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A B S T R A C T

Life courses consist of complex patterns of correlated events and spells. The nature and strength of these correlations is known to depend on both micro- and macro-
covariates. Life-course models such as event-history analysis and sequence analysis are not well equipped to deal with the processual and latent character of the
decision- making process. We argue that Hidden Markov Models satisfy the requirements of a life course model. To illustrate their usefulness, this study will use
Hidden Markov chains to model trajectories of family formation. We used data from the Generations and Gender Programme to estimate Hidden Markov Models. The
results show the potential of this approach to unravel the mechanisms underlying life-course decision making and how these processes differ both by gender and
education.

1. Introduction

A life course is an individual’s narrative of all events or states, or-
dered in time, that this individual has experienced. In the course of the
last decades, a series of important holistic1 and non-holistic methods
have been developed that increase our ability to understand the life
course and its correlates. Event history analysis (EHA) uses regression
models to predict the occurrence of particular (combinations of) life-
course events (Blossfeld, Golsch, & Rohwer, 2007). Sequence analysis
(SA) (Cornwell, 2015) is mostly used to find the characteristic patterns
in a set of life courses and thereto, SA creates a distance-based re-
presentation of this set of life courses. Eventually, this spatial config-
uration can be used to examine the association between a set of cov-
ariates and the final classification (Studer, Ritschard, Gabadinho, &
Müller, 2011). Clearly, methods like EHA and SA are indispensable.
What is lacking, though, are statistical models that allow us to under-
stand how the observed life-course patterns are generated. In this ar-
ticle, we discuss Hidden Markov Models (HMMs) as a promising class of
models that can be used to understand how life-course patterns are
generated and vary according to personal or contextual characteristics.
In a nutshell, an HMM describes a life course as a sequence of observed
states that are outcomes of a latent, unobservable decision making
process. HMMs have a number of characteristics that make them very

attractive to study how life-course sequences come about. At a practical
level, an advantage of using a model that examines transitions between
latent states is that the number of states and the number of transitions
to be modelled is much smaller than if one would have to model all
possible transitions between all possible observed states. For example, if
one has an observed state-space of 10 positions, the number of possible
transitions (including self-transitions) is 100, which is clearly un-
manageable. If this system of transitions can be represented by four
latent states, the number of possible transitions reduces to 16, which is
much more manageable. However, using HMMs is also very attractive
because its characteristics nicely mirror key theoretical assumptions of
the life-course paradigm. A first key assumption of the life-course ap-
proach is that individuals exert life-course agency, and thus reflect on
their available options and consciously make decisions on appropriate
action sequences (Hitlin et al., 2007). Life courses can be con-
ceptualized as the result of individual decisions about, for instance,
whether and when to leave the parental home, to finish education be-
fore entering parenthood, to change jobs or to move to another re-
sidence (Elder et al., 2003). Such individual decisions are the result of
unobservable mental processes. Thus, any model that is to explain the
individual life course has to contain a mechanism that represents these
unobservable mental processes. Second, it is generally held that events
and choices made early in life may affect the (non-)occurrence of other
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events or their outcomes in later life (Bissell, 2000; Gangl, 2004; Mayer,
2009). Therefore, a holistic model of the life course should have a
memory in the sense that it contains a mechanism that makes earlier
outcomes affect later life. Third, we know that the life course and its
outcomes depend on micro- and macro-level covariates that are not
affected by individual mental processes (Blossfeld, Klijzing, Mills, &
Kurz, 2006; Specht, Egloff, & Schmukle, 2011). A life-course model
should therefore also allow the inclusion of relevant time-constant and
time-varying micro- and macro-level covariates. HMMs, formulated on
the basis of a latent, hidden, random process over a finite set of states (a
Markov chain), nicely satisfy all three of these assumptions of the life-
course paradigm. Latent states can be viewed as key nodes in the mental
decision-making process, emphasizing the agentic nature of the life-
course process. Furthermore, HMMs have a memory in the sense as
intended, and they allow for the inclusion of time-constant and time-
varying micro- and macro-level covariates. The parameters of these
models can be estimated (Bartolucci, Farcomeni, & Pennoni, 2012) and
easily allow for causal analysis once formulated as a log-linear regres-
sion model (Paas, Vermunt, & Bijmolt, 2007). In particular, the Latent
Class (LC)-model is a special case of the HMM in the sense that there is
no state-switching possible within an LC-model. Precisely for this
reason, the LC-model cannot be used to represent a latent dynamic
decision process; HMMs can. HMMs belong to a larger family of latent
structure models that has been amply described (e.g. Vermunt, 1997).
HMMs hold great theoretical promise, but are, at the same time, not
always easy to use. Using them asks for a large number of decisions to
be made, for instance about the number of latent states to retain and
their interpretation and how to link covariates to the model. These
decisions have to be based on a combination of theoretical and statis-
tical considerations. This paper aims to demonstrate how HMMs can be
used, by applying them to modeling the family formation process. Next
to the school-to-work transition, family formation is a key aspect of the
transition to adulthood (Buchmann & Kriesi, 2011). Specifically, we
focus on the family-life trajectories of French men and women born
between 1956 and 1965, using data from the French Generations and
Gender Survey (GGS). The paper is structured as follows. Given that
many life-course researchers may be quite unfamiliar with Hidden
Markov Models, we first discuss their main concepts. We try to do so in
a relatively non-technical manner and with a focus on their application
in life-course research. However, the use of technical language cannot
completely be avoided. In section 3 we discuss our data and the
methods used for our illustrative example. In section 4 we discuss the
main results and in section 5 we summarize our results, try to draw both
substantive and methodological conclusions and make suggestions for
further research.

2. Hidden Markov Models

In this section, we discuss Hidden Markov Models and their appli-
cation in life-course research. In section 2.1 we briefly introduce the
basic aspects of HMMs. In section 2.2, we discuss some key issues if one
wants to apply these models in life-course analysis. In section 2.3, we
discuss some practical aspects of estimating these models in life-course
research.

