b university of ;”g////; . —
L : e % niversity Medical Center Groningen
773 groningen g”,//

University of Groningen

A recurrent missense variant in HARS2 results in variable sensorineural hearing loss in three
unrelated families

Demain, Leigh A. M.; Gerkes, Erica. H.; Smith, Richard J. H.; Molina-Ramirez, Leslie P.;
O'Keefe, Raymond T.; Newman, William G.

Published in:
Journal of human genetics

DOI:
10.1038/s10038-019-0706-1

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Demain, L. A. M., Gerkes, E. H., Smith, R. J. H., Molina-Ramirez, L. P., O'Keefe, R. T., & Newman, W. G.
(2020). A recurrent missense variant in HARS2 results in variable sensorineural hearing loss in three
unrelated families. Journal of human genetics, 65(3), 305-311. https://doi.org/10.1038/s10038-019-0706-1

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.


https://doi.org/10.1038/s10038-019-0706-1
https://research.rug.nl/en/publications/5749f2ed-82f3-47f0-97a0-feef1f64677b
https://doi.org/10.1038/s10038-019-0706-1

Journal of Human Genetics (2020) 65:305-311
https://doi.org/10.1038/s10038-019-0706-1

ARTICLE

A recurrent missense variant in HARS2 results in variable
sensorineural hearing loss in three unrelated families

Leigh A. M. Demain'? - Erica. H. Gerkes - Richard J. H. Smith* - Leslie P. Molina-Ramirez'? - Raymond T. O’Keefe' -
William G. Newman®'?

Received: 4 June 2019 / Revised: 14 November 2019 / Accepted: 2 December 2019 / Published online: 12 December 2019
© The Author(s) 2019. This article is published with open access

Abstract

HARS?2 encodes mitochondrial histidyl-tRNA synthetase (HARS2), which links histidine to its cognate tRNA in the
mitochondrial matrix. Biallelic variants in HARS2 are associated with Perrault syndrome, a rare recessive condition
characterized by sensorineural hearing loss in both sexes and primary ovarian insufficiency in 46,XX females. Some
individuals with Perrault syndrome have a broader phenotypic spectrum with neurological features, including ataxia and
peripheral neuropathy. Here, we report a recurrent variant in HARS2 in association with sensorineural hearing loss. In
affected individuals from three unrelated families, the variant HARS2 c¢.1439G>A p.(Arg480His) is present as a
heterozygous variant in trans to a putative pathogenic variant. The low prevalence of the allele HARS2 c.1439G>A p.
(Arg480His) in the general population and its presence in three families with hearing loss, confirm the pathogenicity of this
variant and illustrate the presentation of Perrault syndrome as nonsyndromic hearing loss in males and prepubertal females.

Introduction

HARS?2 encodes mitochondrial histidyl-tRNA synthetase
(HARS?2). HARS?2 links histidine to its cognate tRNA in the
mitochondrial matrix [1] and is an essential factor for
mitochondrial translation [2]. Biallelic variants in HARS2
have been associated with Perrault syndrome, a rare auto-
somal recessive disease characterised by variable degrees of
sensorineural hearing loss (SNHL) in both sexes and pri-
mary ovarian insufficiency (POI) in 46, XX karyotype
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females [3, 4]. In some cases of Perrault syndrome additional
neurological features, including peripheral neuropathy, cere-
bellar ataxia, and intellectual disability have also been iden-
tified [S]. Some individuals are reported to have white matter
changes noted on magnetic resonance imaging of the brain
[6]. To date, biallelic variants in six causative genes have been
associated with Perrault syndrome:HSD17B4 (MIM 233400)
[7], HARS2 (MIM 614926) [3], LARS2 (MIM 615300) [8],
CLPP (MIM 614129) [9], C10orf2 (MIM 616138) [10], and
ERALI (MIM 607435) [6].

Previously, six unrelated families have been reported
with variants in HARS2 which cause Perrault syndrome. In a
large family from North America, five affected individuals
were compound heterozygous for the variants HARS2
¢.598C>G p.(Leu200Val) and c.1102G>T p.(Val368Leu).
These variants reduced the aminoacylation activity of
HARS2. All affected siblings had bilateral SNHL that
varied in severity and age of onset. The three affected
female siblings had ovarian dysgenesis and a 46,XX kar-
yotype [3]. Two unrelated women with Perrault syndrome
from consanguineous Moroccan families were homozygous
for the same variant, HARS2 c.1010A>G p.(Tyr337Cys).
Both affected individuals are from the same region in
Morocco and share a haplotype consistent with a founder
variant. They have a similar phenotype of profound SNHL
with onset before 3 years of age and secondary amenorrhea

