimize 

confounding in observational studies75. Instrumental variables are proxies of a 

given exposure that must meet the exclusion restriction criterion: the instrument 

is related to the outcome only through the exposure. It has been proposed that 

individual genotype can be used as an instrumental variable76. Genetic variants are 

randomly assigned during meiosis, and therefore unrelated to any confounders. 

Furthermore, given that genetic variants are fixed throughout life, there cannot 

be reverse causation. MR studies therefore resemble an intention-to-treat 

analysis of a randomized controlled trial, in which participants are assigned to an 

intervention group based on random assignment. This randomization procedure 

ensures equal distribution of confounding factors in each intervention group, thus 

a difference in outcome between intervention groups can assumed to be due 
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to exposure to the intervention. A number of methods are available within the 

MR framework. In Chapter 8, I applied a two-sample MR design using summary 

genetic data77, as well as a one-sample MR design using a GRS in individual-level 

data78. The potential of MR, as well as its limitations and possible threats, have 

been extensively described in literature76,79-83. Below, I discuss arguably the most 

important threat to MR, namely violation of the exclusion restriction criterion due 

to pleiotropy of genetic instruments. 

MR provides unbiased causal estimates on a given exposure-outcome relation 

if assumptions regarding instrument validity are met. An important criterion for 

validity is that the genetic variant only affects the outcome through the exposure. 

If the biological function of a genetic variant is well-defined, this strengthens the 

conclusions drawn from MR. As an example, Holmes et al. used the rs1229984 

variant in the alcohol dehydrogenase 1B gene (ADH1B) as a genetic instrument to 

study the effect of alcohol consumption on risk of coronary heart disease84. The 

ADH1B gene is known to play a specific role in alcohol metabolism, and certain 

variants in this gene are known to influence tolerance to alcohol and therefore 

consumption of alcohol. Hence, individuals are randomly assigned to alcohol 

consumption based on their genotype for ADH1B, and the effect of ADH1B gene 

variants on coronary heart disease can be attributed to alcohol exposure. For a 

complex trait such as EA, the biological functions of the 1271 genetic variants 

that have been identified in the most recent GWAS on EA23 are poorly known. 

Furthermore, variants identified in GWAS may not to be causal themselves but 

may be linked to causal variants through linkage disequilibrium. Importantly, it is 

possible many of these variants have pleiotropic effects that influence risk of CKD 

not only through EA, but also through other pathways. Such horizontal pleiotropy 

may result in invalid estimates, in particular when the pleiotropy is unbalanced: 

unbalanced pleiotropy results in a net positive or negative bias in causal estimates. 

Methods have been developed that are robust to varying degrees of violations 

of MR assumptions due to pleiotropy, including MR Egger85, outlier adjustment, 

and median- and mode based methods86,87, and the methodology is quickly 

advancing. In Chapter 8, in case of suspected pleiotropy, I applied a range of 

complementary MR methods to test the robustness of my findings. In general, 

these complementary methods yielded results comparable to that of standard 

inverse variance weighted MR, thus strengthening my conclusions.
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As is the case in all observational studies, including MR, selection, or conditioning 

on a selection variable, may lead to collider bias. A collider is a variable that 

is causally downstream of both exposure and outcome; conditioning on such 

a variable may result in biased effect estimates and spurious associations88,89. 

For the MR results in Chapter 8, collider bias is a possible explanation of the 

counterintuitive detrimental effect of EA on urinary albumin-to-creatinine 

ratio found in two-sample MR. However, the results of two-sample MR were 

corroborated in the Lifelines cohort. No selection criteria for either EA or kidney 

traits were applied for recruitment into Lifelines or its genotyped subset. Lifelines 

was assessed to be generally representative of its source population of the 

Northern part of the Netherlands, with only slight undersampling of those with 

low EA27,90,91. Therefore, selection bias is likely only minor and hence unlikely to 

have seriously affected the MR results92. Nevertheless, some selection is inherent 

given that this MR study is based on genetic data sampled from high income 

countries with relatively few barriers to health care. Inclusion of genetic data 

sampled from low to middle income countries in future studies may yield more 

generalizable results.