2.1. The basic HMM

A Markov-model or Markov-chain is a random process over a set of
states such that the probability of being in a particular state at the next
observation only depends on the state-history of the process. If the re-
levant state history just consists of the present state, such a chain is
called “first-order”. Fig. 1 shows a graphical representation of a first-
order 2-state Markov-chain and its matrix of transition probabilities. Let
us denote the k distinct states of a Markov chain as =Q q q{ , . . . , }k1
and let St denote the state that the system is in at time t, i.e. St could
have any of the “values” or labels from the set Q. Then we say that a

random process over Q is a first-order Markov-chain, precisely when

= = = =Prob S q S S Prob S q S a( | . .. ) ( |t j t t j t ij0 1 1) (1)

If we now define the initial state probabilities as = =Prob S q( )i i0 ,
the Markov-chain is fully defined by the k -vector = ( , . . . , )k1
of initial state probabilities and the ×k k -matrix of transition prob-
abilities =A a{ }ij : = A( , ).

In a Hidden Markov Model, the Markov chain is defined over a set of
latent, unobservable states. Furthermore, it is supposed that, at each
state, the process “emits” an observable according to a state-specific
probability distribution over the full set of observables, in the present
context the observable states of a life course. Thus, in a k -state HMM
with a set of observables =O o o{ , . . . , },n1 there must be a set B of k
state-specific probability distributions =b b b( , . . . , )j j jn1 . We write
the likelihood of observation ot at time t as

= = =b Prob o o S q( | ).ji t i t j (2)

This allows us to represent the set B as a ×k n( ) -matrix

= =B
b

b

b b

b b

n

k nk k

11 1

1

1

(3)

where each row is a distinct probability distribution over the ob-
servables and the complete HMM = A B( , , ) is specified by the
initial state distribution , the ×k k( ) - matrix A of transition prob-
abilities and the ×n k( ) -matrix B of emission probabilities.

In Fig. 2, we show a graph of the HMM-generated events in a time-
window +t t( 1, 1): at t 1, the system arrives in state St 1 and
emits observable ot 1 (governed by B) and then switches to state St
(governed by A) and again emits an observable, etc..

When we apply HMMs to model life courses, we know that some
states are almost irreversible: for example, once parenthood is entered,
it is a lasting state except for the rare cases of child loss. Models in
which a return to a previously occupied state is impossible or highly
unlikely are called “left-to-right” models.

The theory of log-linear models in relation to HMM’s has been ex-
tensively dealt with in e.g Bartolucci et al. (2012). Under such a model,
we then have that, for example

= =
= =

= + +
v
v

vlog
Prob S q S q
Prob S q S q

( | , )
( | , )

t j t k

t r t k
jr jr i i

1

1 (4)

wherein qr is the reference state. Similar models can be obtained for the
log-odds of the initial state probabilities and the emission distributions.
So, by expressing an HMM as a log-linear model, the regression-weights
estimate the effect of the covariates on the log-odds. Parameter esti-
mation is usually carried out by an EM-algorithm implemented in the
form of the forward-backward algorithm. Once parameter estimates
have been computed, standard errors are commonly associated to these
estimates. For more information on the estimation of standard errors,
the reader is referred to Bartolucci et al. (2012).

Fig. 1. A graph, showing a first-order, 2-state Markov chain and its transition
probability matrix A. The states are labeled as “0” and “1” and the arrows re-
present the transition probabilities.
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2.2. HMM-assumptions and life course research

A number of key decisions have to be taken if one wants to apply
HMMs to life-course research. In this section, we highlight four of these.
First, we discuss the extent to which a focus on first-order Markov
chains (that is a situation where transition probabilities between latent
states only depend on the previous latent state) limits the use of HMMs.
Second, many processes in young adulthood are age-dependent, and we
discuss ways in which age-dependency can be accounted for in HMMs.
Third, deciding on the number of latent states to be included in a HMM
is discussed. Finally, we discuss ways in which covariates can be linked
within HMMs.

The assumption that the process is first-order is a gross simplifica-
tion: we know that some events early in the life course may have lasting
effects long after their occurrence (see e.g. Gangl, 2004, on the scarring
effects of unemployment). However, extending the memory to m 1
previous states will result in a transition probability matrix of size

×k km since there will be distinct transition probabilities for each of
the km possible state-histories S S. . .t t m1 1. Several solutions have
been proposed to reduce the size of this parameter space. Berchtold and
Raftery (2002) proposed the so-called Mixture Transition Model that
reduces the number of state parameters by considering each of l lags
separately and approximating their effects by l lag-weights. This ap-
proach has been applied to estimating higher-order latent Markov
chains by Berchtold (2002). Another approach (Eggeling, Gohr,
Bourguignon, Wingender, & Grosse, 2013; Mächler & Bühlmann, 2004)
retains only specific higher-order paths of possibly variable length.

So, in principle, estimable extensions of HMMs to higher-order la-
tent chains are available but still, the computational burden is far from
trivial. However, more important is that we do not know how to use
such models in a theory-driven way: at present, we do not have specific
ideas about how various autocorrelations come about, and thus mod-
eling them through a Markovian model would amount to quite a data-
mining operation. Therefore, we choose to limit our modeling to first-
order Markov chains and focus on other aspects of the theory of life
course generation; such first-order chains at least allow for some pro-
pagation of long-term effects through the system.