SPRINGER NATURE
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presenting at 25 and 26 years of age, respectively [11]. Three
unrelated families with bialleic variants in HARS2 were
reported to all have rapidly progressive hearing loss [12]. In
one family with SNHL, three affected individuals were
compound heterozygous for the variants HARS2 c.172A>G
p-(Lys58Glu) and ¢.448C>T p.(Argl50Cys). Of note the
two affected females in this family were 13 and 16 years of
age, respectively. The proband from the second family, a 7-
year-old female, was compound heterozygous for the var-
iants HARS2 c.448C>T p.(Argl50Cys) and c¢.980G>A
p-(Arg327GIn). The third family comprised a 32-year-old
female with Perrault syndrome and the variants HARS2
c.137T>A p.(Leud6Gln) and ¢.259C>T p.(Arg87Cys) [12].

Here, we report three individuals with SNHL and pre-
viously unreported biallelic variants in HARS2. In each case,
the affected individual is compound heterozygous for the
variant HARS2 ¢.1439G>A, p.(Arg480His) and a second
putative pathogenic variant in HARS2.

Materials and methods

Informed consent was obtained from all individual partici-
pants included in the study. All procedures performed in
studies involving human participants were in accordance
with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
Ethical approval for this study was granted by the National
Health Service Ethics Committee (16/WA/0017) and Uni-
versity of Manchester. Exome sequencing for individual F1-
II-1 was performed by the Radboud University Medical
Center, Nijmegen, The Netherlands. Before sequencing,
genomic DNA fragments were enriched for exome
sequences using the Agilent (Santa Clara, CA, USA) Sur-
eSelectXT Human All Exon 50Mb kit. WES was per-
formed at BGI-Europe (Copenhagen, Denmark), employing
an Illumina HiSeq machine (Illumina, San Diego, CA,
USA). Read alignment using the Burrows Wheeler algo-
rithm and variant calling with GATK were performed at
BGI. Variants were annotated with an in-house developed
annotation and prioritization pipeline. Reported variants
were only confirmed with Sanger sequencing in case of low
quality (GATK quality scores) of the variant. Copy number
variant calling was performed using CoNIFER 0.2.0, and
variant annotation was performed using an in-house
developed strategy. The median coverage was 97.5% with
the HiSeq system. A panel of 142 hearing loss genes was
analyzed [13]. Variants were classified according to the
existing guidelines from the American College of Medical
Genetics and Genomics [14]. The variants in families F2
and F3 were identified by hearing loss panel (OtoSCOPE")
at the Molecular Otolaryngology and Renal Research
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Laboratories at the University of Iowa, a Clinical Labora-
tory Improvement Amendments accredited laboratory.
OtoSCOPE’ is a custom next-generation sequencing panel.
Variants are mapped and analyzed using a custom pipeline
before being confirmed by Sanger Sequencing. OtoSCOPE’
has a diagnostic sensitivity and specificity of >99% [15] All
variants were mapped to the transcript NM_012208.3.
Prediction of variant pathogenicity was performed using the
following online resources: gnomAD (http://gnomad.broa
dinstitute.org/) [16], MutationTaster (http://www.mutationta
ster.org/) [17], PolyPhen-2 (http://genetics.bwh.harvard.
edu/pph2) [18], SIFT (http://sift.jevi.org/) [19], ClustalO-
mega  (https://www.ebi.ac.uk/Tools/msa/clustalo/).  The
variants have been submitted to the ClinVar database
(https://www.ncbi.nlm.nih.gov/clinvar/), accession num-
bers; SCV000924703, SCV000924704, SCV000924705,
and SCV000924706.

Results
Clinical reports

Family F1 is a nonconsanguineous family of European
descent and comprises an affected female proband, an
unaffected younger child and her unaffected parents
(Fig. la). The proband was diagnosed with moderate
bilateral SNHL at age 6 years and was fitted with hearing
aids. Audiometric testing revealed a more pronounced level
of hearing loss at low frequencies (Fig. 1b). An average
pure tone threshold of 48.75 in both ears at frequencies
512Hz, 1, 2, and 4 kHz of 48.75 dB (HL) was reported. At
last assessment, no additional clinical features were present
in the proband (Table 1). No relevant family history of
similar hearing loss was reported.

Compound heterozygous variants in HARS2; c.413G>A
p.(Argl38His), inherited maternally, and c.1439G>A p.
(Arg480His) (NM_012208.3), inherited paternally, were
identified as the likely cause of SNHL in the proband. The
younger unaffected sibling was wild type at both loci.