MR is a powerful method that may resolve a number of problems with causal 

inference from observational data, especially the problems that arise due 

to confounding and reverse causation. However, many potential threats (e.g. 

instrument pleiotropy) affect MR, and thus it is not a panacea. Some have argued 

that due to its many threats, null MR results are more likely to be true than non-null 

results82. Rather than above described traditional methods, MR may have a place 

next to these methods. Ultimately, synthesizing evidence from different designs, 

each with complementary sets of strengths and limitations - an approach coined 

‘triangulation’93 - may be the best strategy for drawing conclusions concerning 

causality. 
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FUTURE PERSPECTIVES
Towards a better understanding of socioeconomic disparities in CKD

One of the major goals in this thesis was to elucidate the mechanisms underlying 

socioeconomic gradients in CKD risk, with a focus on the role of EA. Observational 

data have suggested that low EA is associated with CKD risk through a complex 

of pathways that include mediation by lifestyle factors and amplification of 

genetic risk. However, observational and genetic evidence from a MR study 

did not converge on a convincing protective effect of EA. Thus, much of the 

observed evidence linking EA to CKD may instead reflect an influence of other 

socioeconomic factors closely related to EA rather than EA per se, e.g. income, 

occupational factors, social deprivation, or area-level factors. Future research on 

socioeconomic gradients in CKD may focus on these factors rather than EA. 

The data described in this thesis indicate that EA do not influence CKD risk. 

However, this data was sampled from high-income populations. Therefore, EA 

cannot be dismissed as a risk factor in lower income countries where health 

care access may be more dependent on EA. Inclusion of data from lower income 

countries, and countries where differences in EA and income are more pronounced, 

may yield more definitive insights into socioeconomic disparities in CKD.

Public health: opportunities for primary and secondary prevention of CKD

Given the inconsistent evidence for a protective effect of high EA against CKD in 

this thesis, intervention policies on EA itself, e.g. increasing school-leaving age, 

may not result in reduced rates of CKD. Nevertheless, low EA groups may still 

be a target population for preventive policies or screening. In low EA groups, 

the higher prevalence of modifiable renal risk factors (e.g. poor diet, smoking, 

high body-mass index, hypertension, and diabetes) could be a target for primary 

CKD prevention. Furthermore, I demonstrated that family history of CKD and a 

GRS based on SNPs for eGFR are associated with a higher prevalence of CKD, 

independent of clinical risk factors. Thus, prediction models for CKD may benefit 

from the inclusion of family history and/or a GRS. These models could then be 

used for screening purposes and early detection of CKD. Future studies may 

evaluate whether specifically targeting low socioeconomic status groups (defined 

by EA or otherwise) for primary and secondary prevention may be effective in 

reducing socioeconomic disparities in CKD. 
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Future genetic studies: bigger, more advanced, more inclusive

Contemporary genetic epidemiology is characterized by great increases in 

sample sizes and rapid advances in methodology, facilitated by affordable 

genotyping technology. These trends show no signs of slowing down, and it 

can be expected that due to decreasing costs, whole genome sequencing 

will gradually replace the usual GWAS arrays94-96. This means more power and 

more precision to identify common as well as rare genetic variants, leading 

to improved genetic prediction and possibly genetics-driven personalized 

medicine. In addition, population-based research is expected to increasingly 

adopt multigenerational, within-family designs, which allows for examination of, 

and control for, transgenerational effects97-100. These developments hold promise 

to greatly increase our understanding of the genetic underpinnings of health and 

behavior. Furthermore, transethnic GWAS are becoming commonplace, and an 

increasing number of scientists are pushing for genetic studies to be less Euro-

centric and more inclusive with regards to ethnicity62,64,71,101-103. Thus, there is hope 

that the ethnicity gap in genetic knowledge will eventually be bridged, allowing a 

greater diversity of people to benefit from genetic data.

Collaboration

On a more general note, future studies will benefit from the continued collaboration 

between researchers. The disappointing results from early candidate gene 

studies and poor replication due to Winner’s curse104-106 has driven genetic 

epidemiologists to collaborate and share data on a large scale. This facilitated 

the inclusion of greater samples, harmonization of data, exchange of expertise, 

advancement of methodology, and systematic replication of results, thereby 

ensuring high quality, reliable science. In addition, much of the produced genetic 

data is made publicly available, through platforms such as the GWAS Catalog107, 

LD Hub108, and MR Base109, which is a major stimulus for follow up study. The 

genetic studies performed in this thesis (Chapter 5 through 8) utilized data that 

was made possible due to such collaboration. A growing number of researchers, 

including those from non-genetic fields such as the social and behavioral 

sciences, continue to follow this example of collaboration and, by doing so, 

contribute to more efficient allocation of research resources and to solving the 

replication crisis in science110,111.
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Concluding remarks

The results in this thesis provide valuable insights into the causes of kidney 

disease. First, I corroborate the existence of socioeconomic disparities in kidney 

disease, as those with lower education tend to have higher rates of CKD and 

faster rates of kidney function decline. Second, those with a positive family history 

have a threefold higher risk of having CKD, and there is strong evidence for a 

genetic component to kidney traits such as eGFR, albuminuria, and serum urea. 