A second important aspect of a basic HMM is the fact that age does
not play a role in the parametrization of the model: the transition-rates
in the transition-matrix are constant over time whereas we know that
certain transitions are highly age-dependent (Fasang, 2012). However,
when an HMM is used to study the life courses of a cohort that is not too
wide, the transition parameters in fact estimate rates for roughly the
same age-groups: the waiting-times for transition are, in a basic left-to-
right HMM, geometric distributions that sharply taper off over time. So,
age dependency is implicit in such models. However, it is possible to
specify other distributions of the state durations (e.g. see Dewar,
Wiggins, & Wood, 2012). We did not use such models because, again,
we do not have a clear hypothesis on duration dependence in our ap-
plication. Another option is simply to add age as a covariate to the
model and examine whether it influences the transition rates between
latent states and whether it changes the estimates of other parameters

of interest. For our application presented below, we estimated models
that include age and age squared as covariates. Including these cov-
ariates did not change the estimates of any of the other covariates of
interest in any substantive way. Estimates for this alternative model are
available upon request.

A third important aspect of an HMM is determining the number k of
latent states. This number has to be fixed by the researcher; it is not a
free, estimable parameter. So, when we believe that an HMM is a valid
model, the next step is to compare HMMs with different numbers of
latent states and use the BIC to select the most parsimonious model (see
Burnham & Anderson, 2002, Section 6.5.3). Unfortunately, the BIC-
curve may not show a clear knee or will keep decreasing for ever bigger
numbers of latent states. In such cases, the best alternative is to fix k at
the optimal value that yields a substantively sound interpretation.

Finally, when using covariates in modeling with HMMs, one has to
decide how these covariates affect the behavior of the stochastic system
as a whole. This system consists of two main parts: the Markov chain
over the latent states and the mechanism through which it expresses
itself, i.e. the set of emission probability distributions, one for each of
the latent states. Covariates may affect either or both of these compo-
nents. For example, we know (Manning, Brown, & Payne, 2014) that
both the timing and the type of first union are education dependent.
Within the present context, timing of first union formation is a result of
state transition, i.e. of demographic decision making, and type is the
result of an emission distribution over observable relation types. Hence,
one might postulate that education affects both components of the
stochastic process. Other covariates might affect transition but not
emission probabilities or vice versa. Unravelling all these intricacies is
beyond the space limitations and scope of the present paper. Instead,
we confine ourselves to demonstrating the effect of covariates on state
transitions. The reason for this preference is that we know that most life
courses in developed countries mainly differ in the timing and duration
of the various stages on the route to adulthood (Billari, Fürnkranz, &
Prskawetz, 2006; Halpin, 2010). Due to the relative stability of se-
quence order, in most countries, the behavioral alternatives and the
order in which they are expressed are roughly the same for most people.

Of course, in modeling (facets of) the life course, the choice of ob-
servables does matter. Modeling family formation will change when
“cohabitation” and perhaps other partnering relations are introduced
and when modeling labor market careers, using finely grained scales of
being (un-)employed or pensioned will affect the resulting models. We
consider this to be a strength of HMM-modeling since choosing dif-
ferent observables reflects a theoretical position on the importance and
possible impact of these observables.

2.3. Modeling and model-selection with HMM’s: Some practical
considerations

Let =O o o. . .i i iT1 denote an observed sequence from a set
=O O O{ , . . . , }N1 of such sequences and let Prob O( | )i denote the

likelihood of that sequence, given the model.
Furthermore, let =Q q q. . .i i iT

*
1
* * denote the path along the latent

Fig. 2. A graph showing the time-window ( +t t1, 1) of a Hidden Markov process. At each time t , the system is at some latent state St and emits an observable.
Note that the hidden state St is not necessarily different from +St 1. The observable is a random sample from the set of observables, according to a probability
distribution that is specific for each state =q i k, 1, . . . ,i
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states that maximizes P rob Q O( | , )i i , i.e. the latent sequence that “best
accounts” for the observations, given the model.

Being able to calculate the likelihood of the observations given the
model is a precondition for EM-estimation of the parameters of the
model and calculating Qi

*, the most probable latent sequence, is a
precondition for a substantive interpretation of the model.

Both problems, evaluating Prob O( | ) (Baum, Petrie, Soules, & Weiss,
1970), and calculating Qi

* (Viterbi, 1967) were already solved in the
sixties of the previous century. Here, we will not deal with the in-
tricacies of these methods. Instead, we will discuss some practical issues
that are related to these methods and their output.

One should be aware that evaluating an HMM involves the esti-
mation of quite some parameters: with k postulated latent states, we
have to estimate k 1 estimated initial state parameters ˆi; k 1 since
we must have that =ˆ 1i

k
i . Likewise, we have to estimate k k( 1)

parameters to obtain the matrix of estimated state transition prob-
abilities Â and k n( 1) parameters to get the matrix of estimated
state-specific probability distributions B̂. Consequently, in total, we
have to estimate +k k n1 ( 1)2 parameters for a model with k la-
tent states and n observables. When estimating a model with covariates,
this number is multiplied with the number of covariate-value combi-
nations. There are two problems associated with this big number of
parameters. First, it implies that testing the adequacy of a (Hidden)
Markov Model is practically impossible (Eggar, 2002): almost always
the parameters can be chosen such that the model fits the data. All that
can be tested is the relative efficiency of different models for the same
data using likelihood-ratio tests (Giudici, Rydèn, & Vandekerkhove,
2000). Second, the surface of the likelihood function Prob O( | ) is quite
irregular and therefore, attempts to find its maximum will most often
converge to a local instead of the global maximum. Extending the HMM
to incorporate covariates will only aggravate this problem. Therefore,
the estimation of an HMM should be repeated many times to find a
configuration A B( ˆ , ˆ , ˆ) that (probably) comes close to the maximum
sought for. For example, we display the density of the likelihood
maxima as obtained over 1000 repetitions of estimating a 4-state model
in Fig. 3.

Clearly, these values are quite different, as are the underlying
configurations A B( ˆ , ˆ , ˆ). Obtaining this curve took almost two hours of
computation time and quite some memory. Increasing the number of
states and the number of trials soon requires unfeasible computation
time and memory. However, in life course modeling, this should not
pose a problem as the number of postulated latent states is small when
these states are interpreted as pertaining to demographic choices - there
are only few of these (but see our remarks on data encoding).