Family F2 is a nonconsanguineous family comprising
two affected male siblings and their unaffected parents
(Fig. 1a). Proband F2-II-1 presented with bilateral mild-to-
moderate SNHL at age 2.5 years. A mean pure tone
threshold of 56.25 and 58.75dB (HL) for the left ear at
speech frequencies was reported. Further audiometric test-
ing at age 9 years revealed an average pure tone threshold of
77.5 dB (HL) for the right ear and 71.25 dB (HL) for the left
ear at frequencies 512 Hz, 1, 2, and 4 kHz (Fig. 1b). In light
of the hearing loss in the older sibling, audiological testing
for the younger sibling was requested (F2-1I-2). Mild-to-
moderate bilateral SNHL was detected in this sibling at age
1. Further audiometric testing at age 6 years revealed a
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mean pure tone threshold of 60dB (HL) for the right ear
and 58.75 dB (HL) for the left ear at frequencies 512 Hz, 1,

2, and 4 kHz (Fig. 1b).
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R138
TLTEKYGE---DS-GLMYDLKDQGGELLSLRYDLTVPFARYLAMN---KVKKMKRYHVGK
TLMGKYGE---DS-KLIYDLKDQGGELLSLRYDLTVPFARYLAMN---KLTNIKRYHIAK
TLTEKYGE---DS-GLMYDLKDQGGELLSLRYDLTVPFARYLAMN---KVKKMKRYHVGK
MLTEKYGE---DS-GLIYDLKDQGGELLSLRYDLTVPFARYLAMN---KVKRMKRYQVGK
MLTEKYED---NF-GLMYDLEDQGGELLSLRYDLTVPFARYLAMN---KLKRMKRYQVGK
MLTEKYED---NF-GLMYDLKDQGGELLSLRYDLTVPFARYLAMN---KLKKMKRYQVGK
TLMEKYGD---NS-KLIYELQDQGGELLALRYDLTVPFARYLAMN---KITNIKRYHIAK
——————————————————————— GGELLSLRYDLTVPFARYLAMN---KINNIKRYHIAK
ISKATFNH---CL-LIIFFFQMTFYQLHTVRVRVKVPFARYLAMN---KITNIKRYHIAK
TLTGKYGE---DS-KLIYDLKDQGGELLSLRYDLTVPFARYLAMN---KITNIKRYHIAK
VLMGKYGE---EGGKLVYDLQDQGGELLSLRYDLTVPFARYLAMN---KITNITRYQIAK
ILAGKYGE---DS-KLIYNLEDQGGELCSLRYDLTVPFARYVAMN---NIQSIKRYHIAK
LFKRAIGEVTDVVEKEMYTFEDRNGDSLTLRPEGTAGCVRAGIEHGLLYNQEQRLWYIGP

R480
LVVIIGEQELKEGVIKIRSVASREEV----AIKRENFVAEIQKRLSES------=------
LVAIIGEQELKDGVIKLRSVTSREEV----DVRREDLVEEIKRRTGQPLCIC--------
LVVIIGEQELKEGVIKIRSVASREEV----SGGSRNRRDEVFLPFPDSVRNMHLLAEKLS
LVVIIGEQELKEGVIKLRSVASREEV----AIKRENLVAEIQKKLSES------------
LMVIIGEQEQNEGVVKLRSVASREEV----TVNRESLVAEIQKRLSES---------==-=
LMVIIGEQERNEGVIKLRSVASREEV----TINRESLVAEIQKRLSES---------—---
LVAIIGEQELRDGVVKLRDAATREEV----DIPREELAAEIRRRLETCTTGNPAAPQPLP
LVAIIGEQELKDGVVKLRVVATREEV----DVARQNLVEEIHKRTQIFSTGC--------
LVAILGEQELKNGVVKLRDVATRDEV----DVSRAELIAEIKRRTSEA----—---——--
LVAILGEQELKDGVVKLRNVASREEV----DVPRAELVDEVKKRTS-------=======
LAIVIGEQELKDGVVKLRNVVTRDEQ----TIKLDQLITAVRDTLAAL----—--------
IAVILGKEEYLEGKLRVKRLGQEFADDDGELVSAADIVPIVQEKLSQIHEDGLNEVTRLI
VAVVLGESEVANGTAVVKDLRSGEQT----AVAQDSVAAHLRTLLG--------------

Due to progression of the hearing loss, both siblings were
reported to have undergone unilateral cochlear implantation.