Third, genetic risk of CKD may be offset by higher socioeconomic status. Finally, 

educational level may not be the main driver of socioeconomic disparities in 

chronic kidney disease, as the genetic evidence for a causal effect of educational 

level is weak. 
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NEDERLANDSE SAMENVATTING

INTRODUCTIE
In dit proefschrift onderzocht ik mechanismen die het risico op chronische nierziekte 

(CNZ) beïnvloeden. In het bijzonder was ik geïnteresseerd in sociaaleconomische 

ongelijkheden in CNZ, en hoe kennis van de genetische structuur van CNZ kan 

helpen in het begrip van deze ongelijkheden. Hiertoe verrichtte ik een aantal studies, 

gebruik makende van een verscheidenheid aan methodes. Naast traditionele 

epidemiologische methodes, zoals cohortstudies en survivalanalyse, paste ik 

moderne, genetisch-epidemiologische designs en concepten toe, zoals genetische 

risicoscores (GRS), familiestudies, de genoom-brede associatiestudie (Engels: 

genome-wide association study, GWAS), de gen-omgeving interactiestudie, en de 

Mendeliaanse randomisatie (MR) studie. In Hoofdstuk 1 bespreek ik wat er reeds 

bekend is in de literatuur, en introduceer ik de onderzoeksvragen. In Figuur 1 geef 

ik een grafisch overzicht van de verschillende hoofstukken, de onderzoeksvragen 

(OV1-7), en hun onderlinge verband in dit proefschrift. 

Niergenetica

Fysiologie

Sociaaleconomische	status

Chronische
nierziekte

HOOFDSTUK	7
Gen-omgevings

interactie

HOOFDSTUK	5
Genetica	van

nierfunctie

HOOFDSTUK	2
Opleidingsniveau

HOOFDSTUK	6
Genetica	van	serum

ureum

HOOFDSTUK	3
Hartslagvariabiliteit

OV1 OV4

OV6

OV5

OV2

OV7

HOOFDSTUK	4
Familiaal	voorkomen

van	nierziekte	en
erfelijkheid	van

niergerelateerde
kenmerken

OV3

HOOFDSTUK	8
Genetisch	bepaald
opleidingsniveau

Figuur 1. Grafische weergave van de verschillende onderzoeksvragen (OV) en hun 
onderlinge verband in het kader van dit proefschrift. Witte pijlen geven de hypothetische 
richting van het effect weer. Zwarte pijlen geven de overlap weer tussen de verschillende 
hoofdstukken met betrekking tot de gebruikte data, methodes, en/of resultaten.
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Het onderzoek voor dit proefschrift bestaat uit een zevental studies, elk apart 

beschreven in Hoofdstuk 2 t/m 8. Het overkoepelende doel van dit onderzoek was 

het verkrijgen van een beter inzicht in de oorzaken van CNZ, en in het bijzonder 

in de sociaaleconomische verschillen in het voorkomen van CNZ. Thematisch 

kan onderscheid gemaakt worden tussen traditioneel (sociaal-)epidemiologisch 

onderzoek (DEEL I: Hoofdstuk 2 en 3), genetisch-epidemiologisch onderzoek 

(DEEL II: Hoofdstuk 4, 5 en 6), en een combinatie van beide (DEEL III: Hoofdstuk 

7 en 8). Hieronder volgt een samenvatting van mijn bevindingen. 

DEEL I: EVALUATIE VAN HET EFFECT VAN 
SOCIAALECONOMISCHE STATUS EN AUTONOME DYSFUNCTIE 
OP HET RISICO OP CHRONISCHE NIERZIEKTE
Hoofdstuk 2: Opleidingsniveau is geassocieerd met risico op chronische 

nierziekte in de algemene bevolking

Dat wat bekend is over de relatie tussen sociaaleconomische status en CNZ 

is grotendeels gebaseerd op cross-sectioneel onderzoek (d.w.z. onderzoek 

gebaseerd op een dwarsdoorsnede van de bevolking) uit de Verenigde Staten. 

In Hoofdstuk 2 beschrijf ik een longitudinaal onderzoek (d.w.z. onderzoek 

waarbij mensen gedurende een bepaalde tijd worden gevolgd) dat ik heb 

uitgevoerd met data van de PREVEND studie, een Nederlandse observationele 

studie met deelnemers die zijn gerekruteerd uit de algemene bevolking. In dit 

onderzoek gebruikte ik het hoogst behaalde opleidingsniveau als maat voor 

sociaaleconomische status. Ik laat zien dat, vergeleken met deelnemers met een 

hoog opleidingsniveau (HBO of hoger), diegenen met een laag opleidingsniveau 

(MBO niveau 2 of lager) een 25% hoger risico hebben op het ontwikkelen van CNZ. 