2.3.1. Model selection and validation
With mixture models, model fit is to be judged through evaluating

the likelihood L = Prob O( | ) of the data O, given the model .
However, by allowing for an ever bigger number of parameters k, L
can be made arbitrarily close to 1. So, most criteria2 to judge model-fit
penalize with some function of k, like for example in

= +BIC log k ln N2 , wherein, in our application, N denotes the
number of sequences. So, in practice, selecting a model amounts to
balancing L and model parsimony. We then hope that this “balance”
unveils itself through a clear knee in the plot of BIC vs k. If such a knee
is absent, unclear or occurs at a value of k that is beyond interpretation,
such criteria are not sufficient. In such cases, one has to select the best-
fitting model within the range of k that can be sensibly interpreted. The
next step then is logical inference: to see if the model fits in with other
relevant facts that do not belong to the data used to estimate the model
and it is here that covariates come in.

Covariates like gender, SES and religion and macro-variables like
welfare regime and the occurrence of natural disasters, economic crises
or political instability are generally held to affect demographic deci-
sions in specific, well researched ways (see e.g. Neels, Theunynck, &
Wood, 2015; Härkönen & Dronkers, 2006; Sobotka & Toulemon, 2008;
Studer, Liefbroer, & Mooyaart, 2018) Thus one should test whether or
not the selected k-state model allows for logical inference: i.e. whether
or not the model is able to reproduce these effects. If such tests fail, the
model should be rejected. If such tests do not fail, i.e. when the model is
capable of reproducing known effects, the model has become one of the
nodes in a nomological network (Han, Liefbroer, & Elzinga, 2017;
Torgerson, 1958) about life courses and related phenomena. Perhaps,
hopefully, such a model will be succeeded by a model that allows for
statistical inference too.

2.3.2. Interpreting HMM’s
How do we interpret the latent states? Interpreting the latent states

always implies combining information from all three transition ma-
trices within HMMs. The emission probability matrix tells us which
observed states are most clearly linked to a latent state, the initial state
matrix tells us whether there is a clear starting state or not, and the
transition probabilities matrix tells us which transitions between latent
states are likely and which are not. Again peeking around the corner of
our analysis yet to be presented, we show a plot of the shift in the
distribution of latent states over time for a 4-state HMM in Fig. 6: this
plot shows something that is not immediate from the estimated tran-
sition probabilities: most subjects start in the latent state labeled as LS1,
so LS1 most probably is to be associated with a decision about leaving
the parental home. Indeed, the emission probabilities in Table 4 suggest
that LS1 is characterized by young adults being in the parental home
without partner and/or child, whereas the emission probability of being
in the parental home is close to zero for each of the other latent states.
So, the marginal state occupancies over time and the emission dis-
tributions will help us to interpret the latent states. However, these
considerations do not suffice for a credible interpretation.

A credible interpretation can only arise in the light of the way
covariates affect the parameters of the model: do the estimated effects
of covariates corroborate, or at least are not at variance with, the
knowledge that we already have about the effects of these covariates on
the occurrence and timing of life-course events. For example, we may
expect that low-educated will enter parenthood earlier than high-

Fig. 3. Likelihood-density plot as obtained from repeating the estimation of a 4-
state HMM 1000 times with random initial values. The horizontal axis shows
the estimated likelihood L̂ .

2 We observe that BIC heavily penalizes likelihood for over-fitting in big data-
sets (N) with too many parameters (k), i.e. with too complex models. An al-
ternative to BIC is AIC, which is more lenient with respect to complex models.
For a detailed comparison of AIC and BIC, the reader is referred to (Burnham &
Anderson, 2002, especially Ch. 6). The conclusions to be presented in this paper
are not affected in any substantive way by using AIC instead of BIC (the per-
taining results are obtainable from the first author).
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educated, which is the case when the transition probabilities for lower-
educated are higher across the whole age range than the transition
probabilities of the higher-educated. Therefore, it is not enough to only
evaluate a HMM as such: we need to enrich the model with relevant
covariates in order to decide on the credibility of the interpreted model.

3. Data and Method

3.1. Data

The Generations and Gender Programme (GGP) is a longitudinal
survey of 18-79 year olds in nineteen countries that examines the re-
lationships between generations and genders, by collecting re-
presentative data in all participating countries. Fokkema, Kveder,
Hiekel, Emery, and Liefbroer, (2016) provide extensive information on
the design and representativeness of the GGS. From this study, we se-
lected males and females from the French GGP, 1900 in total, born
between 1956 and 1965. For this subset of the data, information is
available for ages between 15 and 40, on annual fertility, partnering
and leaving the parental home as well as background information on
gender and the level of education.

From these data, we constructed the family formation history as a
convolution of three trajectories: we reconstructed fertility histories
(four categories: no, one, two or more than two children), partnership
histories (three categories: single, cohabiting or married) and a binary
trajectory for having or not having left the parental home. Such con-
volutions are known as “multichannel sequences” (Gauthier, Widmer,
Bucher, & Notredame, 2010). The two background variables were ca-
tegorical too: male or female and two categories for educational level:
high or low. We tabulated these data characteristics in Table 1.

In Fig. 4, we show the sequence index plots of the three channels,
each plot sorted by the final stage3 .