Both affected siblings have soft neurological features, for

SPRINGER NATURE
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Fig. 1 Pedigree, air conduction thresholds, and protein sequence
alignment in individuals with HARS2 variants listed in Table 1.
a Pedigrees for families F1-F3. Filled icons indicate affected indivi-
duals. b Audiograms from affected individuals in families F1, F2, and
F3. All affected individuals have bilateral sensorineural across all
frequencies. Proband F1-II-1 shows lower air conduction thresholds in
lower frequencies. Circles represent the right ear and crosses the left
ear, dB decibels. Audiograms were created using the AudGen online
tool (version 0.71) (http://audsim.com/audgen/). ¢ The conservation of
histidyl-tRNA synthetase across multiple species. The variant residues
p-Arg138 and p.Arg480 are shown in the red boxes. Numbering relates
to the human HARS2 protein (GenPept: NP_036340.1). Sequences for
each species are as follows; chimpanzee UniProt: AOA2I3RUB6,
dog UniProt:F6XKV4, rat GenPept:NP_001014034.2, mouse Gen-
Pept:NP_542367.1, chicken UniProt:AOA1D5P330, xenopus UniProt:
F7AO0WS, zebrafish GenPept:NP_001289185.1, tetraodon UniProt:
H3CFHS, C. elegans GenPept:NP_001023373.2, S. cerevisiae Gen-
Pept:NP_015358.1, and E. coli HisRS UniProt: P60906.

example, one has difficulty with fine motor movements, and
the other has tightness in the muscles of his lower limbs.
Neurological phenotypes are a well-recognized feature of
Perrault syndrome; however, there is no concordance in
these features between the brothers. Both siblings have had
problems with tooth growth (Table 1). The compound het-
erozygous variants HARS2; ¢.828delTinsGTATCCCTAG-
TATTTCTACTA p.(Gly277TyrfsTer3) and c.1439G>A,
p-(Arg480His) (NM_012208.3) were identified as the likely
cause of SNHL in the affected siblings.

Family F3 is a nonconsanguineous family comprising the
male proband (F3-1I-1) and his unaffected parents (Fig. 1a).
Bilateral profound SNHL was detected in this proband at
23 months of age. Sedated auditory brainstem response
reported a mean pure tone threshold of 85 dB (HL) for both
ears (Fig. 1b). Of note during testing using reversed polarity
air conduction click a reversal of the cochlear microphonic
was seen in both ears, suggestive of auditory neuropathy. At
his last assessment, the proband was 4 years and had no
additional clinical features (Table 1). The proband is cur-
rently under assessment for cochlear implantation. The
variants HARS2; ¢.72C>A, p.(Cys24Ter) and c.1439G>A p.
(Arg480His) (NM_012208.3) were identified as the likely
cause of SNHL in the proband.

Variants and predicted consequences

Human HARS?2 likely functions as a homodimer. It con-
tains predicted domains for histidine binding, dimer inter-
action, and tRNA binding [20]. HARS2 (NP_036340.1)
shares ~73% sequence homology with nuclear HARS
(NP_002100.2), from which it primarily differs at the
N-terminus, and shares ~23% sequence homology with the
E.coli orthologue HisRS (P60906).

The variant HARS?2 p.(Arg138His) in individual F1-II-1
is present as a heterozygous variant in eight individuals of
141,443 sequenced (minor allele frequency, 0.000028) in

SPRINGER NATURE

gnomAD and has never been seen as a homozygous variant.
This low-carrier frequency is consistent with a variant
causative of rare autosomal recessive disease. HARS2
p-(Argl138His) is also predicted to be deleterious by multi-
ple in silico analysis tools. The residue HARS2 Argl38 is
an almost invariant residue conserved in both human HARS
and the E.coli orthologue HisRS (Fig. Ic). Argl38 is situ-
ated in the predicted dimer interface region of HARS2. In
E.coliHisRS, residue Arg90 (equivalent to residue Argl38
in HARS2) is located in the dimer interface region of the
protein. E.coli HisRS Arg90 forms salt bridges with resi-
dues Aspl3 and Glu47 of the other monomer in the dimer
complex. These interactions both facilitate dimer formation
and shape the active site [20]. The residues equivalent to
Aspl3 and Glu47 in human HARS2 are also conserved
(Asp65 and Glu99 respectively). The substitution of argi-
nine to histidine at residue 138 may interfere with salt
bridge formation and subsequently dimer interaction and
active site confirmation of HARS2.