Daarnaast hebben diegenen met een laag opleidingsniveau een grofweg 15% per 

jaar snellere nierfunctieachteruitgang hebben. Verkennende analyses suggereren 

dat dit wordt veroorzaakt door het vaker voorkomen van hoge bloeddruk, 

suikerziekte, en overgewicht bij diegenen met een laag opleidingsniveau.

De resultaten verkregen uit deze studie dragen in een belangrijke mate bij aan 

de bestaande literatuur vanwege de verkregen inzichten in de onderliggende 

mechanismen van de relatie tussen opleidingsniveau en CKD. 

Een belangrijke bevinding van deze studie is dat dieet mogelijk een mediërende 

rol speelt: er is suggestief bewijs dat laag opleidingsniveau tot CNZ leidt via een 
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ongezond dieet, en in het bijzonder lage kaliuminname (d.w.z. weinig groente en 

fruit). Ondanks dat een dergelijke mediërende rol reeds lang werd verondersteld, 

was er tot nu toe weinig bewijs hiervoor. 

Een andere belangrijke bevinding is dat hoge bloeddruk, suikerziekte, overgewicht, 

en een ongezond dieet niet volledig verklaren waarom lager opgeleiden een 

hoger risico hebben op nierfunctieachteruitgang. Dit suggereert dat er andere, 

niet-traditionele risicofactoren zijn die de relatie tussen opleidingsniveau en CNZ 

mediëren. Toekomstig onderzoek zou zich kunnen richten op het identificeren van 

deze, nog onbekende, factoren. Verder zou kunnen worden onderzocht hoe de 

verschillende mediërende factoren zich tot elkaar verhouden. Met een completer 

beeld van de mechanismen die bij laagopgeleiden leiden tot CNZ, zouden we 

een rangschikking kunnen maken van factoren waarop kan worden ingegrepen 

teneinde sociaaleconomische ongelijkheden in CNZ te verkleinen.

Hoofdstuk 3: Een lage hartslagvariabiliteit gaat niet vooraf aan 

chronische nierziekte in de algemene bevolking

Niet-traditionele risicofactoren kunnen een rol spelen in de ontwikkeling van 

CNZ. Een voorbeeld van een dergelijke factor is een lage hartslagvariabiliteit 

(Engels: heart rate variability, HRV) als maat voor een dysfunctioneel autonoom 

zenuwstelsel. In Hoofdstuk 3 beschrijf ik een onderzoek waarin ik onderzocht of 

een lage HRV invloed heeft op het ontwikkelen van CNZ.

Een lage HRV komt voor als er een dysfunctie is van het autonome zenuwstelsel, 

waarbij de functie van de parasympathicus gereduceerd is ten opzichte van die 

van de sympathicus. Mogelijk leidt een autonome dysfunctie tot nierschade via 

veranderingen in de renale bloedsomloop; bewijs voor een dergelijk effect komt 

voort uit dierexperimenteel onderzoek. Mogelijk geldt dit ook voor mensen: een 

eerder onderzoek in de VS leverde observationeel bewijs voor een associatie 

van een lage HRV met CNZ-gerelateerde ziekenhuisopname en nierfalen. De 

verwachting was daarom dat een lage HRV ook voorafgaat aan nieuw ontstane 

CNZ. 

Ik verrichtte een longitudinale analyse in data van 4605 deelnemers aan de 

PREVEND studie. Hier observeerde ik een 50-100% hoger risico op CNZ in 

diegenen in het laagste kwartiel (d.w.z. de laagste 25%) van HRV ten opzichte 
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van die van de bovenste drie kwartielen. Echter, dit sterk verhoogde risico leek 

volledig te worden verklaard door een hogere leeftijd van diegenen met een 

lage HRV. Om deze reden kon ik een verband tussen een lage HRV en CNZ niet 

bevestigen. In verkennende analyses vond ik bewijs voor een omgekeerd effect: 

omdat een lage HRV alleen geassocieerd was met verminderde nierfunctie in 

diegenen die reeds CNZ hadden, is het waarschijnlijker dat CNZ leidt tot een lage 

HRV in plaats van andersom.