3.2. Method

In all analyses, we estimated HMMs for the data as described above,
using EM in the form of the Baum-Welch algorithm (see e.g. Bartolucci,
Pandolfi, & Pennoni, 2017). To reduce the risk of getting trapped on a
local maximum of the likelihood function, each estimated model was
picked as the best solution out of 1000 trials, each starting with a

Table 1
Information on the distribution across key dependent and independent vari-
ables, and mean age at the time of key observable family formation events
(N = 1900)

Observables Category % Mean ages

Fertility 0 19
(# children) 1 22 27

2 37 30
> 2 22 32

Partnership Single
Married 25
Cohabiting 24

Left home yes 21
no

Covariates
Education low 81

high 19
Gender male 44

female 56

Fig. 4. Sequence index plots of the three channels of family formation: leaving
home (upper panel), union formation (middle panel) and fertility (lower panel).

3 We could have produced plots where in each plot, the subjects are sorted
according to one and the same criterion (Helske & Helske, 2017). We do not
show such plots because they give a less clear picture of the distribution of
patterns in the sample.
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randomly chosen set of initial parameter-values. The covariates were
only used in the estimation of the 5-state model.

The algorithms used were implemented in the R-based LMest
(Bartolucci et al., 2017) and markovchain (Spedicato, Kang,
Yalamanchi, & Yadav, 2014). We used TraMineR (Gabadinho,
Ritschard, Müller, & Studer, 2011) for visualization.

4. Results

In this section, we present results of HMMs that differ in their
number of latent states and discuss their interpretation. Below, we will
denote an HMM with k latent states as a “k-state HMM”. An estimated k
-state HMM will consist of an estimated k-vector of initial state occu-
pancy probabilities, an estimated k×k -matrix of state transition
probabilities and k estimated emission probability distributions. For
each HMM with k states, we discuss the model with the lowest BIC
value selected from a set of 1000 estimated k-state models.

We fitted models with k varying from 3 to 8, but for reasons to be
explained later, we will focus on models with 4 and 5 states and, very
concisely, on a model with 6 states. We amply discuss the 4-state model
although its BIC is appreciably higher than the BIC for the 5-state
model. We do this to show what substantive reasons also make us favor
the 5-state model.

4.1. A 4-state HMM

Key parameter estimates of 4-state HMM are shown in Tables 2–4
and graphically depicted in Fig. 5. As the initial probability distribution
in Table 2 shows, only two of the four postulated states are initially
occupied and the vast majority, 94% of the respondents is estimated to
be in Latent State 1 (LS1). On its diagonal, the state-transition matrix
(Table 3) shows the parameter aii of the postulated geometric waiting
time distribution for a transition to another state. For example, it is
estimated that a11 = .85 and hence the probability that someone will
stay in LS1 for precisely 6 years equals =.85 (1 . 85) . 0576 . From
Table 3, one observes that the estimated model is a “forward”-model: if
a transition from a particular state i occurs, it is almost invariably to
state +i 1 or, rarely, to a state +i 2. This is visualized in Fig. 5: almost
all respondents move across the states in the order LS1-LS2-LS3-LS4 and
a small minority skips LS2.

Table 4 should be read column-wise: each column presents the
emission probabilities of the observed states, given the latent states. It
shows that, for example, the vast majority of those estimated to be in
LS1 have no children, and those in LS3 are almost certain to have one
child. On the other hand, all of those estimated to be in LS4 have at
least two children. Similarly, of those in LS4, 76% is married and 99%
has left the parental home.

To interpret this HMM and its latent states, one has to simulta-
neously examine the different types of probabilities and take into ac-
count that one has to interpret the latent states as cognitive states or
processes in which demographic decisions are considered. Most re-
spondents in LS1 still are in the parental home without a partner and
without children, and given the transition probabilities they mainly
move to LS2, a state characterized by “having left the parental home”,
having no children and a mix of partnership states. Thus the latent state
interpretation of LS1 is that it seems to be the state wherein most
youngsters consider or decide whether, and if so, when, to leave the
parental home. For respondents in LS2, reproduction seems to be the
key decision under consideration: none of those estimated to be in LS2

is a parent yet, but once they transition to LS3 (and this is very likely to
happen), they all have their first child and almost 85% of these re-
spondents have partnered - in LS2, the latter percentage was still less
than 50.

It seems that in LS3, the key mental decision process is about the
kind of partnership and the number of children one wants. Thus, the
key decision process is about family extension. Those in LS3 can only
move to LS4, and if they do so, they expand their household with at
least one more child. In LS4, almost 80% is married while only 10% has
no partner. The observed demographic events and decisions one has to
make at each latent state are shown in Table 5.

In summary, the 4-state HMM model suggests that the transition to
adulthood is driven by a chain of demographic decisions pertaining to
leaving the parental home (LS1), reproduction (LS2) and expanding the
family and choosing an appropriate partnership (LS3). LS4 acts as a
kind of absorbing state where no further (observed) demographic de-
cisions are considered.

Fig. 6 shows the estimated fraction of each age group that occupies
each of the four latent states. In Fig. 7, we show the most probable paths
(Bartolucci et al., 2012, Section 7.5.2) along the latent states, given the
estimated model and the observed categorical variables.

Fig. 7 shows that almost everyone has left LS1 by their late twenties,
but that considerable fractions are still in LS2 and LS3 at the end of
their thirties. Thus, some respondents have not started having children
or have not decided on family expansion by their late thirties, in-
dicating that they may end up with no or just one child.

This 4-state HMM models the transition to adulthood as a process
that is mainly driven by fertility-related decisions, as there is no explicit
room for decisions pertaining to the mode of partnering. According to
Second Demographic Transition Theory (e.g. Lesthaeghe, 1995), one
might expect a more prominent role for decisions concerning the type
of partner relationships young adults engage in. Therefore, and because
it has a much smaller BIC, we closely inspect the results of an estimated
5-state HMM in the next subsection.