The second variant in individual FI1-II-1 HARS2
p-(Argd480His) is reported as a heterozygous variant in 21 of
141,421 individuals (minor allele frequency 0.000074) in
gnomAD and never as a homozygous variant. HARS2
p-(Arg480His) is also predicted to be deleterious by multi-
ple in silico analysis tools. The residue Arg480 is located in
the C-terminal domain of HARS2, which is predicted as
important for tRNA recognition and binding [20]. Residue
Arg480 is well conserved but not as strictly invariant as the
residue Argl38 (Fig. 1c). The effect of the substitution of
Arginine for histidine at residue 480 is unclear, but it may
disrupt recognition or binding of mitochondrial tRNAHS,

In the affected individuals in families F2 and F3 the
variant p.(Arg480His) is in trans with a loss-of-function
variant, p.(Gly277TyrfsTer3) and p.(Cys24Ter), respec-
tively. The transcripts for both of the loss-of-function var-
iants are predicted to be subjected to nonsense
mediated decay. Neither variant was present in gnomAD as
either a heterozygous or homozygous variant. No homo-
zygous loss-of-function variants are reported in HARS2 in
gnomAD.

Discussion

Here, we report the variant HARS2 ¢.1439G>A
p-(Arg480His) in three unrelated families with prelingual
onset, bilateral symmetric progressive SNHL. In each
family the variant was in trans to a second putative patho-
genic variant in HARS2. The identification of this rare
missense variant in three unrelated individuals with SNHL
means that it can be classified as moderate evidence of
pathogenicity according to the American College of Medi-
cal Genetics and Genomics guidance on variant
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pathogenicity [14]. The report of these families increases
the number of described families with HARS2 variants and
either Perrault syndrome or SNHL to nine.

In the proband from family F1 the variant in trans to
HARS2 p.Arg480His may interrupt the dimerization and
active site confirmation of the HARS2 homodimer. Given
the conservation and function of p.Argl138 as well as the in
silico predictions and the minor allele frequency it is likely
that the substitution p.Argl38His is deleterious. In affected
individuals from families F2 and F3 the variant
p.(Argd480His) is in trans to a loss-of-function variant. No
cases of biallelic loss-of-function variants in any of the six
genes associated with Perrault syndrome have been reported
to date [21]. This lack of biallelic loss-of-function variants
likely indicates that HARS2, along with the other Perrault
syndrome associated genes, is essential and that complete
loss-of-function would result in lethality. Of note, the loss
of the HARS2 yeast orthologue, HST1, is lethal [22]. If
homozygous loss of HARS?2 is lethal only combinations of
hypomorphic alleles in trans with loss-of-function alleles, or
biallelic hypomorphic alleles can be expected to result in a
phenotype.

Of note, the hearing loss in the individual with two
missense (putative hypomorphic) HARS2 variants is milder
(especially at higher frequencies) than in the other two
families, where a missense (hypomorphic) variant is in trans
with a predicted loss-of-function variant. Further follow-up
of these individuals and ascertainment of additional cases
will determine if this genotype—phenotype association
represents a robust observation.

Currently, there appears to be no link between the var-
iants in HARS?2 reported to be causative of Perrault syn-
drome and their location in the HARS2 protein. The
reported pathogenic variants in HARS2 are located in
multiple domains with no specific domain linked to dys-
function. In contrast, variants in CLPP linked to Perrault
syndrome are clustered mainly in a single 20 residue region
of the CLPP protein [21].

In the families reported here a diagnosis of SNHL
revealed variants in a Perrault syndrome related gene,
which would not have been suspected based on clinical
presentation alone. All affected individuals are either male
or prepubertal and as such would not present with POI, a
cardinal feature of Perrault syndrome. In the case of
family F1 the female proband is prepubertal and will be
monitored for POIL. It is possible that hypomorphic var-
iants in Perrault syndrome genes may cause milder pre-
sentation of hearing loss or POI only and therefore the
individuals from F1 or F3 may have nonsyndromic SNHL
[21]. Tt is less likely that the neurological features reported
in family F2 can be attributed to the HARS2 variants as
they are not concordant in the affected siblings. Further
follow-up and evaluation of additional individuals with
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HARS?2 pathogenic variants will be required to establish
any neurological phenotype. Neurological presentations
are commonly associated with Perrault syndrome and
although no phenotype genotype links have yet been
established for HARS?2, all individuals with disease asso-
ciated HARS?2 variants should have a full clinical neuro-
logical assessment. As panel and exome testing becomes
more commonplace for etiological diagnosis in hearing
loss, we expect more cases of HARS2-associated Perrault
syndrome will be recognized. Timely confirmation of
etiological diagnosis and subsequent prediction of pro-
found severity in individuals with HARS?2 variants could
help inform the identification of cases that may benefit
from referral to cochlear implantation services and closer
audiological surveillance [23].
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