DEEL II: DE GENETICA VAN NIERFUNCTIE EN DE VERTALING 
NAAR DE KLINIEK EN NAAR ONDERZOEK
Hoofdstuk 4: De invloed van erfelijkheid op nier-gerelateerde kenmerken 

is aanzienlijk, en een positieve familieanamnese is een belangrijke deter-

minant van chronische nierziekte in de algemene bevolking

Lifelines is een unieke studie vanwege zijn familiedesign: meerdere generaties 

van meerdere families zijn gerekruteerd uit de algemene bevolking. In deze data 

maakte ik een schatting van de erfelijkheid, d.w.z. de bijdrage van genetische 

factoren aan interindividuele verschillen, van een aantal nier-gerelateerde 

kenmerken. Ik observeerde aanzienlijke erfelijkheidsschattingen van onder meer 

geschatte glomerulaire filtratiesnelheid (Engels: estimated glomerular filtration 

rate, eGFR; 44%), urine albumine (20%) en serum ureum (31%). Het risico op het 

hebben van CNZ, in het geval van een ziek eerstegraadsfamilielid, is drie keer 

hoger dan het risico in de algemene bevolking. Deze studie, beschreven in 

Hoofdstuk 4, is de grootste familiestudie naar nier-gerelateerde kenmerken en 

CNZ tot nu toe. Een belangrijke bevinding is dat een positieve familieanamnese 

het risico op CNZ sterk verhoogt. Verder markeren de erfelijkheidsschattingen 

een bovengrens voor de hoeveelheid variatie in nier-gerelateerde kenmerken die 

kan worden verklaard door genetische factoren. Toekomstige studies zouden zich 

kunnen richten op het identificeren van deze factoren.

Hoofdstuk 5: Een genetische risicoscore gebaseerd op 53 eGFRcrea SNPs 

is een bruikbare genetische proxy van nierfunctie, maar mogelijk niet van 

gevoeligheid voor chronische nierziekte

Naast traditionele risicofactoren en levensstijl spelen genetische factoren een 

rol in CNZ. Genoom-brede associatiestudies (Engels: genome-wide association 

studies, GWAS) hebben genetische varianten ontdekt die geassocieerd zijn met 

CNZ definiërende maten, namelijk eGFR en urine albumine. Tot nu toe zijn de 
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GWAS naar eGFR het meest succesvol gebleken, gelet op het aantal ontdekte 

varianten. Ten tijde van het schrijven van Hoofdstuk 5 waren er 53 enkel-

nucleotide polymorfismen (Engels: single nucleotide polymorphisms, SNPs) 

bekend die associaties vertoonden met eGFR geschat op basis van serum 

creatinine (eGFRcrea). Per SNP zijn de effecten zeer klein en daarom niet 

betekenisvol in de kliniek. Het is echter mogelijk om alle SNP effecten samen 

te voegen tot één verzamelscore, de zogenaamde genetische risicoscore (GRS). 

Een dergelijke GRS zou in de kliniek kunnen worden gebruikt om onderscheid te 

maken tussen degenen met hoger en lager risico voor CNZ. Ook zou deze GRS 

kunnen worden gebruikt voor onderzoeksdoeleinden, bijvoorbeeld als maat voor 

genetische aanleg voor CNZ. In dit hoofdstuk evalueerde ik de bruikbaarheid van 

een GRS gebaseerd op eerdergenoemde 53 SNPs geassocieerd met eGFRcrea. 

In 3649 deelnemers aan de PREVEND studie vond ik bescheiden maar robuuste 

associaties met eGFRcrea. Deze resultaten valideerde ik vervolgens met een 

op cystatine C gebaseerde schatting van eGFR (eGFRcysc) als uitkomst: ik vond 

vergelijkbare associaties van de GRS met eGFRcysc. Dit is van belang aangezien 

eGFRcrea een onnauwkeurige maat is voor nierfunctie vanwege de relatie tussen 

creatinine en spiermassa, een relatie die voor cystatine C niet geldt. Een andere 

belangrijke bevinding was dat de GRS niet geassocieerd was met urine albumine, 

en een associatie met eGFR vertoonde ongeacht de traditionele risicofactoren voor 

CNZ, namelijk body-mass index, roken, hypertensie, diabetes, hoog cholesterol, 

en een voorgeschiedenis van cardiovasculaire ziekte. Dit geeft aan dat de GRS 

daadwerkelijk een genetische proxy is van nierfunctie, en niet van nierschade of 

risicofactoren voor CNZ. Echter werd slechts 1% van de variatie in eGFR verklaard 

door de GRS. Daarbovenop waren de resultaten van longitudinale analyse niet 

eenduidig: de GRS was niet geassocieerd met nierfunctieachteruitgang, en 

vertoonde los van baseline eGFR geen associaties met incidente CNZ. Mijn 

conclusie is daarom dat een GRS, gebaseerd op onze huidige kennis van de 

genetica van nierfunctie, geen rol van belang heeft in de kliniek in bijvoorbeeld 

individuele ziektevoorspellingen. Echter, omdat de GRS een ware genetische 

proxy is van nierfunctie, zou de GRS kunnen worden gebruikt in onderzoek op 

populatieniveau, en in studiedesigns zoals Mendeliaanse randomisatie. 