4.2. A 5-state HMM

The initial state distribution (Table 6) is the same as that of the 4-
state model and again, the model is almost perfectly “left-to-right” as all
the transition probabilities below the diagonal of Table 7 are (very close

Table 2
Estimated initial probability distribution of a 4-state HMM

Latent State 1 2 3 4

.94 .06 0 0

Table 3
Estimated transition probability distributions of a 4-state HMM

State 1 2 3 4

1 .85 .14 .01 0
2 0 .91 .09 0
3 0 0 .85 .15
4 0 0 0 1

Table 4
Estimated emission probability distributions of a 4-state HMM

State 1 2 3 4

# Children
0 .99 1 0 0
1 .01 0 1 0
2 0 0 0 .68
> 2 0 0 0 0

Partnership
Single .97 .53 .17 .10
Cohabiting .02 .27 .24 .14
Married .01 .20 .59 .76

Left home
No 1 0 .02 .01
Yes 0 1 .98 .99
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to) zero while the bigger off-diagonal probabilities are in the upper-
diagonal part of the estimated matrix.

Following the same reasoning as when interpreting the 4-state
model, here LS1 is a state wherein people consider when and how to
leave the parental home. Unlike the 4-state model, though, two dif-
ferent options seem to be available, as LS2 is dominated by people ei-
ther single or in cohabitation, whereas LS3 is dominated by people who
are married.

People in LS2 again face a clear choice about how to continue their
family formation process. Either they move to LS3, where marriage is
the dominant living arrangement, or they move to LS4 where they have
children but do not marry. This latter decision path that leads to be-
coming an unmarried parent, runs via LS2 to LS4, and is taken by 31.2%
of the sample. According to this model, there are two decision paths to

becoming a married parent. The first path, taken by roughly 35.1% of
the sample, involves the decision to (first) cohabit and arrive in LS2,
then to marry and arrive in LS3, and finally to decide to complete the
family formation process with either one or two more children and
arrive in LS5. A second, almost equally likely path starts with the de-
cision to marry directly after leaving home and thus runs from LS1
directly to LS3, and next to LS5. According to this model, all other
decision paths are quite unlikely.

Unlike in the 4-state model, in the 5-state HMM, there are two ab-
sorbing states: LS4 and LS5. Transitioning between both states is (in
these data) a rare phenomenon. Unmarried parents end up in LS4 and
then only rarely consider marrying, whereas married parents mostly
end up with a completed family in LS5 and then rarely consider divorce
or lose their partner. The observed demographic events and the un-
derlying mental decision process at each latent state are shown in
Table 9.

In Fig. 8, we visualize the decision paths by arrows whose thickness
reflects the probability of moving between the respective latent states.

We show the estimated fraction of the respondents that occupies
each of the latent states by age for this 5-state HMM in Fig. 9 and the
most probable state paths in Fig. 10. As already stated in Section 2.3,
BIC- or entropy-based model selection of HMMs for big social-demo-
graphic data sets should not be expected to be feasible. Indeed, we
estimated HMMs with the number of latent states ranging from 3 to 8
and each successive addition of an extra latent state appeared to be
associated with a smaller BIC-value, as shown in Table 10.

Reliably estimating models with even more latent states proved to
be practically unfeasible. Here, we only discuss the estimated 4- and 5-
state models since these models allow for an interpretation of the latent
process that is sensible within the context of modern, more general
social-demographic theoretical frameworks. Discussing HMMs with a
bigger latent state space does not lead to new insights. To illustrate this,
we present the transition plot of a 6-state model in Fig. 11 and the
observed demographic events and decision processes in Table 11. In our
view, this solution only adds complexity without offering new insights
in the transition to adulthood. The main difference is that two latent
states where married people have children are distinguished, one with
one child and one with 2+ children. This does not add much to our
understanding of the underlying family formation process.

In our assessment, the 4-state model does not adequately reflect
modern demographic decision notions about the decline of traditional
family values and the increased importance of autonomy, whereas the
5-state model does fit in with these ideas and has a much lower BIC as
well. Therefore, in the next section, we confine to discussing the results
obtained when one adds gender and educational level as covariates to
the 5-state model.

4.3. Testing model-validity: the 5-state model with gender and education

It is known that demographic decision processes differ by gender

Fig. 5. State transition plot of an estimated 4-state HMM. The numbered circles represent identically numbered latent states and the arrows represent transition
probabilities. To help interpret the figures in the sequel, we tagged the states with a color: grey LS1, red LS2, green LS3, purple LS4. The arrows have
been colored according to the “target-state”. The thickness of the arrows and the numbers above the arrows reflect the transition probabilities (self-transition
probabilities not shown).

Table 5
Interpretation of latent states in terms of observed demographic events and
mental decision processes in a 4-state HMM.

State Observation Decision Process

LS1 In parental home Leaving parental home
LS2 Residential-independent Family formation
LS3 One-child family Family extension
LS4 Multi-child family (absorbing state)

Fig. 6. Latent state occupancy fraction plot of an estimated 4-state HMM.

S.Y. Han, et al. Advances in Life Course Research 43 (2020) 100265

7



and educational level. Men experience many of the events in the family
formation process, in particular marriage and parenthood, later than
women (Aassve, Billari, Mazucco, & Ongaro, 2002; Andersson &
Philipov, 2002), thus transition rates between latent states may be ex-
pected to generally be lower for men than for women. If indeed these
transition rates are lower for men, we may expect odds that are smaller
than 1 for men, when compared to women. Educational differences in
the family formation process usually are a bit more complex, and have
partly been found to be gender-specific. The higher educated generally
delay key family formation events like marriage and parenthood
(Kravdal & Rindfuss, 2008; Liefbroer & Corijn, 1999), but in many
countries they are very reluctant to enter unmarried cohabitation as
well (Perelli-Harris et al., 2010). In some societies, having children out
of wedlock is viewed as a low-class experience, and thus it is likely that
the higher educated will be less prone to move to latent states char-
acterized by births outside marriage. If the 5-state HMM validly de-
scribes individual demographic decision making, we may expect that
the estimated effects of these covariates on the latent state transitions fit
in with this knowledge. So, fitting a 5-state model with covariates
amounts to testing the validity of the (interpretation of the) 5-state
HMM.