Hoofdstuk 6: Een genoom-brede associatiestudie van serum ureum in 

Europeanen identificeert nieuwe associaties met twee genetische loci

In Hoofdstuk 5 gebruikte ik twee verschillende diagnostische markers voor eGFR, 
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namelijk serum creatinine en serum cystatine C. In Hoofdstuk 6 onderzocht ik 

de genetica van serum ureum, een andere diagnostische marker van nierfunctie 

waarvan ik de erfelijkheid aantoonde in Hoofdstuk 4. Genetisch onderzoek 

naar deze marker is voornamelijk gedaan in Oost-Aziaten, waarbij SNPs in 

of nabij 13 genetische loci bekend waren ten tijde van het schrijven van dit 

hoofdstuk. Slechts enkele genetische studies hebben deze marker onderzocht 

in Europeanen, waarbij vijf associaties werden gevonden. Echter, deze vijf 

associaties waren tot dan toe nog niet gerepliceerd. Daarom voerde ik de eerste 

meta-analyse van GWAS uit op serum ureum in populaties van Europese komaf, 

met een ontdekkingsfase in 13.312 deelnemers aan de Lifelines studie, en een 

replicatiefase in 7379 deelnemers aan drie cohorten uit de algemene bevolking 

(PREVEND, NESDA, en EGCUT). Ik identificeerde repliceerbare associaties van zes 

SNPs die genoom-breed significant waren (p <5x10-8). Van deze zes SNPs waren 

er twee in of nabij genetische loci die niet eerder in verband waren gebracht met 

serum ureum, namelijk rs2003313 op chromosoom 11 nabij POU2AF1, en rs998394 

op chromosoom 3 in ADAMTS9-AS2. Verder kon ik alle SNPs repliceren die eerder 

in Oost-Aziaten en Europeanen waren gevonden, op SNPs in of nabij drie loci na 

die mogelijk specifiek gelden voor Oost-Aziaten.

Ik onderzocht verder de overlap van mijn bevindingen met genetische data over 

eGFRcrea. Enige overlap tussen serum ureum en eGFRcrea kan worden verwacht, 

aangezien de serumwaardes van beide worden beïnvloed door nierfunctie. 

Eerder werd een hoge genetische correlatie van rg=0.56 gevonden tussen ureum 

en creatinine. De positieve richting van deze genetische correlatie geeft aan dat 

ureum en creatinine genetische factoren delen, en dat deze genetische factoren 

de serumwaarden van beide in de zelfde richting beïnvloeden, oftewel hogere 

serum ureum is genetisch gecorreleerd met hogere serum creatinine (en dus 

lagere eGFRcrea). Verder bewijs voor genetische overlap tussen deze twee 

markers lever ik door aan te tonen dat de 53 eGFRcrea SNPs (dezelfde 53 SNPs 

als in Hoofdstuk 5) verrijkt waren voor serum ureum: 14 van de 53 eGFRcrea 

SNPs waren ook geassocieerd met serum ureum, veel meer dan kan worden 

verwachten op basis van kans. Een GRS op basis van deze 53 SNPs vertoonde 

bescheiden maar significante associaties met serum ureum. Na correctie voor 

eGFRcrea verzwakte de associatie van de GRS met serum ureum, wat suggereert 

dat de GRS een effect heeft op serum ureum via nierfunctie.
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Ondanks de statistische significantie is de klinische waarde van mijn bevindingen 

beperkt: de geïdentificeerde SNPs verklaarden samen niet meer dan 0.56% van 

de variatie in serum ureum. Mijn bevindingen genereren echter hypotheses voor 

twee nieuwe genetische loci (POU2AF1 en ADAMTS9-AS2) en hun relatie tot serum 

ureum en nierfunctie, die kunnen worden getest in functioneel onderzoek. Verder 

kunnen de GWAS resultaten op serum ureum worden gebruikt voor het valideren 

van mogelijke nierfunctie loci: als een bepaalde genetische variant inderdaad 

een marker is voor nierfunctie, kan worden verwacht dat deze variant zowel 

gerelateerd is met hoger eGFRcrea als met lager serum ureum.