As explained in Section 2.2, we assume that covariates affect the
transition distribution. To evaluate this effect, we estimated the odds of
these binary covariates and their interaction through logistic regres-
sion.

In Table 12 we only report those effects that have a p -value below
.10.

Homogeneous models imply that age does not play a role in the
timing of transitions. However, gender and education do play a role in
the timing of crucial stages/events in family formation. A gendered
effect cannot show up when gender is pooled, whether or not the model
is time-homogeneous. However, even a time-homogeneous model
should be able to reproduce such gendered effects. Therefore, testing
for the presence of such gendered effects on timing is a good way to test
for the validity of the model.

Men have a lower rate to experience the transition from LS1 to LS3
(marrying directly from the parental home), but do not differ in their
rate of experiencing the transition from LS1 to LS2 (leaving the parental
home by living single or in a cohabitation). Given that the transition
from LS1 to LS2 is more likely than the transition from LS1 to LS3, this
implies that men are somewhat slower than women in making their
decision about leaving the parental home. Men are also slower than
women to decide on further steps in the family formation after leaving
home. In particular, they delay moving from LS2 to either LS3 (taking

Fig. 7. Sequence index plot of the most probable latent state sequences, according to an estimated 4-state HMM.

Table 6
Estimated initial probability distribution of a 5-state HMM

State 1 2 3 4 5

.94 .06 0 0 0

Table 7
Estimated transition probability distributions of a 5-state HMM

State 1 2 3 4 5

1 .86 .11 .03 0 0
2 0 .90 .06 .04 0
3 0 .01 .86 .02 .12
4 0 0 .02 .96 .02
5 0 0 0 .02 .98

Table 8
. Estimated emission probability distributions of a 5-state HMM

# Children\State 1 2 3 4 5

0 1 1 .40 0 0
1 0 0 .60 .53 0
2 0 0 0 .32 .67
> 2 0 0 0 .15 .33

Partnership\State 1 2 3 4 5
Single .98 .67 0 .42 0
Cohabiting .02 .33 0 .58 0
Married 0 0 1 0 1

Left home 1 2 3 4 5
No 1 0 .02 .03 .01
Yes 0 1 .98 .97 .99

Table 9
Interpretation of latent states in terms of observed demographic events and
mental decision processes in a 5-state HMM

State Observation Decision processes

LS1 Living in parental home Why and how to leave parental
home

LS2 Childless, unmarried, residential-
independent

Mode of partnership, entering
parenthood

LS3 Married with 0 or 1 child Family extension
LS4 Non-marital family Marriage
LS5 Multi-child family Staying together
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the more traditional family formation path via marriage) or LS4 (taking
the path via out-of-wedlock parenthood). Very clear educational dif-
ferences can be observed as well. High-educated respondents are much
more likely to transition from LS1 to LS2 than from LS1 to LS3, im-
plying that the high educated delay traditional family formation pat-
terns, but are more likely to first live on their own or to cohabit un-
married. In a next step, those in LS2 can either go to LS3 or to LS4. We
observe a statistically significant interaction between level of education
and gender for the LS2 LS3 transition. For women, higher education
delays this transition ( =b . 74), but for men higher education slightly
speeds up the transition ( = ×b . 74 1.56). Thus higher educated
women are a bit more reluctant to move into a traditional, marriage-
like family pathway than higher educated men. The higher educated
are clearly more reluctant to make the transition between LS2 and LS4
than the low educated, suggesting that out-of-wedlock parenthood
among this cohort of French young adults is still mainly a low-class
phenomenon. High education, finally, speeds up the transition between
LS3 and LS5, suggesting that although the highly educated delay

embarking on the traditional family process, they are more willing to
speed up once they have entered the process. This is partly due to
higher educated respondents usually having higher financial security to
have more children when they already have one, and maybe the delay
in the earlier life course triggers them to catch-up. The effect of these
covariates is visualized in Fig. 12.

The roles played by the covariates in affecting the transition prob-
abilities agree with what we know about these effects from other stu-
dies and thus confirm the choice of the 5-state HMM.

5. Conclusion and Discussion

Most life courses are made up of a multitude of changes in multiple
life domains. A key challenge of life-course research is to make sense of
this complexity by searching for fundamental processes that drive these
observable transitions and by examining which factors influence them.
In this paper, we claim that Hidden Markov modeling holds great
promise in unraveling these processes, and we provide a relatively
simple example of its potential by applying it to the family transition
into adulthood among French men and women born between 1956 and
1965.

We feel that our results reveal a number of interesting viewpoints on
the family formation process. The 4-state solution represents the tran-
sition to adulthood in the family domain as a process that is mainly
driven by fertility. The first challenge that young adults face is about
when and how to leave parental home. The next steps in this inter-
generational reproductive process are about the initiation of a family
(entry into parenthood), followed by successive phases of family ex-
pansion and family completion. Thus, the 4-state HMM suggests a
model of the full family cycle starting as a child in a family of origin and
ending up as an adult in a next generation family.

The 5-state HMM provides another interesting view on the family
transition into adulthood. Rather than viewing this transition as a linear
trajectory where young adults only differ in the likelihood and speed of
moving to successive stages as is central to the 4-state HMM, the 5-state
HMM distinguishes between two alternative family pathways into
adulthood. As in the 4-state HMM, the first challenge every young adult
faces is when to leave the parental home. One pathway strongly re-
sembles the traditional pathway where young adults first establish a
“traditional” family, characterized by marriage and possibly a child,
followed by a subsequent stage of family expansion. However, a second
pathway is distinguished as well, where young adults opt for a more
autonomous lifestyle, characterized by single living and/or unmarried
cohabitation. After this stage, these young adults are confronted by

Fig. 8. State transition plot of a 5-state HMM. The thickness of the arrows and the numbers above the arrows reflect these transition probabilities (self-transitions not
shown). Here, compared to the states of the 4-state HMM, the interpretation of LS2-LS5 has been changed. Therefore, the coloring has been changed: LS2 light
blue, LS3 light brown, LS4 dark blue, LS5 dark brown. The probabilities of transitions that are part of the path leading to LS5 have been printed in a
thicker font.

Fig. 9. Latent state occupancy fraction plot of a 5-state HMM.
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another fundamental choice, either to continue this alternative lifestyle
track and opt for children outside marriage, or to align themselves into
the traditional pattern by moving “back” into the traditional family
pathway. Our analysis also reveals clear differences in the speed and
likelihood of transitions when linking covariates to the structural part
of the 5-state HMM. For instance, high educated respondents are more
likely to start off on the alternative track of independent living than low
educated respondents, but once they enter the traditional pattern that
emphasizes marital fertility, they complete this process faster than
lower educated respondents. The interaction of gender and education
also offers interesting insights in the switching between the alternative
track and the traditional pattern. High educated males are faster in
transiting whereas high-educated women are much more likely to delay
switching to the traditional family formation pathway.

Whether one interprets the data on the basis of the 4-state or 5-state
HMM solution at least partly depends on one’s theoretical interests. The
4-state HMM offers a succinct interpretation of the traditional family

Fig. 10. Sequence index plots of the most probable latent state sequences, according to an estimated 5-state HMM.

Table 10
BIC obtained in estimating various HMM’s

# states BIC

3 136816.8
4 110833.3
5 100913.9
6 91321.3
7 82831.8
8 76296.6

Fig. 11. Estimated state transition plot of a 6-state HMM. The colorings of some of the states and transitions have been changed, since the interpretations have been
changed).

Table 11
Interpretation of latent states in terms of observed demographic events and
mental decision processes in a 6-state HMM

State Observation Decision Processes

LS1 Living in parental home When and how to leave parental
home

LS2 Childless, unmarried, residential
independent

Mode of partnership and entering
parenthood

LS3 Married with 0 or 1 child Family extension
LS4 Non-marital family Marriage
LS5 Multi-child marital family Staying together, family extension
LS6 Multi-child marital family -

Table 12
Estimated odds of transitions in a 5-state HMM with 3 covariates in the form of
weights in a logistic regression equation. Only odds that are significantly
( <p . 01) different from 1 are shown. The states are numbered in accordance
with Fig. 8 and Table 8.

high Inter-
transition male education action

LS1 LS2 - 1.41 -
LS1 LS3 .40 .40 -
LS2 LS3 .78 .74 1.56
LS2 LS4 .72 .50 -
LS3 LS5 - 1.26 -
LS4 LS3 1.46 - -
LS5 LS4 .64 - -
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life pattern, pointing at three major decisions to be taken in the course
of the family-life cycle (Glick, 1955). The 5-state HMM incorporates
more heterogeneity into this family life cycle (Glick, 1989), and offers
interesting opportunities to study the process of family change that is
often captured under the heading of the Second Demographic Transi-
tion (Lesthaeghe, 1995). Furthermore, the analysis with covariates
underscores the validity of the 5-state model.

A major advantage of both of these models is that they greatly limit
the complexity of the process of transition into adulthood, by reducing
the large number of transitions between observable states to a small
number of transitions between unobservable, latent states. To quantify
the potential of an HMM, we compare the estimation of an HMM with
the estimation of a transition system of w parallel channels with cj,

=j w1, . . . , , observational categories. Such a system has
== c Ci

w
i1 distinct observable states.

In our application, we have three channels: the binary “living-at-
home” channel, the 3-valued partnering channel and the 4-valued re-
production channel and thus this system has 24 observational states. So,
the system has C 1 initial state probabilities and C C( 1) transition
probabilities, totalling to + =C C C( 1)( 1) 12 states - in our ap-
plication, this amounts to 575 parameters to estimate. In comparison, a
k-state HMM with w channels and cj states per channel has

+k k c1 ( 1)j
w

j
2 parameters; our 5-state HMM has only

24 + 45 = 69 parameters! This potential could be even more useful if
the number of potential observational states and transitions becomes
even larger, for instance if one wants to study both family transitions
and career-related transitions in one model.

The inclusion of covariates in a HMM serves two purposes. It offers
the opportunity to study the influence of covariates at different stages
of the life course and to compare their relative importance at these
stages. However, if one already has extensive knowledge about the
relationships between covariates and the processes under study, that
knowledge could be used to test the validity of the HMM. If the ob-
served relationships do not strongly resemble those based on prior
knowledge, this suggest that the validity of the HMM solution is ques-
tionable.

The models introduced in this paper have clear merit for life-course
research. Several extensions of the Hidden Markov Model can be en-
visaged, for example, constrained HMM (see e.g. Roweis, 2000). Con-
strained HMM is useful when one has a clear idea about the structure of
the transition pattern, and wants to test the hypothesized transition
probability distribution. This paper did not elaborate on this type of
topic yet, but it can be of great interest for future research.

Furthermore, it is generally held that the lives of spouses and par-
ents and children are linked (Elder, Johnson, & Crosnoe, 2003). Such

linkages might well be modelled using multiple HMMs whose emissions
affect each other’s latent processes. Such mutually affecting models
have been proposed in e.g. Elzinga, Hoogendoorn, and Dijkstra, (2007).

Generally, in applying these models to life-course data, researchers
have to be aware of both theoretical and practical restrictions on the
analyses. Models should not become too complex in order for them to
be mathematically feasible to estimate and to be theoretically inter-
pretable. Our paper suggests a number of guidelines in this respect that
may prove useful to future users. Finally, we want to stress the point
that applying mixture models is possible only when building on the
results obtained from (hazard-based) regression models and classifiers
like SA or LCA.
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