DEEL III: HET BENUTTEN VAN GENETICA BIJ HET VERKLAREN 
VAN SOCIAALECONOMISCHE ONGELIJKHEDEN IN CHRONISCHE 
NIERZIEKTE
Hoofdstuk 7: Laag opleidingsniveau versterkt het genetische risico op 

chronische nierziekte in de algemene bevolking

In Hoofdstukken 7 en 8 gebruikte ik de kennis die ik opdeed in de voorgaande 

hoofdstukken om genetische methodes te integreren met traditionele sociaal-

epidemiologische methodes. In Hoofdstuk 7 presenteer ik bewijs, verkregen 

uit de PREVEND studie, voor een versterkend effect van laag opleidingsniveau 

op het genetische risico op verminderde nierfunctie. Deze bevinding was het 

meest uitgesproken in longitudinale analyse, waar ik een interactie vond tussen 

opleidingsniveau en GRS: een snellere nierfunctieachteruitgang werd gezien in 

diegenen met een hogere GRS en een lager opleidingsniveau. Dit effect was groter 

dan de som van de effecten van de GRS en opleidingsniveau. Mijn bevindingen 

suggereren daarnaast dat een hoog opleidingsniveau het genetische risico op 

verminderde nierfunctieachteruitgang teniet doet, aangezien in deze groep geen 

effect van de GRS kon worden aangetoond. De interactie kon slechts voor een 

beperkt deel worden verklaard door traditionele risicofactoren voor nierziekte, 

wat suggereert dat er niet-gemeten factoren bestaan waarvan de invloed niet 

wordt gevangen door traditionele factoren.

Deze resultaten zijn een belangrijke bijdrage aan de literatuur: het zijn de eerste 

die bewijs leveren voor een gen-omgevingsinteractie in nierfunctie met een 

modificerend effect van opleidingsniveau. Een belangrijke nevenbevinding is 

dat de genetische aanleg voor nierfunctie gelijk verdeeld is over verschillende 

opleidingsniveaus; er is geen bewijs voor selectie voor risicovarianten in 



231Nederlandse samenvatting

10

diegenen met een laag opleidingsniveau. Daarom kan het hogere risico op 

nierfunctieachteruitgang in diegenen met een laag opleidingsniveau worden 

toegeschreven aan een versterking van genetische aanleg, door een omgeving 

die samenhangt met een lage opleiding. Deze resultaten pleiten tegen genetisch 

determinisme, d.w.z. het ontwikkelen van verminderde nierfunctie is niet vooraf 

gebaseerd op basis van je genen. Gezien het zeer bescheiden interactie-

effect (verklaarde variantie 0.1% in nierfunctieachteruitgang) is de klinische 

toepasbaarheid met betrekking tot individuele risicovoorspelling beperkt. Verder 

zal uit toekomstig onderzoek moeten blijken of het effect reproduceerbaar is 

in andere populaties. In dat geval zou er op populatieniveau voordeel kunnen 

worden verwacht van interventies die ingrijpen op laag opleidingsniveau, en 

de modificeerbare gevolgen hiervan, in het verkleinen van sociaaleconomische 

ongelijkheden in nierfunctieachteruitgang. Hoewel de hier beschreven studie 

genoeg statistische power had om een interactie-effect te vinden met continue 

uitkomsten, zijn grotere aantallen deelnemers nodig om te bepalen of dit interactie-

effect te vinden is met CNZ als uitkomst. Tot slot rechtvaardigen de resultaten 

verder onderzoek naar de mediërende paden tussen laag opleidingsniveau en 

CNZ, alsook naar de specifieke genen die betrokken zijn in deze paden.

Hoofdstuk 8: De associatie tussen opleidingsniveau en chronische nier-

ziekte is mogelijk niet oorzakelijk

De resultaten uit Hoofdstuk 2 suggereren dat een hoger opleidingsniveau een 

beschermend effect heeft op de nieren, gegeven dat in die studie een hoger 

opleidingsniveau was geassocieerd met langzamere nierfunctieachteruitgang en 

lagere incidentie van CNZ. Het is echter onzeker of dit een ware oorzakelijke 

relatie betreft gezien de observationele aard van het bewijs. In Hoofdstuk 8 

pas ik een Mendeliaanse randomisatie (MR) methode toe, waarin ik gebruik 

maak van genetische instrumenten voor opleidingsniveau. Door het gebruik 

van genetische instrumenten wordt het risico op bias beperkt. Hierdoor kunnen, 

met meer zekerheid dan met traditionele observationele methodes, conclusies 

worden getrokken met betrekking tot causaliteit. Voor een twee-sample MR 

analyse verwierf ik gegevens over 1271 SNPs waarvan een bekende associatie is 

met het aantal voltooide schooljaren. Vervolgens extraheerde ik de associaties 

van deze SNPs uit genetische data van het CKDGen Consortium aangaande 

eGFRcysc, eGFRcrea, en albuminurie (urine albumine-creatinine ratio). Ik vond 

dat elke standaard deviatie (4.2 jaar) hoger opleidingsniveau was geassocieerd 
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met een 3.2% hogere eGFRcysc, conform een beschermende effect van 

opleidingsniveau op nierfunctie. Voor eGFRcrea vond ik echter geen effect van 

opleidingsniveau. Hoger opleidingsniveau was geassocieerd met een hogere 

urine albumine-creatinine ratio, wat suggereert dat hoger opleidingsniveau 

resulteert in nierschade. Deze contra-intuïtieve bevinding onderzocht ik verder in 

individuele data van deelnemers aan de Lifelines studie, een studie die beschikt 

over gedetailleerde urine albumine data. Ik construeerde een genetische 

score die bestond uit eerdergenoemde 1271 SNPs, en gebruikte deze score als 

genetisch instrument voor aantal voltooide schooljaren in een één-sample MR 

analyse. Het in twee-sample MR gevonden contra-intuïtieve nadelige effect van 

hoger opleidingsniveau op urine albumine-creatinine ratio werd ook gevonden in 

Lifelines. Door de beschikbaarheid van 24-uurs urine in Lifelines kon ik bevestigen 

dat er inderdaad sprake was van verhoogde urine albumine uitscheiding en niet 

verminderde urine creatinine uitscheiding (d.w.z. niet een gevolg van vertroebeling 

door spiermassa). De resultaten suggereren dat hoger opleidingsniveau leidt tot 

hogere albuminurie.

Er is een grote verzameling aan bewijs voor een beschermend effect van 

opleidingsniveau op cardiovasculaire gezondheid; ik verwachtte daarom ook een 

beschermend effect op renale gezondheid. De effecten van opleidingsniveau op 

eGFRcrea en eGFRcysc waren echter niet eenduidig, en ik vond een onverwacht 

nadelig effect op albuminurie. Toekomstig werk zou zich kunnen richten op 

het verklaren van deze onverwachte bevinding. Op basis van deze resultaten 

concludeer ik dat er onvoldoende genetisch bewijs is voor een beschermend 

causaal effect van opleidingsniveau op renale gezondheid. Toekomstige studies 

naar ongelijkheden in CNZ zouden zich kunnen richten op andere mogelijk 

oorzakelijke sociaaleconomische factoren zoals inkomen, beroep, beroepsmatige 

blootstellingen, sociale achterstand, of factoren op buurtniveau. 

ALGEMENE DISCUSSIE
In Hoofdstuk 9 geef ik een samenvatting van de voornaamste bevindingen en 

bespreek ik de context waarin deze kunnen worden geplaatst. Daarnaast komen de 

gebruikte methodes uitgebreid aan bod: ik bespreek de gebruikte data, de manier 

waarop nierfunctie en sociaaleconomische status is gemeten, de genetische 

methodes, en zet ik uiteen welke strategieën ik heb gebruikt om tot causale 

gevolgtrekkingen te komen. Op basis van de bevindingen en gebruikte methodes 
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geef ik aanbevelingen voor vervolgonderzoek naar de sociaaleconomische en 

genetische determinanten van CNZ. Tot slot deel ik mijn visie over hoe het beter 

kan, en waar de sociale en genetische epidemiologie naar toe gaat.

CONCLUSIES
Het onderzoek in dit proefschrift is een combinatie van sociaal- en genetisch 

epidemiologisch onderzoek in de nefrologie. De resultaten leveren belangrijke 

inzichten in de oorzaken van chronische nierziekte. Ten eerste bevestig ik dat 

er sociaaleconomische verschillen zijn in het ontwikkelen van chronische 

nierziekte, gezien de bevinding dat mensen met een lager opleidingsniveau 

vatbaarder zijn voor het ontwikkelen van chronische nierziekte en een sterkere 

nierfunctieachteruitgang vertonen. Ten tweede hebben mensen met een 

positieve familieanamnese een drie keer verhoogd risico op chronisch nierziekte, 

en is er sterk bewijs voor een genetische component van nier-gerelateerde 

kenmerken zoals eGFR, albuminurie, en serum ureum. Ten derde zou een hogere 

sociaaleconomische status het genetische risico op chronische nierziekte teniet 

kunnen doen. Tenslotte is het mogelijk dat opleidingsniveau niet de belangrijkste 

aandrijver is van sociaaleconomische verschillen in chronisch nierziekte, gezien 

het ontbreken van eenduidig genetisch bewijs hiervoor.
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